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Abstract

This thesis details theoretical and empirical work that draws from two main subject areas: Machine

Learning (ML) and Digital Signal Processing (DSP). A unifiedgeneral framework is given for the appli-

cation of sparse machine learning methods to multivariate signal processing. In particular, methods that

enforce sparsity will be employed for reasons of computational efficiency, regularisation, and compress-

ibility. The methods presented can be seen as modular building blocks that can be applied to a variety

of applications. Application specific prior knowledge can be used in various ways, resulting in a flexible

and powerful set of tools. The motivation for the methods is to be able to learn and generalise from a set

of multivariate signals.

In addition to testing on benchmark datasets, a series of empirical evaluations on real world

datasets were carried out. These included: the classification of musical genre from polyphonic audio

files; a study of how the sampling rate in a digital radar can bereduced through the use of Com-

pressed Sensing (CS); analysis of human perception of different modulations of musical key from

Electroencephalography (EEG) recordings; classificationof genre of musical pieces to which a listener

is attending from Magnetoencephalography (MEG) brain recordings. These applications demonstrate

the efficacy of the framework and highlight interesting directions of future research.
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Chapter 1
Introduction

1.1 Machine Learning

ML is a relatively young field that can be considered an extension of traditional statistics, with influences

from optimisation, artificial intelligence, and theoretical computer science (to name but a few). One of

the fundamental tenets of ML is statistical inference and decision making, with a focus on prediction

performance of inferred models and exploratory data analysis. In contrast to traditional statistics, there

is less focus on issues such as coverage (i.e. the interval for which it can be stated with a given level of

confidence contains at least a specified proportion of the sample). In statistics, classical methods rely

heavily on assumptions which are often not met in practice. In particular, it is often assumed that the

data residuals are normally distributed, at least approximately, or that the central limit theorem can be

relied on to produce normally distributed estimates. Unfortunately, when there are outliers in the data,

classical (linear) methods often have very poor performance. This calls for theoretically justified non-

linear methods which require fewer assumptions. This is theapproach that will be taken throughout this

thesis, with a focus on developing a computational methodology for efficient inference with empirical

evaluation. This will be backed up through analysis drawn from statistical learning theory, which allows

us to make guarantees about the generalisation performance(or other relevant properties) of particular

algorithms given certain assumptions on the classes of data.

1.2 Sparsity in Machine Learning

In information theory, the concept ofredundancyis defined as the total number of bits used to transfer

a message minus the number of bits of actual information in the signal. In ML redundancy appears

in data in many forms. Perhaps the most common is noise - whether this is measurement noise or

system noise - but there are also often domain specific sources of redundancy due to the nature of the

data itself (i.e. high self-similarity) or to the way in which it is collected.In the particular application

domains of interest in this thesis, namely multivariate signals, we are faced with potentially high levels
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of both of these type of redundancy. Whenever there is redundancy in a dataset, there is the potential

for sparse representations. In its most literal form, sparsity may involve a reduction in the number

of data dimensions (“dimensionality reduction”), or in thenumber of examples needed to represent a

pattern (“sample compression”). These two types of sparsity are known as “primal” and “dual” sparsity

respectively, due to the concept of duality from the optimisation community (seee.g.[1]). Both of these

types of sparsity have attractive properties, including:

• data compression,

• subset or feature selection,

• statistical stability (in terms of the generalisation of patterns),

• robustness (i.e. to outliers or small departures from model assumptions),

• space efficiency, and

• faster computations (after learning).

One of the biggest drawbacks of sparse methods tends to be in terms of computational efficiency during

learning. Much of the work in this thesis will be focussed on optimisation methods for sparse learning

that are computationally efficient. The most well known examples of sparse methods in statistics and

ML include methods such as the Least Absolute Shrinkage and Selection Operator (LASSO) [2] and

SVM [3], which are sparse in the primal and dual respectively. There are close relations between both of

these methods as outlined by [4], and indeed with many other sparse methods such as LPBoost [5] and

Kernel Basis Pursuit (KBP) [6]. Other classes of sparse methods include greedy methods such as Kernel

Matching Pursuit (KMP) and methods based on random subsampling such as the Nyström method [7].

Chapter 2 will outline these and other methods and try to emphasise the linkage between them, whilst

Chapter 3 builds on these methods to produce novel algorithms that are theoretically motivated and

empirically validated.

1.3 Multivariate Signal Processing

As already alluded to, the specific class of data that will be the particular focus of this thesis is multi-

variate signals. The issues of redundancy and sparsity are particularly magnified within this domain, as

the sensors used to gather the signals are often spatially proximal, and as a result their measurements

are often highly correlated. In addition, many real-world signals are affected by a high degree of noise

(which can be systemic noise or measurement noise). Finally, due to high rates of sampling and dense

sensor grids, the data is often extremely high dimensional.It is therefore especially important that the

methods used are capable of learning in this difficult domain.

Standard batch or online ML methods often fall short when analysing signals because the data

violates one of the basic assumptions: that the data isindependently and identically distributed(i.i.d.).

There are of course a range of ML methods that deal specifically with non-i.i.d. data and in particular

time series data, but the models are often highly complex anddo not scale well to large datasets. In

particular, these approaches often become intractable in the multivariate case - when we are dealing with
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large sets of signals (as is often the case in biological applications, for example). Another approach to

take is to break the signal into “chunks”, perform a series ofDSP operations on these chunks, and use

the resulting data as examples in standard ML algorithms. Whilst the i.i.d. assumption is still violated,

its impact is often softened as significant integration overtime takes place. However care must be taken

to avoid learning trivial relations due to this issue. The major benefit of this approach is that it means the

problem of inference on signals can be “modularised”,i.e. broken into subproblems, and subsequently

highly developed methods from both DSP and ML can be applied.This approach will form the basis of

the machine learning framework for multivariate signal processing that will be outlined in Chapter 3.

The links between DSP and ML run very deep, often with the samemathematical methods being

used for different applications. In essence, both fields areinterested in the solutions to underdetermined

problems, inverse problems, and sparse estimation (seee.g.[8]). This means that there is fertile ground

for cross-pollination of ideas; for example in Section 3.2 Iwill show how “greedy” methods from DSP

can be used to solve ML optimisation problems, and use statistical learning theory analysis to give

guarantees on the performance of the resulting algorithms.

1.4 Application Areas

1.4.1 Learning the Structure of Music

The funding and therefore main application area for this thesis was the EPSRC project entitled “Learning

the Structure of Music”, which encompasses three fields of science, music cognition, representation, and

machine learning. The project was a collaborative effort between the Centre for Computational Statis-

tics and Machine Learning at University College London, theInterdisciplinary Centre for Computer

Music Research at the University of Plymouth, the Leibniz Institute for Neurobiology at the Univer-

sity of Magdeburg, and the Department of Computational Perception at the Johannes Kepler University

Linz. The aims of the project were to develop models and toolsthat apply novel signal processing and

machine learning techniques to the analysis of both musicaldata and brain imaging data on music cog-

nition. The metrics of success for the project were in terms of both theoretical results and experimental

results. Specifically, the goals were to deepen the understanding of the relationship between musical

structure and musical performance, quantifiable by the ability to predict performer styles; to deepen the

understanding of the relationship between musical structure and listening experience, quantifiable by the

ability to predict patterns of brain activity; and to develop systems for generative performance and music

composition, quantifiable by the ability to generate coherent musical performances and compositions.

The experimental research that falls within the scope of this thesis seeks to find common patterns be-

tween the features extracted from polyphonic music, and therepresentation of musical structures within

the brain through the use of EEG and MEG recordings. This thesis is therefore targeted at the first two

of the three goals described above. To this end, the experimental research initially naturally followed

two paths, namely the understanding of polyphonic audio signal and of brain activity recordings, before

integrating the two to search for common patterns. Each of these stages will be described in detail.
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1.4.2 Music Information Retrieval

In the first part of the research, the goal was to investigate techniques for extracting features from mu-

sic in two forms: score-based representations (e.g.Musical Instrument Digital Interface (MIDI)), and

polyphonic music (e.g.Waveform Audio File Format (WAVE) audio). As most musical pieces are not

available in the former of these representations, and the signal processing required to extract information

from polyphonic audio is much more complicated, the research focussed on polyphonic audio. When

available, however, score-based representations providea rich source of information and this led to their

use in later experiments involving human subjects. A broad range of audio features were considered,

including musical structure, melody, harmony, chord sequences, or more general spectral or timbral

characteristics. An initial survey of the field identified that classification of musical genre from audio

files, as a fairly well researched area of music research, provided a good starting point. What would

appear on the surface to be a relatively trivial task, is in reality difficult for a number of reasons, not least

that the concept of a genre is rather subjective and amorphous. However despite these shortcomings,

useful progress has been made in this area, including insights into the types of features that are appro-

priate for this kind of task and the types of algorithm best suited to the classification problem. Chapter

4 describes research into this area, and includes a description of the novel approach taken, as well as a

discussion of the complications unearthed by this research.

1.4.3 Automatic analysis of Brain Signals

Neuroscience, like many other areas of science, is experiencing a data explosion, driven both by improve-

ments in existing recording technologies, such as EEG, MEG,Positron Emission Tomography (PET),

and functional Magnetic Resonance Imaging (fMRI). The improvements increase the quantity of data

through these technologies have had a significant impact on basic and clinical neuroscience research.

An analysis bottleneck is inevitable as the collection of data using these techniques now outpaces the

development of new methods appropriate for analysis of the data, and the dimensionality of the data

increases as the sensors improve in spatial and temporal resolution.

1.4.4 Additional Application Areas

Traditional processing of digital radar relies on samplingat the Nyquist frequency -i.e. twice the fre-

quency of the highest part of the bandwidth required. This requires extremely fast and expensive Ana-

logue to Digital Conversion (ADC) equipment, often operating at rates of up to 1GHz. Methods that

can reduce the frequency at which the ADC operates, or alternatively increase the signal bandwidth

whilst operating at the same frequency, would be of great benefit to the radar community. A form of

Compressed Sensing (CS) known Analogue to Information Conversion (AIC) [9, 10] that reduces the

sampling frequency from the traditional Nyquist rate by sampling at the information rate, rather than the

rate required to accurately reproduce the baseband signal,will be applied to real radar data in 4.
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1.4.5 Published Works

The following publications have resulted from this work, and will be referenced where appropriate in the

text.

Peer reviewed technical reports

Diethe, T., & Shawe-Taylor, J. (2007). Linear Programming Boosting for the Classification of Mu-

sical Genre. Technical Report Presented at the NIPS 2007 workshop Music, Brain & Cognition.

[11]

Diethe, T., Durrant, S., Shawe-Taylor, J., & Neubauer, H. (2008). Semantic Dimensionality Re-

duction for the Classification of EEG according to Musical Tonality. Technical Report Presented

at the NIPS 2008 workshop Learning from Multiple Sources. [12]

Diethe, T., Hardoon, D.R., & Shawe-Taylor, J. (2008). Multiview Fisher Discriminant Analysis.

Technical Report Presented at the NIPS 2008 workshop Learning from Multiple Sources. [13]

Peer reviewed conference papers

Diethe, T., Durrant, S., Shawe-Taylor, J., & Neubauer, H. (2009). Detection of Changes in Patterns

of Brain Activity According to Musical Tonality. Proceedings of IASTED Artificial Intelligence

and Applications. [14]

Diethe, T., Hussain, Z., Hardoon, D.R., & Shawe-Taylor, J. (2009). Matching Pursuit Kernel

Fisher Discriminant Analysis. Proceedings of the 12th International Conference on Artificial In-

telligence and Statistics (AISTATS) 2009, 5, 121-128. [15]

Diethe, T., Teodoru, G., Furl, N., & Shawe-Taylor, J. (2009). Sparse Multiview Methods for

Classification of Musical Genre from Magnetoencephalography Recordings. Proceedings of the

7th Triennial Conference of European Society for the Cognitive Sciences of Music (ESCOM 2009)

Jyvskyl, Finland, online athttp://urn.fi/URN:NBN:fi:jyu-2009411242. [16]

Diethe, T., & Hussain, Z. (2009). Kernel Polytope Faces Pursuit. Proceedings of ECML PKDD

2009, Part I, LNAI 5781, 290-301. [17]

Smith, G.E., Diethe, T., Hussain, Z., Shawe-Taylor, J., & Hardoon, D.R. (2010). Compressed

Sampling For Pulse Doppler Radar. Proceedings of RADAR 2010. [18]

1.5 Structure of this thesis

The work in this thesis draws from several disparate areas ofresearch, including digital signal processing,

machine learning, statistical learning theory, psychology, and neuroscience. The next Chapter (2) will

introduce some concepts from signal processing and machinelearning that underly the theoretical and

algorithmic developments, which are linked together into acoherent framework in Chapter 3. The fol-

lowing two Chapters, 4 and 5, will describe the experimentalwork described above in more detail, with

http://urn.fi/URN:NBN:fi:jyu-2009411242
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a focus on univariate and multivariate signal processing respectively. The final Chapter (6) concludes by

giving some philosophical insights and discussion of intended future directions.



Chapter 2
Background

Abstract

Space and Time. In this chapter I will provide background information for the two main subject areas

that form the basis of the thesis: Machine Learning and Signal Processing. Machine Learning is a

field that has grown from other fields such as Artificial Intelligence, Statistics, Pattern Recognition,

Optimisation, and Theoretical Computer Science. The core goal of the field is to find methods that learn

statistical patterns within data that are generalisable tounseen data using methods that are efficient

and mathematically grounded. Signal processing is broaderin the sense that there are multiple goals,

such as control, data compression, data transmission, denoising, filtering, smoothing, reconstruction,

identification etc., but narrower in the sense that it (generally) focusses on time-series data (which can

be continuous or discrete, real or complex, univariate or multivariate). Where these fields intersect

interesting challenges can be found that drive developmentin both fields.

2.1 Machine Learning

An important feature of most developments in the field of ML that is derived directly from a computer

science background is the notion of modularity in algorithmdesign. Modular programming (also known

as ‘Divide-and-Conquer’) is a general approach to algorithm design which has several obvious advan-

tages: when a problem is divided into sub-problems, different teams/programmers/research groups can

work in parallel, reducing programme development time; programming, debugging, testing and mainte-

nance are facilitated; the size of modules can be reduced to ahumanly comprehensible and manageable

level; individual modules can be modified to run on other platforms; modules can be re-used within

a programme and across programmes. In the context of ML, modularity exists due to the existence

of so calledkernel functions(which will be explained below), which allow the problem of learning to

be decomposed into the following stages: preprocessing, feature extraction, kernel creation (or alter-

natively weak-learner generation - see Section 2.1.11), and learning. This flow is depicted in Figure
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2.1. Common to both ML and DSP is a desire not only to find solutions to problems, but also to do so

Pre-
processing

Feature
extraction

K(xi,xj)

Kernel
Function

αi

Learning
algorithm Output

f(xi)
xi

Data Subspace
Projection

Figure 2.1: Modularity of kernel methods

efficiently. Drawing from optimisation theory, much work revolves around trying to find more efficient

methods for solving problems that are exactly correct or approximately correct. The choice of optimi-

sation method often comes down to a trade-off between computation time and memory requirements,

or alternatively between accuracy of solutions and the timeit takes to achieve them. Much of the focus

of the next Chapter will be on different optimisation methods to achieve sparse solutions in computa-

tionally efficient ways. These methods include convex optimisation, iterative “greedy” methods, and

methods that involve random subsampling or random projections. Examples of each of these methods

will be introduced later in this Chapter.

ML deals with a wide variety of problems, from ranking of web-pages to learning of trading rules

in financial markets. However the present focus will be on themore fundamental problems of classifica-

tion, regression (function fitting and extrapolation), subspace learning and outlier detection. Many more

complex tasks can be decomposed into these fundamental tasks, so it is important to focus on the foun-

dations before building up to more complex scenarios. However common to all of the tasks is a focus

on the generalisation ability of learnt models, so this willbe the key metric upon which the empirical

validation is grounded.

The first part of the Chapter will introduce some of the basic concepts mentioned above, firstly ML

methods: regression, classification, regularisation, margin maximisation, boosting, subspace learning,

and MVL; following from this will be DSP concepts such as dictionaries, bases, sparse representations,

multivariate signal processing, and compressed sensing. Theoretical insights from Statistical Learning

Theory (SLT) will be used to justify the methods as they are introduced.

2.1.1 Reproducing Kernel Hilbert Spaces

Outside of ML, the Reproducing Kernel Hilbert Spaces (RKHS)method provides a rigorous and ef-

fective framework for smooth multivariate interpolation of arbitrarily scattered data and for accurate

approximation of general multidimensional functions. Given a Hilbert spaceH and an examplexi, the

reproducing property can be stated as follows,

f(xi) = 〈f, κ(xi, ·)〉H (2.1)

of the reproducing kernelκ for every functionf(xi) belonging toH. This property allows us to work in

the implicit feature space defined only with the inner products, and is the key to kernel methods for ML.

This allows inner products betweennonlinearmappingsφ : xi → φ(xi) ∈ F of xi into a feature

spaceF , as long as the inner productκ(xi,xj) = 〈φ(xi), φ(xj)〉 can be evaluated efficiently. In many
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cases, this inner product orkernel function(denoted byκ) can be evaluated much more efficiently than

the feature vector itself, which can even be infinite dimensional in principle. A commonly used kernel

function for which this is the case is the Radial Basis Function (RBF) kernel, which is defined as:

κRBF(xi,xj) = exp

(

−‖xi − xj‖2
2σ2

)

. (2.2)

2.1.2 Regression

Given a sampleS containing examplesx ∈ R
n and labelsy ∈ R. LetX = (x1, . . . ,xm)′ be the input

vectors stored in matrixX as row vectors, where′ denote the transpose of vectors or matrices.

Table A.1 in Appendix A is included as reference for some of the more commonly used mathemat-

ical symbols.

The following assumptions will be made in order to aid presentation: Data is centered (or alterna-

tively a column of ones can be added as an extra feature, whichwill function as the intercept); the data is

generated i.i.d. according to an unknown but fixed distributionD. Furthermore, a Gaussian noise model

with zero mean is assumed.

2.1.3 Loss functions for regression

Before going on to give specific examples of learning algorithms for regression, it is worth introducing

the different loss functions that are commonly used for regression, along with their relation to the noise

model.

Defining the square loss as

L{2} = ‖f(x)− y‖22 , (2.3)

whereŷ = f(x) is the estimate of the outputsy. This is also known as Gaussian loss as minimising this

loss is the Maximum Likelihood solution if a Gaussian noise model is assumed. Alternatively we can

denote the vector of slack variablesξ = |y− ŷ| as the differences between the true and estimated labels,

and we divide by a half to make algebra easier, giving

L{2} =
1

2
‖ξ‖22 . (2.4)

Theℓ1 loss is similarly defined as,

L{1} = ‖ξ‖1 , (2.5)

whose minimisation leads to the Maximum Likelihood solution under a Laplacian noise model. Defining



2.1. Machine Learning 21

Loss functionalL(ξ) density modelp(ξ)
ǫ-insensitive ‖ξ‖ǫ 1

2(1+ǫ) exp (−‖ξ‖ǫ)
Laplacian ‖ξ‖1 1

2 exp (−‖ξ‖1)
Gaussian 1

2 ‖ξ‖
2
2

1√
2π

exp
(

− ‖ξ‖2
2

2

)

Huber’s robust loss

{

1
2σ ‖ξ‖

2
2 if |ξ| ≤ σ

|ξ| − σ
2 otherwise

∝
{

exp
(

− ξ2

2σ

)

if |ξ| ≤ σ
exp

(

σ
2 − |ξ|

)

otherwise

Polynomial 1
d |ξ|

d d
2Γ(1/d) exp

(

− |ξ|d
)

Table 2.1: Common loss functions and corresponding density models, adapted from [19]

a region of widthǫ around zero within which deviations are not penalised leadsto theǫ-insensitive loss,

L{ǫ,1} = max (‖ξ‖1 − ǫ, 0)
.
= ‖ξ‖ǫ,1 , for theℓ1 noise model, and (2.6)

L{ǫ,2} = max (‖ξ‖2 − ǫ, 0)
.
= ‖ξ‖ǫ,2 , for theℓ2 noise model. (2.7)

Some loss functions and their equivalent noise models are given in Table 2.1. For simplicity, the rest

of this Section will use the square loss of Equation 2.3. However any of the loss functions given (or

other loss functions not given due to space constraints) canbe substituted to give different optimisation

criteria. This approach is known as the General Linear Model(GLM). In all of the cases outlined here,

the loss function is convex which leads to exact optimisation problems. However, non-differentiable loss

functions such as the linear loss or theǫ-insensitive loss are typically harder to solve.

2.1.4 Linear regression in a feature space

Assume that data is generated according to a linear regression model,

yi = xiw + ni, (2.8)

wheren is assumed to be an i.i.d. random variable (noise) with mean0 and varianceσ2. Let X =

(x1, . . . ,xm)′ be the input vectors stored in matrixX as row vectors, andy = (y1, . . . ,ym)′ be a

vector of outputs. Assume the square loss as defined in Equation 2.3, as this is the Maximum Likelihood

solution to the linear regression problem of Equation 2.8. Intuitively it makes sense as the squaring of

the errors places emphasis on larger errors whilst ignoringthe sign. The formulation for linear regression

that minimises this loss is then given by,

min
w
L(X,y,w) (2.9)

=min
w
‖Xw − y‖22 . (2.10)
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By differentiating with respect tow, equating to zero and rearranging, it can be seen that there is a closed

form solution forw∗,

w∗ = (X′X)−1X′y, (2.11)

provided that the matrixX′X is invertible. The dual of this optimisation is formed as follows,

min
α
‖XX′α− y‖22 (2.12)

=min
α
‖Kα− y‖22 , (2.13)

which in turn has a closed form solution,

α∗ = (XX′)−1y, (2.14)

= K−1y, (2.15)

again provided that the matrixXX′ is invertible. The function to test this model on a new data point is

given by,

f(xi) = K(i, ·)α∗. (2.16)

This kernel trick is based on the reproducing property introduced in Section 2.1.1, with the observation

that in the equation to computeα∗ (2.24) as well as in the equation to evaluate the regression function

(2.16), all that is needed are the vectorsxi in inner products with each other. It is therefore sufficientto

know these inner products only, instead of the actual vectorsxi. Observe that the kernel regression form

of Equation 2.15 when used with an RBF kernel has highercapacitythan the linear regression form of

Equation 2.11,i.e. it allows for a richer class of functions to be learnt than by the standard linear model.

Whilst this increase in capacity may be desirable if the datais not in fact linear, in the presence of noise

this can cause problems due to the ability of the model to fit the noise (overfitting). In this situation,

some form ofcapacity controlis required.

2.1.5 Stability of Regression

In statistics, this capacity control can be seen through what is known as thebias variance trade-off[20].

Typically, a model with low capacity such as the linear modelof Equation 2.11, will have high bias as

it will fit only a very restricted class of data, whilst the variance is low as perturbing some of the data

points will have little effect. In contrast, if a high capacity model is used such as Equation 2.15 with the

RBF kernel as defined in (2.2), the function can fit the data exactly (low bias) but if even a single data

point is perturbed the function will change drastically (high variance). Hence it would be desirable to

optimise the trade-off between these two in order to generate models with predictive power on new data.

This is closely related to the concepts of overfitting and regularisation that will be discussed in Section
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2.1.6.

McDiarmid’s inequality [21], which is a generalization of Hoeffding’s inequality [22], is a result in

probability theory that gives an upper bound on the probability for the value of a function depending on

multiple independent random variables to deviate from its expected value. This is a result that comes

from the law of large numbers by Chernoff in relation to the convergence of Bernoulli trials [23]. The

risk associated with a functionf is defined as the expectation of the loss function,

R = Ex,y∈{X×Y}[L(f(x, y))], (2.17)

and the empirical risk as the expectation of a particular sampleS,

R̂ = Ex,y∈S[L(f(x)]

=
1

m

m
∑

i=1

L(f(xi, yi)). (2.18)

Given random variablesxi lying in the range[ai, bi], the probability that the expected empirical riskR̂
differs from the true risk (or error)R by a valueǫ can be bounded as follows,

Pr
(

|R̂ − R| ≥ ǫ
)

≤ 2 exp

(

− 2mǫ2

(b− a)2
)

, (2.19)

This shows that there is an exponential decay of the difference in the probabilities as the sample size

increases. This gives us a clue that to learn well, the best thing that one can do is to increase the amount

of data available. However, if this is not possible, the onlyother option is to control the capacity of the

the learning algorithm.

Another viewpoint introduced by Vapnik and Chervonenkis isthe notion of Structural Risk

Minimisation (SRM) [24, 25, 26]. The real errorR is upper bounded by the empirical errorR̂ and

another value called thestructural riskRS . The structural risk is a theoretical criterion that can be com-

puted for certain classes of models and estimated in most other cases. Choose the model that achieves

the lowest upper bound.

R = R̂+RS . (2.20)

The idea is to impose a structure on the class of admissible functionsF , such that each individual

functionfj which has lower capacity than the nextfj+1. This is depicted diagrammatically in Figure

2.2. Another closely related approach to capacity control is regularisation, which will be discussed

below in Section 2.1.6. If we choose to control the capacity using a class of functions with bounded

norm, we are in fact using the set of regularised functions, which gives an additional justification for this

type of regularisation.
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Figure 2.2: Structural Risk Minimisation (adapted from [19]). The principle is to find the optimal functionf∗ that
satisfies the trade-off between low capacity and low training error

2.1.6 Regularisation

Inverse problems, such as (2.22) and (2.24) are oftenill-posed. This is usually due to the condition

number1 of the matrix to be inverted, meaning that it needs to be re-formulated for numerical treatment.

Typically this involves including additional assumptions, such as smoothness of solutions. This process

is known in the statistics community as regularisation, andTikhonov regularisation is one of the most

commonly used types of regularisation for the solution of linear ill-posed problems [27]. There is also a

secondary reason why regularisation is important:overfitting. Overfitting occurs when an inferred model

describes the noise in the data rather than the underlying pattern. Overfitting generally occurs when the

complexity of the model is too high in relation to the quantity of data available (i.e. in terms of degrees

of freedom). A model which has been overfit will generally have poor generalisation performance on

unseen data. Tikhonov regularisation is defined as,

min
w
‖Xw − y‖22 + ‖Λw‖

2
2 , (2.21)

whereΛ is the Tikhonov matrix. Although at first sight the choice of the solution to this regularised

problem may look artificial, the process can be justified froma Bayesian point of view. Note that for an

ill-posed problem one must necessarily introduce some additional assumptions in order to get a stable

solution. A statistical assumption might be thata-priori it is known thatX is a random variable drawn

from a multivariate normal distribution, which for simplicity is assumed to be mean zero and that each

component is independent with standard deviationσx. The data is also subject to noise, and we take the

errors iny to be also independent with zero mean and standard deviationσy. Under these assumptions,

1A “bad” condition number is one in which the quotient betweenthe maximal and minimal eigenvalue ofΣ = X′X is large
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according to Bayes’ theorem the Tikhonov-regularized solution is the most probable solution given the

data and thea-priori distribution ofX. The Tikhonov matrix is thenΛ = λI for Tikhonov factor

λ = σy/σx. Of course this Tikhonov factor is not known, so must be estimated in some way. If the

assumption of normality is replaced by assumptions of homoscedasticity and that errors are uncorrelated,

and still assume zero mean, then the Gauss-Markov theorem implies that the solution is a minimal

unbiased estimate [28].

It is therefore justified to set the Tikhonov matrix to be a multiple of the identity matrixΛ = λI;

this method is known in the statistics and ML literature as Ridge Regression (RR).

Ridge Regression

The primal formulation for RR is therefore given by,

min
w
‖Xw − y‖22 + λ ‖w‖22 . (2.22)

Similarly to (2.11), a closed form solution for RR exists,

w∗ = (X′X+ λI)−1X′y. (2.23)

Using the duality theory of optimisation and the kernel trick once more, we obtain the following formu-

lation for dual RR and hence Kernel Ridge Regression (KRR),

min
α
‖XX′α− y‖22 + λ ‖X′α‖22

=min
α
‖Kα− y‖22 + λα′Kα (2.24)

As with the unregularised case, there is again a closed form solution for this2

α∗ = (XX′ + λI)−1y

= (K+ λI)−1y. (2.25)

2.1.7 Sparse Regression

There is, however, nothing in either the primal (2.22) or thedual (2.24) formulations that would give rise

to sparsity in the solutions (w∗ or α∗ respectively). If we have prior knowledge that the weight vector

generating the data was sparse, or alternatively we want to perform feature selection or subset selection,

the above formulation can be modified to give sparse solutions. Replacing theℓ2-norm on the weights

2This comes from the normal equation(K2+λK)α = Ky, so the closed form solution again depends onK (orXX′) being
invertible.
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ℓ1 norm ball ℓ2 norm ball

Figure 2.3: Depiction of minimisation onto theℓ1 and ℓ2 norm balls inR2. Note that at the optimal solution, the
first coefficient (x-axis) is zero, and hence the solution is sparse. Note also that this will almost never be the case for
theℓ2 norm.

with the pseudoℓ0-norm3 leads to the following optimisation,

min
w
‖Xw − y‖22 + λ ‖w‖0 . (2.26)

Finding thisℓ0 solution is known to beNP−hard. However theℓ1 optimisation problem

min
w
‖Xw − y‖22 + λ ‖w‖1 (2.27)

is a convex quadratic programming problem, and is known to approximate theℓ0 solution (under certain

conditions the solutions are identical seee.g.[29]). Since it is non-differentiable, unlike (2.11) or (2.22),

there is no closed-form solution. The problem is variously known as the LASSO [30] and Basis Pursuit

(BP) [31]. The reason for the sparsity inℓ1 solutions can be seen graphically in Figure 2.3. Methods for

solving the LASSO problem include the forward stepwise regression algorithm [32], or the Least Angle

Regression Solver (LARS) [2]. The LARS algorithm computes the full regularisation path, which is a

piecewise linear function betweenλ = 0 andλ =∞, which is a useful property if cross-validation (CV)

is employed for model selection.

Whilst the dual optimisation for LASSO can be formulated [33], it does not lend itself easily to

“kernelisation” -i.e. the weights cannot easily be represented as a linear combination of the data points

in the formw = X′α. However, it is possible to perform “soft” kernelisation, where the inputs are

simply replaced with the kernel matrix and the primal weightvector is replaced with the “soft” dual.

This is the approach taken by [6] for the algorithm they call KBP, the formulation for which is,

min
α
‖Kα− y‖22 + λ ‖α‖1 , (2.28)

which can then be solved using any of the methods used to solve(2.27).

3Theℓ0 pseudo-norm of a vector is simply a count of the non-zero entries
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2.1.8 Classification

This Section will introduce methods for classification -i.e. where we want to separate our data into

two or more classes. The most obvious way to do this is to create a discriminant function, and as

such two methods will be introduced for creating such functions: Fisher Discriminant Analysis (FDA)

and the margin-based approach of the Support Vector Machine(SVM). Following on from this two

further algorithms will be presented which are based on the notion of boosting- Adaptive Boosting

(AdaBoost) and Linear Programming Boosting (LPBoost) - andshow how they are related to the margin

maximisation principle of the SVM but also in the case of LPBoost to the LASSO approach described

earlier.

Preliminaries

Assume we have a sampleS containing examplesx ∈ R
n and labelsy ∈ {−1, 1}. As before let

X = (x1, . . . ,xm)′ be the input vectors stored in matrixX as row vectors, andy = (y1, . . . ,ym)′ be a

vector of outputs, where′ denote the transpose of vectors or matrices. For simplicityit will be assumed

that the examples are already projected into the kernel defined feature space, so that the kernel matrixK

has entriesK[i, j] = 〈xi,xj〉.

2.1.9 Loss functions for classification

Before going on to give specific examples of learning algorithms for classification, as with the regression

case it is worth introducing the different loss functions that are commonly used for classification. Again

there is a focus on convex functions, as these lead to optimisation problems that can (in general) be

solved exactly. Perhaps the simplest loss function for classification is thezero-oneloss, defined as,

L =







0 if yi = sgn(f(xi))

1 otherwise.
(2.29)

If the output of the classifier can be considered a confidence level, it may make sense to penalise larger

errors more. A simple modification of the zero-one loss leadsto thehingeloss,

L =







0 if yif(xi) ≥ 1

1− yif(xi) otherwise
(2.30)

wheref(xi) ∈ R. This in turn closely resembles thelogistic loss, defined as

L = log (1 + exp (−yif(xi))) . (2.31)

The square loss, which is closely related to the square loss for regression, and is defined as,

L = (1− yif(xi))2. (2.32)
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Finally, the linear loss, which relates to a Laplace noise model as it did for regression, is defined as,

L = |1− yif(xi)| . (2.33)

The relations between these loss function can be seen graphically in Figure 2.4. These loss functions
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Figure 2.4: Some examples of convex loss functions used in classification. Note that the hinge loss follows the linear
loss for margin values less than 1, and is zero otherwise. Also note that the hinge loss is a convex upper bound on
the zero-one loss.

will play an important role in the rest of the discussion on classification. I will introduce FDA and its

kernel equivalent, before showing how this can be cast as a convex optimisation problem using the square

loss or the logistic loss.

Fisher Discriminant Analysis

We first review Kernel Fisher Discriminant Analysis (KFDA) in the form given by [3]. The Fisher

discriminant choosesw to solve the following optimisation problem

max
w

wX′yy′Xw

w′X′BXw
(2.34)



2.1. Machine Learning 29

whereB is a matrix incorporating the label information and the balance of the dataset as follows:

B = D−C+ −C−

whereD is a diagonal matrix with entries

Dii =







2m−/m if yi = +1

2m+/m if yi = −1

andC+ andC− are given by

C+
ij =







2m−/(mm+) if yi = +1 = yj

0 otherwise

C−
ij =







2m+/(mm−) if yi = −1 = yj

0 otherwise

Note that for balanced datasetsB will be close to the identity matrixI. The motivation for this

choice is that the direction chosen maximises the separation of the means of each class scaled by the

variances in that direction.

To solve this problem in the kernel defined feature spaceF we first need to show that there exists

a linear expansionw =
∑m

i=1 αixi of the primal weight vectorw [34, 3]. This leads to the following

optimisation problem:

ρ = max
α

α′XX′yy′XX′α

α′XX′BXX′α
(2.35)

= max
α

α′Kyy′Kα

α′KBKα

= max
α

α′Qα

α′KRα
(2.36)

whereQ = Kyy′K andR = BK. The bias termb must be calculated separately, and there is no fixed

way to do this. The most common method is to adjustb such that the decision boundary bisects the line

joining the two centres of mass,

b = −0.5y′Xw

= −0.5y′Kα (2.37)

The classification function for KFDA is then,

f(xi) = sgn(〈w,xi〉+ b)

= sgn(K[:, i]′α+ b), (2.38)

by substitutingw = X′α. There are several ways in which the optimisation problem (2.36) can then
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be solved. Some algebra shows that it can be solved as the generalised eigenproblemQα = λKR, by

selecting theα corresponding to the largest generalised eigenvalueλ, or in closed form as given by [3],

α = R−1y. Note thatR is likely to be singular, or at best ill-conditioned, and so aregularised solution

is obtained by substitutingR = R + µI, whereµ is a regularisation constant. This is equivalent to

imposing anl2 penalty on the primal weight vector.

However, it has been shown [35, 36] that it is possible to exploit the structure of (2.36) to formulate

KFDA as a quadratic program. This is reviewed below.

Convex Fisher Discriminant Analysis

First note that any multiple ofα is also a solution to (2.36). One can further use the observation that the

matrixQ is rank one. This means thatα′Ky can be fixed to any non-zero value,e.g.2. By minimising

the denominator, the following quadratic programme results,

min
α

α′KRα

s.t. α′Ky = 2. (2.39)

Casting the optimisation problem (2.36) as the convex optimisation problem (2.39) gives several advan-

tages. Firstly, for large sample sizem, solving the eigenproblem is very costly due to the size ofQ and

R. The convex formulation also avoids invertingR in the closed form solution which can be unstable.

It is also possible to introduce sparsity into theα solutions through the use of a different regularisation

operator. Finally, it will enable the extension of the formulation naturally to multiple views, which is not

easily done otherwise (see Section 3.5.2 in the following Chapter). However the unintuitive matrixB

still remains in this formulation. Using the fact that KFDA minimises the variance of the data along the

projection, whilst maximising the separation of the classes, it is possible to proceed by characterising

the variance within a vector of slack variablesξ ∈ R
n. The variance can then be directly minimised as

follows,

min
α,ξ

L(ξ) + µP(α)

s.t. Kα+ 1b = y + ξ

ξ′ec = 0 for c = 1, 2, (2.40)

where

eci =







1 if yi = c

0 otherwise.
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L(·), P(·) are the loss function and regularisation functions respectively as follows,

L(ξ) = ‖ξ‖22 , (2.41)

P(α) = α′Kα; (2.42)

where: the first constraint forces the outputs onto the classlabels whilst minimising their variance; the

second constraint ensures that the label mean for each classis the label for that class,i.e. for ±1 labels,

and the average distance between the classes is two. It has been shown by [35] that any optimal solution

α of (2.40) is also a solution of (2.39). Note that now the bias term is explicitly in the optimisation, and

therefore does not need to be calculated separately. The formulation (2.40) has appealing properties that

will be used later.

2.1.10 Maximum Margin classification

Geometrically speaking, a maximum-margin hyperplane is a hyperplane that separates two sets of points

such that it is equidistant from the closest point in each setand is perpendicular to the line joining the two

points. In ML, the concept of large margins encompasses manydifferent approaches to the classification

of data from examples, including boosting, mathematical programming, neural networks, and SVM. The

key fact is that it is the margin (which can be viewed as a confidence level) of a classification rather than

a raw training error that is used when training a classifier [37]. This is known as thehard margin SVM,

in which the marginγ is maximised as follows,

min
w,b,γ

− γ (2.43)

s.t. yi (〈w, φ(xi)〉+ b) ≥ γ, i = 1, . . . ,m

‖w‖22 = 1.

Note that this is equivalent to using the hinge loss defined inEquation (2.30). Cortes and Vapnik [38]

modified the maximum margin idea (also known as hard margin) to allow for mislabeled examples. In

the absence of a hyperplane that can split the positive and negative examples, the soft margin method

chooses a hyperplane that splits the examples as cleanly as possible, while still maximizing the distance

to the nearest cleanly split examples. The method introduces slack variables,ξi, which measure the

degree of misclassification of the pointxi. The objective function is then increased by a function which

penalises non-zeroξi, and the optimisation becomes a trade off between a large margin and a small error

penalty. The2-norm soft margin SVMis defined as the following optimisation problem

min
w,b,γ,ξ

− γ + C ‖ξ‖22 (2.44)

s.t. yi (〈w, φ(xi)〉+ b) ≥ γ − ξi, i = 1, . . . ,m

‖w‖22 = 1
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where the parameterC controls the trade-off between maximising the margin and the size of the slack

variables. The resulting algorithm is robust to noise in thedata but not sparse in its solutions. In order to

enforce sparsity, theℓ1 norm is used once again, giving the1-norm soft margin SVM,

min
w,b,γ,ξ

− γ + C ‖ξ‖1 (2.45)

s.t. yi (〈w, φ(xi)〉+ b) ≥ γ − ξi, i = 1, . . . ,m

‖w‖22 = 1.

ξi ≥ 0, i = 1, . . . ,m.

The dual of this optimisation problem can then be derived, giving us the kernel formulation,

min
α

m
∑

i,j=1

αiαjyiyjκ(xi, xj) (2.46)

s.t.

m
∑

i=1

αiyi = 0,

m
∑

i=1

αi = 1, and

0 ≤ αi ≤ C, i = 1, . . . ,m

The SVM in this form can be solved by quadratic programming, or alternatively via iterative methods

such as the Sequential Minimal Optimisation (SMO) algorithm [39].

2.1.11 Boosting

The term boosting describes any meta-algorithm for performing supervised learning, in which a set of

“weak learners” create a single “strong learner”. A weak learner is defined to be a classifier which is

only slightly correlated with the true classification (i.e.slightly better than chance). By contrast, a strong

learner is strongly correlated with the true classification[40].

Boosting algorithms are typically iterative, incrementally adding weak learners to a final strong

learner. At every iteration, a weak learner learns the training data with respect to a distribution. The

weak learner is then added to the current strong learner. This is typically done by weighting the weak

learner in some manner, which is typically related to the weak learner’s accuracy. After the weak learner

is added to the strong learner, the data is reweighted: examples that are misclassified gain weight and

examples that are classified correctly lose weight. Thus, future weak learners will focus more on the

examples that previous weak learners misclassified.

Adaboost

AdaBoost is the best known example of a boosting algorithm [41]. Withouta-priori knowledge, small

decision trees, or decision stumps (decision trees with twoleaves) are often used. The algorithm works



2.1. Machine Learning 33

by iteratively adding in the weak learner that minimises theerror with respect to the distributionDt at

stept over the weak learners,

h(t) = arg min
hj∈H

ǫt =

m
∑

i=1

Dt(i)[yi 6= hj(xi)], (2.47)

and then updating the distribution by using the weighted error rate of the classifierhj ,

αt =
1

2
log

1− ǫt
ǫt

(2.48)

as follows,

Dt+1(i) =
Dt(i) exp (−αiyiht(xi))

Z
(2.49)

whereZ is a normalisation constant to ensure that
∑m

i=1Dt+1(i) = 1.

The paper [42] describes how the original [41] AdaBoost methods can be extended to the multiclass

case4. One of the approaches taken, known as AdaBoost.MH, uses theHamming loss of the hypotheses

generated fromℓ orthogonal binary classification problems. The Hamming loss can be regarded as an

average of the error rateh on theseℓ binary problems. Formally, for each weak hypothesish : X→ 2Y,

and with respect to a distributionD, the loss is

1

Z
E(x,Y)∼D [|h(x)∆Y|] , (2.50)

where∆ denotes the symmetric difference, and the leading1/Z ensures that values lie in [0,1].

The resulting algorithm, called AdaBoost.MH, maintains a distribution over examplesi and labels

ℓ. On roundt, the weak learner accepts such a distributionDt and the training set, and generates a weak

hypothesisht : X×Y → R. This reduction leads to the choice of final hypothesis, which is

H(x, ℓ) = sgn

(

T
∑

t=1

αtht(x, ℓ)

)

. (2.51)

The algorithm for AdaBoost.MH is given in Algorithm 1,

Theorem 2.1.1. The reduction used to derive this algorithm implies a bound on the Hamming loss of

the final hypothesis:

E(H) ≤
T
∑

t=1

Zt (2.52)

In the binary classification problem, the goal is to minimise

Zt =
∑

i,ℓ

Dt(i, ℓ) exp(−αtY{i,ℓ}ht(xi, ℓ)) (2.53)

4The authors also consider the more general multi-label casein which a single example may belong to any number of classes.
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Algorithm 1 AdaBoost.MH: A multiclass version of AdaBoost based on Hamming Loss

Given training examples(x1, Y1), . . . (xm, Ym), Yi ∈ {+1,−1}ℓ, number of iterationsT
InitialiseD0(i, ℓ) =

1
mT

for t = 1 . . . T do
pass distributionDt to weak learner
get weak hypothesisht : X×Y → R

chooseαt (based on performance ofht)
update

Dt+1(i, ℓ) = Dt(i, ℓ) exp(−αtY{i,ℓ}ht(xi, ℓ))/Zt

whereZt is a normalisation factor chosen so thatDt+1 will be a distribution
end for
Output final hypothesis:H(x, ℓ) = sign(

∑T
t=1 αtht(x, ℓ))

on each round, wherei = 1 . . .m andℓ = 1 . . . k (m is the number of examples andk is the number of

classes). Since eachht is required to be in the range−1,+1, eachαt is chosen as follows,

αt =
1

2
log

(

1 + rt
1− rt

)

(2.54)

where

rt =
∑

i,ℓ

Dt(i, ℓ)Y{i,ℓ}ht(xi, ℓ) (2.55)

This gives

Zt =
√

1− r2t (2.56)

and the goal of the weak learner becomes maximisation of|rt|. The quantity(1− rt)/2 is the weighted

Hamming loss with respect toDt.

To relate AdaBoost to the previous discussion of loss functions in Section 2.1.9, the statistical

viewpoint is that boosting can be seen as the minimisation ofa convex loss function over a convex set of

functions [43]. Specifically, the loss being minimized is the exponential loss

L =

m
∑

i=1

exp(−yiH(xi)) (2.57)

whereH(xi) =
∑T

t=1 f(xi) is the final hypothesis.

Linear Programming Boosting (LPBoost)

Referring back to the 1-norm soft margin SVM in Equation (2.45), it is possible to perform the same

optimisation using the weak hypothesis matrixH, whereH =
∑

i yih(xi, ·), which is equivalent to
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y′(φ(x) + b). This would result in the following optimisation (written in matrix form),

min
w,γ,ξ

− γ + C1′ξ (2.58)

s.t. Hw ≥ γ1− ξ,

‖w‖22 = 1,

where1 is the vector of all ones. Since the number of weak learners inthe matrixH is potentially very

large, it is logical to enforce sparsity in the primal weightvectorw, which can be done by replacing the

ℓ2-norm constraint with anℓ1-norm constraint. This results in the following linear programme,

min
w,γ,ξ

− γ + C1′ξ (2.59)

s.t. Hw ≥ γ1− ξ,

1′w = 1,

w ≥ 0, ξ ≥ 0.

The dual of this optimisation can then be formulated as follows,

min
α,β

β (2.60)

s.t. H′α ≤ β1,

1′α = 1,

0 ≤ α ≤ C1,

with dual variablesα andβ, and the box constraints on theα variables are due to the primal slack

variablesξ.

The paper by [5] describes an efficient algorithm called LPBoost mimics a simplex based method

known as column generation in order to solve the optimisation problem (2.60). The simplex algorithm

is a method for finding the numerical solution of the linear programming problem, first introduced by

George Dantzig [44]. A simplex is a polytope ofn+ 1 vertices inn dimensions: a polygon on a line, a

pyramid on a plane, etc.

The column generation method involves formulating the problem as if all possible weak hypotheses

had already been generated, with the resulting labels becoming the new feature space of the problem. The

task that is solved by boosting is to construct a learning function within the output space that minimises

misclassification error and maximises the (soft) margin. They prove that for the purposes of classifi-

cation, minimising the 1-norm soft margin error function isequivalent to optimising a generalisation

error bound. The linear programme is efficiently solved using a technique known as column generation.

LPBoost has the advantages over gradient based methods (such as AdaBoost) that it converges in a fi-

nite number of iterations to a global solution that is optimal within the hypothesis space, and that these
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solutions are very sparse.

The paper cites results that demonstrate that LPBoost performs competitively with AdaBoost on a

variety of datasets. The authors also demonstrate that the algorithm is computationally tractable. For

both small and large datasets, the computation of the weak learners outweighs the linear programme

running time, which means that in general the time for LPBoost iterations are in the same order of

magnitude as AdaBoost, though slightly higher.

Many linear programs are too large to consider all the variables explicitly. Since most of the vari-

ables will be zero in the optimal solution, only a subset of variables need to be considered. Column

generation generates only variables which have the potential to improve the objective function (i.e.neg-

ative reduced cost). The problem being solved is split into two problems, known as the master problem

and the subproblem. The master problem is the original problem with only a subset of variables, and the

subproblem is a new problem created to identify a new variable. The objective function of the subprob-

lem is the reduced cost of the new variable with respect to thecurrent dual variables. LPBoost can be

proved to converge in a finite number of iterations to a globally optimal solution within the hypothesis

space. In the dual form the constraints are the weak learners.

The algorithm proceeds by adding a weak learner, and checking if the linear programme is solved.

If not then the weak learner is found that violates the constraints the most. This process is repeated until

the linear programme constraints are not violated, which leads to the global optimum solution. LPBoost

iterations are typically slower than AdaBoost, but it converges much more quickly. The LPBoost algo-

rithm is given in Algorithm 2.

Algorithm 2 LPBoost algorithm

Given training examples(x1, y1), . . . (xm, ym), yi ∈ {+1,−1}, upper limit on weightsC
Initialiseα← 1

m1, H← ()
while H′α > β do
h← maxh∈H

∑m
i=1 yiαihi,·

H ←
(

H
h

)

Updateα: Solve Linear Programme:

argmin β

s.t. H′α ≤ β1,
0 < α < C1.

end while
Setw to Lagrangian multipliers

Although at first the boosting methods described above seem rather disjoint from the convex meth-

ods described under the general loss minimisation and regularisation framework, there are in fact distinct

similarities. If one considers that a general ML principle is to minimise the regularised empirical loss:

min
α
L+ P(α), (2.61)

it can be seen that in fact there is a direct relation between LPBoost and LASSO which both useℓ1
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regularisation with differening loss functions (hinge loss and quadrtic loss respectively), and between

regularised forms of AdaBoost[45] (exponential loss) and the SVM (hinge loss). We can also see the

relation between KRR and the convex formulation of KFDA given in Section 2.1.9 where the differences

are only in the constraints. See for example [46, 47, 48] for recent discussions of this issue.

2.1.12 Subspace Methods

In standard single view subspace learning, a parallel can bedrawn between subspace projections that are

independent of the label space, such as Principal Components Analysis (PCA), and those that incorporate

label information, such as Fisher Discriminant Analysis (FDA). PCA searches for directions in the

data that have largest variance and project the data onto a subset of these directions. In this way a

lower dimensional representation of the data is obtained that captures most of the variance. PCA is

an unsupervised technique and as such does not include labelinformation of the data. For instance,

given 2-dimensional data from two classes forming two long and thin clusters, such that the clusters

are positioned in parallel and very closely together, the total variance ignoring the labels would be in

the lengthwise direction of the clusters. For classification, this would be a poor projection, because the

labels would be evenly mixed. A much more useful projection would be orthogonal to the clusters,i.e. in

the direction of least overall variance, which would perfectly separate the two classes. We would then

perform classification in this 1-dimensional space. FDA would find exactly this projection.

However if classification is not the goal, but instead the goal is to take a subset of the principal

axes of the training data and project both the train and test data into the space spanned by this subset of

eigenvectors, the PCA performs this projection by maximising the following criterion,

max
w

w′Σw, (2.62)

s.t. ‖w‖2 = 1,

whereΣ is the covariance matrix of thecentreddata -i.e.Σ = 1
m

∑m
i=1(xi − µ)(xi − µ)5. The dual

form of PCA can be formed as follows,

max
α

α′XX′XX′α, (2.63)

s.t. α′XX′α = 1.

Using again the kernel trick, the nonlinear version of PCA known as Kernel Principal Components

Analysis (KPCA) [49] is defined as follows,

max
α

α′K2α, (2.64)

s.t. α′Kα = 1.

5The purpose of centering data (transforming data to z-scores) is to remove undesirable fluctuations. Part of the PCA solution
is the minimisation of the sum of squared errors. Overall, the goal is to find the best affine linear subspace.
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Each of these problems can be solved efficiently as eigenproblems.

2.1.13 Multi-view Learning

Canonical Correlation Analysis (CCA), introduced by Harold Hotelling in 1936 [50], is a method of

correlating linear relationships between two sets of multidimensional variables. CCA makes use of two

views of the same underlying semantic object to extract a common representation of the semantics.

CCA can be viewed as finding basis vectors for two sets of variables such that the correlations between

the projections onto these basis vectorsxa = w′
aφa(x) andxb = w′

bφb(x) are mutually maximised.

Defining the covariance between the two views asΣab and the variance of the views asΣaa andΣbb

respectively, we have the following optimisation problem,

max
wa,wb

w′
aΣabwb (2.65)

s.t. w′
aΣaawa = 1,

w′
bΣbbwb = 1.

The major limitation of CCA is its linearity, but the method can be extended to find nonlinear rela-

tionships using a the kernel trick once again. Kernel Canonical Correlation Analysis (KCCA) is an

implementation of this method that results in a nonlinear version of CCA. Each of the two views of the

data are projected into distinct feature spaces such thatwa = X′
aαa andwb = X′

bαb, before performing

CCA in the new feature space. The dual form of CCA is

max
αa,αb

α′
aXaX

′
aXbX

′
bαb (2.66)

s.t. α′
aXaX

′
aXaX

′
aαa = 1,

α′
bXbX

′
bXbX

′
bαb = 1,

(2.67)

which leads to the kernelised form, KCCA

max
αa,αb

α′
aKaKbαb (2.68)

s.t. α′
aK

2
aαa = 1,

α′
bK

2
bαb = 1,

whereKa andKb are the kernel matrices of the two views.

There have been several successful experimental applications of KCCA on bilingual text corpora,

firstly by [51] and later by [52]. In the latter study the authors compare the performance of KCCA

with alternative retrieval method based on the GeneralisedVector Space Model (GVSM), which aims

to capture correlations between terms by looking at co-occurrence information. Their results show that
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KCCA outperforms GVSM in both in content retrieval and in mate retrieval tasks.

Recent work [53] presents a novel method for solving CCA in a sparse convex framework using a

greedy least squares approach, called Sparse Canonical Correlation Analysis (SCCA). Stability analysis

using Rademacher Complexity is given for SCCA which provides a bound on the quality of the patterns

found. The authors demonstrate on a paired English-Spanishcorpus that the proposed method is able to

outperform KCCA with a tighter bound.

2.2 Digital Signal Processing (DSP)

In this Section the focus moves to the principles underlyingDSP. It will become clear that there are many

links between ML and DSP, and that both fields are able to draw on each other to bring novel advances.

For the sake of brevity, it will be assumed that the Analogue to Digital Conversion (ADC) process has

already taken place, and as such all of the signals under consideration are discrete with equal time steps.

All of the theory is able to deal with unequal time steps, but the analysis becomes more complicated.

However some of the formulas used to describe quantities andoperations will be given for continuous

signals, as their presentation is more straightforward. Some common tasks in DSP are depicted in Figure

2.5. Within the scope of this thesis the primary concern issignal analysis, and hence spectral estimation

and signal modelling. However many results can be carried over to filtering as well.

2.2.1 Bases, Frames, Dictionaries and Transforms

A frame of a vector spaceV with an inner product can be seen as a generalisation of the idea of a basis

to sets which may be linearly dependent. More precisely, a frame is a set of elements ofV which satisfy

the following condition:

Frame condition: There exist two real numbers,A andB such that

0 < A ≤ B <∞,

A ‖v‖2 ≤ 0 ≤ B ‖v‖2 .
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Parseval’s identity is a fundamental result on the summability of the Fourier series of a function. Geo-

metrically, it is the Pythagorean theorem for inner-product spaces.

Theorem 2.2.1(Parseval’s Theorem [54]). If {ej : j ∈ J} is an orthonormal basis of a Hilbert space

H , then for everyx ∈ H the following equality holds:

‖x‖2 =
∑

j∈J

| {x, ej} |2.

Although frames do not in general consist of orthonormal vectors, the frame representation of a

vector may still satisfy Parseval’s identity. The constantsA,B are called the lower and upper frame

bounds respectively. WhenA = B the frame is a tight frame.

Fourier analysis represents any finite continuous energy functionf(t) as a sum of sinusoidal waves

exp(iωt),

f(t) =
1

2π

∫ ∞

−∞
f̂(ω) exp(iωt)dω. (2.69)

The amplitudef̂(ω) of each sinusoid is equal to its correlation withf , also called theFourier transform,

f̂(ω) =

∫ ∞

−∞
f(t) exp(−iωt)dt. (2.70)

The more regular the functionf(t) is, the faster the decay of the amplitude|f̂(ω)| asω increases. If

f(t) is defined only over an interval,e.g.[0, 1], the Fourier transform becomes a decomposition into an

orthonormal basis: {exp(i2πmt)}m∈Z
of L2[0, 1]

6. If the signal is uniformly regular, then the Fourier

transform can represent the signal using very few nonzero coefficients. Hence this class of signal is said

to be sparse in the Fourier basis. The wavelet basis was introduced by Haar [55] as an alternative way

of decomposing signals into a set of coefficients on a basis. The Haar wavelet basis defines a sparse

representation of piecewise regular signals, and has therefore received much attention from the image

processing community. The piecewise constant function, orHaaratom, is defined as,

ψ(t) =



















1 if 0 ≤ t < 0.5

−1 if 0.5 ≤ t < 1

0 otherwise.

(2.71)

An orthonormal basis onL2 can be formed by dilating and translating these atoms as follows,

{

Ψj,n(t) =
1√
2j
ψ

(

t− 2jn

2j

)}

j,n∈Z2

(2.72)

Thus far all definitions have been for continuous signals. That is because a dictionary can be created

through dilations and translations of the single functionψ, but dilations and translations are not defined

for discrete signals. The transition from continuous to discrete time must be done with great care to

6L2[0, 1] is the set of functions such that
∫ 1
0
|f(t)|dt < ∞
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preserve important properties such as orthogonality.

The definition of a time-frequency dictionaryΨ = {ψγ}γ∈Γ is that it is composed of waveforms of

unit norm (‖ψγ‖2 = 1) which have a narrow spread in time (u) and frequency (σ2).

Choice of the dictionaryΨ should, if possible, be based on knowledge of properties of the signal.

One of the most common choices for a general class of real-world signals is the Gabor dictionary, as

it can represent a wide range of smooth signals. The Chirp dictionary is a generalisation of the Gabor

dictionary with an extra parameter (the chirp rate). Both ofthese will be described below, and empirical

comparisons will be made between each method.

Gabor Dictionary

Gabor time-frequency atoms are scaled, translated and modulated Gaussian functionsg(t) (Gabor atoms)

[56]. Without loss of generality, discrete real Gabor atomswill be considered, which are given by

gγ,φ(t) =
1

Z
· g
(

t− u
s

)

· cos(θt+ φ) (2.73)

whereZ is a normalisation factor (to ensure that for each atom‖gγ,φ‖ = 1), γn = (sn, un, θn) denotes

the series of parameters of the functions of the dictionary,andg(t) = exp−πt2 is the Gaussian window.

Chirp Dictionary

Chirp atoms were introduced to deal with the nonstationary behavior of the instantaneous frequency of

some signals, and shown to form an orthonormal basis [57]. Inthe present analysis only linear chirps are

required for the empirical applications provided later. A real chirp atom is then given by

gγ,φ,c(t) =
1

Z
· g
(

t− u
s

)

· cos(θ(t − u) + c

2
(t− u)2 + φ) (2.74)

wherec is the chirp rate and all other parameters are the same as for the real Gabor atom. The chirp atom

has an instantaneous frequencyω(t) = θ + c(t− u) that varies linearly with time.

Dyadic Sampling

A sampling pattern is dyadic if the daughter wavelets are generated by dilating the mother wavelet as in

Equation 2.72 by2j and translating it byk2j, i.e.s = 2j, u = k2j. Dyadic sampling is optimal because

the space variable is sampled at the Nyquist rate for any given frequency. The dictionary is then defined

as,

Ψj,∆ = {ψn = gγ,φ(t)}0≤q<∆N2−j ,0≤k<∆2j , (2.75)

wheregγ,φ(t) is the discrete Gabor atom or Chirp atom as defined above in Equations 2.73 and 2.74

respectively. An example of this sampling scheme is given inTable 2.2 for a signal of length 128 and

dilation factor∆ = 2.
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j 2j 2−j N2−j q k
2 4 1/2 64 0:128 0:8
3 8 1/4 32 0:64 0:16
4 16 1/8 16 0:32 0:32
5 32 1/16 8 0:16 0:64
6 64 1/32 4 0:8 0:128

Table 2.2: Example of the dyadic sampling scheme for a signal of length 128 and∆ = 2.

2.2.2 Sparse and Redundant Signals

As with ML, finding sparse solutions to underdetermined inverse problems is a fundamental challenge

encountered in a wide range of DSP applications, from signalacquisition to source separation. Recent

theoretical advances in our understanding of this problem have further increased interest in their appli-

cation to various domains. In many areas, such as for examplemedical imaging or geophysical data

acquisition, it is necessary to find sparse solutions to verylarge underdetermined inverse problems that

therefore require fast methods. The decomposition of a signal x into a dictionaryΨ ∈ R
n×p solves the

following problem,

Ψα = x. (2.76)

If the dictionary is a tight frame, the simplest solution to this would then be the inverse problem

α = Ψ−1y. (2.77)

If additionally all of the atoms of the dictionary are orthonormal thenΨ−1 = Ψ′. However in most

practical applications, the dictionary is designed to beovercomplete- i.e. p ≫ n, and hence there are

many possible solutions to this inverse problem. Themethod of frames[58] uses the minimumℓ2-norm

solution (also called minimum energy or minimum length solution):

min
α

‖α‖22 (2.78)

s.t. x = Ψα.

It can be seen that this is equivalent to the least squares solution to the regression problem as defined in

Equation 2.11, and that it likewise has a closed form solutionα = (Ψ′Ψ′)−1Ψ′x. However, the unknown

(not sampled) coefficients seldom have zero energy. A more attractive solution would be minimising the

ℓ0-norm, or equivalently maximising the number of zero coefficients in the new basis:

min
α

‖α‖0 (2.79)

s.t. x = Ψα.



2.2. Digital Signal Processing (DSP) 43

However, this is NP-hard (it contains the subset-sum problem), and so is computationally infeasible for

all but the smallest datasets. Thus, following [59], theℓ1-norm, is usually what is minimised. This leads

to comparable results to using theℓ0-norm, often yielding results with many coefficients being zero,

min
α

‖α‖1 (2.80)

s.t. x = Ψα.

This method is known as Basis Pursuit (BP) [31]. Note that if we bring the constraint into the optimisa-

tion using a Lagrange multiplier, this is in fact equivalentto the LASSO problem for regression that was

defined earlier in Equation 2.27.

2.2.3 Greedy Methods for Sparse Estimation

There are other ways to approximate theℓ0 solution, such as by greedy iterative methods. These include

(but are not limited to) Matching Pursuit (MP), Orthogonal Matching Pursuit (OMP), [56]), Polytope

Faces Pursuit (PFP) [60, 61] and more recently with non-convex penalties and Difference of Convex

(DC) programming [62, 63]. There are also many modificationsof each of these methods, including

stepwise approaches that bring more than one basis into the solution at each step. For brevity these will

not be covered here, but offer an interesting path for possible modifications of algorithms based on these

methods.

Matching Pursuit and Orthogonal Matching Pursuit

Matching Pursuit (MP) was proposed as an attempt at finding a sparse set of basis functions (atoms) for a

signal from a given dictionary [56]. In many ways this problem can be interpreted as a sparse version of

least squares regression when the Orthogonal Matching Pursuit (OMP) version is applied [64]. In OMP

each time a dictionary atom is chosen, the remaining weight vectors are projected into a space orthogonal

to those chosen such that future atoms are only considered from a set far from those already picked. To

link back to ML once again, as with Kernel Basis Pursuit (KBP), Kernel Matching Pursuit (KMP) [65]

has been proposed as the kernel counterpart of MP.

Given a signalf and dictionaryΨ = {ψp}p∈Γ , |Γ| ≫ n of atoms with unit norm, MP begins by

initialising the residuer0 = f , and then iterates by projecting the functionf onto all of the vectors

ψp ∈ Ψ and computing their residuer,

f = αpψp + r, p = 1, . . . , |Γ|, (2.81)

implying thatαp = 〈f, ψp〉. The atom with the maximum inner product〈ψt, ψi〉 is then selected along
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with its weightαi.

i = argmax
p∈Γ

αp, (2.82)

αt = αi,

ψt = ψi.

The residue is then updated as follows,

rt+1 = rt − αtψt (2.83)

The final solution is then given by
∑T

t=1 αtψt, which can be shown to converge to the optimal solution

given that the dictionary forms a tight frame [56]. MP approximations are improved by orthogonalis-

ing the directions of the projection using a Gram-Schmidt procedure [66]. The resulting pursuit then

converges within a finite number of iterationsT instead of in the limit, which balances the fact that the

orthogonalisation is expensive to compute. The Gram-Schmidt algorithm orthogonalisesψp with respect

to {ψq}q:p/∈P as follows,

ψ̂p = ψp −
∑

q:p/∈P

ψp, ψq

‖ψq‖22
ψq. (2.84)

The orthogonalised version of the atom̂ψp is then used for calculation of the residue. The next Section

describes a further modification of the MP/OMP framework that makes use of the geometry of the

solution space.

Polytope Faces Pursuit

The algorithm Polytope Faces Pursuit (PFP) [61] is based on the geometry of the polar polytope [60]

where at each step a basis function is chosen by finding the maximal vertex using a path-following

method.

Further investigation of the criteria under whichℓ0/ℓ1 equivalence holds led to consideration of the

d−dimensionalpolytope(thed−dimensional generalisation of a polygon) [60]. Using this geometric

interpretation, a greedy algorithm called PFP has been proposed [67] which adopts a path-following

approach through the relative interior faces of the polar polytope. The first step is to convert (2.80) into

its standard form,

min
α

‖α̃‖1 (2.85)

s.t. x = Ψ̃α̃, α̃ ≥ 0,

whereΨ̃ = [Ψ,−Ψ] andα̃ has2m nonnegative components, with the standard weight vector recoverable
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byαi = α̃i − α̃i+m [68]. The corresponding dual of this linear program is,

max
c

y′c (2.86)

s.t. Ψ̃′c ≤ 1

which has an optimal dual weight vectorc which corresponds to the optimumα of the primal formu-

lation. At each step the approach to the solution of this problem is to identify the optimal vertex which

is the maximiser ofx′c, which is similar to the way in which OMP builds up its solution. However the

difference is that at each step, the path is constrained on the polytope faceF given by the vertex of the

previous step. This is achieved by projectingx into a subspace parallel toF to giver = (I−Q)x where

Q =
Ψ̃iΨ̃

′
i

‖Ψi‖2 . Sinceα = Ψ̃†
ix (whereA† is defined as the Moore-Penrose pseudo-inverse of a matrix

A7), andx̂ = Ψ̃iα, it follows thatr = x − Ψ̃iα = x − x̂ meaning thatr is the residual from the

approximation at stepi. The second step, which is where the main difference betweenOMP and PFP

arises, involves projecting within the faceF that has just been found, rather than from the origin. This

is done by projecting along the residualr. Therefore to find the next face at each step, the maximum

scaledcorrelation is found

ii = argmax
i/∈i

Ψ̃′
ir

(1 − Ψ̃′
ic)

(2.87)

where bases are only considered such thatΨ̃′
ir > 0.

PFP then proceeds by removing any constraints that violate the condition that̃α contains any neg-

ative entries. This is achieved by findingj ∈ i such thatα̃j < 0, removingj from i and removing the

face from the current solution.̃α is then recalculated, and the algorithm continues untilαj ≥ 0, ∀ j.
The algorithmic complexity is of a similar order to OMP whilst being able to solve problems known

to be hard for MP and OMP.

2.2.4 Compressed Sensing (CS)

In this Section, some of the theory of Compressed Sensing (CS) (also known as compressive sampling

and sparse sampling) will be reviewed. CS is a technique thatallows signals to be acquired or recon-

structed sparsely, by using prior knowledge that the signalis sparse in a given basis [59, 69]. The main

result is that signals can be reconstructed exactly even with data deemed insufficient by the Nyquist-

Shannon criterion8. Formally, given a signalx ∈ R
n and a dictionaryΨ ∈ R

n×d which forms an

orthonormal basis,x is said to be sparse ifx can be represented as a linear combination ofk atoms

from Ψ, i.e. x =
∑k

i=1 αiΨ.,i wherek ≪ d. According to the CS theory it is possible to construct a

measurement matrixΦ ∈ R
m×n with m ≪ n, and perform stable reconstructions of the signal from

measurementsy = Φx if and only if the measurement matrix is incoherent with the dictionary,i.e. the

7Note that ifΨi forms a tight frame thenΨ†
i = Ψ′

i - i.e. the inverse is equal to the transpose.
8The Nyquist-Shannon sampling theorem states that if a function f(t) contains no frequencies higher thanB Hz, it is com-

pletely determined by giving its ordinates at a series of points spaced1/(2B) seconds apart
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sensing waveforms have an extremely dense representation in Φ9. Ordinarily, the problem of recon-

structingx from y would be severely undetermined.

Estimating a sparsely represented function from a set of training examples is a classical problem

in regression. Fortunately the methods used for sparse regression can be directly applied to CS. Again,

beginning with theℓ0-minimisation,

min
α

‖α‖0 (2.88)

s.t. y = ΦΨα.

Finding thisℓ0 solution is known to beNP−hard. However the equivalentℓ1 optimisation problem

min
α

‖α‖0 (2.89)

s.t. y = ΦΨα.

is a convex optimisation problem and can be solved using general purpose solvers. As before, this can be

reformulated such that it directly minimises the regression loss, as with the LASSO [30], which is given

by

min
α
‖y − ΦΨα‖22 + λ ‖α‖1 , (2.90)

i.e. a form of ℓ1-penalised least squares. This can then be solved with the Least Angle Regression

Solver (LARS) as before, or with greedy methods such as OMP orPFP.

2.2.5 Incoherence With Random Measurements

One major issue that has not been addressed is how to design the measurement matrixΨ such that when

sampled using this matrix, the signal will be sparse within the basis of the dictionaryΦ. The CS theory

states when certain conditions hold, namely that the functionsψm ∈ Ψ cannot sparsely represent the

elements of the basisφm ∈ Φ (a condition known as incoherence of the two dictionaries [59, 70, 69, 71]

and the number of measurementsn is large enough, then it is indeed possible to recover the signal

x from a similarly sized set of measurementsy. This incoherence property holds for many pairs of

bases, including for example, delta spikes and the sine waves of a Fourier basis, or the Fourier basis and

wavelets. Significantly, this incoherence also holds with high probability betweenany arbitrary fixed

basis and a randomly generated one. This means that in general, if i.i.d. Gaussian or Bernoullimatrices

are used forΨ, this incoherence will still hold with high probability. This surprising result is a direct

follow-on from the Restricted Isometry Property (RIP) which characterises matrices which are nearly

orthonormal when operating on sparse vectors.

9“Dense” here is in the sense that each of the measurement vectors (rows ofΨ) must be spread out in theΦ domain. An
example would be a Dirac function (spike) which is dense in the Fourier domain as it has a flat frequency response. Conversely a
sine wave has a sparse representation in the Fourier domain as it is represented by a single frequency
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2.2.6 Multivariate Signal Processing

This Section will introduce some signal processing operations for multivariate signals. Given a set of

signalsxi(n), i = 1, . . . ,M from a system, it is important to study whether there are possible interde-

pendencies between the signals. Such interdependencies cause redundancies, which can be exploited for

data compression. Interdependencies between the individual signals can also contain useful information

about the structure of the underlying systems that generated the set of signals. The individual signals are

often mixtures of unknown (latent) source signalssj(n), such that,

xi(n) =
M
∑

j=1

ai,jsj(n), i = 1, . . . ,M (2.91)

⇒ x(n) = As(n) (2.92)

The problem of finding the source signalss(n) from a set of measured signalsx(n) is called source-

signal separation. If the mixing matrixA is known, it is trivial to determine the source signals(n) by

inverting the linear relation in Equation 2.91. However in most cases this is not known; the problem

of finding the source signals from the measured signals in this situation is calledblind deconvolution.

In order to solve the blind deconvolution problem some assumptions on the source signals have to be

made. The most natural ones are that they are mutually uncorrelated or independent. PCA, which was

introduced in Section 2.1.12 can be used for signal decorrelation.

Independent Components Analysis (ICA) is a method that performs deconvolution under the as-

sumption that the latent sources are independent. The algorithm works by adaptively calculating the

vectors ofA and setting up a cost function which either maximises the non-Gaussianity of the calculated

s = A′x or minimises the Mutual Information (MI) [72]. In some cases, a-priori knowledge of the

probability distributions of the sources can be used in the cost function.

The original sources s can be recovered by multiplying the observed signalsx with the inverse of

the mixing matrixW = A−1, also known as theunmixing matrix. Here it is assumed that the mixing

matrix is square(n = m). If the number of basis vectors is greater than the dimensionality of the

observed vectors,n > m, the task is overcomplete but is still solvable.



Chapter 3
Sparse Machine Learning Framework for

Multivariate Signal Processing

Abstract

Building blocks. This Chapter present a unified general framework for the application of sparse ma-

chine learning methods to multivariate signal processing.The methods presented can be seen as modular

building blocks that can be applied to a variety of applications. Application specific prior knowledge

can be used in various ways, resulting in a flexible and powerful set of tools. The motivation for the

methods is to be able to learn and generalise from a set of multivariate signals.

In Pursuit of a Sparse Basis. Given a dictionary of atoms from a given basis, a significantbody of

research has focussed on methods to select a sparse set of bases to represent a signal. Similarly, sparsity

has been seen to be desirable for Machine Learning, for reasons of computation efficiency, regularisa-

tion, and compressibility.

Greed is Good. Within the suite of tools described in this chapter are a setof sub-optimal greedy se-

quential solvers for the sparse recovery problem. These have been shown to have desirable properties

in the signal processing and statistics literature, it is shown through analysis and experimentation that

these properties are also desirable in Machine Learning applications.

Two Eyes are Better than One. The final part of the chapter will detail developments in thearea of

“Multi-View” or “Multi-Source” Learning. We will present algorithmic developments in this area which

will allow the incorporation of two or more sets of signals from different sources that will prove to be

valuable in applications.

3.1 Framework Outline

The goal of this Chapter is to outline a general modular framework designed for performing Machine

Learning (ML) tasks. These are general purpose methods thatlink together to enable efficient inference
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on a particular class of data, namely multivariate signals.The general approach is to combine methods

from Digital Signal Processing (DSP) with methods from ML innovel ways that leverage the power of

the methods from both fields. The main focus for this chapter will be the development of the framework

for ML, although various approaches to DSP will be outlined along the way. The key will be to take

a set of signals (such as recordings of a set of individuals’ brain activity), and learn patterns that are

then generalisable to a new set of signals generated under the same conditions (i.e. another individual

performing the same task).

Multivariate signal processing is a source of challenges and opportunities. The traditional approach

to multivariate signals has been to perform mass univariateanalysis of the signals making the assump-

tion that the signals are independent. However this independence assumption is violated more often than

not, and as a result a great body of work has grown up around trying to make the univariate statistics

more robust. For the purposes of this work the assumption will be made that the sensor arrays being

dealt with are distributed in space but measured simultaneously (or as near as is possible), and that

the sampling rate is fixed. There are of course situations where this assumption does not hold, but the

methods outlined here can be extended, although the technical details become more complicated. For a

univariate signal, there exist many well refined techniquesfor processing and classifying signals. These

include Bayesian methods (e.g.using Markov Chain Monte Carlo (MCMC) methods [73]), Autoregres-

sive Moving Average (ARMA) models [74], and analysis of spectral qualities of the signal (such as in

[75]).

Figure 3.1 shows a top-level diagrammatic view of the process of learning from signals. Whilst

the importance of the preprocessing stage should not be underestimated, it is not the focus of the present

work. Hence the preprocessing used in all of the empirical testing will be via tried and tested methods that

are well established in the various application areas visited. Details of specific preprocessing methods

will be given such that the results of the experiments can be reproduced, but an extensive discussion is

beyond the present scope. In addition, the diagram separates out preprocessing from signal processing;

of course most of the preprocessing is in fact signal processing, but I have chosen to separate out the

processing that is necessary to clean up data and remove artefacts (such as eye-blinks in EEG data) from

the processing that is necessary to generate a set of features that describe the signals, which are then

used as inputs to ML algorithms. This approach allows the focus to be maintained on the aspects of the

interplay between DSP and ML of interest to the current study.

Of course the process outlined in Figure 3.1 is rather simplistic, and in fact in some cases can be

improved upon. Specifically, a central theme that will be repeated throughout the thesis is that, wherever

possible, one should make use of multiple paths of information flow. This can take the form of Multi-

Source Learning (MSL) (where two separate sources of information are combined), MVL (where two

views of the same underlying semantic object are combined),and Multiple Kernel Learning (MKL)

(where multiple kernels are generated from a single source or view). These concepts will be described

further in Section 3.5, in which algorithms that attempt to take advantage of these various paradigms will

be developed.
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Figure 3.1: Diagrammatic view of the process of machine learning from multivariate signals

Sparse estimation and sparse recovery of patterns or signals are playing an increasingly important

role in the statistics, signal processing, and ML communities. Several methods have recently been de-

veloped in both fields, which rely upon the notion of sparsity(e.g.penalty methods like the LASSO or

greedy methods such as MP). Many of the key theoretical ideasand statistical analysis of the meth-

ods have been developed independently, but there is increasing awareness of the potential for cross-

fertilization of ideas between statistics, signal processing and ML communities.

Much of the early effort has been dedicated to algorithms that solve sparsity inducing optimisation

problems efficiently. This can be through first-order methods [76], or throughhomotopymethods that

lead to the entire regularization path (i.e. , the set of solutions for all values of the regularization param-

eters) at the cost of a single matrix inversion [32]. A well-known property of the regularisation by the

ℓ1-norm is the sparsity of the solutions,i.e. , it leads to weight vectors with many zeros, and thus performs

model selection on top of regularisation. Recent works havelooked precisely at the model consistency of

the LASSO [77, 78]. It has been shown that a condition known asthe irrepresentablecondition, which

depends mainly on the covariance of the predictor variables, states that LASSO selects the true model

consistently if and (almost) only if the predictors that arenot in the true model are “irrepresentable” by

predictors that are in the true model (see [77] for a discussion). This is effectively a statement that if

it is known that the data were generated from a sparse weight vector, the LASSO does actually recover

the sparsity pattern as the number of observations grows. This analysis has been extended to the Group

LASSO and to MKL [78].

Furthermore, there are interesting links between penalty-type methods and boosting (particularly,

LPBoost), as well as with sparse kernel regression. There has been interest in sparse methods within

Bayesian ML (e.g.sparse PCA/CCA [79] or the Relevance Vector Machine (RVM) [80]). Sparse es-

timation is also important for unsupervised learning methods (e.g.sparse PCA and One-Class Support

Vector Machine (OC-SVM) for outlier detection). Recent machine learning techniques for Multi-Task

learning (MTL) [81, 82, 83] and collaborative filtering [84]have been proposed which implement spar-

sity constraints on matrices (rank, structured sparsity, etc.). At the same time, sparsity is playing an

important role in various application fields, ranging from image and video reconstruction and compres-

sion, to speech classification, text and sound analysis.

In this Chapter we will begin by introducing a method that draws on the greedy method for sparse
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signal reconstruction introduced in the previous chapter (OMP) and applies it to classification using

the FDA objective function. Experimental results are givenfor this method showing that it performs

competitively with state-of-the-art methods such as the SVM whilst producing solutions that are much

more sparse. Furthermore, there is a clear performance gainwhen the datasets are very high dimensional

and contain many potentially irrelevant features. Following on from this, we show that another greedy

method from signal processing (PFP) can be applied to sparseregression problems in a kernel defined

feature space. Again experimental results are given that show the power of this class of techniques. We

will then go on to show that, surprisingly, it is in fact stillpossible to learn using a much simpler method

of choosing basis vectors - that of random selection. The theoretical analysis shows that this result is

due to a compression scheme being formed, which acts as a formof capacity control. Sparse learning

can then be seen as a trade-off between finding the (near) optimal sparse solution by a greedy method,

or finding sub-optimal solutions quickly that aregood enough.

The final Section (3.5) of the Chapter is devoted to Multi-View Learning (MVL). The first contribu-

tion is an extension of the way in which KCCA projections are used for classification. Traditionally, an

SVM (or any other standard ML algorithm) is trained on the projected subspace of the view of interest.

However I show that good classification performance is possible using a method that is essentiallyfree

once the projections have been learnt. This method will be used for experimental analysis in Chapter 5.

A natural extension to this is to try to incorporate the classification and the subspace learning into a sin-

gle optimisation routine. This was the motivation for Multiview Fisher Discriminant Analysis (MFDA)

and its variants, which will be presented towards the end of the chapter, along with some experimental

results on toy data and benchmark datasets. Empirical analysis on real-world datasets will be presented

in Chapter 5.

3.2 Greedy methods for Machine Learning

This Section will introduce two novel sparse ML methods. Thefirst is based on the ideas of Match-

ing Pursuit (MP) and Orthogonal Matching Pursuit (OMP) for sparse recovery in signal processing in-

troduced in the last Chapter in Section 2.2.3, and focusses on the problem of classification using the

KFDA algorithm outline in Section 2.1.9. This will be followed by a method based on Polytope Faces

Pursuit (PFP).

3.2.1 Matching Pursuit Kernel Fisher Discriminant Analysis

A novel sparse version of KFDA is derived using an approach based on Orthogonal Matching

Pursuit (OMP). This algorithm will be called Matching Pursuit Kernel Fisher Discriminant Analysis

(MPKFDA). Generalisation error bounds are provided analogous to those constructed for the Robust

Minimax algorithm together with a sample compression bounding technique. Experimental results are

provided on real world datasets, which show that MPKFDA is competitive with the KFDA and the

SVM on University of California, Irvine (UCI) datasets, andadditional experiments that show that the
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MPKFDA on average outperforms KFDA and SVM in extremely highdimensional settings.

The idea of MP is chosen for its fast greedy iterative property, and is applied to KFDA in order

to impose dual sparsity. It will be proven that this sparse version results in generalisation error bounds

guaranteeing its future success. The novel bounds come fromthe analysis by Shawe-Tayloret. al. [85]

of the Robust Minimax algorithm of [86], which is similar in flavour to FDA. Together with the bounds

of [85], a compression argument [87] is applied in order to gain an advantage due to the dual sparsity

that results from the algorithm. However, the algorithm does not form a traditional compression scheme,

so a similar idea to that of [88] is used to bound the generalisation error in the sparsely defined subspace

by amalgamating both theories mentioned above. In some waysthe bounds justify the choice of the fast

iterative greedy strategy, which is not provably optimal [31], by guaranteeing that for a random choice of

dataset from any fixed distribution, the predictions made will be probably approximately correct(PAC)

[89].

One of the practical advantages of MPKFDA lies in the evaluation on test points - onlyk kernel

evaluations are required (wherek is the number of basis vectors chosen) compared tom (the number

of samples) needed for KFDA. It is also worth stating that MPKFDA like KFDA has the advantage of

directly delivering conditional probabilities of classification (unlike the SVM). There has been some

research suggesting that one cannot estimate conditional probabilities without involving all of the data

(see [90]) - hence kernel methods cannot deliver this efficiently - but here all of the data is taken into

account whilst still having an efficient kernel representation.

Preliminaries

Most of the key quantities have already been introduced in Chapter 2, so this Section gives a brief

summary. We denote withS a sample containingm examplesx ∈ R
n and labelsy ∈ {−1, 1}. Let

X = (x1, . . . ,xm)′ be the input vectors stored in matrixX as row vectors, where′ denotes the transpose

of vectors or matrices. For simplicity it is assumed that theexamples are already projected into the kernel

defined feature space, so that the kernel matrixK has entriesK[i, j] = 〈xi,xj〉. In the analysis Section,

φ(x) will explicitly denote the feature map for some vectorx. The notationK[:, i] will denote theith

column of the matrixK. When given a set of indicesi = {i1, . . . , ik} (say) thenK[i, i] denotes the

square matrix defined solely by the index seti.

For analysis purposes it is assumed that the training examples are generated i.i.d. according to an

unknown but fixed probability distribution that also governs the generation of the test data. Expectation

over the training examples (empirical average) is denoted by Ê[·], while expectation with respect to the

underlying distribution is denotedE[·].
For the sample compression analysis thecompression functionΛ induced by a sample compression

learning algorithmA on training setS is the mapΛ : S 7−→ Λ(S) such that thecompression set

Λ(S) ⊂ S is returned byA. A reconstruction functionΨ is a mapping from a compression setΛ(S) to

a setF of functionsΨ : Λ(S) 7−→ F .

Let A(S) be the function output by learning algorithmA on training setS. Therefore, a sample
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compression scheme is a reconstruction functionΨ mapping a compression setΛ(S) to some set of

functionsF such thatA(S) = Ψ(Λ(S)). If F is the set of Boolean-valued functions then the sample

compression scheme is said to be a classification algorithm.

Defineµ̂(µ) to be the empirical (true) mean of a sample ofm points from the setS projected into

a higher dimensional space usingφ,

µ = E[φ(x)],

µ̂ =
1

m

m
∑

i=1

φ(xi),

andΣ̂(Σ) its empirical (true) covariance matrix.

Algorithm

OMP can be formalised as a general framework in ML, that involves repeating the following two steps:

1. Function maximisation;and

2. Deflation (orthogonalisation).

It can result in OMP algorithms for learning tasks other thanregression. This Section presents an ap-

plication of this general framework to KFDA, resulting in a sparse form of KFDA that we refer to as

MPKFDA.

An OMP algorithm for FDA can be built in the following way. Initially, one examplei = {iℓ}
is chosen that maximises the FDA criterion and the remainingtraining examples are projected into the

space defined byi. Following this the data matrixX (or kernelK) is deflated to allow the next index to

be chosen. Finally this results in a seti of training examples that can be used to compute the final weight

vectorw, together with the FDA decision functionf(x) = sgn (w′x+ b) whereb is the bias andx an

example.

Using the notation from [3], the maximisation problem for FDA is given by the following:

w = max
w

w′X′yy′Xw

w′X′BXw
, (3.1)

whereB is defined as in Section 2.1.9 of Chapter 2.

To begin with, the Nyström method of low-rank approximation of the Gram matrix [7] is applied.

This is defined in the following Section.

3.2.2 Nyström Low-Rank Approximations

The Nyström method generates a low-rank approximation of aGram matrixG using a subseti =

(i1, . . . , ik) of k of the columns [7]. The method will readily apply to RKHS simply by replacing

G with the kernel matrixK, but the more general definition will be given here. Given a sample ofk

columns ofG selected by some method, letN = G[:, i] be then×k matrix of the sampled columns, and



3.2. Greedy methods for Machine Learning 54

≈

× ×

G G[:, i] G[i, :]G[i, i]−1

Figure 3.2: Diagrammatic representation of the Nyström method

W = G(i, i) be thek×k matrix consisting of the intersection of thesek columns with the corresponding

k rows ofG. The Nyström method usesW,N to construct a rank-k approximationG̃k toG,

G̃k = NW−1
k N′ ≈ G. (3.2)

In practice the matrixWk may not be invertible, especially for smallk, in which case the pseudo-inverse1

is used. The Nyström approximation is depicted in figure 3.2. DefineR is the Cholesky decomposition

of W−1
k such thatR is an upper triangular matrix that satisfiesR′R = G[i, i]−1.

Nyström for Matching Pursuit Kernel Fisher Discriminant Analysis (MPKFDA)

Using the assumption that the inputsX have already been projected into the kernel defined feature space,

the Nyström approximation can be applied to the kernel matrix K. A greedy algorithm will be used to

select a set of basesi, such thatN = K[:, i] andWk = K[i, i]. The Nyström approximation for

MPKFDA is then,

K̃ = K[:, i]K[i, i]−1K[:, i]′ (3.3)

= K[:, i]R′RK[:, i]′ ≈ K,

whereR is the Cholesky decomposition ofK[i, i]−1 such thatR is an upper triangular matrix that

satisfiesR′R = K[i, i]−1.

However, rather than use the full[m×m] low rank approximation, it would be preferable to work

in the [k × k] space wherek ≪ m. In order to do thisK[:, i]R′ is treated as a new inputX in FDA,

which results in a projectioñφ into ak-dimensional subspace:

φ̃(xi) = K[:, i]R′. (3.4)

Within this space the following

Σ̃k = RK[:, i]′K[:, i]R′, (3.5)

1A† is defined as the Moore-Penrose pseudo-inverse of a matrixA.
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is the covariance matrix within this space. This enables large scale problems containingm data points

to be solved with linear algorithms usingk features. This trick allows nonlinear discriminant analysis to

be performed on a sparse subspace using standard linear FDA.

Greedy Selection of Bases

For the algorithm to proceed, a method for the greedy selection of basis vectors is required. The follow-

ing maximisation problem for a dual sparse version of FDA canbe defined by settingw = X′ei where

ei is theith unit vector of lengthm, and substituting into the FDA problem described above (ignoring

constants) to yield:

argmax
i
ρi =

e′iXX′yyXX′ei
e′iXX′BXX′ei

(3.6)

=
K[:, i]′yy′K[:, i]

K[:, i]′BK[:, i]

Maximising the quantity above leads to maximisation of the Fisher Discriminant Ratio (FDR) cor-

responding toei, and hence a sparse subset of the original KFDA problem. The goal is to find the optimal

set of indicesi. The approach taken here is to proceed in a greedy manner (MP), in much the same way

as [37] and [65]. The procedure involves choosing basis vectors that maximise the Fisher Discriminant

ratio iteratively until some pre-specified number ofk vectors are chosen.

The next step is to orthongalise the matrixK with respect to the chosen basis vectorτ = K[:, i]. In

the primal form of PCA, the deflation can be carried out using Hotelling’s method [91] with respect to

the features (columns of an input matrixX) by,

X̃′ =

(

I− uu′

u′u

)

X′, (3.7)

whereu is a chosen eigenvector and̃X is the deflated version ofX. However because we are working

in the dual (kernel) space, the projection directions are simply the examples inX, sou = X′e. If we

defineτ = XX′e = K[:, i], the deflationK̃ of the kernel with respect to the chosen basisi is then,

K̃ =

(

I− ττ ′

τ ′τ

)

K.

(3.8)

This deflation ensures that remaining potential basis vectors will be chosen from a space that is orthog-

onal to those bases already picked2. After choosing thek training examples, givingi = (i1, . . . , ik),

RK[:, i]′ can be defined as a new data matrix as defined in Section 3.2.2 above. FDA is then used

for training as in Equation 3.1 in this new projected space tofind a k-dimensional weight vectorwk,

which is indexed over the bases of the kernel matrix and hencehas sparsityk in the dual sense. Given

the indexj of a test pointxj , and using the train-test kernel on this pointK[j, i] and its projection

2It is assumed that the vectors of the matrixK do not form an orthonormal basis
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φ(xj) = RK[j, i]′, predictions can be made using the FDA prediction function,

f(xj) = sgn (〈w̃, φ(xj)〉+ b) (3.9)

The algorithm for MPKFDA is given in Algorithm 3.

Algorithm 3 Matching Pursuit Kernel Fisher Discriminant Analysis

Input: kernelK, sparsity parameterk > 0, training labelsy.
1: calculate matrixB
2: initialise i = ( )
3: for j = 1 to k do
4: t← arg max

i

K[:,i]′yy′K[:,i]
K[:,i]′BK[:,i]

5: i← {i, t}
6: τ ← K[:, t] to deflate kernel matrix like so:

K←
(

I− ττ ′

K[t, t]

)

K

7: end for
8: calculate the projectionRK[:, i]′ whereR is the Cholesky decomposition ofK[i, i]−1 and i =

(i1, . . . , ik)
9: train FDA using Equation 3.1 in this new projected space to find a sparse weight vector̃w and make

predictions using Equation 3.9
Output: final seti, (sparse) weight vector̃w, bias termb

Generalisation Error Analysis

A generalisation error bound for MPKFDA can now be constructed by applying the results from [85]

with a compression argument. The following two results from[85] will be needed. The first bounds the

difference between the empirical and true means.

Theorem 3.2.1(Bound on the true and empirical means). LetS be anm sample generated independently

at random according to a distributionP . Then with probability at least1− δ over the choice ofS,

‖µ̂− Ex[φ(x)]‖ ≤
R√
m

(

2 +

√

2 ln
1

δ

)

, (3.10)

whereµ̂ = Ê[φ(x)] and whereR is the radius of the ball in the feature space containing the support

of the distribution. Consider the covariance matrix definedas

Σ = E ‖(φ(x) − µ)(φ(x) − µ)′‖ .

Let the empirical estimate of this quantity be

Σ̂ = Ê ‖(φ(x) − µ̂)(φ(x) − µ̂)′‖ .

The following corollary bounds the difference between the empirical and true covariance.
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Corollary 3.2.2 (Bound on the true and empirical covariances). LetS be anm sample generated inde-

pendently at random according to a distributionD. Then with probability at least1 − δ over the choice

of S,
∥

∥

∥Σ̂−Σ

∥

∥

∥

F
≤ 2R2

√
m

(

2 +

√

2 ln
2

δ

)

, (3.11)

where‖A‖F =
√

trace (AA′) is the Frobenius norm of a matrixA, and provided

m ≥
(

2 +

√

2 ln
2

δ

)2

.

The following Lemma is connected with a classification algorithm developed in [86]. The basis for

the approach is the following Lemma.

Lemma 3.2.3. Letµ be the mean of a distribution andΣ its covariance matrix,w 6= 0, b given, such

thatw′µ ≤ b andα ∈ [0, 1), then if

b−w′µ ≥ ϕ(α)
√
w′Σw,

whereϕ(α) =
√

α
1−α , then

Pr (w′φ(x) ≤ b) ≥ α

We will of course be using empirical estimates ofµ andΣ. In order to provide a true error bound,

the difference between the resulting estimate and the valuethat would have been obtained had the true

mean and covariance been used must be bounded.

Bound for Matching Pursuit Kernel Fisher Discriminant Analysis

The above bound is applied to a subspace defined from a small numberk ≪ m of basis vectors. Let

i = (i1, . . . , ik) be a vector of indices used to form ak- dimensional subspace such as the one defined

by MPKFDA. The notationSi is used to denote the samples pointed to byi. Firstly a general bound is

given, which is then specialised to the case of MPKFDA.

Theorem 3.2.4(main). LetS be a sample ofm points drawn independently according to a probability

distributionD whereR is the radius of the ball in the feature space containing the support of the

distribution. Letµ̂k (µk) be the empirical (true) mean of a sample ofm− k points from the setS r Si

projected into ak-dimensional space,̂Σk (Σk) its empirical (true) covariance matrix,wk 6= 0 with

norm 1, andbk given, such thatw′
kµk ≤ bk andα ∈ [0, 1). Then with probability1 − δ over the draw

of the random sample, if

bk −w′
kµ̂k ≥ ϕ(α)

√

w′
kΣ̂kwk,
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then

Pr (w′
kφ(x)− bk > 0) < 1− α,

where

α =
(bk −w′

kµ̂k −A)2

w′
kΣ̂kwk +B + (bk −w′

kµ̂k − A)2
,

such that‖µ̂k − µk‖ ≤ A where

A =
R√
m− k

(

2 +

√

2k ln
em

k
+ 2 ln

m

δ

)

and
∥

∥

∥Σ̂k −Σk

∥

∥

∥

F
≤ B where

B =
2R2

√
m− k

(

2 +

√

2k ln
em

k
+ 2 ln

2m

δ

)

.

Proof. First,bk −w′µ ≥ ϕ(α)
√
w′Σw from Lemma 3.2.3 can be rearranged in terms ofϕ(α):

ϕ(α) ≤ bk −w′µ√
w′Σw

. (3.12)

These quantities are in terms of the true means and covariances in the chosen subspace. In order to

achieve an upper bound, Theorem 3.2.1 and Corollary 3.2.2 must be applied for each of the
(

m
k

)

choices

of the compression set, and we further apply a factor of1/m to δ to ensure one application of the

bound for each possilbe choice ofk. This leads to the substitution ofδ/(m
(

m
k

)

) in place ofδ, and the

substitution ofm− k for m for the size of the dataset,

‖µ̂k − Ex[µ̂k(x)]‖ ≤
R√
m− k



2 +

√

2 ln
m
(

m
k

)

δ



 ,

and

∥

∥

∥Σ̂k −Σk

∥

∥

∥

F
≤ 2R2

√
m− k



2 +

√

2 ln
2m
(

m
k

)

δ



 .

Use the fact that
(

m
k

)

is upper bounded by(em/k)k, and rearranging gives,

‖µ̂k − Ex[µ̂k(x)]‖ ≤
R√
m− k

(

2 +

√

2k ln
em

k
+ 2 ln

m

δ

)

:= A,
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and

∥

∥

∥Σ̂k −Σk

∥

∥

∥

F
≤ 2R2

√
m− k

(

2 +

√

2k ln
em

k
+ 2 ln

2m

δ

)

:= B.

Given Equation 3.12, the empirical quantities for the meansand covariances can be used in place of

the true quantities. However, in order to derive a genuine upper bound, the upper bounds between the

empirical and true means also need to be taken into account. These are included in the expression above

for ϕ(α) by replacingδ with δ/2, to derive a lower bound, like so:

ϕ(α) =
bk −w′

kµ̂Sk
−A

√

w′
kΣ̂kwk +B

.

Finally, making the substitutionϕ(α) =
√

α
1−α and solving forα yields the result.

The following Proposition upper bounds the generalisationerror of MPKFDA.

Proposition 3.2.5. Let wk, bk, be the (normalised) weight vector and associated threshold returned

by the MPKFDA algorithm when presented with a training setS. Furthermore, letΣ̂
+

k (Σ̂
−
k ) be the

empirical covariance matrices associated with the positive (negative) examples of them − k training

samples fromS r Si projected into ak dimensional space. Then with probability at least1− δ over the

draw of the random training setS ofm training examples, the generalisation errorǫ is bounded by

ǫ ≤ max(1 − α+, 1− α−)

whereαj , j = +,− are given by,

αj =

(

j(w′
kµ̂

j
Sk
− bk)− Cj

)2

w′
kΣ̂

j

kwk +Dj +
(

j(w′
kµ̂

j
Sk
− bk)− Cj

)2 ,

where

Cj =
R√

mj − kj

(

2 +

√

2k ln
em

k
+ 2 ln

2m

δ

)

,

and

Dj =
2R2

√
mj − kj

(

2 +

√

2k ln
em

k
+ 2 ln

4m

δ

)

.

Proof. For the negative (−1) part of the proof,bk − w′
kµ̂

−
k ≥ ϕ(α)

√

w′
kΣ̂

−
k wk is required, which is

a straight forward application of Theorem 3.2.4 withδ replaced withδ/2. For the positive (+1) part,

observe−bk + w′
kµ̂

+
k ≥ ϕ(α)

√

w′
kΣ̂

+

k wk is required, hence, a further application of Theorem 3.2.4

with δ replaced byδ/2 suffices.
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Experiments

A comparison on 13 benchmark datasets derived from the UCI, Data for Evaluating Learning in Valid

Experiments (DELVE) and STATLOG benchmark repositories follows. The performance of KFDA,

MPKFDA, and SVM using RBF kernels are analysed. The data comes in 100 predefined splits into

training and test sets (20 in the case of the image and splice datasets) as described in [34]3. For each

of the datasets CV was used to select the optimal parameters (the RBF kernel width parameter, the C

parameter in the SVM, andk the number of iterations in MPKFDA). 5-fold CV was used over the first

five training datasets with a coarse range of parameter values, selecting the median over the five sets

as the optimal value, followed by a similar process using a fine range of parameter values4. This way

of estimating the parameters leads to more robust comparisons between the methods. The means and

SDs of the generalisation error for each method and dataset are given in Table 3.1. It was found that the

performance of KFDA and MPKFDA are very similar, and both arecompetitive with the SVM. This is

demonstrated by the values for the mean over the datasets.

Dim Train Test KFDA MPKFDA SVM
Error SD Error SD k Error SD k

Banana 2 400 4900 0.1069 0.00 0.1101 0.01 31 0.1068 0.00 122
Breast Cancer 9 200 77 0.2886 0.05 0.3174 0.04 19 0.2603 0.05 113
Diabetes 8 468 300 0.2596 0.02 0.2543 0.02 18 0.2332 0.02 260
Flare Solar 9 666 400 0.3500 0.02 0.3457 0.02 19 0.3239 0.02 557
German 20 700 300 0.2672 0.02 0.2808 0.02 27 0.2345 0.02 392
Heart 13 170 100 0.2125 0.03 0.1599 0.03 13 0.1543 0.03 98
Image 18 1300 1010 0.0092 0.02 0.0136 0.03 39 0.0061 0.01 27
Ringnorm 20 400 7000 0.0685 0.01 0.0573 0.03 15 0.0164 0.00 216
Splice 60 1000 2175 0.0397 0.08 0.0314 0.06 37 0.0223 0.05 110
Thyroid 5 140 75 0.0392 0.02 0.0699 0.03 29 0.0520 0.02 87
Titanic 3 150 2051 0.2259 0.02 0.2468 0.05 70 0.2256 0.01 76
Twonorm 20 400 7000 0.0253 0.00 0.0253 0.00 14 0.0280 0.00 231
Waveform 21 400 4600 0.1228 0.01 0.1027 0.00 13 0.1031 0.00 131
Mean 0.1550 0.02 0.1550 0.03 26.5 0.1359 0.02 185.3

Table 3.1: Error estimates and Standard Deviations (SDs) and sparsitylevelk (number of bases for MPKFDA or
number of support vectors for SVM) for 13 benchmark datasets.

Results from the Neural Information Processing Systems (NIPS) 2003 challenge datasets [92]

ARCENE, DEXTER and DOROTHEA are presented next5. These datasets were chosen with the belief

that the main advantage of MPKFDA will be shown when the data lives in high dimensions. Compar-

isons were made between the performance of MPKFDA with standard KFDA and SVM, again using

RBF kernels for each of the classifiers. 5-fold CV was used on the training set to select the optimal

parameters for each algorithm as before, and then tested on the validation set. For each dataset the fol-

lowing are shown: the number of features; the number of examples in the training and validation sets;

the generalisation error of each classifier on the validation set. All problems are two-class classification

problems. As can be seen from Table 3.2, MPKFDA outperforms both KFDA and SVM on these high

3Available to download from:http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm
4The coarse values were10−6,...,3 and the fine range consisted of 9 logarithmically spaced values between10v−1 and10v+1

wherev is log10 of the value chosen at the first stage
5The train and validation sets and associated labels are available for download from:

http://www.nipsfsc.ecs.soton.ac.uk/datasets/

http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm
http://www.nipsfsc.ecs.soton.ac.uk/datasets/
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dimensional datasets, whilst giving very sparse solutions.

Dim Train Test KFDA MPKFDA SVM
Error Error k Error k

Arcene 10000 100 100 0.2000 0.1800 40 0.2600 80
Dexter 20000 300 300 0.1133 0.0800 40 0.0733 257

Dorothea 100000 800 350 0.0971 0.0571 11 0.0686 711
Mean 0.1368 0.1057 30.3 0.1340 349.3

Table 3.2: Error estimates for MPKFDA on 3 high dimensional datasets.

Figures 3.3 a) and b) show plots of the train and test error of MPKFDA on two of the datasets

(‘German’ and ‘Banana’) ask increases compared against KFDA. The plots demonstrate that MPKFDA

algorithm is very resistant to overfitting, and gives good generalisation performance with relatively small

k. The value of the bound is also plotted. However it is too pessemistic (it levels off for much higherk)

and therefore cannot be used for model selection.

It is also interesting to investigate why the algorithm is resistant to overfitting. Firstly note that the

deflation step means that the rank of the kernel matrix is being reduced by at least1 at each iteration.

Also, the Frobenius norm of the kernel matrix is being reduced, although the effect of this will be greater

at earlier steps. Meanwhile, the norm of the weight vector (if unnormalised) grows as bases are added,

but the rate of this reduction decreases over time. This means that ask grows the bases that are added

will have less and less impact on the solution. Figure 3.4 shows the relative sizes of the Frobenius norm

of the kernel matrix and the generalisation error ask increses (different scales on the y-axis). Effectively

the deflation step is acting as a strong regulariser, which when combined with the intrinsic regularisation

effects of the compression introduced by the sparsity of thesolutions, leads to a resistance to overfitting.

In this Section a novel sparse version of KFDA was derived using an approach based on MP.

Generalisation error bounds were provided that were analogous to that used in the Robust Minimax

algorithm [86], together with a sample compression bounding technique. As shown the bound is too

loose to perform model selection, but further analysis may enable the bound to drive the algorithm.

Experimental results on real world datasets were presented, which showed that MPKFDA is competitive

with both KFDA and SVM, and additional experiments that showed that MPKFDA performs well in high

dimensional settings. In terms of computational complexity the demands of MPKFDA during training

are higher, but during the evaluation on test points onlyk kernel evaluations are required compared tom

needed for KFDA. This does, however, pose a problem for scaling to very large datasets, as the deflation

step isO(m3) at each step.

In the next Section an algorithm based on another greedy method, Polytope Faces Pursuit (PFP), is

presented. This time the focus will be on nonlinear regression, showing that greedy methods are widely

applicable in ML.
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Figure 3.3: Plot of generalisation error bound for different values ofk using RBF kernels for the a) ‘German’ and
b) ‘Banana’ data set. The generalisation error is shown on the y axis. The plot shows the training error (in blue),
the test error (in green), the bound value (in red), and the test error of the KFDA classifier (in black, with dotted
lines showing the Standard Deviation (SD)). Note that the MPKFDA algorithm is very resistant to overfitting, and
gives good generalisation performance with relatively small k. The bound is too pessemistic (it levels off for much
higherk) and therefore cannot be used for model selection.
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Figure 3.4: Plot showing how the Frobenius norm of the deflated kernel matrix and the test error vary as basis
vectors are added to the MPKFDA solution.

3.3 Kernel Polytope Faces Pursuit

Polytope Faces Pursuit (PFP) is a greedy algorithm that approximates the sparse solutions recovered by

ℓ1 regularised least-squares (LASSO) [60, 61] in a similar wayto MP and OMP [93]. The algorithm

is based on the geometry of the polar polytope where at each step a basis function is chosen by finding

the maximal vertex using a path-following method. The algorithmic complexity is of a similar order to

OMP whilst being able to solve problems known to be hard for MPand OMP. MP was extended to build

kernel-based solutions to machine learning problems, resulting in the sparse regression algorithm, KMP

[65]. A new algorithm to build sparse kernel-based solutions using PFP is presented here, called Kernel

Polytope Faces Pursuit (KPFP). The utility of this algorithm will be demonstrated firstly by providing

a generalisation error bound [88] that takes into account a natural regression loss, and secondly with

experimental results on several benchmark datasets. In thefollowing the KPFP algorithm will be derived,

which is a generalisation of PFP to a RKHS.

PFP was outlined in the previous Chapter in Section 2.2.3. Ateach step the approach to the solution

of this problem is to identify the optimal vertex which is themaximiser ofy′c, wherec is the dimensional

weight vector of theℓ1-minimisation in its standard form, which is similar to the way in which KMP

builds up its solution. However the difference is that at each step, the path is constrained on the polytope

faceF given by the vertex of the previous step. This is achieved by projectingy into a subspace parallel

toF to giver = (I−Q)y whereQ = K[:,i]K[:,i]′

‖K[:,i]‖2 . Sinceα = K[:, i]′†y andŷ = K[:, i]α, it follows that

r = y −K[:, i]α = y − ŷ meaning thatr is the residual from the approximation at stepi. The second

step, which is where the main difference between OMP and PFP arises, involves projecting within the
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faceF that has just been found, rather than from the origin. This isdone by projecting along the residual

r. Therefore to find the next face at each step, the maximumscaledcorrelation is found

ii = arg max
i∈{1,...,n}\i

K̃[:, i]′r

(1− K̃[:, i]′c)
(3.13)

where bases are only considered such thatK̃[:, i]′r > 0.

Constraints are then removed that violate the condition that α̃ contains any negative entries. This is

achieved by findingj ∈ i such that̃αj < 0, removingj from i and removing the face from the current

solution.α̃ is then recalculated, continuing untilαj ≥ 0, ∀ j. Although this step is necessary to provide

exact solutions to (2.86), it may be desirable in some circumstances to remove this step due to the fact

that the primal space is in fact the dual space of an RKHS. Thiswould result in faster iterations but less

sparse solutions. In Section 3.3.2, a comparison of the performance of the algorithm with and without

this step (KPFP and KPFPv respectively) is made. The full algorithm is given in Algorithm 4.

Algorithm 4 Kernel Polytope Faces Pursuit

Input: kernelK, sparsity parameterk > 0, training outputsy
1: InitialiseK̃ = [K,−K], α̃ = [ ], α = [ ], ŷ = 0, Ã = [ ], r = y, c = 0

2: for i = 1 to k do
3: Find faceii = argmaxi/∈i K̃[:, i]′r/(1− K̃[:, i]′c) whereK̃[:, i]′r > 0
4: Add constraint:Ã = [Ã, K̃[:, ii]]
5: UpdateB = (Ã)†, α̃ = By

6: (Optional) Release violating constraints:
7: while ∃ α̃j < 0, ∀ j do
8: Remove facej: Ã = Ãr K̃[:, j], i = ir {j}
9: UpdateB = K̃[:, ii]

†, α = By

10: end while
11: Setc = B′1, ŷ = Ãα̃, r = y − ŷ

12: end for
13: Calculateαi = α̃i − α̃i+m, i = 1, . . . ,m
Output: final seti, (sparse) dual weight vectorα, predicted outputŝy

3.3.1 Generalisation error bound

For the generalisation error bound it is assumed that the data are generated i.i.d. from a fixed but unknown

probability distributionD over the joint spaceX × Y. Given thetrue error of a functionf :

R(f) = E(x,y)∼D [L(f(x), y)] ,

whereL(ŷ, y) is the loss between the predictedŷ and truey, theempirical riskof f givenS:

R̂(f) = 1

m

m
∑

i=1

L(f(xi), yi)

and the estimation errorest(f)

est(f) = |R(f)− R̂(f)|,
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the aim is to find an upper bound forest(f). In order to construct this bound we can use Vapnik-

Chervonenkis (VC) theory, which relies on the uniform convergence of the empirical risk to the true

risk. For a general function class, a well known quantity to measure its size, which determines the

degree of uniform convergence, is thecovering number[94]. The covering number is calculated by

discretising the parameter space so that the risk can be estimated at discrete locations.

Definition Let B be a metric space with metric p. Given observationsX = [x1, . . . ,xm], and functions

f ∈ Bm that form a hypothesis classH, the covering number in theℓp-norm, as denoted byNp(ǫ,H,X),

is defined as the minimum numberz of a collection of vectorsv1, . . . ,vz ∈ Bm, such that∃ vj :

‖ρ (f(x),vj)‖p ≤ m1/pǫ,

and further thatNp(ǫ,H,m) = supXNp(ǫ,H,X).

Note that from the definition and Jensen’s inequality, we have thatNp ≤ Nq for p ≤ q (see [95]

for a discussion), meaning that theℓ∞ covering number is always an upper bound on theℓ1 covering

number. A result that is relevant here (Theorem 17.1 from [96]) bounds the rate of uniform convergence

of a function class in terms of its covering number, (using the ℓ∞ covering number as opposed to theℓ1

covering number):

Pr
{

∃f ∈ H : |R(f)− R̂(f)| ≥ ǫ
}

≤ 4 N∞
( ǫ

16
,H, 2m

)

exp

(−ǫ2m
32

)

,

This covering number can be upper bounded using Theorem 12.2from [96]:

N∞(ǫ,H,m) ≤
(

emR

ǫd

)d

,

whereR is the support of the distribution andd denotes thepseudo-dimension. As with KMP [88], KPFP

also has VC-dimension (pseudo-dimension)k, whenk is the number of basis vectors chosen. However,

in contrast to the KMP bound of [88] the pseudo-dimension is used to apply a natural regression loss

function, the so-called squared error as defined in Section 2.1.3:

L(f(x), y) = (f(x)− y)2.

Therefore there is no need to fix a bandwidth parameter as was the case with the bound of [88]i.e. , there

is no need to map the regression loss into a classification one. The proof technique of [88] is followed

but instead the sample compression technique is applied over pseudo-dimension bounds, which results

in a slightly more involved proof.

Theorem 3.3.1.Let f ∈ H : X 7→ [0, 1] be the function output by any sparse (dual) kernel regression

algorithm which builds regressors using basis vectors,m the size of the training setS andk the size of

the chosen basis vectorsi. Let S̄ = S r Si denote the examples outside of the setSi. Assume without

loss of generality that the lastk examples inS form the setSi. LetR be the radius of the ball containing



3.3. Kernel Polytope Faces Pursuit 66

the support ofS, then with1 − δ confidence the true errorR(f) of functionf given any training setS

can be upper bounded by,

R(f) ≤ R̂S̄(f) +

√

322 + 128(m− k)
(

k ln em
k + k ln 32e(m− k)R + 1 + ln 4km

δ

)

− 32

2(m− k) .

Proof. First consider a fixedk and a fixed set of indicesi. Assume that the firstm− k points fromS are

drawn independently and apply Theorem 17.1 (and Theorem 12.2) from [96] to obtain the bound

Pr
{

S̄ : |R(f)− R̂S̄(f)| ≥ ǫ
}

≤ 4

(

32e(m− k)R
ǫk

)k

exp

(−ǫ2(m− k)
32

)

. (3.14)

Given that the goal is to choosek basis vectors fromm choices, there are
(

m
k

)

different ways of selecting

them. Multiplying the r.h.s. of Equation 3.14 by
(

m
k

)

like so:

Pr {S : ∃i, |i| = k, ∃f ∈ span{Si} s.t. |R(f)− R̂S̄(f)| ≥ ǫ
}

(3.15)

≤ 4

(

m

k

)(

32e(m− k)R
ǫk

)k

exp

(−ǫ2(m− k)
32

)

,

≤ 4
(em

k

)k
(

32e(m− k)R
ǫk

)k

exp

(−ǫ2(m− k)
32

)

,

where we use the fact that
(

m
k

)

≤ ∑k
i=0

(

m
i

)

≤
(

em
k

)k → ln
(

m
k

)

≤ k ln em
k . Next by setting the r.h.s.

of Equation (3.15) toδ, taking logarithms and rearranging gives

ǫ2(m− k)
32

= k ln
em

k
+ k ln 32e(m− k)R − ln ǫ+ ln k + ln

4

δ
.

It would be desirable to write this bound in terms ofǫ and we therefore use the following result [97]

which states that for anyα > 0, ln ǫ ≤ ln 1
α − 1 + αǫ. Substituting this result withα = 1 (a smallerα

can be used but would make the bound less neat) gives

ǫ2(m− k) = 32

(

k ln
em

k
+ k ln 32e(m− k)R− ln 1 + 1− ǫ+ ln k + ln

4

δ

)

,

which yields the following quadratic equation:

(m− k)ǫ2 + 32ǫ− 32

(

k ln
em

k
+ k ln 32e(m− k)R+ 1 + ln

4k

δ

)

= 0.

Therefore, solving forǫ gives the result when the bound is further appliedm times for each value of

k. 6

This bound can be specialised to the RBF kernel that uses the mean squared error loss and for which

the support of the distributionR = 1, which leads to the following corollary.7

6The quadratic equation is solved only for the positive quadrant.
7The RBF kernel was used in the experiments.
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Corollary 3.3.2. For a RBF kernel and using all the definitions from Theorem 3.3.1 the loss of KPFP

can be upper bounded by:

R(f) ≤ R̂S̄(f) +

√

322 + 128(m− k)
(

k ln em
k + k ln 32e(m− k) + 1 + ln 4km

δ

)

− 32

2(m− k) ,

where

R̂S̄(f) =
1

m− k
m−k
∑

i=1

LS̄(f(xi), yi).

Remark The consequences of Theorem 3.3.1 (and Corollary 3.3.2) is that although the pseudo-

dimension can be infinite even in cases where learning is successful,8 a bound will be generated that is

alwaysfinite. Also, this is the first bound for KMP and KPFP to use thenatural regression lossin order

to upper bound generalisation error. The bound is naturallytrading off empirical error with complexity

– as the training error decreases the bound gets smaller, andas the number of basis vectors (complexity)

increase the bound gets larger. A good trade-off is to find small training error whilst using a small num-

ber of basis vectors. Clearly, the KMP and KPFP algorithms try to optimise this trade-off, and the bound

suggests that this will result in good generalisation.

It is quite obvious that the output of the function classH : X 7→ [0, 1] is not bounded between0

and1 in most ‘real world’ regression scenarios. Therefore, a more practically useful bound can be given

for a function classH : X 7→ [−B,B] where the outputs are bounded in the range of[−B,B] ∈ R.

Corollary 3.3.3. Let ‖w‖2 ≤ B ∈ R and‖xi‖2 ≤ 1, i = 1, . . . ,m. Let f ∈ H : X 7→ [−B,B] be

the function output by anysparse (dual) kernel regressionalgorithm which builds regressors using basis

vectors,m the size of the training setS andk the size of the chosen basis vectorsi. Let S̄ = S r Si

denote the examples outside of the setSi. Assume without loss of generality that the lastk examples in

S form the setSi. LetR be the radius of the ball containing the support ofS, then with1− δ confidence

the true errorR(f) of functionf given any training setS can be upper bounded by,

R(f) ≤ R̂S̄(f) + 2B

√

322 + 128(m− k)
(

k ln em
k + k ln 32e(m− k)R+ 1 + ln 4km

δ

)

− 32

2(m− k) .

Proof. Denote the function class̃H =
{

f+B
2B : f ∈ H

}

: X 7→ [0, 1]. Therefore, given any function

f̃ ∈ H̃ Theorem 3.3.1 holds. Furthermore, for any function classH : X 7→ [−B,B] the following

results:

R(f̃) ≤ 2B · R̂S̄(f̃) + 2B

√

322 + 128(m− k)
(

k ln em
k + k ln 32e(m− k)R+ 1 + ln 4km

δ

)

− 32

2(m− k) ,

which completes the proof under the substitutionR̂S̄(f) = 2B · R̂S̄(f̃).

8Note that the pseudo-dimension is a generalisation of the VC-dimension and hence the same problems of infinite VC-
dimension also apply to the pseudo-dimension.
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3.3.2 Experiments

A comparison on 9 benchmark datasets derived from the UCI, StatLib, and DELVE benchmark reposi-

tories is presented. Details of the datasets are given in Table 3.3. The performance of KPFP, KMP, KRR

and KBP are analysed using RBF kernels. KBP was implemented by solving the LASSO on the features

defined by the RBF kernel using the LARS. 10 randomised splitsinto training and test sets were used.

For each of the datasets CV was used to select the optimal RBF kernel width parameter for KRR. This

kernel was then used as input to the KMP, KBP and KPFP algorithms. For both KMP and KPFP the

initial sparsity levelk was set in training by a heuristic method to the lesser of 100 or the number of

training examples. The means and standard deviations of thegeneralisation error for each method and

dataset are given in Table 3.4.

The results show that overall the sparse methods (KMP, KPFP,KBP) all perform better than KRR.

It is interesting to compare the performance of KPFP with andwithout the release of violating constraints

(KPFPv and KPFP respectively). KPFPv performs nearly as well as KMP on all datasets except for

cpusmall, whilst requiring fewer bases in the final solutions. On the other hand, KPFP results in

solutions that are the least sparse of the three methods, butresults in the lowest generalisation error.

KBP which gives an exact solution to the LASSO problem performs the worst here, showing that theℓ1

solution is not necessarily the optimal one for generalisation. The key to the performance of all of these

methods is in selecting the appropriate stopping pointk. This is quite difficult to achieve in KMP, as

the algorithm tends to overfit quite quickly, and there is no obvious criterion for stopping. For example,

if cross-validation were used to selectk, the resulting value would be too low, as the number of bases

would be selected from a smaller validation set. In the experiments it was found that by selecting an

initial k through a heuristic method and then choosing the minimiser of the training error resulted in the

best compromise. In KPFP and KPFPv the optimal value fork is more easily achieved, as the training

and test error curves tend to follow each other quite well. Additionally there is an (optional) stopping

parameterθmax. In fact, the value ofθ to whichθmax is compared also follows the error curves. It was

found that by taking the minimiser ofθ as the number of bases was a reliable way of estimatingk.

Dataset # examples # dimensions
abalone 4177 8
bodyfat 252 14
cpusmall 8192 12
housing 506 13
mpg 392 7
mg 1385 6
pyrim 74 27
spacega 3107 6
triazines 186 60

Table 3.3: Number of examples and dimensions of each of the 9 benchmark datasets
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Dataset KRR KMP KBP KPFPv KPFP
µ σ µ σ k µ σ k µ σ k µ σ k

abalone 8.70 1.79 5.70 2.56 49.2 21.64 28.80 5.4 6.07 1.16 7.3 4.82 0.24 37.7
bodyfat 0.00 0.00 0.00 0.00 49.1 0.01 0.02 5.7 0.00 0.00 30.1 0.00 0.00 129.7
cpusmall 216.35 64.04 15.66 2.51 24.0 519.06 95.45 10.3 69.97 2.51 13.4 12.50 1.51 54.2
housing 72.19 19.59 21.93 7.17 50.3 56.84 19.35 8.9 34.16 8.19 21.9 23.22 6.67 150.8
mpg 39.47 24.57 20.70 14.37 50.6 42.05 48.27 7.7 13.11 3.35 11.5 10.98 1.97 161.1
mg 0.04 0.01 0.02 0.00 49.0 0.11 0.19 4.4 0.02 0.00 7.6 0.02 0.00 48.7
pyrim 0.02 0.01 0.02 0.02 24.3 0.02 0.01 11.6 0.02 0.01 17.8 0.01 0.01 39.0
spacega 0.03 0.01 0.02 0.00 49.9 0.05 0.05 4.8 0.02 0.00 6.0 0.02 0.00 38.2
triazines 0.02 0.01 0.03 0.02 50.9 0.02 0.00 11.3 0.02 0.00 34.4 0.02 0.00 109.7
wins 3 34 6 9 39

Table 3.4: (Mean) Mean Squared Error (MMSE) (µ) and SDs (σ) for 9 benchmark datasets for KRR, KMP, KBP
and KPFP with and without violation release (KPFPv, KPFP). The total number of wins over all splits of the data
for each algorithm is given in the last row. Numbers in bold indicate the best performing algorithm for each dataset.

3.3.3 Bound Experiments

Finally results of the performance of the bound will be presented. Figure 3.5 shows typical plots of

the bound. For Figure 3.5 (b) the number of training exampleschosen was 450 and the number of test

examples was 56, with the RBF width parameter set toσ = 0.035. The bound values tend to fall as basis

vectors are added, before rising again as the complexity of the solution rises. Hence the first minimum

of the bound value could serve as an appropriate point to stopthe algorithm. This is clearly much more

efficient than using cross-validation to select the value ofk, the number of basis vectors to use. However

in the experiments this resulted in stopping too early, resulting in underfitting. Further refinement of the

bound may improve its performance in this respect.
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Figure 3.5: a) Plot of generalisation error bound for different values of k using RBF kernels for the ‘Boston housing’
data set. Thelog of the generalisation error is shown on they axis. The plot shows the empirical error of the setS̄
(denoted training error, in green), the estimation error (in blue), the norm of the weight vector (in red), the bound
value which is calculated from these three values (in cyan),and the generalisation error (in magenta). Note that
the empirical error follows the true error very well, which justifies its use in the setting of the sparsity parameter.
However the bound value is swamped by the norm of the weight vector (needed according to Corrollory 3.3.3), and
as such is not useful. b) The bound values for the KMP algorithm. Note that in this case the bound (which is valid
for this algorithm too) is more useful, simply because the norm of the weight vector does not blow up as quickly.

PFP is a greedy algorithm that approximates the sparse solutions recovered byℓ1 regularised least-

squares LASSO [60, 61] in a similar way to MP and OMP [93]. The algorithm is based on the geometry

of the polar polytope where at each step a basis function is chosen by finding the maximal vertex using

a path-following method. The algorithmic complexity is of asimilar order to OMP whilst being able

to solve problems known to be hard for MP and OMP. In this Section the PFP algorithm was extended
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to a kernel version, called KPFP. The utility of this algorithm was demonstrated by providing a novel

generalisation error bound which used the natural regression loss and pseudo-dimension in order to upper

bound its loss. The experimental results showed that KPFP was competitive against the KMP and KRR.

The next Section will present an alternative to the greedy strategies for the selection of bases pre-

sented thus far. It will be shown theoretically and empirically that, surprisingly, it is still possible to learn

when the bases are selected at random, providing that certain assumptions hold.

3.4 Learning in a Nyström Approximated Subspace

“No random actions, none not based on underlying principles”

Marcus Aurelius, Meditations Book IV

Givenm observations, it is possible to define a framework that carries out learning in ak ≤ ℓ≪ m

dimensional subspace that is constructed using the Nyström method. A recently advocated and theoret-

ically justified approach of uniform sub-sampling without replacement will be adopted to cheaply find

a k-dimensional subspace in time complexityO(1). Any linear learning algorithm can then be used in

this uniformly sampledk-dimensional Nyström approximated subspace to help tackle large data sets.

Furthermore, for any SVM constructed in this Nyström approximated space an upper bound on its ob-

jective function is proved in terms of the objective of the SVM solved in the original space, implying

successful learning whenever the objective of the SVM in theoriginal space is small. Finally, the pro-

posed methodology will be demonstrated on several UCI repository datasets for both classification and

regression, using primal SVM, FDA, and RR.

Kernel methods continue to play an important role in machinelearning due to their ability in ad-

dressing real-world problems, which often have non-linearand complex structures. The key element

of kernel methods is the mapping of data into a kernel inducedHilbert space where a dot product be-

tween the points can be computed efficiently. Therefore, givenm sample points, anm ×m symmetric

positive semi-definite (SPSD) kernel matrix is all that needs to be computed. Computing the kernel ma-

trix requires an operation with a complexity term ofO(m2). Despite the obvious advantages of kernel

methods, the methodology begins to falter whenm becomes very large.

This potential draw back of kernel methods has been addressed in the literature through the pro-

posal of a number of methods for kernel matrix low-rank approximations. These methods have a com-

putational complexity smaller thanO(m2). In particular, one would perform a low-rank approximation

of K = C′C, whereC ∈ R
k×m such thatk ≪ m. For example, [37] have approximated the kernel

matrix by incrementally choosing basis vectors so as to minimise an upper bound on the approximation

error. Their algorithm has a complexity ofO(k2mℓ) whereℓ is a random subset size. [98] have pro-

posed a greedy sampling scheme, with complexityO(k2m), based on how well a sample point can be

represented by a linear combination of the current subspacebases in the feature space. The Nyström ap-

proximation, originally proposed by [99] to solve integralequations, was proposed by [7] as a technique

to approximate the kernel matrices to speed up kernel-basedpredictors. The Nyström approach samples



3.4. Learning in a Nyström Approximated Subspace 71

k columns of the kernel matrix to reconstruct the complete kernel matrix, it has a complexity term of

O(k3). Whenk ≪ m this is computationally much more efficient than the other methods.

It has recently been demonstrated that when approximating the kernel matrix using the Nyström ap-

proach, uniform subsampling without replacement is able tooutperform other sampling techniques[100].

The authors show that the most computationally efficient, and cheapest, sampling technique is to ran-

domly select columns of the kernel matrix. However whilst they provide upper bounds on the approxi-

mation error, they do not give a theoretical analysis oflearnability in the Nyström subspace.

This question has in fact been investigated by Blumet. al.[101, 102] who show that a Nyström pro-

jection (their projectionF2, although they do not refer to it as a Nyström projection) preserves margins.

By this they mean that if there is a classifier with marginγ, a suitably large Nyström subspace will have

margin of at leastγ/2 for a high proportion of the training data. In practice one would not normally

expect data to have a large hard margin even in a high dimensional space, but rather have a small primal

SVM objective that combines both the margin and the slack variables. Hence, their result leaves open

the question of how the projection will affect the size of theSVM objective, since they do not take into

account

• some points with non-zero slack variables may fail to achieve marginγ in the original space;

• the size of the slack variables of the fractionǫ of points that fail to achieve marginγ/2 in the

Nyström projection.

These issues will be investigated, resulting in a theoretical extension of the Blumet. al.approach, fol-

lowed by experiments to verify the effect of the Nyström projection on the quality of generalisation

obtained using Support Vector classification.

Section 3.2.1 gave details of a OMP algorithm for KFDA that isgreedy in its approach to finding a

small number of basis vectors with a complexity ofO(m3k). MPKFDA greedily chooses basis vectors

by maximising the Fisher quotient to solve the FDA algorithmin the Nyström approximated space [15].

The KPFP algorithm described in Section 3.3, which was used to perform regression, has the same

complexity [17]. The idea of uniformly sampling (with or without replacement) [100] will be used to

generate the Nyström subspace and demonstrated experimentally in both of these settings, as well as for

the SVM. The experimental results will be strengthened withsignificance testing.

Preliminaries

Recall the definition of the Nyström approximation of the Gram matrixG, as defined in Section 3.2.2.

For any such Gram matrix, there exists aX ∈ R
m×n such thatG = XX′. Again if we assume that

the examples have already been projected into the kernel defined feature space this analysis will hold for

kernel matricesK in place of the gram matrixG.

ℓ≪ m columns ofG are sampled at random uniformly without replacement. LetN be them× ℓ
matrix of the sampled columns, andW be theℓ × ℓ matrix consisting of the intersection of theseℓ

columns with the correspondingℓ rows ofG. The Nyström method usesW,N to construct a rank-k
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approximationG̃k toG for k ≤ ℓ, like so:

G̃k = NW
†
kN

′ ≈G, (3.16)

Recent studies [100, 103, 104] have shown that for a Gram matrix G and a Nyström approximated

matrixG̃k, constructed fromk uniformly sampled columns ofG, the expected loss of
∥

∥

∥G− G̃k

∥

∥

∥

F
can

be bounded by the difference betweenG and its optimalk rank approximationGk.

Theorem 3.4.1. (Quoted from [100]) LetG ∈ R
m×m be a SPSD matrix. Assume thatℓ columns of

G are sampled uniformly at random without replacement, letG̃k be the rank-k Nystr̈om approximation

to G as described in Equation (3.2), and letGk be the best rank-k approximation toG. For ǫ > 0, if

ℓ ≥ 64k
ǫ4 , then

E

[∥

∥

∥
G− G̃k

∥

∥

∥

F

]

≤ ‖G−Gk‖F + ǫ









m

ℓ

∑

i∈D(ℓ)

Gii









√

√

√

√m
m
∑

i=1

G2
ii









1
2

,

where
∑

i∈D(ℓ) Gii is the sum of the largestℓ diagonal entries ofG. Further, letη =

√

log( 2
δ
)β(ℓ,m−ℓ)
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(
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and if ℓ ≥ 64k
ǫ4 then with probability at least1− δ,

∥

∥

∥G− G̃k

∥

∥

∥

F
≤ ‖G−Gk‖F + ǫ









m

ℓ

∑

i∈D(ℓ)

Gii









√

√

√

√m

m
∑

i=1

G2
ii + ηmax(mGii)









1
2

.

3.4.1 Theory of Support Vector Machine (SVM) in Nyström Subspace

The theories for the Nyström approximation have been the following:

• An upper bound on the expected reconstruction of the low rankmatrix approximation described

above.

• A bound which shows that if there exists a separator with hardmarginγ in the original space a

Nyström projection of dimension

d ≥ 8

ǫ

[

1

γ2
+ ln

1

δ

]

(3.17)

will with probability 1−δ over the selection of thed points defining the projection create a margin

of at leastγ/2 for all but at most anǫ fraction of the training data.

The second statement implies the potential for good generalisation since a large margin classifier

misclassifying some points has a provable bound on generalisation. Nonetheless it is not clear that this

will be found by the margin maximizing SVM, since it deals with margin errors using slack variables

that do not simply count margin errors. Furthermore, the assumption that there exists a hard margin

separator in the original space is in practice unrealistic.A SVM solution with small objective might
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be found, implying good generalisation but at the expense ofa number of points with non-zero slack

variables. The theorem as stated would not apply to this case.

The main result of this work is an adaptation of [101] as follows.

Lemma 3.4.2. Consider any distribution over labeled examples (with input vectors having support con-

tained in the unit ball in Euclidean space) such that there exists a linear separator〈w,x〉 = 0 with

marginγ on all butk points. Drawing

d ≥ 8

ǫ

[

1

γ2
+ ln

1

δ

]

examplesz1, . . . , zd i.i.d. from this distribution, with probability at least1 − δ, there exists a vector

w̃ ∈ span(z1, . . . , zd) that has error at mostǫ+ k/m at marginγ/2.

Proof. Given the set of examplesS = {z1, . . . , zd} as defined above with‖zi‖ = 1, ∀i, we define

V = span(S) as the (possibly not unique) span of this set, andV ⊥ as its orthogonal complement.

Suppose we have a (weight) vectorw in the spacespan(z) also assumed to be normalised (‖w‖ = 1).

Let win be the part ofw that lies inV , andwout be the part ofw that lies inV ⊥. By definition

win ⊥ wout andw = win +wout.

We need to make the following definitions:

1. wout is large if Prz(〈wout, z〉 > γ/2) ≥ ǫ, and

2. wout is small if Prz(〈wout, z〉 > γ/2) < ǫ,

where we usePrz(·) to denote the probability over random sampling from the training set. Ifwout is

small, then as〈win, z〉 = 〈w, z〉 − 〈wout, z〉 and it was assumed thatPrz (〈w, z〉 > γ) = 1 − k/m, it

can be seen thatPrz (〈win, z〉 > γ/2) ≥ 1 − ǫ − k/m as required, and the proof would be complete.

For the rest of the proof, we consider the situation wherewout is large,i.e. the setz has not yet been

informative enough that the weight vector enabling separation lies sufficiently within its span.

Forwout that is large, we consider what happens when a new (random) point z̃ = zd+1, ‖z̃‖ = 1

is added to the set, with the resulting induced spaceS̃ = S ∪ {z̃}. Consider the case thatz̃ /∈ V

(i.e. z̃ ∈ Ṽ ⊥ whereṼ ⊥ = span(S̃)⊥ = V ⊥ ∪ {z̃}). We can by the definition ofw andwout deduce

that〈wout, z̃〉 > γ/2. Let z̃in andz̃out be the normalised projections ofz̃ ontoV andV ⊥ respectively.

Similarly let w̃in = proj(win, Ṽ ⊥) andw̃out = proj(wout, Ṽ ⊥) be the projections ofwin andwout

ontoṼ ⊥ respectively. Observe that,

w̃in = proj(w, Ṽ ),

= proj(w, V ) + proj(w, z̃),

= win + proj(w, z̃). (3.18)
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Sincew̃in ⊥ w̃out, w̃out must shrink by a concordant amount,

w̃out = wout − proj(w, z̃),

= wout − proj(wout, z̃),

= wout − 〈wout, z̃〉 z̃. (3.19)

Sincez̃ = proj(z, S̃), and by definitioñz ⊥ V , we have

‖w̃in‖2 = 〈win + proj(w, z̃),win + proj(w, z̃)〉 ,

= ‖win‖2 + (proj(w, z̃))
2
+ 〈win, proj(w, z̃)〉 ,

= ‖win‖2 + (proj(w, z̃))
2
,

= ‖win‖2 + (〈w, z̃〉 z̃)2 ,

= ‖win‖2 + (〈w, z̃in〉 z̃in)2 . (3.20)

and as before the corresponding norm of the orthogonal complement must shrink by a concordant

amount,

‖w̃out‖2 = ‖wout‖2 − (〈w, z̃〉 z̃)2 ,

= ‖wout‖2 − (〈w, z̃out〉 z̃out)2 . (3.21)

Using that,

〈wout, z̃〉 ≤ 〈wout, z̃out〉 ,

= 〈wout, z〉 , (3.22)

and by definition ofz, we have,

‖w̃out‖2 = ‖wout‖2 − (〈w, z̃out〉 z̃out)2 ,

< ‖wout‖2 − (γ/2)
2
. (3.23)

We have therefore shown that the new pointz̃ has at least anǫ chance of significantly improving the setS

by a factor of at leastγ2/4, under the assumption thatwout is large. Since‖w‖2 = ‖proj(w, ∅)‖2 = 1,

this can happen at most4/γ2 times.

Under the assumptions above, and due to the strict inequality in Equation 3.23, we can then use

Chernoff bounds to determine the number of projectionsd that are needed. The bounds in the multi-

plicative form state that the probability of independent random eventsX1, X2, . . . , Xn taking the values
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0 or 1,

Pr (X ≥ (1 + ζ)E[X ]) <

(

exp(ζ)

(1 + δ)
1+ζ

)E[X]

. (3.24)

To use this form we need to switch round the statement above such that our random event is the chance

that S will not be improved (i.e. 1 − (ǫ/2)), and we are bounding the probabilityζ that overn in-

stantiations the mean value of the random events are larger thann − nǫ/2). In this case we have that

E[X ] = n(1− ǫ), and this means that,

(1 + ζ)n(1− ǫ) = n− nǫ/2,

⇒ ζ =
ǫ/2

1− ǫ . (3.25)

Substituting into Equation (3.24) leads to,

Pr
(

X ≥ n
(

1− ǫ

2

))

≤
(

exp(ζ)

(1 + ζ)
1+ζ

)n(1−ǫ)

.
= δ. (3.26)

We now rearrange forn,

δ =

(

exp(ζ)

(1 + ζ)
1+ζ

)n(1−ǫ)

,

ln(δ) = n(1− ǫ) ln
(

exp(ζ)

(1 + ζ)
1+ζ

)

,

ln
1

δ
= n(1− ǫ) ln

(

(1 + ζ)
1+ζ

exp(ζ)

)

,

ln
1

δ
= n(1− ǫ) [(1 + ζ) ln(1 + ζ)− ζ] ,

n =
1

1− ǫ
ln 1

δ

[(1 + ζ) ln(1 + ζ)− ζ] . (3.27)

Substituting (3.25) into (3.27) gives us,

n =
1

1− ǫ
ln 1

δ
[

(1 + ǫ/2
1−ǫ ln(1 +

ǫ/2
1−ǫ )−

ǫ/2
1−ǫ

] ,

=
1

1− ǫ
(1− ǫ) ln 1

δ
[

(1 − ǫ− ǫ/2) ln(1 + ǫ/2
1−ǫ − ǫ/2

] ,

=
ln 1

δ

(1− ǫ/2) ln(1 + ǫ/2
1−ǫ )− ǫ/2

. (3.28)

We will now pull together the result from (3.23) with the above to lower bound the number of projection

dimensionsn. Settingτ to be the denominator in Equation (3.28), we can use the fact that τ ≤ 8
ǫ

for ǫ ∈ [0, 0.5], as shown in Figure 3.6, together with the consequence from (3.23) that is that with
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probability1− δ we will have at leastnǫ/2 ≥ 4/γ2 heads (implying thatn ≥ 8
γ2ǫ ) as follows,

n ≥ max

{

8

ǫ
ln

1

δ
,

8

γ2ǫ

}

,

≥ 8

ǫ

[

1

γ2
+ ln

1

δ

]

. (3.29)
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Figure 3.6: Plot of f(ǫ) = (1− ǫ/2) ln(1 + ǫ/2
1−ǫ

)− ǫ/2 and f(ǫ) = 8
ǫ

for ǫ ∈ {0, 0.5}

We now extend this to the soft margin case with the following corollary. We use the fact that the

analysis still holds if some of the points fail to attain the margin.

Corollary 3.4.3. Given a soft margin seperator characterised by a marginγ and slack variablesξ in

the original space, where|ξ| = k, then a Nystr̈om projection of dimension

d ≥ 8

ǫ− k/m

[

1

γ2
+ ln

1

δ

]

will with probability 1− δ over the selection of thed points defining the projection create a margin of at

leastγ/2 for all but at most anǫ + k/m fraction of the training data. In particular, the objectiveof a

support vector optimisation in the Nyström space is bounded by

4

γ2
+

2(k + ǫm)

γ
.

If we now minimise in the new space the objective‖w‖22 + C
∑

i ξi can only increase.
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In the following Section the proposed methodology will be explored empirically for both classification

and regression.

3.4.2 Experiments: Classification

Firstly, a comparison on 13 benchmark datasets derived fromthe UCI, DELVE and STATLOG bench-

mark repositories is presented, which are all binary classification problems or converted such that they

are. The performance of KFDA, SVM, Nyström KFDA (NFDA) and Nyström SVM (NSVM) are com-

pared. Results are also included for Matching Pursuit Kernel Fisher Discriminant Analysis (MPKFDA)

as presented earlier in Section 3.2.1 [15], which was trained on the same benchmark datasets using the

same splits. Radial Basis Function (RBF) kernels were used for all experiments. The data comes in 100

predefined splits into training and test sets (20 in the case of the image and splice datasets) as described

in [34] 9. For each of the datasets two rounds of cross-validation (CV) were used to select the optimal

parameters (the RBF kernel width parameter, the C parameterin the SVM, andk the number of itera-

tions in NFDA). For the first round a coarse range of parametervalues was evaluated on the first 5 splits

of the training set, with the parameter value correspondingto the median of the lowest error of the five

splits being chosen for the second round. A fine range of parameters was constructed around this value,

from which the optimal value was chosen using 5-fold CV over all splits of the training set.This way of

estimating the parameters leads to more robust comparisonsbetween the methods.

The sparsity parameterk for both NFDA and NSVM were set to2
√
ntrn as this is justified by the

upper bound. Previously [100] had selectedk as20% of the dataset but in cases of largem, this could

result in a complexity worse than the SVM (which isO(n2)). The means and Standard Deviations (SDs)

of the generalisation error for each method and dataset are given in Tables 3.5 for the SVM and 3.6 for

FDA.

From casual examination of the data, it can be seen that although the SVM performs best in most sit-

uations (followed by KFDA), the differences are not large. Additionally, the differences between NFDA

and MPKFDA are even smaller. This is somewhat surprising, asMPKFDA is much more expensive to

compute (O(kn3)), and at each step is supposedly finding an “optimal” basis (according to the Fisher ra-

tio). Two-sided heteroscedastict-tests were performed to test whether the null hypothesis that the results

for the SVM versus the NSVM, KFDA versus NFDA, and MPKFDA versus NFDA were drawn from

the same normal distributions. All of these tests were insignificant (p = 0.37, p = 0.39 andp = 0.42

respectively) which means that under the assumptions of thetest the null hypothesis cannot be rejected.

This means that the differences between the results are not significant. Note also that the solutions given

by the NSVM are much more sparse (in the dual sense) than the SVM solutions, and that the solutions

given by NFDA have a comparable degree of sparsity with thosegiven by MPKFDA.

Furthermore we compare in figures 3.7 and 3.8, for the Breast Cancer data set and Flare Solar dataset

respectively, the error and computational cost as a function of k for Nyström as compared with KFDA.

9Available to download from:http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm

http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm
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SVM NSVM
Dataset error SD SVs error SD k
Banana 0.1061 0.01 76.4 0.1195 0.01 40
Breast Cancer 0.2584 0.05 58.1 0.2684 0.04 28
Diabetes 0.2367 0.02 168.8 0.2350 0.02 43
Flare Solar 0.3334 0.02 338.9 0.3361 0.02 52
German 0.2365 0.02 208.2 0.2415 0.02 54
Heart 0.1564 0.03 68.5 0.1677 0.03 26
Image 0.0061 0.00 216 0.0536 0.02 72
Ringnorm 0.0176 0.00 67.7 0.0190 0.00 40
Splice 0.1102 0.01 336.6 0.1618 0.01 63
Thyroid 0.0415 0.02 7.6 0.0532 0.03 24
Titanic 0.2243 0.01 48.3 0.2346 0.02 24
Twonorm 0.0275 0.00 48.7 0.0296 0.00 40
Waveform 0.0999 0.00 112.5 0.1070 0.00 40
Overall: 0.1426 0.01 146.3 0.1559 0.01 42

Table 3.5: Generalization error estimates and Standard Deviations (SDs) for 13 benchmark datasets for the SVM,
Nyström SVM (NSVM)

KFDA NFDA MPKFDA
Dataset error SD error SD k error SD k
Banana 0.1056 0.00 0.1072 0.01 40 0.1101 0.01 31
Breast Cancer 0.2892 0.04 0.3104 0.11 28 0.3174 0.04 19
Diabetes 0.2505 0.02 0.2548 0.02 43 0.2543 0.02 18
Flare Solar 0.3423 0.02 0.3471 0.03 52 0.3457 0.02 19
German 0.2643 0.01 0.2784 0.02 54 0.2808 0.02 27
Heart 0.1638 0.03 0.1613 0.03 26 0.1599 0.03 13
Image 0.0273 0.01 0.0571 0.01 72 0.0136 0.03 39
Ringnorm 0.0152 0.00 0.0179 0.00 40 0.0573 0.03 15
Splice 0.1203 0.01 0.1710 0.03 63 0.0314 0.06 37
Thyroid 0.0483 0.02 0.0600 0.03 24 0.0699 0.03 29
Titanic 0.2319 0.01 0.2478 0.02 24 0.2468 0.05 7
Twonorm 0.0261 0.00 0.0260 0.00 40 0.0253 0.00 14
Waveform 0.0983 0.00 0.1042 0.01 40 0.1027 0.00 13
Overall: 0.1525 0.01 0.1648 0.02 42 0.1550 0.02 21.61

Table 3.6: Generalization error estimates and Standard Deviations (SDs) for 13 benchmark datasets for the KFDA,
NFDA, and MPKFDA

Note that in these two examples, as with all of the other datasets we tested, a very small proportion of

basis vectors is required for good generalisation error, and that the computational cost for these values

of k is of an order of magnitude less than standard KFDA.

In the experiments the Nyström classifiers were roughly an order of magnitude faster than the kernel

equivalents during training for the smaller datasets, and roughly two orders of magnitude faster for the

larger datasets. This is born out by the fact that the complexity of both algorithms wasO(ntrn
1.5) due

to the method for choosingk that was used.

3.4.3 Experiments: Regression

Next, results on 7 benchmark regression datasets derived from the UCI, StatLib, and DELVE benchmark

repositories will be presented. The performance of KRR and Nyström KRR (NRR) along with KMP



3.4. Learning in a Nyström Approximated Subspace 79

0 20 40 60 80 100 120 140 160 180 200
0.25

0.3

0.35

0.4

0.45

k

M
S

E

Breast Cancer

 

 
KFDA
KFDA +− std.dev.
Nystrom

0 20 40 60 80 100 120 140 160 180 200
−7

−6

−5

−4

−3
Dataset Breast Cancer : CPU time

k

lo
g(

C
P

U
 ti

m
e 

in
 s

ec
on

ds
)

 

 

KFDA
Nystrom

Figure 3.7: Classification error (and log run-time) as a function ofk for the ‘Breast Cancer’ dataset as achieved
by NFDA, KFDA.

KRR NRR KMP
Dataset # ex # dim k MMSE SD MMSE SD MMSE SD
bodyfat 252 14 30 0.0000 0.0000 0.0000 0.0000 0.0156 0.0012
housing 506 13 43 11.0323 4.8159 24.2497 9.6876 82.9434 29.2603
mpg 392 7 38 7.3085 2.9387 10.0276 2.6627 47.5519 12.8119
mg 1385 6 71 0.0144 0.0008 0.0177 0.0030 0.0467 0.0159
pyrim 74 27 16 0.0057 0.0124 0.0124 0.0130 0.0514 0.0130
spacega 3107 6 106 0.0107 0.0030 0.0100 0.0039 0.0261 0.0026
triazines 186 60 26 0.0202 0.0094 0.0242 0.0103 0.0308 0.0073

Table 3.7: (Mean) Mean Squared Error (MMSE) and Standard Deviation (SD) for 7 benchmark datasets for Kernel
Ridge Regression (KRR), Nyström KRR (NRR), and KMP.

were analysed again using RBF kernels. The comparison against KMP was included as it is a state-of-

the-art method for greedily selecting basis functions. 10 randomized splits into training and test sets

were used. For each of the datasets two rounds of CV were againused to select the optimal RBF kernel

width parameter for each of the algorithms and the regularization parameterµ in KRR and NRR. For

both KMP and KPFP the sparsity parameterk was set using the same method as for the classification

experiments,i.e. k = 2
√
ntrn. Note that this method of choosingk is by no means optimal for KMP

(or NRR for that matter), but in the absence of a more robust heuristic this avoids costly CV (as with

MPKFDA, the complexity of KMP isO(km3)). The means and standard deviations of the MMSE for

each method and dataset are given in Table 3.7.

The results show that although NRR does not perform as well asKRR, for the same choice ofk
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Figure 3.8: Classification error (and log run-time) as a function ofk for the ‘Flare Solar’ dataset as achieved by
NFDA, KFDA.

it comfortably outperforms KMP. Our observations were thatpoor performances of NRR and KMP on

housing andmpg were caused by overfitting, indicating that the heuristic method for choosingk should

not be relied upon. Overall the results demonstrate that theNyström method can be successfully applied

to regression as well as classification.

Remark: Greedy versus random sampling.The theoretical and empirical analyses given above serve

to demonstrate that greedy methods for sparse selection of basis vectors are extremely powerful and can

often outperform standardℓ1 methods for enforcing sparsity, both in terms of generalisation error and

also in terms of the sparsity of solutions. However it is alsoclear that by simply choosing basis vectors

at random it is still possible to learn effectively, whilst of course this method is significantly cheaper. It

therefore comes down to a trade-off between exactness of solutions and computational resources. If a

slightly sub-optimal solution is sufficient for the application, then the Nyström method provides a simple

way of providing sparse solutions in a computationally efficient way. However if the best possible sparse

solution is sought, greedy methods such as OMP and PFP provide solutions that closely approximate

(and in many cases achieve) the best possibleℓ0 pseudo-norm solutions (as introduced in Section 3.5.2).

In the next Section the attention is turned to the problem of learning from multiple data sources or

views (MSL and MVL respectively). There is certainly opportunity for a synthesis between the methods

presented above and those presented below, but this is outside of the present scope. A discussion of

possibilities for such a synthesis will be presented in Chapter 6.
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Figure 3.9: Regression error (and log run-time) as a function ofk for the Bodyfat dataset as achieved by KRR, NRR
and KRR.

3.5 Multi-View Learning

In the canonical form two or more “views” of the same data source are given, which are representations

of the same underlying semantic object. Multi-View Learning (MVL) seeks to use information from

both views in order to improve learning. Given two sets of signals which are in some way related, it

would stand to reason that by making use of both signals the predictive power of the learned models can

be improved.

Although often used interchangeably, it can be useful for both clarity of exposition and theoretical

arguments to differentiate between Multi-Source Learning(MSL), MVL and Multiple Kernel Learning

(MKL). The key differences are whether or not there are trulyseparate sources of information (MSL),

or whether these are simply views of the same underlying semantic object (MVL), or whether different

kernels are created given a single view of a data source (MKL). Whilst this might seem like splitting

hairs, it can be an important distinction. Although in principle any algorithm developed for MVL can be

used for MKL andvice-versa, the way in which data is amalgamated may be suboptimal. For example,

a typical MKL will involve minimising over a convex set of kernels, but this assumes that the kernels

are in the same family and is particularly sensitive to normalisation etc. MVL algorithms such as Kernel

Canonical Correlation Analysis (KCCA), are designed to take advantage of correlations between views,

but would perform poorly for standard MKL applications.

For example, MKL algorithms do not make any attempt to integrate the sources of information
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Figure 3.10: Regression error (and log run-time) as a function ofk for the Housing dataset as achieved by KRR,
NRR and KRR.

from each view, and work by simply placing weights over the kernels [105]. Anecdotally, it seems that

in many practical situations in which the number of kernels is small, the performance of MKL algorithms

can actually be worse than simply choosing the best kernel through a heuristic method such as CV10.

In the MVL or MSL paradigm, we are assuming that the number of views or sources is typically small

(i.e.2→ 10), and hence another viewpoint is needed in which the sourcesare combined more usefully.

The basic idea of MVL is to introduce one function per view which only uses the features from that view,

and then jointly optimize these functions such that learning is enhanced. In MVL, we are also usually

interested in having weight vectors and loadings for each ofthe views, which we do not have when we

concatenate features (or equivalently sum kernel matrices), or take convex combinations of kernels as in

the MKL setting.

The distinction between MSL and MVL is more subtle, and hence, most often confused. It is

also, however, less important. Generally the distinction between singleversusseparate sources typically

does not affect the modelling process. For the rest of this chapter, it will be assumed that the canonical

paradigm is MVL, although the applications may be to both MVLand MSL. A diagrammatic view of

this distinction is included in Figure 3.11.

Firstly KCCA is reintroduced, followed by an algorithmic development that allows it to be extended

to the classification in an efficient way.

10Amongst others, this topic was discussed at the NIPS 2009 Workshop “Understanding Multiple Kernel Learning Methods”
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Figure 3.11: Diagrammatic view of the process of a) Multi-Source Learning (MSL), b) Multi-View Learning (MVL)
and c) Multiple Kernel Learning (MKL)

Kernel Canonical Correlation Analysis (KCCA) was introduced in the previous Chapter in Sec-

tion 2.1.13. KCCA finds basis vectors for two sets of variables such that the correlations between the

projections onto these basis vectors are mutually maximised. The optimisation is given by,

max
αa,αb

α′
aKaKbαb (3.30)

s.t. α′
aK

2
aαa = 1,

α′
bK

2
bαb = 1,

whereKa andKb are the kernel matrices of the two views.

3.5.1 Kernel Canonical Correlation Analysis with Projected Nearest Neighbours

In order to perform classification, typically the test data from one of the views (e.g.Ka) is projected

into the shared feature space (usingαa), and then a linear classification algorithm such as a primal

SVM is then trained on this new feature space. However there is a way in which the projections can be

used directly for classification, without incurring this additional computational cost. By usinge.g.the

100 largest correlation values and the corresponding projections, the labels given by the corresponding

example in the training set kernel from the other view are used as the classification. The reported errors

are then the mean of the differences between these labels andthe true test labels. This method is an

extension of mate-based retrieval [106], and is given in Algorithm 5. It is non-parameteric and essentially

free once the KCCA directions have been learnt. Because this algorithm is searching for the nearest

neighbour in the shared semantic space defined by KCCA of the projection of test point into this space,

we have called this algorithm Projected Nearest Neighbours(PNN).

A natural extension to this is to try to incorporate the classification and the subspace learning into a

single optimisation routine. This was the motivation for MFDA and its variants [13], which are presented

in the following Section, along with some experimental results on toy data and benchmark datasets.
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Algorithm 5 Projected Nearest Neighbours (PNN) Classification

1: Given Kernels from each viewKa andKb, dual weight vectorsαa andαb from KCCA, training labelsy, and
vectors of train and test indicesi andj respectively

2: Compute the projection of the training kernel of the first view

Pa ← Ka[i, i]αa

3: Compute the projection of the train-test kernel of the second view:

Pb ← Kb[j, i]αb

4: Compute the covariance matrix of the projections:

Σab ← PaP
′
b

5: Find the indices of the maximal values of each column:

k[j] = argmax
i∈i

(Σab[i, j]) for j ∈ j

6: Select the labels of the training examples of those indices as the predictions:

ŷ← y[k]

3.5.2 Convex Multi-View Fisher Discriminant Analysis

As discussed in the previous Section, CCA and KCCA [52] attempt to integrate two sources of informa-

tion by maximising the correlations between projections ofeach view. They are unsupervised techniques,

and as such are not ideally suited to a classification setting. A common way of performing classification

on two-view data using KCCA is to use the projected data from one of the views as input to a stan-

dard classification algorithm, such as a SVM, or to use the PNNmethod described above. However,

the subspace that is learnt through such unsupervised methods may not always align well with the label

space.

SVM-2K [107] was an attempt to take this to its logical conclusion by combining this two stage

learning into a single optimisation. The algorithm introduces the constraint of similarity between two

1-dimensional projections which identify two distinct SVMs in the two feature spaces. However SVM-

2K requires extra parameters (theC-parameter for each SVM, and another mixing parameter, along

with any kernel parameters) that the methods presented herewill not require. In addition, it is not easy

to see how the SVM-2K formulation can be generalised to more than two views. There has been one

related approach that tries to find the optimum combination of Fisher classifiers [108] using the MKL

architecture [105]. In its initial form this problem is non-convex, although the authors do recast the

problem in terms of a Semi-Definite Programme (SDP), at the expensive of an increase in the problem

scale. In addition, the MKL architecture means that the output of the algorithm is a single weight vector

for the convex combination of kernels. The formulation presented here has some similarities to that of

[108], except cast here in the MVL framework and also providing additional modelling flexibility.

Here the convex formulation for FDA that was presented in theprevious Chapter in Section 2.1.9

will be extended to multiple views. Givenp “views” of the same data source, or alternativelyp aligned
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data sources, to form anm−sampleS with input outputp + 1 tuples(x(1),x(2), . . . ,x(p), y). It is

assumed that each view has already been projected into a feature spaceFd, so that the kernel matrixKd

for that view has entriesKd[i, j] =
〈

x(d)i,x(d)j

〉

. Given matrices of inputsXd = [x(d)1, . . . ,x(d)m]′,

the formulation (2.40) is extended to findp dual weight vectorsαd, d = 1, . . . , p. The concatenation

of these weight vectors will be denoted byα̃ = [α′
1, . . . ,α

′
p]

′. The convex form of Multiview Fisher

Discriminant Analysis (MFDA) is given in equation (3.31) below. The goal is now to minimise the

variance of the data along the projection whilst maximisingthe distance between the average outputs for

each class over all of the views.

min
αd,b,ξ

L(ξ) + µP(α̃),

s.t.

p
∑

d=1

(Kdαd + 1bd) = y + ξ, d = 1, . . . , p

ξ′ec = 0 for c = 1, 2, (3.31)

whereL(·) is the loss function as before (2.41),

L(ξ) = ‖ξ‖22 ,

and the regularisation functionP(·) is as follows,

P(α̃) =

p
∑

d=1

(α′
dKdαd). (3.32)

The first constraint in 3.31 ensures that the average loss between the output and its class label is min-

imised. The second constraint ensures that the average output for each class is each label. The classifi-

cation function on a set of examplesx(d),i from viewsd = 1, . . . , p now becomes,

f(x(d),i) = sgn

(

p
∑

d=1

f(x(d)i)

)

(3.33)

= sgn

(

p
∑

d=1

Kd[:, i]
′αd + bd

)

. (3.34)

Observe that the solutions given will be equivalent to summing kernels (as justified by the probabilistic

interpretation). Meaning that viewed in the primal form, the result is the standard criterion in the space

defined by the concatenation of the features, and the norm of the full weight vector is given by 3.32.

However this formulation leads to two main advantages. Firstly, it provides a flexible framework that

allows for different noise models and regularisation functions. Secondly, explicit weight vectors are

available for each view, which allows the calculation of implicit weightings over the views (see Section

3.5.2 below).

Further intuition on the operation of the algorithm is as follows. Given two viewsx(a) andx(b),

and using the standardℓ2 loss function, MFDA is trying to minimise the summed errors committed:
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∥

∥fa(x(a)) + f(x(b))− y
∥

∥

2

2
. So if some slack is added to one of the examples,e.g.x(a)i, then the

algorithm will try to push the corresponding examplex(b)i the other way to try to minimise the overall

slack. This can be seen as “view disagreement” which means that the algorithm tries to use information

from both views to aid the classification. However of course the algorithm can “give up” and allow the

slack to be big for that example, meaning thatx(a) andx(b) can be pushed the same way.

It is actually possible to state the problem as the reverse - saying that normally in MVL the goal is

to search for view agreement, which would be minimising
∥

∥f(x(a))− f(x(b))
∥

∥

2

2
(ignoring the labels).

This is one particular form of the so-called “Co-Training” problem, which in order to work requires that

each of the views aresufficientfor classification, and methods that use this break down whenthere is

significant view disagreement. A recent paper tried to get around this by learning separate classifiers

and then looking for view agreement/disagreement between them, before combining them into a final

classifier (a form of bootstrapping)[109]. MFDA should havean advantage over this as it is directly

optimising the combined classifier. However, the alternative ‘Private’ method Private Multiview Fisher

Discriminant Analysis (PMFDA) has separate slacks for eachview as well as the overall slacks (see

Section 3.5.2 to follow). This should allow the problem to flip around in some cases. Basically, if there

is a “trouble” point in viewx(a), but not in viewx(b), the disagreement can be soaked up by the private

slack, allowing the two views to move into agreement with zero shared slack.

Probabilistic Interpretation

Following the analysis of [35], it is possible to view the KFDA algorithm from a probabilistic point of

view. It is known that FDA is Bayes optimal for two Gaussian distributions with equal covariance in

the input space. The data may not fall naturally into this model, but it may be the case that for certain

feature spaces (e.g.the space defined by the RBF kernel), the examples projected into a manifold in this

space may be well approximated by Gaussian distributions with diagonal covariance. In this case KFDA

would be Bayes optimal in the feature space.

If one considers KFDA as regression on to the labels, then a Gaussian noise model (as defined

in Section 2.1.4) with known varianceσ would result in the following expression for the likelihood

Pr(y|α) = exp(−‖ξ‖22). If a prior over the weights with hyperparametersµ is used, the log of the

posterior is simplylog(Pr(y|α)Pr(α|µ)) = −‖ξ‖22− log(Pr(α|µ)). The choice of prior then becomes

equivalent to the choice of regularisation function, whichwill be discussed in Section 3.5.2. When

viewed in this way the outputs produced by KFDA can be interpreted as probabilities, which in turn

makes it possible to assign confidence to the final classifications.

This view of KFDA also motivates the Multiview extension of the algorithm. We can extend and

combine the graphical interpretations of [110] and [111] using the above definitions as seen in Figure

3.12. Note that explicit mixing weightsβ paramaterised byρ are shown (dotted). Note that due to the

optimisation (which constrains the functions over each feature space with the shared slack variable) and

the fact that we have separateα vectors for each view, we are able to drop the mixing weightsβ from

our formulation. Under the assumption that the kernels are normalised, we can calculate these weigths
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post-hocas will be shown in Section 3.5.2. Taking the approach of Naı̈ve Bayes Probabilistic Label

m

d

µ

y

c

α

d

ρ

β

Figure 3.12: Plates diagram showing the hierarchical Bayesian interpretation of MFDA. β are the hypothetical
mixing parameters with prior weightsρ if an explicit mixing was used - in the case of MFDA these are fixed and
hence can be removed, but can be calculated post-hoc.

Fusion (NBF) [112], the first step is to assume conditional independence between classifiers given a

class label. Suppose the set of labelss = {s1, . . . , sp} are given fromp classifiers for a given pointxi.

DenotingPr(sd) as the probability that classifierDd labels an examplexi in classωc ∈ Ω, (in this case

Ω = {−1,+1}), then the likelihood of the classifiers given a label is,

Pr(s|ωc) = Pr(s1, . . . , sp|ωc) (3.35)

=

p
∏

d=1

Pr(sd|ωc).

The posterior probability needed to labelxi is then given by,

Pr(ωc|s) =
Pr(ωc)Pr(s|ωc)

Pr(s)
(3.36)

=
1

Z
Pr(ωc)

p
∏

d=1

Pr(sd|ωc),

whereZ is a normalisation constant. Assume a uniform prior over labels, the log posterior is then given

by,

log(Pr(ωc|s)) ∝
p
∑

d=1

log(Pr(sd|ωc)). (3.37)

This implies that by directly optimising this sum, we are optimising the NBF over KFDA classifiers,

which is precisely the motivation for both the objective function and the classification function for

MFDA, both of which will be described in the next Section. At first glance it seems that this conditional

independence assumption could be problematic, as this assumption is seldom true. However, Kuncheva

made the point that despite this NBF is experimentally observed to be surprisingly accurate and efficient

[112]. However, it does open the door to further possibilities for combining KFDA classifiers, but this is
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outside the scope of the present work.

Implicit Weighting

In order to determine the importance of each of the views after training, following [113] it is possible

to calculate the implicit weighting of each view simply through the weighted sum of the absolute values

of the classification functions. This is justified by the intuition made in Section 3.5.2 that the outputs

of each classifier can be interpreted as probabilities, withthe assumption that each kernel is normalised

as per [3],i.e. trace(Kd) = m. This in turn means that the overall confidence of the classifier can be

calculated as the sum of the log probabilities that the function f(x(d)i) for classifierd on examplei give

the class labelωc.

ud ≈
1

Z

∑

c∈Ω

log(p(sd|ωc))

=

∑m
i=1 |Kd[:, i]

′αd + bd|
∑m

i=1

∑p
d=1 |Kd[:, i]′αd + bd|

. (3.38)

Regularisation and Loss Functions

The natural choices for the regularisation functionP(α̃) would either be the sum of theℓ2-norms

of the primal weight vectors (as in (3.32)), or the sum of theℓ2-norms of the dual weight vec-

tor P(α̃) =
∑p

d=1 ‖αd‖22. However more interesting is theℓ1-norm of the dual weight vector,

P(α̃) =
∑p

d=1 ‖αd‖1, as this choice leads to sparse solutions (as previously discussed) due to the fact

that theℓ1-norm can be seen as an approximation to the (pseudo)ℓ0-norm. In the rest of the chapter the

ℓ1-norm regularisation method is denoted as Sparse MultiviewFisher Discriminant Analysis (SMFDA).

In some situations these regularisation functionsP(·) may be too simplistic, in which case addi-

tional domain knowledge can be incorporated into the function. For example, there is reason to believe

a-priori that most of the views are likely not to be useful, but the individual weights in that view are,

thenP(α̃) = ‖A‖2,1 could be used whereA = [α1, . . . ,αp] is α̃ reshaped as a matrix of weights

and the block(r, p)-norm ofA is defined as‖A‖r,p = (
∑m

i=1 ‖αi‖rp)1/p. Another example would be a

situation it may be desirable to impose sparsity on some views but not others. For two views, this would

simply beP(α̃) = ‖α1‖22+ ‖α2‖1 in order to promote sparsity in the second view but not the first. One

could also promote sparsity in the primal version of one viewby passing in the explicit features for that

view (if available) and penalisingX′
dαd. In this way any mixture of linear with nonlinear features and

primal with dual sparsity can be combined across the views, all in a single optimisation framework. One

can also pre-specify the weights of views by parameterisingthem, if one has a strong prior belief that a

view will be more or less useful, but it in general it is not necessary or helpful to do this.

Following [114] the assumption of a Gaussian noise model canalso be removed, resulting in dif-

ferent loss functions on the slacksξ. For example, if a Laplacian noise model is chosen‖ξ‖22 can be

replaced with‖ξ‖1 in the objective function. The advantage of this is if theℓ1-norm regulariser from

above is chosen, the resulting optimisation is a linear programme, which can be solved efficiently using
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methods such as column generation. From a modelling perspective, it may be advantageous to choose

a noise model that is robust to outliers, such as Huber’s Robust loss, which can easily be used in the

framework presented here11.

Incorporating Private Directions

The above formulations seek to find the projection that is maximally discriminative averaged across

views. However these problems are very tightly constrained, and optimisation may be difficult in sit-

uations where one or more of the views is not informative of the labels (i.e. is essentially noise). This

leads to considering the allowance of some extra slackζd that is private to each view, which is similar in

vein to the approach taken by [83] to Multi-Task learning (MTL) and [115] to probabilistic latent space

modelling. This leads to the following formulation which weterm PMFDA,

min
αd,b,ξ,ζd

H(ξ, ζ̃, τ) + µP(αd), d = 1, . . . , p

s.t. Kdαd + 1b = y + ξ + ζd d = 1, . . . , p

1′
iξ = 0 i = 1, 2, (3.39)

with ζ̃ = [ζ′
1, . . . , ζ

′
p]

′. The regularisation functionP(·) is as before (3.32), and the loss function is

updated to incorporateζd as follows,

H(ξ, ζ̃, τ) = ‖ξ‖22 + τ

p
∑

d=1

‖ζd‖22. (3.40)

Note the extra parameterτ which enables the tuning of the relative importance of private or shared slacks.

If τ = 1 the penalties of the private slack for an examplei are proportional toξi/p, which means that

the more views that are added, the less each view is allowed todominate. In the experiments conducted

here this was simply set heuristically to 0.1 to allow a reasonable amount of leeway for each view.

Generalisation Error Bound for MFDA

We now construct a generalisation error bound for MFDA by applying the following results from [85]

and [86] and extending to the Multiview case. The first boundsthe difference between the empirical and

true means (Theorem 3 in [85]).

Theorem 3.5.1(Bound on the true and empirical means). Let Sd be a view of a sample ofm points

drawn independently according to a probability distributionPd. Consider the mean vectorµd and the

empirical estimatêµd defined as

µd = EPd
[φ(xd)] ,

µ̂d = Êxd
[φ(xd)] =

1

p

p
∑

d=1

φ(xd). (3.41)

11See Section 2.1.9 in the previous Chapter for an outline of some loss functions for classification
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Then with probability at least1− δ over the choice ofSd, we have

‖µ̂d − Exd
[φ(xd)]‖ ≤

R√
m

(

2 +

√

2 ln
1

δ

)

. (3.42)

Consider the covariance matrixΣd and the empirical estimatêΣd defined as

Σd = E [(φ(xd)− µd)(φ(xd)− µd)
′] ,

Σ̂d = Ê [(φ(xd)− µ̂d)(φ(xd)− µ̂d)
′] . (3.43)

The following corollary bounds the difference between the empirical and true covariance (Corollary 6 in

[85]).

Corollary 3.5.2 (Bound on the true and empirical covariances). Let Sd be anm sample fromPd as

above, whereRd is the radius of the ball in the feature spaceFd containing the support of the distribu-

tion. Providedm ≥ (2 +
√

2 ln 2/δ)2, we have

∥

∥

∥Σ̂d −Σd

∥

∥

∥

F
≤ 2R2

d√
m

(

2 +

√

2 ln
2

δ

)

, (3.44)

The following Lemma is connected with the classification algorithm “Robust Minimax Classifica-

tion” developed by [86], adapted here for MFDA.

Lemma 3.5.3. Let µd be the mean of a distribution andΣd its covariance matrix,wd 6= 0, b given,

such thatw′
dµd + b ≤ 0 and∆ ∈ [0, 1), then if

− (w′
dµd + b) ≥ κ(∆)

√

w′
dΣdwd,

whereκ(∆) =
√

∆
1−∆ , then

Pr (w′
dφ(xd) + b ≤ 0) ≥ ∆

In order to provide a true error bound we must bound the difference between this estimate and the

value that would have been obtained had the true mean and covariance been used.

Theorem 3.5.4(Main). Let Sd be a view of a sample ofm points drawn fromPd as above, whereRd

is the radius of the ball in the feature spaceFd containing the support of the distribution. Let̂µd (µd)

be the empirical (true) mean of a sample ofm points from the viewSd, Σ̂d (Σd) its empirical (true)

covariance matrix,wd 6= 0, ‖w‖2 = 1, andb given, such thatw′
dµd + b ≤ 0 and∆ ∈ [0, 1). Then with

probability1− δ over the draw of the random sample, if

− (w′
dµ̂d + b) ≥ κ(∆)

√

w′
dΣ̂dwd d = 1, . . . , p,
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then

Pr ((w′
dφd(xd) + b) > 0) < 1−∆,

where

∆ =
(w′

dµ̂d + b−Ad)
2

w′
dΣ̂dwd +Bd + (w′

dµ̂d + b −Ad)
2 ,

such that‖µ̂d − µd‖ ≤ Ad whereAd = Rd√
m

(

2 +
√

2 ln 2m
δ

)

,

and
∥

∥

∥
Σ̂d −Σd

∥

∥

∥

F
≤ Bd whereBd =

2R2
d√
m

(

2 +
√

2 ln 4m
δ

)

.

Proof. (sketch). First we re-arrangew′
dµd + b ≥ κ(∆)

√

w′
dΣdwd from Lemma 3.5.3 for each view in

terms ofκ(∆):

κ(∆) =
w′

dµd + b
√

w′
dΣwd

. (3.45)

These quantities are in terms of the true means and covariances. In order to achieve an upper bound

we need the following sample compressed results for the trueand empirical means (Theorem 3.5.1) and

covariances (Corollary 3.5.2):

‖µ̂d − Exd
[µ̂d(xd)]‖ ≤ Ad =

Rd√
m

(

2 +

√

2 ln
2m

δ

)

,

∥

∥

∥Σ̂d −Σd

∥

∥

∥

F
≤ Bd =

2R2
d√
m

(

2 +

√

2 ln
4m

δ

)

.

Given equation (3.45) we can use the empirical quantities for the means and covariances in place of the

true quantities. However, in order to derive a genuine upperbound we also need to take into account the

upper bounds between the empirical and true means. Including these in the expression above forκ(∆)

by replacingδ with δ/2, to derive a lower bound, we get:

κ(∆) =
w′

dµ̂dSd
+ b−Ad

√

w′
dΣ̂dwd +Bd

.

Finally, making the substitutionκ(∆) =
√

∆
1−∆ and solving for∆ yields the result.

The following Proposition upper bounds the generalisationerror of Multiview Fisher Discriminant

Analysis (MFDA).

Proposition 3.5.5. Let wd, b, be the (normalised) weight vector and associated threshold returned by

the Multiview Fisher Discriminant Analysis (MFDA) when presented with a view of the training setSd.

Furthermore, letΣ̂+
d (Σ̂−

d ) be the empirical covariance matrices associated with the positive (negative)

examples of them training samples fromSd projected usingwd. Then with probability at least1 − δ
over the draw of all the views of the random training setSd, d = 1, . . . , p ofm training examples, the
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generalisation errorR is bounded by

R ≤ max(1−∆+, 1−∆−)

where∆j , j = +,− such that

∆j =

j

(

(

∑p
d=1(w

′
dµ̂

j
Sd

+ b)− Cj
)2
)

(

∑p
d=1 w

′
dΣ̂

j

dwd

)

+Dj +
(

j(
∑p

d=1 w
′
dµ̂

j
Sd

+ b)− Cj
)2 ,

whereCj =
∑p

d=1
Rd√

mj

(

2 +
√

2 ln 4mp
δ

)

, Dj =
2
∑p

d=1
R2

d√
mj

(

2 +
√

2 ln 8mp
δ

)

.

Proof. For the negative part of the proof we requirew′
dµ̂

−
d + b ≥ κ(∆)

√

w′
dΣ̂

−
d wd which is a straight

forward application of Theorem 3.5.4 withδ replaced withδ/2. For the positive part, observe that we

requirew′
dµ̂

+
d − b ≥ κ(∆)

√

w′
dΣ̂

+

d wd, hence, a further application of Theorem 3.5.4 withδ replaced

by δ/2 suffices. Finally, we take a union bound over thep views such thatm is replaced bymp.

Experiments: Toy Data

In order to validate the outlined methods, experiments werefirst conducted with simulated toy data. A

data sourceS was created by taking two1−dimensional Gaussian distributions (S+, S−) which were

well separated, which was then split into100 train and50 test points. The sourceS was embedded into

2−dimensional views through complementary linear projections (φ1, φ2) to give new “views”X1,X2.

Differing levels of independent “measurement noise” were added to each view (n1, n2), and identical

“system noise” was added to both views (nS). A third view was constructed of pure noise to simulate a

faulty sensor (X3). The labelsy were calculated as the sign of the original data source.

S = {S+, S−} (source)

S+ ∼ N (5, 1), S− ∼ N (−5, 1)
y = sgn(S) (labels)

φ1 = [1,−1], φ2 = [−1, 1] (projections)

n1 ∼ N (0, 5)2, n2 ∼ N (0, 3)2 (meas. noise)

nS ∼ N (0, 2)2 (system noise)

X1 = φ′1S + n1 + nS (view 1)

X2 = φ′2S + n2 + nS (view 2)

X3 = nS (view 3)

X1 andX2 are noisy views of the same signal, with correlated noise, which can be a typical problem in

multivariate signal processing (e.g.sensors in close proximity). Linear kernels were used for each view.

A small value for the regularisation parameterµ = 10−3 was chosen heuristically for all the experiments.

Table 3.8 gives an overview of the results on the toy dataset.Comparisons were made against:
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KFDA on each of the views (denoted asf(1), f(2) andf(3) respectively);

summing the classification functions of these (fsum);

summing the kernels of each view (ksum);

followed by MFDA, PMFDA and SMFDA.

Note that an unweighted sum of kernels is equivalent to concatenating the features before creating a

single kernel. The table shows the test error over 10 random repeats of the experiment in first column,

followed by the implicit weightings for each of the algorithms calculated via (3.38). Note that the

ksum method returns singlem−dimensional weight vector, and unless a kernel with an explicit feature

space is used it is not possible to recalculate the implicit weightings over the features. In this case,

since linear kernels are used the weightings have been calculated. For the three methods outlined in

this paper (MFDA, PMFDA, SMFDA), as expected the performance is roughly equivalent to theksum

method. The last row in the table (actual) is the empirical Signal to Noise Ratio (SNR) calculated

asSNRd =
∑

(X′
dXd)/var(S − Xd) for view d, which as can be seen is closely matched by the

weightings given.

The sparsity of SMFDA can be seen in figure 3.13. The sparsity level quoted in the figure is the

proportion of the weights below10−5.

Method Test error W (1) W (2) W (3)
f(a) 0.19 1.00 0.00 0.00
f(b) 0.10 0.00 1.00 0.00
f(c) 0.49 0.00 0.00 1.00
fsum 0.39 0.33 0.33 0.33
ksum 0.04 0.29 0.66 0.05
MFDA 0.04 0.29 0.66 0.05
PMFDA 0.04 0.29 0.66 0.05
SMFDA 0.04 0.29 0.66 0.05
Actual 0.35 0.65 0.00

Table 3.8: Test errors over ten runs on the toy dataset. Methods described in the text.W (·) refers to the implicit
weightings given by each algorithm for each of the views. Note that the weightings closely match the actual SNR.

Experiments: VOC 2007 DATASET

The sets of features (“views”) used can be found in [116], with an extra feature extraction method known

as Scale Invariant Feature Transformation (SIFT) [117]. RBF kernels were constructed for each of these

feature sets, the RBF width parameter was set using a heuristic method12. The Pattern Analysis, Statis-

tical Modelling and Computational Learning (PASCAL) Visual Object Classes (VOC) 2007 challenge

database was used which contains 9963 images, each with at least 1 object. The number of objects in

each image ranges from 1 to 20, with, for instance, objects ofpeople, sheep, horses, cats, dogs etc. For

a complete list of the objects, and description of the data set see the VOC 2007 challenge website13.

Figure 3.14 shows Recall-Precision curves for SMFDA with 1,2, 3 or 11 kernels and PicSOM

12For each setting of the width parameter, histograms of the kernel values were created. The chosen kernel was the one whose
histogram peak was closest to 0.5 (i.e. furthest from 0 and 1).

13http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
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Figure 3.13: Weights given by MFDA and SMFDA on the toy dataset. Notice that many of the weights for SMFDA
are close to zero, indicating sparse solutions. Also noticethat most of the weights for view 3 (pure noise) are close
to zero.

[116], and Table 3.9 shows the balanced error rate (the average of the errors on each class) and overall

average precision for the PicSOM, KFDA using cross-validation to choose the best single kernel, KFDA

using an unweighted sum of kernels, and MFDA. For the purposes of training, a random subset of 200

irrelevant images was used rather than the full training set. Results for three of the object classes (cat,

cow, dog) are presented. The results show that, in general, adding more kernels into the optimisation

can assist in recall performance. For each object class, thesubsets of kernels (i.e.1,2, or 3) were chosen

by the weights given by SMFDA on the 11 kernels. The best single kernel (based on SIFT features)

performs well alone, yet the improvement in some cases is quite marked. Results are competitive with

the PicSOM algorithm, which uses all 11 feature extraction methods, and all of the irrelevant images.

Dataset→ Cat Cow Horse
Method ↓ BER AP BER AP BER AP
PicSOM n/a 0.18 n/a 0.12 n/a 0.48
KFDA CV 0.26 0.36 0.32 0.14 0.22 0.51
MFDA 0.26 0.36 0.27 0.15 0.19 0.58

Table 3.9: Balanced Error Rate (BER) and Average Precision (AP) for four of the VOC challenge datasets, for four
different methods: PicSOM, KFDA with cross validation (KFDA CV), KFDA using a sum of kernels (ksum) and
MFDA

Experiments: Neuroimaging Dataset

This section describes analysis of fMRI data14 that was acquired from 16 right handed healthy US college

male students aged 20-25 which, according to a self report, did not have any history of neurological or

14Data kindly donated by Mourão-Mirandaet. al. [118].
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Figure 3.14: Average precision recall curves for 3 VOC 2007 datasets for SMFDA plotted against PicSOM results

psychiatric illness. The subjects viewed image stimuli of three different active conditions: viewing

unpleasant (dermatologic diseases), neutral (people), pleasant images (female models in swimsuits and

lingerie), and a control condition (fixation). In these experiments only unpleasant and pleasant image

categories are used. The image-stimuli were presented in a block fashion and consisted of42 images

per category. During the experiment, there were 6 blocks of each active condition (each consisting of 7

image volumes) alternating with control blocks (fixation) of 7 images volumes.

In a similar fashion to the study in [53], pleasant images aregiven positive labels and unpleas-

ant negative labels, the image stimuli are represented using SIFT features [117]. Conventional pre-

processing was applied to the fMRI data. A detailed description of the fMRI pre-processing procedure

and image-stimuli representation is given in [53]. The experiments were run in a leave-subject-out fash-

ion where15 subjects are combined for training and a single subject is withheld for testing. This gave

a sum total of42 × 2 × 15 = 1260 training and42 × 2 = 84 testing fMRI volumes and paired image

stimuli. The analysis was repeated for each participant (hence16 times) using linear kernels. In the

following experiment, the following comparisons were made:

• An SVM on the fMRI data (single view)

• KCCA on the fMRI + Image Stimuli (two views) followed with an SVM trained on the fMRI data

projected into the learnt KCCA semantic space

• SMFDA on the fMRI + Image Stimuli (two views)

The results are given in Table 3.10 where it can be observed that on average MFDA performs better

than both the SVM (which is a single view approach), and the KCCA/SVM which similarly to MFDA
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Sub. SVM KCCA/SVM MFDA
1 0.1310 0.1667 0.1071
2 0.1905 0.2739 0.1429
3 0.2024 0.1786 0.1905
4 0.1667 0.2125 0.1548
5 0.1905 0.2977 0.2024
6 0.1667 0.1548 0.1429
7 0.1786 0.2262 0.1905
8 0.2381 0.2858 0.2143
9 0.3096 0.3334 0.2619
10 0.2977 0.3096 0.2262
11 0.1191 0.1786 0.1429
12 0.1786 0.2262 0.1667
13 0.2500 0.2381 0.0714
14 0.4405 0.4405 0.2619
15 0.2500 0.2977 0.2738
16 0.1429 0.1905 0.1860

Mean: 0.2158±0.08 0.2508±0.08 0.1860±0.06

Table 3.10: In the table above the leave-one-out errors for each subjectare presented. The following methods are
compared: SVM on the fMRI data alone; KCCA analysis on the twoviews fMRI and Image Stimuli followed by an
SVM on the projected fMRI data; the proposed MFDA on the two views fMRI+Image. Numbers in bold indicate the
best performing algorithm for a particular subject.

incorporates two views into the learning process. In this case the label space is clearly not well aligned

with the KCCA projections, whereas a supervised method suchas MFDA is able to find this alignment

3.6 Conclusions and Further Work

This goal of this Chapter was to present a unified general framework for the application of sparse ML

methods to multivariate signal processing. The methods presented can be seen as modular building

blocks that can be applied to a variety of applications. To begin with, the focus was on greedy meth-

ods for sparse classification and regression, specifically Matching Pursuit Kernel Fisher Discriminant

Analysis (MPKFDA) and Kernel Polytope Faces Pursuit (KPFP). This was followed by a presentation

of methods that take advantage of the Nyström method for low-rank kernel approximation for large

scale data, including Nyström KRR (NRR), Nyström KFDA (NFDA), and Nyström SVM (NSVM).

For the rest of the Chapter the attention was turned to the problem of learning from multiple data

sources or views (MSL and MVL respectively), with the development of Multiview Fisher Discriminant

Analysis (MFDA), Sparse Multiview Fisher Discriminant Analysis (SMFDA) and Private Multiview

Fisher Discriminant Analysis (PMFDA). Detailed conclusions for each of the methods presented can be

found in 6.



Chapter 4
Applications I

Abstract

Styles of Music. The first application area for the “LeStruM” project1 was the classification of musical

genre from polyphonic audio files. This is a task that tests the application of Machine Learning (ML)

methods to Digital Signal Processing (DSP), albeit in the univariate domain. It is also potentially an

area in which sparsity can be exploited, as we are given priorknowledge that the signal was created by

a finite set of instruments, be they physical or electronic, and that the degrees of freedom at any one time

are far less than the sampling rate of the audio files.Radar The next application area was a study of

how the Analogue to Digital Conversion (ADC) sampling rate in a digital radar can be reduced—without

reduction in waveform bandwidth—through the use of Compressed Sensing (CS). Real radar data is used

to show that through use of chirp or Gabor dictionaries and Basis Pursuit (BP) the Analogue to Digital

Conversion (ADC) sampling frequency can be reduced by a factor of 128, to under 1 mega sample per

second, while the waveform bandwidth remains 40MHz. The error on the reconstructed fast-time

samples is small enough that accurate range-profiles and range-frequency surfaces can be produced.

4.1 Introduction

Before moving on to multivariate signal processing (see Chapter 5), a natural stepping stone is to test

some of the ML methods described to this point on univariate signals. By this it is meant that the

signal of interest is characterised by a single variable that is varying through time. This variable may

come from a sensor or be a direct digital instantiation of a signal. It is important to distinguish the

terms univariate and multivariate with respect to signals with the same terms as they are used in general

mathematical (and indeed ML) nomenclature. The processingand analysis of the signals will certainly be

multidimensional, and hence multivariate, even though theoriginating signal was univariate. Throughout

most of the Chapter, the signals will be treated as if they canbe broken down into small enough segments

1EPSRC ICT project reference: EP/D063612/1
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such that the temporal shift from one segment to the next is small in comparison with the variation within

the signal. This allows the signals to be modelled using descriptions based on short-term features.

The first part of the Chapter examines the classification of musical genre from raw audio files.

Although most musical files are produced in stereo format (hence bivariate), for the purposes of this

study the files were downsampled to a mono format (univariate). This is justifiable in this setting as

it is clear that humans do not require stereo information to differentiate betweeen genres. It will be

shown that sparse ML methods are advantageous in this setting. The rest of the Chapter examines the

application of CS to conventional radar. Again the signals are univariate, but in this case with a much

higher frequency. Here the focus is on DSP, although the methods used are directly applicable in ML

settings as well, and there is scope for further analysis of this data in an ML setting.

4.2 Genre Classification

To begin, an analysis was performed of the state of the art in feature extraction from polyphonic music

through the use of DSP techniques. To this end, classification of musical genre from raw audio files

(MPEG-1 Audio Layer 3 (MP3) format), as a fairly well researched area of music research, provided

a good starting point. The Music Information Retrieval Evaluation eXchange (MIREX) is a yearly

competition in a wide range of machine learning applications in music, and in 2005 included a genre

classification task, the winner of which [75] was an application of the multiclass boosting algorithm

AdaBoost .MH [42]. The method was duplicated, and then modified through the use of LPBoost [5]. The

hypothesis is that LPBoost is a more appropriate algorithm for this application due to the higher degree

of sparsity in the solutions. The aim was to improve on the [75] result by using a similar feature set

and the multiclass boosting algorithm LPBoost .MH. This work was presented at the Neural Information

Processing Systems (NIPS) 2007 Workshop “Music, Brain and Cognition” [11].

A music genre is a categorisation of pieces of music that share a certain style. Music is also cat-

egorised by non-musical criteria such as geographical origin, though a single geographical region will

normally include a wide variety of sub-genres. Any given music genre or sub-genre could be defined by

the musical instruments used, techniques, styles, contextor structural themes.

The groupings of musical genres and sub-genres leads naturally to the idea of a genre hierarchy.

However, the distinctions both between individual sub-genres and also between sub-genres and their

parent genres are not always clear-cut. While attempts havebeen made to automatically construct genre

hierarchies (e.g. [119, 120, 121]), the performance of such systems do not appear to warrant the ad-

ditional complexity they entail. In addition, the MIREX set-up uses only flat classifications, and for

simplicity and comparability of results the focus of the current research is also flat classification.

One of the problems with the grouping of musical pieces into genres is that the process is subjective

and is directly influenced by the individual’s musical background. This is especially true in sub-genres.

Another difficulty is that a single artist or band will often span multiple genres or sub-genres (sometimes

intentionally), often within the space of a single album (and in some cases a single song!). It becomes
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virtually impossible to classify the artist or the album into a single genre. Further confusing the matter

is that some genre labels are quite vague and non-descriptive. For example, the genresworld andeasy

listeningare often used a catch-all for music that does not fit naturally into more common genres such

as rock or classical(which are themselves extremely broad and rather vague!). There are additional

problems that have been noted, such as the “producer effect”or “album effect” [122], where all of the

songs from a single album share overall spectral characteristics much more than from other albums from

the same artist. This can even extend to greater similarities between artists sharing the same producer

than between the artist’s albums. Despite these issues, theautomatic classification of new material

into existing genres is of interest for commercial and marketing reasons, as well as generally for ML

researchers.

The performance of humans in classifying musical genre has been investigated in [123]. In this

study participants were trained using representative samples from each of ten genres, and then tested us-

ing a ten-way forced-choice paradigm. Participants achieved an accuracy of53% correct after listening

to only 250ms samples and70% correct after listening to 3s samples. Another study by [124] reports

similar results. Although direct comparison of these results with the automatic musical genre classifica-

tion results of various studies is not possible due to different genre labels and datasets, it is notable that

human performance and the automatic retrieval system performance are broadly similar. Moreover, these

results indicate the fuzzy nature of musical genre boundaries. It also indicates the difficulty of gathering

ground truth annotations, and explains why some datasets appear to be afflicted with particularly poor

annotations.

However, probably the main practical problem for research in the field of automatic music classi-

fication is the lack of a freely available high quality dataset. Due to legal obstacles it is not possible to

publish datasets of popular music in the way that is possiblein other fields, such as text recognition. As

a result the datasets that are publicly available consist of“white label” recordings which are ostensibly

of poorer quality than mainstream recordings (subjectively in terms of musical quality, but objectively in

terms of production quality). The present study uses one publicly available dataset (Magnatune) and one

provided by a fellow researcher (Anders Meng, see [124]). The former has been used for the MIREX

competition on more than one occasion, and the latter has been used in studies [125, 124], which will be

used for comparison.

4.2.1 MIREX

The Music Information Retrieval Evaluation eXchange (MIREX) is part of the annual International

Conference on Music Information Retrieval (ISMIR). It takes the form of a series of competitions that

have been running since 2004. The 2005 competition includedan Audio Genre Classification task, in

which the task was classification of polyphonic musical audio into a single high-level genre per example.

The audio format for the task was MP3, CD-quality (PCM, 16-bit, 44100 Hz), mono. Full files were used,

with segmentation being done at authors’ discretion.

Although the categories were organised hierarchically, submitted software was only required to
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produce classifications of leaf categories. This means thatentrants did not implement hierarchical clas-

sification and could treat the problem as a flat classification, effectively ignoring the hierarchy. The

hierarchical structure was suggested because this reflectsthe natural way in which humans appear to or-

ganise genre classifications, and it allows hierarchical classification techniques if desired. The approach

taken at MIREX had the advantage of allowing entrants to treat the problem as either a flat or hierarchical

classification problem. In addition all of the recordings used belong to one and only one category.

Two sets of data were used, ‘Magnatune’2 and ‘USPOP’3. The Magnatune dataset has a hierarchical

genre taxonomy, while the USPOP categories are at a single level. The audio sampling rates used were

either 44.1 KHz or 22.05 KHz (mono). More data information isin the following table:

The results for MIREX 2005 are summarised in table 4.1 below (see the contest wiki4 for full

results). It should be noted that the statistical validity of the results of the MIREX competitions have

recently been called into question [126], due to the testingmethods employed. The result is that the

reported test accuracies are artificially high, so care mustbe taken when making direct comparisons.

Participant Algorithm Features Score
Bergstra et al. AdaBoost Aggregated features 82.23%
Mandel & Ellis SVM KL-Divergence 78.81%
West Trees,LDA Spectral & Rhythmic 75.29%
Lidy & Rauber SVM Spectral & Rhythmic 75.27%
Pampalk et al. 1-NN MFCC 75.14%
Scaringella SVM Texture & Rhythmic 73.11%
Ahrendt & Meng SVM Auto-Regression 71.55%
Burred GMM/ML Aggregated features 62.63%
Soares GMM Aggregated features 60.98%
Tzanetakis LSVM FFT/MFCC 60.72%

Table 4.1: Summary of results of the Audio Genre Classification task from MIREX 2005 (Mean of Magnatune
Hierarchical Classification Accuracy and USPOP Raw Classification Accuracy)

4.2.2 Feature Selection

The various methods for classifying musical genre generally differ in the way that acoustic features are

selected, how sub-song level features are aggregated into song-level features, and the machine learning

techniques used to classify based on the features. This Section describes briefly some different ap-

proaches to feature selection, followed by a more detailed examination of the approach taken by [75].

The techniques that are employed for extracting acoustic features from musical pieces are inspired by

speech perception, signal processing theory, and music theory. In most cases the audio waveform is

broken into short frames (in the case of [75] these were 46.44ms in length, or 1024 samples of audio

at 22050Hz), and then frame level features are constructed.These frames are then assumed to be inde-

pendent draws from a Gaussian distribution over features. Whilst this assumption is clearly false, it is

a simplifying assumption that allows a range of ML methods tobe applied, such as the Support Vector

Machine (SVM) or AdaBoost .

2http://www.magnatune.com
3http://www.ee.columbia.edu/ dpwe/research/musicsim/uspop2002.html
4http://www.music-ir.org/evaluation/mirex-results/audio-genre/index.html
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4.2.3 Frame level features

The frame level features that are used to describe the audio signal are described below.

Discrete Fourier Transform (DFT)

The DFT is an application of the Fourier Transform (see 2.70 in Section 2.2.1) on digitised data. Fourier

analysis is used to analyse the spectral composition of the frames. Given a signal of lengthT , the DFT

and the inverse operation (Inverse Fourier Transform (IFT)) are defined as,

f̂(d) =

T−1
∑

t=0

f(t) exp
−i2πdt
T

, d = 1, . . . , T (DFT), (4.1)

f(t) =
1

T

T−1
∑

d=0

f̂(d) exp
i2πdt

T
, t = 1, . . . , T (IFT). (4.2)

A 512-point transform of each frame was performed, of which the lowest 32 coefficients were retained

during experiments. In practice a Fast Fourier Transform (FFT) is used, which is a reorganisation of the

calculation that involvesO(T log2 T ) calculations instead ofO(T 2) [127].

Real Cepstral Coefficients (RCC)

The motivation behind ‘cepstral’ analysis is the source/filter model used in speech processing. It is

used to separate the source (the voicing) from the filter (thevocal tract). In musical instruments the

source would be the excitation impulse caused by for exampleplucking a string, and the filter would be

the reverberations from the body of the instrument. In general, a spectrum can be seen as having two

components - a slowly varying part (the filter or spectral envelope) - and a rapidly varying part (the source

or harmonic structure). These can be separated by taking a further Fourier Transform of the spectrum.

This is known as the ‘cepstrum’ (which is an anagram of spectrum), and is said to be in the ‘quefrency’

domain (an anagram of frequency). Formally, the real cepstrum of a signal is defined as:

zRCC = real
(

f
(

log
(

|f̂(t)|
)))

(4.3)

wheref̂(·) is the Fourier transform andf(·) is the inverse Fourier transform.

Mel Frequency Cepstral Coefficients (MFCC)

The MFCC is a measure of the perceived harmonic structure of the sound. It is similar to the RCC,

except that the inputx is first projected according to the Mel-scale [128]. The nameMel comes from the

word melody to indicate that the scale is based on pitch comparisons. A Mel is a psychoacoustic unit of

frequency which relates to human perception, the Mel scale can be approximated from the frequencyq

in Hz by,

m(q) = 1127.01048 log

(

1 + q

700

)

. (4.4)
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Zero Crossing Rate (ZCR)

The ZCR of a signal is the rate of sign changes along the signal. This is a measure which for a single

instrument is correlated with dominant frequency [129] (i.e. it is a primitive pitch detection routine). The

meaning of this measure is less clear for polyphonic music, but it is included for completeness. Defining

the indicator variablev(t) as

v(t) =







1, f(t) ≥ 0,

0, f(t) < 0
(4.5)

and the squared differenceg(t1, t2) = (v(t1)− v(t2))2 then the ZCR over a frame is calculated as

zZCR =
1

T − 1

T−1
∑

t=1

g(t, t− 1). (4.6)

The complexity of the ZCR amounts toO(T ) and is the cheapest of the features discussed to extract.

Spectral Centroid

The spectral centroid describes the center of gravity of theoctave spaced power spectrum and indicates

whether the spectrum is dominated by low or high frequencies. It is related to the perceptual dimension

of timbre. Given the Fourier transform̂f(t), the spectral centroid is formulated as,

zASC =

∑T−1
t=0 t|f̂(t)|2

∑T−1
t=0 |f̂(t)|2

(4.7)

Spectral Spread

The audio spectrum spread describes the second moment of thelog-frequency power spectrum. It in-

dicates whether the power is concentrated near the centroid, or if it is spread out in the spectrum. A

large spread could indicate how noisy the signal is, whereasa small spread could indicate if a signal is

dominated by a single tone. The spectral spread is formulated as,

zASS =

∑T−1
t=0 (t− zASC)2|f̂(t)|2
∑T−1

t=0 |f̂(t)|2
(4.8)

Spectral Roll-off

Spectral roll-off is defined as thea-quantile of the total energy in̂f(t). In other words, it is the frequency

under which a fraction ofa of the total energy is found, and is defined as

zRO = max

{

z :

z
∑

t=0

|f̂(t)|2 ≤ a
T
∑

t=0

|f̂(t)|2
}

(4.9)

The spectral roll-off was calculated at 16 equally spaced thresholds in the interval[0, 1].
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Autocorrelation

The ℓ Linear Predictive Coefficients (LPC) and the Correlation Coefficient (LPCE) of the (original)

signalx are defined as:

zLPC = argmin
a

T
∑

t=1

(xt −
ℓ
∑

i=1

aixt−i) (4.10)

zLPCE = min
a

T
∑

t=1

(xt −
ℓ
∑

i=1

aixt−i) (4.11)

which is equivalent to an autoregressive compression of spectral envelope. The LPC can be efficiently

computed using Levinson-Durbin recursion.

4.2.4 Feature Aggregation

In order to convert the sub-song level feature sets into a manageable feature set for statistical pattern

analysis, some form of aggregation of sub-song level features into a single song-level feature set is

required.

Gaussian Features

Possibly the simplest approach is to calculate the mean and standard deviation over segments, which

amounts to fitting a single Gaussian distribution with diagonal covariance over the features of the data.

The resulting full feature vector is created by concatenating the means and variances of 256 RCC, 64

MFCC, 32 LPC, 1 LPCE, 32 FFT, 16 roll-off, and 1 ZCR. This leadsto 402× 2 = 804 parameters for

each song.

Autoregression (AR) Features

Another idea is to try to incorporate some of the temporal information over the length of each song

into the feature aggregation. Genres may, for example, be defined more by changes in their spectral

qualities than the average of those given by the Gaussian fitting. Autoregression (AR) coefficients can

be calculated with an all-pole model using the Yule-Walker method. This method uses Levinson-Durbin

recursions on the biased estimate of the sample autocorrelation sequence to compute the coefficients

[130]. Using a10th order model and ignoring the zeroth order component resultsin 402 × 10 = 4020

parameters for each song. This method was used on the smallerof the two datasets presented here in

combination with the Gaussian feature aggregation.

4.2.5 Algorithms

The empirical testing here will follow [75] by using multiclass AdaBoost (AdaBoost .MH), as was intro-

duced in Section 2.1.11, in combination with aggregated features. However as the number of features is

already large before the creation of weak learners, which will result in a larger number of weak classifiers
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for the boosting algorithm to choose from, it may be the case that an algorithm that enforces sparsity in

the solutions would be preferable. The natural extension istherefore to use the LPBoost algorithm, as

introduced in Section 2.1.11.

Multiclass

Both AdaBoost and LPBoost must be extended to cope with the multiclass setting presented here. Any

binary classifier can be turned into a multiclass classifier using the “one-versus-rest” approach, where

binary classifiers are built for each class versus the rest, and the classifier that gives the most positive

decision value (or least negative in the case that all are negative) is the class label given. This is the

first approach taken for LPBoost , and AdaBoost is extended ina similar manner to give the algorithm

AdaBoost .MH (see Algorithm 1).

Uneven loss function

Multiclass classification problems in the one-vs-rest framework are inherently unbalanced, as the class

which is being classified will tend to have far fewer members than the rest of the dataset. Both

AdaBoost and LPBoost can be modified with uneven loss functions to try to mitigate against this prob-

lem. This involves increasing the weight of false negativesmore than false positives, and decreasing

the weight of true positives less than true negatives. The result of this is that positive examples main-

tain higher weight (misclassification cost). This leads to two new algorithms known as AdaUBoost and

LPUBoost [131].

Another approach to Multiclass classification is to map the outputs to binary codes using Error-

Correcting Output Codes (ECOC) [132]. This theoretically should aid classification as it overcomes

the standard one-versus-rest imbalance. Experiments wereconducted using this method, but it was

found that due to the small number of classes in the present experiment (4, 6, or 11), no difference in

performance was observed. In fact for the smallest number ofclasses (4), the performance was actually

worse. This is most likely due to the artificial way in which the ECOC encoding partitions the data.

4.2.6 Multiclass LPBoost Formulation (LPMBoost )

This section details the formulation of a new multiclass extension, to be called LPMBoost , of the

LPBoost algorithm in which the original objective functionis such that the margin between the correct

class and each of the incorrect classes is maximised. It is similar in flavour to the multiclass extension

of the SVM [133], and also resembles the linear programming formulation of structured output learning

over a path [134]. However to the author’s knowledge this extension of LPBoost to the multiclass setting

is novel. Letk be the number of classes, wherek > 2. Let yk ∈ {−1, 1} be the vector of labels for the

one versus rest classification for classj wherej = 1, . . . , k. ỹ = [y1; . . . ; yk] is the vertical concate-

nation of these vectors into a column vector of lengthmk. The goal is then to maximise the marginγ

(or minimise the negative margin) between the output of the correct class and that of the other classes,
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i.e.∀i,Hi,·(ws −wŝ) ≥ γ, ŝ 6= s = yi. This is done by replacing matrixH (whereH =
∑

i yih(xi, ·))
in the first constraint of the primal (2.59) and dual (2.60) formulations with another matrixM.

The matrixM is formed by augmenting the hypothesis matrix into a large matrix with all of the

necessary comparisons (i.e. the hypotheses for the correct class for each example versusthe negative

of the hypotheses for every other class). The rows are generated that correspond to an example with

a negative label, of which there arek − 1 for each example, and a zero row for the comparison of the

hypothesis with itself. The zero row will create a constraint that can’t be satisfied, so although this

could be mopped up by the slack variable, it is better to remove it from the matrix, giving a total of

m(k − 1) rows. The weak learners correspond to a weak learner for a particular class, and as such

there arenk columns. An example matrix is given in Table 4.2. Learning isthen performed using the

standard LPBoost algorithm. At the testing stage, given a matrix Mtest containing one row for each test

point and one column for each weak learner, and the set of chosen weak learnersi and primal weights

wj , j = 1, . . . , k (the Lagrange multipliers from the final step of the dual optimisation for each classk),

the decision function is now simply,

f̂ j = Mtest[:, i]w
j , j = 1, . . . , k, (4.12)

and the classification is then given by,

ŷ = arg max
j=1,...,k

{

f̂ j
}

. (4.13)

Example Comparison yi Class 1 Class 2 Class 3
1 1v2 1 h1 −h1 0

1v3 h1 0 −h1

2 1v2 2 −h2 h2 0
2v3 0 h2 −h2

3 1v3 −h3 0 h3

2v3 0 −h3 h3

4 1v2 2 −h4 h4 0
2v3 0 h4 −h5

Table 4.2: An example of the augmented hypothesis matrixM. In this example there are four examples with class
labelsy = {1, 2, 3, 2}′ and corresponding weak learner vectorsh1, . . . ,h4, which are row vectors of weak learners
hi =

{

hi(1), . . . , hi(n)

}

4.2.7 Experiments

The dataset used in the MIREX 2005 genre classification task is not freely available due to licensing

issues. Experiments were run using two datasets: an older Magnatune 2004 dataset which is publicly

available and a dataset provided by Anders Meng [124]. Theseare described below.
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Magnatune 2004

The RWC Magnatune database used for the MIREX 2004 Audio description contest is still available (see

[135]). Whilst this suffers from many of the problems discussed at the beginning of this chapter, it has

the advantage of being released under the slightly more lenient framework of the “Creative Commons”.

The dataset is split into 6 genres (classical, electronic, jazz & blues, metal & punk, rock & pop, and

world).

Anders Meng dataset d004

Dataset consisting of 11 genres, with 1100 training examples and 220 test examples. The integrity of the

data-set has been evaluated by humans (experts and non-experts) at a decision time horizon of 30 seconds

[124]. It is interesting to note that human performance on this dataset is only at 57.2% in a 11-way forced

choice paradigm (see 4.1). This suggests that either the ground truth annotations are inaccurate or that

the genre labels are not very descriptive. The genres in the dataset arealternative, country, easy listening,

electronica, jazz, latin, pop/dance, rap/hip-hop, R&B/soul, reggae, rock. However, the dataset was used

with some success in previous studies [136, 137]. During theevaluation of this method, the full dataset

Figure 4.1: Confusion Matrix of human performance on Anders Meng dataset d004

of all 11 genres was used along with a subset of this containing the 4 genres that had the highest rate

of accuracy for human performance (jazz, pop/dance, rap/hip-hop, andreggae). The reasoning behind

this was that if the main problems encountered with this dataset were based on inaccuracies or vagaries

of the ground truth labelling, these would be reduced by taking the most consistent results from human

evaluation.
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4.2.8 Results

In all the experiments the AdaBoost stopping parameter was selected by 5-fold CV. The average classi-

fication accuracies of the different algorithms on the datasets are shown in Tables 4.3 and 4.4. The labels

for the datasets are as follows: MAGNA6 refers to the Magnatune database (6 classes); MENG4 refers to

the reduced Anders Meng dataset, where the 4 classes with thehighest accuracy of human performance

were chosen.

MAGNA6 (6 classes)
Algorithm Accuracy
AdaBoost 59.3%
AdaUBoost 59.8%
LPBoost 55.1%
LPUBoost 57.8%
LPMBoost 60.9%

Table 4.3: Average 6-class classification accuracy on Magnatune 2004 dataset using AdaBoost , LPBoost , and
LPMBoost classifiers

Due to the large size of the MAGNA6 dataset only the Gaussian feature aggregation method was

used. The results show that, somewhat against expectations, the performance of LPBoost is actually

worse than that of AdaBoost . The modifications for the unevennature of the dataset due to the one-

versus-rest classification, LPUBoost and AdaUBoost , both resulted in slight improvements in classifica-

tion accuracy, and narrowed the difference between the two algorithms. However the best performance

on the dataset was obtained by the LPMBoost algorithm, whichdirectly optimised the margin between

the multiple classes whilst enforcing sparsity.

MENG4 (4 classes)
Algorithm Gaussian features AR features All features
AdaBoost 41.2% 35.0% 46.2%
AdaUBoost 42.5% 35.0% 50.0%
LPBoost 46.2% 35.0% 43.8%
LPUBoost 46.2% 35.0% 47.5%
LPMBoost 43.8% 38.7% 53.8%

Table 4.4: Average 4-class classification accuracy on MENG(4) datasetusing AdaBoost , LPBoost , and LPM-
Boost classifiers

For the MENG4 dataset both the Gaussian feature aggregationand the Autoregressive feature ag-

gregation were used individually, and also together. For the Gaussian feature aggregation method, the

LPBoost algorithm performed better than the AdaBoost algorithm, and in this case with only 4 classes

the uneven modifications AdaUBoost and LPUBoost made littleor no difference. In this case the LPM-

Boost algorithm performed slightly worse than the standardLPUBoost algorithm. For the Autoregressive

feature aggregation method the overall classification accuracy was somewhat lower than for the Gaus-

sian feature aggregation method in all cases, with the LPMBoost algorithm performing the best in this

case. Interestingly, by combining the two feature extraction methods together, the performance of the

algorithms was improved in nearly all cases. As with the MAGNA6 dataset, when using all features the

AdaBoost algorithm initially outperformed the LPBoost algorithm, and again the AdaUBoost and LPU-



4.3. Compressed Sensing for Radar 108

Boost modifications improved classification accuracy. Onceagain, however, the LPMBoost algorithm

gives the best overall classification accuracy, which demonstrates the efficacy of this method. In general,

the performance of all of the algorithms on this dataset is lower than may be expected. However, results

of human performance cited in [124] suggest that the datasetis extremely difficult to classify - possibly

indicating that the ground truth labelling is inaccurate, or that there are other confounding factors.

4.3 Compressed Sensing for Radar

This Section presents a study of how the Analogue to Digital Conversion (ADC) sampling rate in a dig-

ital radar can be reduced—without reduction in waveform bandwidth—through the use of Compressed

Sensing (CS). Real radar data is used to show that through useof chirp or Gabor dictionaries and Basis

Pursuit (BP) the ADC sampling frequency can be reduced by a factor of 128, to under 1 mega sample

per second, while the waveform bandwidth remains 40MHz. The error on the reconstructed fast-time

samples is small enough that accurate range-profiles and range-frequency surfaces can be produced.

CS is a new paradigm in Digital Signal Processing (DSP) that trades sampling frequency for com-

puting power and allows accurate reconstruction of signal sampled at rates many times less than the

conventional Nyquist frequency [59, 69]. This new technique has been applied successfully in Synthetic

Aperture Radar (SAR) to both achieve higher resolution images [138, 139] and to reduce the number

of measurements made of the backscatter signal, which in turn reduces data transfer and storage re-

quirements [140, 141]. Additionally there have been studies made of how CS can be used to reduce the

sampling requirements of Ultra Wide Band (UWB) radar systems [142, 143] although the latter of these

did not consider the impact of the Doppler shift on the CS algorithm, and both have been conducted

entirely with simulated data.

In this work, the CS approach used in [143, 10] will be extended to include processing of data that

includes Doppler shifts. Additionally, data from a real radar system will be used that includes noise

and non ideal measurement conditions, such as the presence of clutter, small amounts of interference

and clipping of the signal at the ADC. The form of CS being employed is AIC [9, 10] that reduces the

sampling frequency from the traditional Nyquist rate by sampling at the information rate, rather than the

rate required to accurately reproduce the baseband signal.

Conventional sampling theory requires that digital samples of an analogue signal be measured at a

rate sufficient for the signal to be reproduced without aliasing, this is the Nyquist frequency. Sampling

in this way is concerned purely with accurate reconstruction of the signal and does not consider that the

information contained within the signal that is really important. It is likely that the true information rate is

much lower than the Nyquist frequency, and so long as the sampling approach captures this information

then the original signal can be reconstructed. It is important to realize that while the sampling frequency

has been reduced, the computational overhead has increasedsince it is now required that the original

signal be reconstructed. Such a trade may be desirable in radar applications to allow relaxation of the

sampling requirements to reduce cost or to permit gaps to be left in the radar bandwidth [144] that might
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Figure 4.2: The modified receiver chain for CS radar.

then be used in other applications. These possibilities make the study of CS for regular radar applications

attractive.

The principal contributions of this study are the use of realradar data in a CS study and the consid-

eration how the Doppler shift affects reconstruction in theAIC approach.

4.3.1 Review of Compressive Sampling

This section provides a brief review of the theory of Compressed Sensing (CS) as first introduced in

Section 2.2.4, a technique that allows signals to be acquired or reconstructed sparsely, by using prior

knowledge that the signal is sparse in a given basis [59, 69].The principal result is that signals can be

reconstructed exactly even with data deemed insufficient bythe Nyquist criterion. Formally, given a

signalx ∈ R
n and a dictionaryΨ ∈ R

n×d which forms an orthonormal basis,x is said to be sparse if

x can be represented as a linear combination ofk atoms fromΨ, i.e. x =
∑k

i=1 αiΨ.,i wherek ≪ d.

According to the CS theory it is possible to construct a measurement matrixΦ ∈ R
m×n withm≪ n, and

perform stable reconstructions of the signal from measurementsy, wherey = ΦΨα, if the measurement

matrix is incoherent with the dictionary.

This principle of incoherence extends the duality between the time and frequency domains. For

CS we need a stable measurement matrixΦ and a reconstruction algorithm to recoverx from y. The

Restricted Isometry Property (RIP) describes a sufficient condition for a stable solution for bothk-sparse

and compressible signals [59]. It has been shown that i.i.d.random Gaussian and Bernoulli matrices

satisfy both the RIP and incoherence conditions with high probability [59] (see also Section 2.2.5).

This study used a form ofℓ1-penalised least squares known as BP, which has been shown toap-

proximate thek−sparseℓ0 solution [31].

min
α
‖y − ΦΨα‖22 + λ ‖α‖1 , (4.14)

BP can be solved using the LARS [32]. LARS computes the full regularisation path, which is a piecewise

linear function betweenλ = 0 andλ =∞ (as described in Section 2.1.7).

Details of the dictionaries and measurement matrices used are given in Section 4.3.3.

4.3.2 Application of CS To Radar

To allow the ADC to run at a sub-Nyquist rate, the radar receiver chain must be modified to allow CS.

Figure 4.2 shows the additional components required for an AIC receiver. After the standard filters,
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downconverters and amplifiers, but before the ADC, two new components are added—another mixer

and an integration filter. The first input of the mixer,r(t), is the baseband signal. The second input is

a pseudo-random signal,pc(t), that can take a value of either1 or −1. Such a signal can be readily

generated using direct digital synthesis. Following the mixer is an integration filter that sums the output

of the mixer over an interval,TCS:

TCS = NTsample (4.15)

whereTsample is the Nyquist sampling interval andN the undersampling factor. This process of mixing

and then summing the signal constitutes the projection of the received backscatter signal onto the mea-

surement basis,Φ, that is defined bypc(t), see Section 4.3.1. The algorithm, and seed, of the random

number generator used to createpc(t) must be known, since a replica of the signal is needed during the

reconstruction ofr(t).

Each output of the AIC is a projection of the baseband signal received during the intervalTCS

on to the measurement basis. The AIC samples emerge at a rate of 1
TCS

. These slower-rate samples

cannot be used in the conventional processing that may follow digitisation, such as matched filtering

and Fourier analysis, as they stand. Instead, the fast-timesamples must be reconstructed using CS.

To achieve this, multiple observations of the target area are required. Fortunately, the radar already

gathers these observations since in pulsed, or Frequency Modulated Continuous Wave (FMCW) radar,

the same waveform is transmitted repeatedly. Only one set offast-time samples will be reconstructed

from the multiple observations: so while the radar operateswith one Pulse Repetition Frequency (PRF)

the emerging range profiles have a different, lower, PRF. Theratio of the two PRFs will be the number

of pulses used to reconstruct the fast-time samples. This reduction in the PRF will ultimately reduce the

range of Doppler frequencies that may be detected.

It is possible to synthesise the AIC approach to radar processing using data gathered with a conven-

tional digital radar. During data collection, the basebandsignal is digitised with an ADC that runs at the

Nyquist frequency. Once the samples have been stored, mixing with the signalpc(t) and the subsequent

integration are performed digitally. The output of this pre-processing will produce samples comparable

to those that would be output by a true AIC receiver. This was the approach taken for this study.

4.3.3 Experimental Approach

The Radar Dataset

Data was gathered using a single node of University College London (UCL)’s NetRAD radar [145].

The radar had a 2.4GHz carrier frequency and was set to transmit a linear FrequencyModulated (FM)

pulse, with width 0.6µs and a 40MHz bandwidth, and to use a PRF of 20kHz. The ADC digitised the

baseband signal at 100 mega-samples per second,i.e.fs = 100MHz, and 128 samples were collected

per pulse. There was a delay in starting the ADC, so that the transmitted signal would not be recorded,

resulting in ranges between 90m and 280.5m being measured. The targets were placed at range 120m.

When moving, the velocity of the target was along the radar Line Of Sight (LOS) and always towards the
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radar. Three targets were used: a stationary flat metal plate; a running person; and a transit van travelling

at 15mph. For the flat plate, 40,000 pulses were recorded while for themoving targets the number was

increased to 60,000.

Specific CS Implementation

The AIC was implemented entirely in post processing, as described in Section 4.3.2. The 128 fast-time

samples collected during each pulse were compressed into a single samplei.e. the integration duration

was128 × fsample, and the under sampling factor,N , was 128. This meant that if the AIC had been

implemented in hardware, rather than software, the ADC would have needed a sampling rate of under 1

mega sample per second, a substantial reduction over the data capture card used in NetRAD. The random

Bernouilli signalpc(t) was generated using the Matlab functionsrandn andsign.

The fast-time samples were reconstructed using BP, see Section 4.3.1. The reconstruction was

performed based on 60 compressed samples, or radar pulses, leading to the PRF of the reconstructed

data being 333Hz, one sixtieth of NetRAD’s original 20kHz. Within the BP algorithm the regularisation

parameter,λ, was set by taking the value that minimised the reconstruction error on the calibration set.

Chirp atoms were introduced to deal with the nonstationary behavior of the instantaneous frequency

of some signals, and shown to form an orthonormal basis [57].Further, it is clear that the domain in

which a radar signal should be most sparse is that composed ofdelayed and frequency shifted versions

of the transmitted signal [143]. A real chirp atom is given by

gγ,φ,c(t) =
1

Z
· g
(

t− u
s

)

· cos
(

ξ(t− u) + c

2
(t− u)2 + φ

)

(4.16)

whereZ is a normalisation factor (to ensure that for each atom‖gγ,φ‖ = 1), γn = (sn, un, ξn) denotes

the series of parameters of the functions of the dictionary,andg(t) = exp−πt2 is the Gaussian window,

andc is the chirp rate. The chirp atom has an instantaneous frequencyω(t) = ξ + c(t − u) that varies

linearly with time. For the construction ofΦ the parameters of the atoms were chosen from dyadic

sequences of integers with the octave parameterj = 1 [56]. The Gabor dictionary is constructed in the

same way, except that the chirp ratec = 0.

Testing Strategy

Each target dataset was processed using the simulated AIC radar system, described in 4.3.2, and both the

Gabor and chirp sparse basis. Once the reconstructed fast-time samples had been formed the normalised

error between the reconstruction and the actual data could be calculated according to:

ǫ =
‖xorig − xCS‖2
‖xorig‖2

(4.17)

wherexorig is the original signal before projection onto the measurement basis andxCS is the recon-

structed signal. In this study, the reconstructed signal was formed from sixty original signals, but for

the calculation ofǫ only first signal was used. The use of a mean signal was considered, but averaging
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Figure 4.3: Fast-time samples of the stationary target.

radar signals is a form of integration that would improve theSNR. This improvement would not be in

the reconstructed signal making the comparison unfavourable.

The reconstructed fast-time samples were processed using aconventional matched filter to obtain

range profiles, and the DFT was then used to produce range-frequency surfaces.

4.3.4 Results And Analysis

Stationary Target

Initial testing was conducted using the data for the stationary flat-plate target. Measurement of the

received signal power indicated that the SNR for the target was≈22dB. Simulation of the AIC was

performed using the Gabor dictionary and the chirp dictionary as the sparse basis for reconstruction.

From the original 40,000 pulses 666 reconstructed sets of fast-time samples were reconstructed. During

reconstruction the normalised error, see (4.17), had a meanvalue of 0.70 with a standard deviation of

0.18 for the Gabor dictionary, and 0.58 mean with 0.23 standard deviation for the chirp dictionary. Figure

4.3 shows the reconstructed fast-time samples using the Gabor and chirp dictionaries in parts (b) and (c)

respectively, with the samples from the first pulse in the batch of sixty used for reconstruction in part (a)

for comparison. In this case, the normalised error was 0.42 for the Gabor dictionary and 0.28 for the

chirp. Visual inspection of the figure shows the reflection ofthe transmitted chirp at a range of 120m and

both the Gabor and chirp dictionaries appear to reconstructthis part of the curve well (seen as the peaks

in Figure 4.3). Conversely, beyond the limits of the reflected chirp the reconstruction appears poor, and it

is thought that the majority of the normalised error comes from these regions. Application of a matched

filter to the samples resulted in the range profiles shown in Figure 4.4. Again, both the Gabor and chirp

dictionary reconstructions, parts (b) and (c) of the figure,are a good match with the Nyquist sampled

data, part (a). It was observed that the square root of the peak intensity for the Gabor reconstruction

was≈ 10, 000 less than the actual data, and that for both types of reconstructions the noise regions were

much more pronounced.

Observation of the atoms from the two dictionaries used during the reconstruction indicated why
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Figure 4.4: Range profiles of the stationary target.

Figure 4.5: Fast-time samples constructed from largest three coefficients.

the noise parts of the reconstructed range profiles contained more energy than the original data. In the

case of the chirp dictionary it was clear that the most significant atoms used related to the target. Since

each atom was a delayed chirp it was straightforward to understand why the BP algorithm had selected

it. The most significant atom was at a delay corresponding to the target range. After that there were

several atoms, with much smaller amplitude coefficients, distributed throughout the fast-time samples.

It was thought these atoms were being used to approximate thethermal noise. In the case of the Gabor

dictionary comprehension of the BP process was less certainsince the atoms did not correspond directly

to the transmitted waveform. There was a series of significant atoms, with narrow scale, that appeared to

represent the reflected chirp at the target range. In addition there was a series of atoms with long scale but

coefficients indicating a small amplitude; these were attributed to an attempt to reconstruct the thermal

noise. Figures 4.5 and 4.6 show the reconstructed fast-timesamples and range profiles, respectively,

when only the three most significant atoms are used during reconstruction. In both figures part (a)

shows the Gabor result and part (b) the chirp. It was observedthat the chirp result is almost identical to

the full reconstruction, but with less energy in the noise regions, while the limited Gabor reconstruction

had not been successful. The ability to reconstruct with fewer atoms in the chirp case suggests a larger

regularisation parameter,λ in (4.14), could have been used. In this case the effect of increased sparsity

would be that automatic denoising of the signal would be performed during reconstruction.
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Figure 4.6: Range profiles constructed from largest three coefficients.

Figure 4.7: The range-frequency surfaces for the moving targets.

Figure 4.8: Range-frequency surfaces for van target using CS.

Moving Targets

When considering moving targets, it is the range-frequencysurface that is of interest, rather than the

range profile, since it provides information on the target’sDoppler shift as well as its range. The surface

is calculated by first performing matched filtering of the fast-time samples and then performing a Fourier

transform over the pulses in each range-bin. Figure 4.7 shows the range-frequency surfaces for the two

moving targets when no CS was employed.

The results for processing the van target data with the simulated AIC are shown in Figure 4.8. It

is apparent that there is very little difference between using the Gabor and chirp dictionaries, shown in

parts (a) and (b) respectively. Close inspection of the surfaces indicate that the shape of the main peak
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Figure 4.9: Range-frequency surfaces for person target using CS.

Table 4.5: The normalized errors for the moving targets

Dictionary Van Person
Av. Error Std Dev Av. Error Std Dev

Gabor 1.094 0.109 0.784 0.143
Gabor top 10 1.051 0.095 0.892 0.133

Chirp 1.153 0.145 0.733 0.189
Chirp top 10 1.120 0.516 0.970 1.197

from the chirp dictionary gave a slightly better match with the original surface (Figure 4.7 part (a)), but

the improvement over the Gabor dictionary was only slight. It was also observed that the noise floor for

the CS results was higher than in the Nyquist sampled data. This can be seen by comparing the figures.

The running person results are shown in Figure 4.9, again theGabor dictionary is in part (a) and the

chirp, part (b). In this instance it was not possible to discern any difference between the two dictionaries

by inspection of the range-frequency surfaces. Both were observed to be a good match with the Nyquist

data, although again the surfaces contained more noise thanwhen CS was not used.

The mean normalised errors, and their standard deviations,between the reconstructed fast-time sam-

ples and the original Nyquist versions are shown in Table 4.5. The table details the errors for both targets

and both dictionaries as well as the cases when reconstruction was performed using only the ten largest

coefficients. It was observed that in this instance there waslittle difference between the two choices of

dictionary. For the van target the Gabor dictionary had the lowest error while the chirp was superior for

the person. In both instances, however, the difference between errors was in the second decimal place.

Furthermore, reducing the number of atoms used in reconstruction did not have an appreciable affect on

the error.

Dynamic Time Warping (DTW)

Dynamic Time Warping (DTW) is an algorithm for measuring similarity between two sequences which

have different temporal extent [146]. DTW has been applied to many different signal processing ap-

plications including video, audio, and graphics. A well known application has been automatic speech

recognition, where it used to align the signals from speakers with different cadences and inflections (see



4.3. Compressed Sensing for Radar 116

D
istance

6.98545e+006

1.91199e+008

3.75413e+008

5.59626e+008

7.4384e+008

9.28053e+008

1.11227e+009

1.29648e+009

−2000 0 2000

120

110

100

90

80

70

60

50

40

30

20

10

0

S
am

ples

Amp

20 40 60 80 100 120

−2000

0

2000

Samples

A
m

p

20 40 60 80 100 120

−2500

−2000

−1500

−1000

−500

0

500

1000

1500

2000

Samples

A
m

pl
itu

de

Original signals

 

 
signal 1
signal 2

20 40 60 80 100 120 140

−2500

−2000

−1500

−1000

−500

0

500

1000

1500

2000

Samples

A
m

pl
itu

de

Warped signals

 

 
signal 1
signal 2

0 20 40 60 80 100 120 140
−3000

−2000

−1000

0

1000

2000

3000

Samples

A
m

pl
itu

de

Mapping

 

 
signal 1
signal 2

0 20 40 60 80 100 120 140
−3000

−2000

−1000

0

1000

2000

3000

Samples

A
m

pl
itu

de

Warped signals (interpolated)

 

 

Norm difference before warping: 1.1047, after warping: 0.5854

signal 1
signal 2

Figure 4.10: DTW applied to the person target. In this instance the warping has little effect as target is moving
slowly, meaning that the warping is minimal. There is, however, still an improvement in the resulting reconstruction
(bottom right).

Chapter 4 of [147]). For targets such as the van target in the present dataset, the deviation between suc-

cessive fast time samples may become quite large, with an accompanying phase shift due to the Doppler

effect. DTW is one possible way of dealing with this. Resultsof applying the DTW algorithm to suc-

cessive samples for firstly the person target and then the vantarget are presented in Figures 4.10 and

4.11 respectively. It can be seen that for the person target,which is slow moving and therefore results in

little phase shift or signal offset, the effect of DTW is modest. However for the van target, the effect is

much more pronounced. The resulting signal has been realigned such that it is in phase, and the resulting

reconstruction is greatly improved. This is demonstrated in Table 4.6, where the results of the improved

reconstructions can be seen by the effect they have on outputs of the matched filtering.

Dataset Original DTW
Calibration 0.1118 0.0997

Person 0.1237 0.0986
Van 0.1628 0.1138

Table 4.6: Effect of Dynamic Time Warping (DTW). The figures quoted are the normalisedℓ2 distances between
the results of the matched filter with and without CS. Note that in every case the DTW improves the reconstructions
(and hence range-profiles) made by CS
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Figure 4.11: DTW applied to the van target. In this instance the warping has a much greater effect as target is
moving more quickly resulting in a bigger deviation betweenthe two signals. The warping here has the effect of
realigning the signals such that they are in phase, and the resulting reconstructing is improved greatly (bottom
right).

4.4 Conclusions

The first part of the Chapter examined the classification of musical genre from raw audio files. This was

demonstrated through the use of DSP for feature generation and aggregation, and the ML algorithms

LPBoost and a novel multiclass extension LPMBoost . It was therefore demonstrated that sparse ML

methods are advantageous in this setting.

The rest of the Chapter examined the application of CS to conventional radar. As with the genre

classification task, the signals are univariate in the senseof a single sensor or time series, but in this

case with a recording frequency orders of magnititude higher. Here the focus is on DSP, although the

methods used are directly applicable in ML settings as well,and there is scope for further analysis of

this data in an ML setting.



Chapter 5
Applications II

Abstract

This Chapter presents the core application area of the methods described in Chapter 3: Multivariate

signal processing. Signals recorded from the brain activity of participants via Electroencephalography

(EEG) and Magnetoencephalography (MEG) are both multivariate (there are many sensors) and high

frequency (up to 100Hz). As such they present interesting challenges for the application of ML and DSP

methods. Additionally, information contained in the stimuli presented to the participant may itself be

useful for classification purposes, rather than simple labels. In this situation Multiview methods are

required. Two experimental studies will be described:Tonality The first is concerned with the task of

distinguishing between tonal and atonal musical sequencesstimuli through EEG recordings;Genres In

the second experiment we seek to detect the genre of music that a listener is attending to from MEG

recordings.

5.1 Introduction

When sensory stimulation reaches the brain, the summed electrical activity of populations of neurons

results in characteristic sequences of waves which can be observed in Electroencephalography (EEG)

signals. These are known as sensory evoked potentials. One can also measure the corresponding mag-

netic fields associated with these electrical fields using Magnetoencephalography (MEG). The evoked

potentials differ in each sensory modality and also depend on the intensity of the stimulus. They have a

very reliable temporal relation to the stimulus onset. Evoked potentials have very low amplitude and are

drowned by the ordinary EEG/MEG rhythms. In order to see them, a large number of identical stimuli

must be presented and averages taken over all the signals. There are also motor evoked potentials, related

to the brain activity preceding movements. Event-Related Potential (ERP) analysis has been primarily

used for vision research (e.g.[148]) and auditory research (e.g.[149]).

However, ERP analysis is not well suited for examining the effects of music, due to the way which
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we process musical structures. By definition, a piece of music develops over time and thus engages both

short-term and long-term memory systems. The individual responses to particular stimuli (i.e. notes

or chords) play only a small part in the cognition of a musicalpiece. Secondly, ERP analysis requires

many repetitions of identical stimuli with identical properties (duration, inter stimulus interval, envelope,

timbre), which when applied to musical sequences leads to distinctly unmusical sets of stimuli! The first

experiment that will be described, conducted in the LeibnizInstitute for Neurobiology, suffers from this

problem somewhat, as the experimental design was intended for both ERP analysis and the analysis

described in this Chapter.

The analysis of brain scans with a view to accurately identifying the semantic processing of the

subject has received increasing attention recently [150].Analysis of subjects listening to music has also

received some attention [151] though in some cases this has caused some controversy [152]. This chapter

will focus on two experiments: the first is an EEG experiment to examine the brain activity related to the

tonal processing of music, and the second is an MEG experiment to examine the brain activity related

to the processing of musical genre. In both experiments we will be performing single trial classification.

In both cases a similar approach to the classification of timeseries data will be taken as in the previous

Chapter: each “example” will be a segment of data corresponding to a specific musical stimulus (e.g.of

duration 8 seconds) and features will be calculated for eachexample using multivariate DSP with feature

aggregation. However the major difference is that we will now be attempting to use information from

the stimuli themselves to improve the quality of the classifiers using the Multivew methods described in

Chapter 3 (Section 3.5).

5.2 Experiment 1: Classification of tonality from EEG recordings

A common structural element of Western tonal music is the change of key within a melodic sequence.

The present Section, based on [12] examines data from a set ofexperiments that were conducted to

analyse human perception of different modulations of key. Electroencephalography (EEG) recordings

were taken of participants who were given melodic sequencescontaining changes in key of varying

distances, as well as atonal sequences, with a behavioural task of identifying the change in key. Analysis

of EEG involved derivation of 122120 separate dependent variables (features), including measures such

as inter-electrode spectral power, coherence, and phase. We present a novel method of performing

semantic dimension reduction that produces a representation enabling high accuracy identification of

out-of-subject tonal verses atonal sequences.

The present study is concerned with the task of distinguishing between tonal and atonal stimuli

through the observed EEG recordings of the subjects. It should be stressed that EEG data is notoriously

noisy and making reliable cross-subject predictions has proved difficult even for simple tasks. Indeed it

will be seen that a naive application of SVMs to the collectedsignals is unable to make out-of-subject

predictions much better than chance, although within-subject predictions were possible. The key con-

tribution will be the demonstration of a novel semantic dimension reduction method that makes use of
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a complex description of the stimuli to identify key dimensions in the space of signals that are highly

correlated with the stimulus. Using even a simple nearest neighbour classifier in this semantic space can

achieve very high accuracy in both within-subject and out-of-subject prediction.

The proposed analysis to discover statistical relationships between musical structure and EEG

recordings of participants to the same music is based on the premise that the brain represents structural

elements of the auditory signal that it receives through shifting patterns of activity. This activity may

take many forms, ranging from generalised changes in activity in certain brain regions to more complex

relationships. By taking a multivariate approach to the signal processing of the EEG signal, it is possible

to analyse a wide range of such relationships. As such pairwise electrode comparisons, which provide an

indication of communication between brain regions, are of paramount importance. The analysis to date

has included pairwise statistics such as cross power and coherence. Cross phase is another interesting

statistic that will be investigated, as it indicates that there may be an increase (or decrease) in synchrony

between brain regions. The collection of statistics derived from the EEG analysis procedure will then be

compared with the features derived from the audio recordings in order to seek common patterns.

The encoding of the information about the stimulus is through a kernel designed to capture the

melodic and harmonic structure of a musical score availablein a simple midi format.

The data under examination in this Section was produced by anEEG experiment conducted in

partnership with the University of Magdeburg. The principal hypothesis was that neural patterns should

reflect relative changes in the key of music that a listener isattending to. In order to examine this, a

series of stimuli (chord sequences) were constructed and ordered such that there were the following five

experimental conditions:

1. Distant key (two stimuli)

2. Close key (two stimuli)

3. Same key (two stimuli)

4. No key (one stimulus)

5. Initial (two stimuli)

Section 5.2.2 gives details of the setup and protocol of the experiment upon which the analysis

was performed, including details of the EEG data preprocessing. Section 5.2.5 gives details about the

process of the multivariate signal processing techniques used to extract features from the EEG data

for classification. Section 5.2.6 describes the machine learning analysis approaches taken, including

conventional SVM analysis as well as a semantic dimension reduction method based on KCCA.

5.2.1 Participants

16 right-handed participants (9 female, 7 male), aged 19 to 31, with normal hearing took part in the

experiment. None had received any formal musical education. All participants gave written informed

consent to the study, which was approved by the ethics committee of the University of Magdeburg.
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5.2.2 Design

The stimuli consist of sequences of chords, with each stimulus in a single key (or no key). All sequences

consist of 16 chords with onsets at 500ms intervals and with duration filling the entire 500ms, giving a

total length of 8s. The experimental conditions are defined by contiguous stimulus triplets with changes

in relative key (listed below). Relative key is establishedby tonal stimuli, and reset by atonal stimuli.

Stimuli from the first three conditions are followed by a stimulus from condition four as a contrast and

a reset of relative tonality. 48 stimuli required altogether, all chordal (in root position), of which 32

are tonal and 16 atonal. Tonal stimuli to be transposed as required to fulfill experimental role. First

stimulus in each tonal pair is to be in C major, to eliminate any long-term tonality effects (or at least to

take advantage of them); second is in either F# major (condition 1), G major (condition 2) or C major

(condition 3). In total there were 48 initial, 48 atonal, 16 close and 16 distant trials per participant, giving

a total of 144 trials.

Ordering Principles:

1. Each condition should appear an equal number of times

2. Each different melody type (a,b etc.) should appear an equal number of times

3. The three conditions should appear in each permutation (to minimise condition order effects)

4. Each different melody type should be used once for each of the three main conditions (to minimise

individual melody effects)

5. Each tonal pair in the conditions should use the same stimulus

6. Each tonal pair should be followed by a unique atonal stimulus to reset tonality (and provide a

control condition)

7. Same order for each run and for each subject (for direct comparison in subsequent analysis)

5.2.3 EEG Measurements

EEG recordings were acquired at the Leibniz Institute for Neurobiology (Magdeburg, Germany). 64

unipolar channels, including 2 Electrooculogram (EOG) channels and one nose reference electrode

were recorded at a sampling of 500Hz and a resolution of0.1µV . Across all participants the voltage

range was3.2767mV and the impedance was less than5kΩ. The music was played to the partici-

pants using a Terratec EWX 24/96 soundcard, Black Cube Linear Science amplifier by Lehmann Audio

(www.lehmannaudio.de), and Eartone 3A Insert Earphones 50Ω using binaural presentation. The vol-

ume of the amplifier was at notch 6. Stimulus delivery and scanning coordination were controlled with

Presentation c© software (Neurobehavioural Systems Inc, Albany, USA) using a custom-written script.

5.2.4 Data Preprocessing

Muscular activity related to eye movements and eye blinks alter the electromagnetic fields around the

eyes and typically introduce artefacts into the EEG, especially in frontal regions. A number of algorithms

have been proposed to correct for EOG artefacts, which all correct for EOG artefacts by subtracting a



5.2. Experiment 1: Classification of tonality from EEG recordings 122

proportion of one or more EOG channels from the EEG channels.A study by [153] evaluated four

correction techniques by correcting blinks, vertical and horizontal eye movements from 26 subjects. The

study concluded that in the absence of specific calibration protocols, the method described by [154],

based on multiple regression, was the best solution. The approach taken by [155] was based on the

algorithm suggested by [154], with modifications describedin [156]. This latter method was chosen for

the present study.

Prior to time-frequency analysis, the data was filtered using two-way least-squares FIR filtering.

Digital filters: 0.2Hz low pass filter. 100Hz high pass filter. The 50Hz component of the signal was

removed using a notch filter between 49Hz and 51Hz due to AC mains signal.

The electrodes were then re-referenced using the nose electrode.

5.2.5 Feature Extraction

The data from the 64 channel EEG system at 500Hz sampling rate was imported as a single matrix

such that the format was [channels x frames]. The data was segmented into 8 second epochs, giving 144

epochs per subject. These epochs have a one-to-one correspondence with the experimental stimuli. This

results in a data matrix of shape [channels x frames x epochs].

Time-Frequency Analysis

Thetime averageof a discrete-time random signal is defined as,

〈·〉 .= limN →∞ 1

2N + 1

N
∑

t=−N

(·). (5.1)

We can then describe ensemble averages in terms of this time average, as follows:

Mean value µx = 〈x(t)〉
Variance σx =

〈

|x(t) − µx|2
〉

Autocorrelation rx(l) = 〈x(t)x ∗ (t− l)〉
PSD Rx =

∑∞
l=−∞ rx(l)

(5.2)

Until now, the discussed estimation techniques for the computation of spectral properties of signals

have all beenunivariate(i.e. those given in Section 4.2.3). In many applications we have two or more

jointly stationary random processes and we wish to study relationships between them (as is the case

for the class of signals in this Chapter). We will use multiple bivariatespectral estimations to perform

multivariateanalysis. Assume thatx(t) andy(t) are two zero-mean, jointly stationary random processes.

The following quantities can then be defined,

Cross-correlation rxy(l) = 〈x(t)y ∗ (t− l)〉
Cross-PSD Rxy =

∑∞
l=−∞ rxy(l) exp(−iωl)

Coherence Cxy =
|Rxy|2
RxRy

(5.3)
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For the analysis of EEG, these bivariate estimations shouldin principle be more stable that the

univariate estimations. Coherence between pairs of EEG signals recorded simultaneously from different

scalp sites provides a high time resolution measure of the degree of dynamic connectivity between brain

regions. Coherence measures the correlation between a pairof signals as a function of frequency. Thus

it provides a means for identifying and isolating frequencybands at which the EEG displays between-

channel synchronization (seee.g. [157] for a recent review). In addition, electrodes have a tendency

to “drift” over time (in terms of both amplitude and mean amplitude), meaning that univariate estima-

tions can become unstable. Bivariate estimation methods overcome this problem as electrodes that are

spatially proximate tend to drift in a linearly dependent manner.

A multitaper spectrum is produced by averaging multiple windowed FFTs generated with a set of

orthogonal data tapering windows known as Discrete ProlateSpheroidal Sequences (DPSS) or Slepian

functions. Since each of the windows in a specific sequence isuncorrelated, an unbiased average spec-

trum can be produced. A multitaper spectrum offers no greater frequency resolution than a single tapered

spectrum. In fact, the spectral peaks resulting from the algorithm have a flat-topped envelope shape

which makes the central frequency determination more difficult. What is gained is a reduced-variance

spectral estimator that retains a high dynamic range. [158]

Using DPSS, inter-channel coherence, cross phase and crosspower were computed, for all pair-

wise combinations of channels, excluding the EOG electrodes and nose reference electrode. Cross power

simply refers to the ratios of the power within each of the frequency bandwidths. The coherence function

measures the correlation between two signals as a function of the frequency components they contain,

and is therefore a correlation spectrum [159, 160]. It determines the likelihood of two stochastic signals

arising from the same generating process.

This differs from the cross-correlation function, which involves calculating Pearson product-

moment correlation coefficients for the two signals at various displacements of sampling interval. Quan-

titative analysis [160] has shown that the cross-correlation sometimes fails in situations where coherence

does not, as well as being more expensive to compute. Complementary to the computation of the co-

herence spectrum is the phase spectrum, which indicates thephase relationship between two signals as a

function of frequency - information that is lost using ordinary spectral methods. An important feature of

all of these methods is that they are independent of amplitude, as the amplitudes of electrodes are known

to vary greatly both within and between recording sessions.

The resulting 256 Fourier coefficients for each of the measures were divided into bands, providing

estimates of spectral power within the following recognised frequency bandwidths:

• delta (0.3-3.9Hz)

• theta (4-7.9Hz)

• alpha (8-13Hz)

• beta1 (13-19Hz)

• beta2 (20-30Hz)

In addition,
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• low gamma (30-42Hz)

• 40Hz (38-42Hz)

• mid gamma (43-63Hz)

• high gamma (64-100Hz)

• general gamma (30-100Hz)

• global (0.01-100Hz)

bandwidths were computed. The means and variances of each ofthe measures within each of the wave-

bands were computed. The data was then flattened in order to create a large feature vector of length

122120 for classification.

5.2.6 Results

SVM Analysis

Recall that we are aiming to predict whether the partcipantswere attending to tonal or atonal sequences.

The data was standardised across the features to obtain “standard normal” random variables with mean

0 and standard deviation 1. The data for each subject was split randomly into 75% train, 25% test1 and

then concatenated to form the full training and test sets. The same random split was applied for all of the

analysis. Classification was performed using the SVM-LightSupport Vector Machine implementation

[161] with linear, RBF and laplace kernels (where the laplace kernel is the same as the RBF kernel except

that the 2-norm is replaced with a 1-norm). 5-fold CV was performed on the training set to discover best

setting of the C and sigma parameters. Table 5.1 shows the test errors for the SVM classifier on the split

of the data described above. The significance of the classifier was evaluated using the upper bound of

the cumulative distribution function (CDF) of the binomialdistribution of a random classifier, calculated

as follows:

p ≤ exp

(

−2(nπ − k)
2

n

)

(5.4)

wheren is the number of trials (test examples),π is the probability of success (0.5 for a random

classifier) andk is the test error of the classifier.

Test # Train # Test Linear RBF Laplace
Tonal vs Atonal 1152 384 0.2298** 0.1175** 0.2742**
Close vs Distant 384 128 0.3125**0.2422** 0.4375
Same vs Distant 384 128 0.2656** 0.2344**0.2109**
Same vs Close 384 128 0.2031**0.1641** 0.1641**

Table 5.1: Test errors for within-subject SVM classification. ** denotes significance at thep < 0.001 level (see
text)

Table 5.2 shows the leave-one-out test error for each of the participants using a linear kernel. In

this test the data from 15 of the participants is used as the training set and the data from the remaining

participant is used as the testing set. This is a much more difficult test, in the sense that the goal is now to

1Each trials were treated as a single example, and therefore with 16 participants and 96 trials each training set contained
16× 72 = 1152 examples and each test set contained16 × 24 = 384 examples
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learn features that can generalise from one set of brains to anew brain. It is therefore not surprising that

with a subject pool of only 16 participants the classification errors are close to chance for most subjects.

Results (not given) for the RBF and Laplace kernels were not significantly different. It is interesting

to note that the distinction between “close” and “distant” gives the best classification results rather than

tonal vs atonal. As such it appears that conditions with key changes result in more consistent prediction

across brains than those for processing atonal music.

Subject Tonal v atonal (96) Close v distant (32) Same v distant (32) Same v close (32)
1 0.4583 0.3438 0.3125 0.3750
2 0.4947 0.4688 0.3438 0.4375
3 0.4688 0.3438 0.3750 0.4062
4 0.4688 0.4375 0.5000 0.4062
5 0.4896 0.4688 0.5000 0.4062
6 0.5000 0.5000 0.4375 0.4688
7 0.4583 0.4688 0.4375 0.4375
8 0.4896 0.3750 0.3438 0.5000
9 0.4896 0.4375 0.5000 0.5000
10 0.4688 0.4062 0.3750 0.4688
11 0.4792 0.3438 0.5000 0.4688
12 0.4792 0.3125 0.4062 0.5000
13 0.4583 0.3750 0.4375 0.5000
14 0.5000 0.3750 0.5000 0.4062
15 0.4688 0.4375 0.3125 0.4688
16 0.5000 0.3125 0.3750 0.5000
mean 0.4795 0.4004 0.4160 0.4531
median 0.4792 0.3906 0.4219 0.4688

Table 5.2: Test errors for leave-one-out SVM classification using linear kernels. The numbers in parentheses
represent the number of test examples. None of the test errors reached significance at thep < 0.01 level

KCCA Analysis

Various methods have been proposed for searching for commonpatterns between two sets of signals,

including kernel canonical correlation analysis (KCCA), which can be viewed as a generalised form of

kernel independent components analysis [162]. Canonical correlation analysis (CCA) is a technique to

extract common features from paired multivariate data. Recall that KCCA is a nonlinear version of this

technique which allows nonlinear relations to be found between multivariate variables effectively [52].

ρ = max
α,β

α′KxKyβ
√

α′K2
xαβ

′K2
yβ

(5.5)

For this analysis it was necessary to calculate kernels on the musical stimuli. For simplicity of

analysis, the only distinction being examined in this section is tonal vs atonal, as the experimental setup

does not lead to a simple calculation of relative pitch for stimuli that were presented following silence.

The midi audio files used to generate the experimental stimuli were first embedded into pitch class space.

Pitch class space [163] is the circular (quotient) space with the result that differences between octave-

related pitches are ignored. In this space, there is no distinction between tones that are separated by
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an integral number of octaves. The pitch class vectors for each stimulus were then formed into kernels

using a squared exponential kernel. As a sanity check, running an SVM on these gives a test error of

0.0261, showing that this kernel representation is valid. Perfect classification was not achieved as there

appear to be outlier stimuli,i.e.atonal sequences that appear tonal in this representation.

For the purposes of the KCCA analysis, a linear kernel is usedfor the EEG, as the dimensionality

of the RBF kernel in this case is too high. Both kernels were projected into Gram-Schmidt space using

the partial Gram-Schmidt decomposition outlined in [52]. The precision parameter was set to 0.3 using

a heuristic method. The use of this decomposition results inan implicit regularisation, and as such the

KCCA regularisation parameter was set to zero. Experimentation with different values of this parameter

did not show any improvement in results.

The kernels from each view were then projected into the shared feature space using the top 100

resulting KCCA directions. The test kernel for the EEG was also projected into this space, and then

normalised such that theℓ2-norm of each vector was 1. Using the 100 largest correlationvalues with the

corresponding projections of the training data, the most popular labels of the corresponding example in

the music kernel were used as the classification. The reported errors are then the mean of the differences

between these labels and the true test labels. This method isan extension of mate-based retrieval [106],

was given algorithmically in Algorithm 5 in Chapter 3.

The classification results using the PNN classification approach are given in table 5.3. It can be seen

that this method is able to classify between the tonal and atonal experimental conditions almost perfectly.

As a comparison, an SVM was trained on the projection of the EEG data into the shared feature space,

using a linear kernel and 5-fold CV to select the C parameter.The results show that the PNN method

performs competitively with the SVM, whilst being essentially an unsupervised method. It is also much

more computationally efficient as there are no parameters totune.

Classifier # Train # Test Linear
KCCA + PNN 1152 383 0.0183**
KCCA + SVM (linear) 1152 383 0.0157**

Table 5.3: Test errors for within-subject classification for Tonal vs Atonal using KCCA with PNN and SVM classi-
fication. ** denotes significance at thep < 0.001 level

5.2.7 Leave-one-out Analysis

We now present results for leave-one-out analysis of the data. This is the (much more difficult) classifi-

cation task of taking each participants’ data as the test setin turn, using only the data from the remaining

participants as the training set. We therefore are given no prior knowledge of the unique physiology of

the test participant, nor do we have any knowledge of the specifics of the particular recording (such as

the raw electrode amplitudes). This means that the featuresused for classification must be robust across

participants and recording sessions.

Table 5.4 shows the leave-one-out test error for each of the participants using the PNN classification

approach, along with the SVM trained on the projection of theEEG data into the shared features space,
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again using a linear kernel and 5-fold CV to select the C parameter. The results show that the PNN

method performs competitively with the SVM, whilst both significantly outperform the naive SVM

approach (see Table 5.2).

Participant KCCA + PNN KCCA + SVM (linear)
1 0.2708 0.1667**
2 0.2737 0.2421
3 0.3125 0.2500
4 0.2083* 0.1667**
5 0.4062 0.2500
6 0.2500 0.2500
7 0.5625 0.1667**
8 0.2500 0.2500
9 0.2708 0.2500
10 0.1667** 0.1667**
11 0.7396 0.2500
12 0.2500 0.2500
13 0.1562** 0.1667**
14 0.3542 0.2500
15 0.2500 0.2500
16 0.4688 0.1667**
mean 0.3244 0.2183
median 0.2708 0.2500

Table 5.4: Test errors for leave-one-subject-out KCCA projected nearest neighbour classification. * and ** denote
significance at thep < 0.01 andp < 0.001 level respectively, using the upper bound of the CDF of the binomial
distribution of a random classifier as before

5.3 Discussion

The results demonstrate that using standard modern DigitalSignal Processing (DSP) and Machine

Learning (ML) techniques with careful manipulation of the data can enable us to differentiate between

certain patterns of brain activity. Coherence analysis andother types of cross-spectral analysis may be

used to identify variations which have similar spectral properties (high power in the same spectral fre-

quency bands) if the variability of two distinct time seriesis interrelated in the spectral domain. The

results demonstrate that it is possible to reliably distinguish between whether a listener was attending to

tonal or atonal music, including in the case when the test setwas a “new brain” (leave-one-out analysis).

This can be considered to be a task of high-order cognitive processing, rather than a simple sensory

input task. As the differentiation was based on properties of the EEG over relatively long timespans

(i.e. the length of an epoch, or 8 seconds), this is clearly not due to simple evoked potentials, but instead

represents a more fundamental change in the pattern of processing over time.

Further analysis using KCCA demonstrated that through the use of unsupervised methods it is possi-

ble to significantly improve the classification accuracy. The new classification method defined in Section

3.5.1 using the shared semantic space given by projections from KCCA weight vectors together with a

nearest neighbour method was applied. This was able to distinguish between the tonal and atonal exper-

imental conditions with a high degree of accuracy. It was also shown that an SVM trained on projected
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data performed extremely well. The success of both of these methods is due to the KCCA projections

acting as a data cleaning step, in which a form of semantic dimensionality reduction is occurring. As

the musical stimuli are sufficiently distinct between conditions, the additional information extracts the

directions correlated with the differing experimental conditions. The key ingredient in the approach is

the introduction of a clean source of data that encodes a complex description of the experience of the

subject. It would seem that this approach to information extraction has enormous promise in a wide

range of signal processing and time series data analysis tasks.

Subtler discriminations in the task of the listener were also reliably discriminated, such as distin-

guishing a move from one key to a close or distant key. Howeverthe results were not as convincing

as for the tonal-atonal distinction. There are several possible reasons for this. Firstly, there were fewer

examples of these events by a factor of 3, which on its own increases the difficulty in learning. Secondly,

the cognitive task is clearly much more subtle than the tonalvs atonal case, and as such the changes in

patterns of activity are likely to be much more subtle, although this is of course speculative. Finally, the

type of relationship between the patterns of activity in this case may be too slight to detect, meaning that

the DSP techniques employed were unable to detect them (as opposed to the learning algorithm). Fur-

ther experiments with larger datasets (more repetitions ormore participants) could provide the answers

to these questions.

EEG data is notoriously noisy and unreliable, so it is extremely encouraging that it is possible

to generate reliable discriminations using fully automatic procedures. It is usual to perform artefact

rejection by hand during the preprocessing stage, as well asother manual techniques. The present study

used automatic techniques at every stage of the process (preprocessing, feature extraction, data treatment,

and classification). The methods presented demonstrate theability to reliably discriminate between brain

signals associated with different sequences of music in both within-subject and out-of-subject paradigms.

5.4 Experiment 2: Classification of genre from MEG recordings

Classification of musical genre from audio is a well-researched area of music research. However to

our knowledge no studies have been performed that attempt toidentify the genre of music a person is

listening to from recordings of their brain activity. It is believed that with the appropriate choice of

experimental stimuli and analysis procedures, this discrimination is possible. The main goal of this ex-

periment is to see whether it is possible to detect the genre of music that a listener is attending to from

brain signals. The present experiment focuses on Magnetoencephalography (MEG), which measures

magnetic fields produced by electrical activity in the brain. It will be shown that classification of musical

genre from brain signals alone is feasible, but unreliable.Through the use of sparse multiview meth-

ods, such as Sparse Multiview Fisher Discriminant Analysis(SMFDA), reliable discriminates between

different genres are possible.

The motivation for this study came from the analysis presented in Section 4.2, with the same caveats

regarding the task of genre classification applying here as well. As highlighted there and in [11], the
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choice of an appropriate dataset was shown to be of great importance. This is interesting from a cognitive

perspective, as genre classification may represent both low- and high-order cognitive processes. Using a

combination brain recordings and carefully chosen stimuliallows us to analyse this question further.

The analysis procedures employed in this study are based on those used for fMRI using standard

GLM and SVM/KCCA methods [164], and methods used for analysis of EEG using KCCA as a se-

mantic dimensionality reduction method prior to classification [14]. The analysis begins with genre

classification from the audio source only, as outlined in [11], except that in this study the features used

are derived from the midi versions of the audio files rather than raw audio files. The reasons for this are

twofold. Firstly, the features of interest are more readilyavailable from the midi, as direct access to the

pitch values and note durations of the musical sequences is given. Secondly, the nature of the stimuli

means that there is no timbral information available. Most of the features used in previous studies such

as [75, 11] are based on short-term spectral information, most of which are strongly picking out timbral

features.

Following this, features are derived from the MEG data usingspectral methods common to the

neuropsychological literature, after which machine learning algorithms are used to classify these features

according to genre. Multiview methods are then applied, following on from [164, 14], which attempt

to use the stimuli themselves as another view of the phenomenon underlying the brain signals. These

methods are improved upon through the use of Sparse Multiview Fisher Discriminant Analysis (SMFDA)

[12]. The key difference between this and previous approaches is that SMFDA uses label information to

find informative projections of each view into a shared space, which are more appropriate in supervised

learning settings. In addition, SMFDA seeks to find sparse solutions by usingℓ1 optimisation, which is

known to approximate the optimally sparseℓ0 solution. This is also a form of regularisation that prevents

overfitting in high dimensional feature spaces. Sparsity ofsolutions is important in this setting as the

feature set constructed from the MEG data is extremely high dimensional, with a low signal-to-noise

ratio.

From Chapter 3 and [13], the optimisation for MFDA is given by,

min
αd,b,ξ

L(ξ) + µP(α̃), d = 1, . . . , p

s.t.

p
∑

d=1

(Kdαd + 1bd) = y + ξ,

ξ′ec = 0 for c = 1, 2,

The natural choices for the regularisation functionP(α̃) would either be theℓ2-norm of the dual weight

vectors,i.e.P(α̃) =
∑p

d=1 ‖αd‖22, or theℓ2-norm of the primal weight vectorP(α̃) =
∑p

d=1α
′
dKdαd.

However more interesting is theℓ1-norm of the dual weight vector,P(α̃) =
∑p

d=1 ‖αd‖1, as this choice

leads to sparse solutions due to the fact that theℓ1-norm can be seen as an approximation to theℓ0-norm.

This version is SMFDA.

We can also follow [114] and remove the assumption of a Gaussian noise model, resulting in differ-
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ent loss functions on the slacksξ. A noise model with longer tails, such as the Laplacian noisemodel,

may be more appropriate for the class of signals under examination (see [165] for a recent review). In

this case we can simply replace‖ξ‖22 with ‖ξ‖1 in the objective function. The advantage of this is if the

ℓ1-norm regulariser from above is chosen, the resulting optimisation is a linear programme, which can

be solved efficiently using methods such as column generation.

The main goal of this experiment is to see whether it is possible to detect the genre of music that

a listener is attending to from brain signals. The present experiment uses MEG, which is an imaging

technique used to measure the magnetic fields produced by electrical activity in the brain. The data is

from an experiment conducted at the Functional Imaging Laboratory (FIL) of UCL.

5.4.1 Participants

MEG recordings from 2 participants are from a 275-channel CTF system with SQUID-based axial gra-

diometers at a sampling rate of 1200Hz. Sensors were automatically rejected whose mean power were

beyond a static threshold, and trials were rejected in whichthere was a “sensor jump”. The data is filtered

using least-squares FIR filters: low pass at 100Hz; notch filter at 49-51Hz. The data is then split into

epochs and then downsampled to 200Hz.

5.4.2 Design

Stimuli were 9 seconds long, with an inter stimulus intervalof 2 seconds during which behavioural

responses were collected. The behavioural task was identification of genre. Participants were presented

four blocks of 20 stimuli.

5.4.3 Procedure

The independent variable was the genre of the musical piece,with 4 levels. Each stimulus was 9 seconds

in duration, with an inter-stimulus-interval of 2 seconds within which participants gave their responses

for the behavioural task. The behavioural task was identification of genre. Participants were presented

four blocks of 20 stimuli, with a break between each block. Blocks were randomized to ensure that

practice and fatigue effects are accounted for.

The following genres were included in the experiment:Classical, Jazz, Ragtime, Pop. In order to

avoid confounding factors of spectral or timbral properties of the pieces within each genre being the

main criteria of discrimination, all pieces are based on a single instrument, the piano. The stimuli

were sourced and selected as MIDI files from various sources,and then rendered to WAVE format

using a single instrument and normalized according to peak amplitude. Most of the excerpts in the

Pop category were solo piano introductions. The experimental stimuli were validateda-priori firstly

by classification of genre from the MIDI files using the analysis procedures described by [75, 5] and

secondly by examination of the behavioural results.
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5.4.4 Feature Extraction

The following two subsections will describe the extractionof features from each of the sources of in-

formation. Recall that in addition to the MEG recordings from the participants, we will also be using

the stimuli themselves (in the form of the original MIDI audio files) to generate a complementary set of

features. These two sources of information will be combinedtogether to build a stronger classifier than

would be possible from the MEG alone. For testing purposes wewill only use the MEG data (i.e. the

weights found for the MEG kernel) to show that effect of the addition of information from the stimuli on

classification accuracy.

Feature Extraction from Audio

Following [75, 11], the general approach to genre classification taken was to create a large set of features

from the audio, and then use a sparse boosting algorithm (LPBoost) which effectively performs feature

selection during the classification stage. Since midi files are being used rather than raw audio, it is

possible to take advantage of a range of features that are readily derivable from the midi. The features

used along with the dimensionality of each feature are givenin Table 5.5.

Feature Dimensionality
Meter features
Tempo 1
Meter 1
Proportion of concurrent onsets 1
Note density 1
Autocorrelation of onset times 33
Melodic features
Ambitus (melodic range) 1
Tonal features
Pitch class profiles 12
Distribution of pitch classes (DPC) 12
Krumhansl-Kessler (KK) key estimation 1
Correlation of DPC to KK profiles 24
Mean & standard deviation of KK profiles 2
Statistical features
Entropy 1
Distribution of note durations 9
of from Number of notes 1
Total 101

Table 5.5: MIDI features used for genre classification

For extraction of the features the midi Matlab toolbox of Eerola and Toiviainen was used [166].

These features are then concatenated to produce a single feature vector of length 101.

Feature Extraction from Brain Signals

After preprocessing, the data from each trial were split into 3 segments, representing the first, middle

and last 3 seconds of each stimulus presentation. Each of these segments were then used as an exam-

ple for classification. Dimensionality reduction was then performed using both Principal Components
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Analysis (PCA) and Independent Components Analysis (ICA) over the channels, to create two sets of

10 “virtual electrodes”. The segments were flattened to forma feature vector of length [20× 1800] for

each example.

5.4.5 Results

Classification of Genre by Participants

Table 5.6 shows the confusion matrix of the behavioural performance of the subjects. The order of the

genres isclassical, jazz, pop, rag. The true labels are on the rows. Firstly results of the behavioural

task of the participants are presented. The overall error is0.15 (i.e. 85% classification success). Note

that for 4 classes a random classifier would achieve 0.25, so this is significantly better than chance. This

appears to validate the stimuli, and is similar to (or above)levels of accuracy reported elsewhere (see

[124] for a review). From the user experiments it can be seen thatpopappears to be the hardest of the

classical jazz pop rag Error
classical 48 1 5 6 0.20
jazz 2 51 4 3 0.15
pop 8 1 49 2 0.18
rag 2 2 1 55 0.08
average 0.15

Table 5.6: Confusion matrix for classification of genre by participants. True labels are in rows, estimates in columns.

genres to classify. This makes sense, given thata) popas a genre is very derivative, and many themes

are borrowed from other genres such asclassicalandjazzandb) poppieces were chosen that had a solo

piano part (e.g.as an introduction) meaning that to the uninitiated they maysound uncharacteristic.

Classification of Genre from Audio Features

Using the feature set generated from the midi stimuli, LPBoost [5] was applied using decision stumps

as the weak learners as per [75], which results in 6262 weak learners for the algorithm. In order to

boost classification performance we split the files into 3 parts, and then took the sum of the classification

functions for each of the 3 parts before normalising and classifying. The overall 4-fold cross-validation

(CV) error is 0.05 (i.e.95% classification success). This further validates the stimuli, and shows that the

methods are appropriate.

Tracing back from the chosen weak learners (of which there were 114/6262), it is possible to see

which features were chosen. Interestingly a wide spread of the features were used (52 of the vector of

length 101). The only blocks of features not used at all were:KK key estimation, Mean of KK profile,

Onset autocorrelation. The key advantage of the LPBoost method is that you can throwas many features

as possible at it and it will only pick the useful ones, as it isa sparse method. This means that the same

method can be applied to a variety of classification tasks, the algorithm effectively performing feature

selection and classification simultaneously.

Figure 5.1 shows a spider diagram of the overall confusion matrix resulting from classification of
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genre using audio. This diagram demonstrates that the performance of the classification algorithm is

similar across all four genres, with no particular bias towards confusion between any of the genres. The

exception israg, for which the performance is generally improved. This can be explained by the fact

that the genre is generally more homogeneous, and also less derivative of the other genres. In each of

the other genres examples can be found which are in some way similar to one of the other genres.

Figure 5.1: Spider plot of the overall confusion matrix resulting from classification of genre using audio. This is
a way of visualising the confusion matrix between classes. The true labels are the axes, and the lines denote the
patterns of correct and incorrect classification by class. Note thatrag (red) has the most “peaked” profile showing
that the confusion between this and the other classes was smallest.

Classification of Genre from MEG Features

Using the feature set generated from the MEG data, linear kernels were constructed used with KFDA

[3]. As with the classification of genre from audio features,the files were split into 3 parts, and then the

sum of the classification functions for each of the 3 parts were taken before normalising and classifying.

The overall 4-fold cross-validation error is 0.71 for participant 1 and 0.70 for participant 2 (i.e.29% and

30% classification success respectively). Note that this isstill some way above chance level (25%) but

far from reliable.
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Classification of Genre using both Data Sources

Using the feature sets generated from the MIDI data and the MEG data, linear kernels were constructed

and applied Sparse Multiview Fisher Discriminant Analysis(SMFDA) [13]. 4-fold CV was used for the

selection of parameters. Since the sparse version of MFDA isbeing used, the regularisation parameter

can be set using a heuristic method to a small value (exp(−3)) as it has little effect. As with the classifi-

cation of genre from audio features, the files were split into3 parts, and then the sum of the classification

functions were taken for each of the 3 parts before normalising and classifying. Note that in testing we

use only the function learnt on the brain signals. In this waywe can be sure that we are not simply

classifying on the basis of the MIDI data alone. Furthermore, this is closer to the traditional supervised

learning setting where the labels or other significant information regarding correct classification is not

known.

The overall 4-fold CV error is 0.65 for participant 1 and 0.63for participant 2 (i.e. 35% and 37%

classification success respectively). In itself these classification results are not so impressive, but the side

benefit is that the weights of the classifier over the MEG features can be used to then calculate the brain

regions involved in classification of musical genre.

5.4.6 Discussion

In this study it was shown that classification of musical genre from brain signals alone is feasible, but

unreliable. It was shown that through the use of sparse multiview methods, such as SMFDA, it was

possible to improve the discrimination between different genres.

The procedures [164, 12] both incorporate information fromthe stimuli themselves to improve clas-

sification performance. These were extended through the useof Sparse Multiview Fisher Discriminant

Analysis (SMFDA) [13]. The key difference is that SMFDA useslabel information to find informative

projections. It is also important that the method is sparse,as the MEG data is extremely high dimen-

sional.

The key ingredient in the approach of this work is the introduction of a clean source of data that

encodes a complex description of the experience of the subject. It seems that this approach has enormous

promise in a wide range of signal processing and time series data analysis tasks.



Chapter 6
Conclusions

6.1 Conclusions

6.1.1 Greedy methods

The first part of Chapter 3 focussed on greedy methods for sparse classification and regression, firstly by

applying Orthogonal Matching Pursuit (OMP) to KFDA to produce a novel sparse classification algo-

rithm (Matching Pursuit Kernel Fisher Discriminant Analysis (MPKFDA)). Generalisation error bounds

were provided that were analogous to that used in the Robust Minimax algorithm [86], together with a

sample compression bounding technique. Experimental results on real world datasets were presented,

which showed that MPKFDA is competitive with both KFDA and SVM, and additional experiments that

showed that MPKFDA performs extremely well in high dimensional settings. In terms of computational

complexity the demands of MPKFDA during training are higher, but during the evaluation on test points

only k kernel evaluations are required compared tom needed for KFDA.

In a similar vein, the greedy algorithm Polytope Faces Pursuit (PFP) (which is based on the geom-

etry of the polar polytope, where at each step a basis function is chosen by finding the maximal vertex

using a path-following method) was applied to nonlinear regression using thekernel trick, resulting in

KPFP. The utility of this algorithm was demonstrated by providing a novel generalisation error bound

which used the natural regression loss and pseudo-dimension in order to upper bound its loss. The

experimental results showed that KPFP was competitive against the KMP and KRR.

6.1.2 Low-rank approximation methods

Moving away from greedy methods, the following Section (3.4) constructed algorithms that took ad-

vantage of the Nyström method for low-rank kernel approximation for large-scale data. Recent work

which empirically justifies using a uniform subsampling technique for the Nyström approximation [100]

was theoretically extended. An upper bound on the SVM objective function solved in this subspace was

given, followed by empirical validation for both classification and regression using the SVM, KFDA

(classification) and KRR (regression) algorithms. The empirical results support the use of uniform
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sampling to maintain good learnability in the Nyström subspace. The results show that in the case

of MPKFDA it is possible to substantially improve on the complexity of O(n3k) to a reduced com-

plexity ofO(k3), and even improve generalisation performance on some of data sets. This is surprising

and counter-intuitive, as MPKFDA selects projection directions that directly optimize the FDA quotient.

The main conclusion from the performance of NFDA against MPKFDA and NRR against KMP is that

the method by which basis functions are chosen (i.e. randomly or according to an objective function) is

probably of secondary importance in most cases, unless the goal is for the best possible generalisation

error. It seems that the power of these methods are in the projection into the Nyström approximated

subspace.

6.1.3 Multiview methods

For the rest of Chapter 3 the attention was turned to the problem of learning from multiple data sources

or views (MSL and MVL respectively).

To begin with a method was presented that extends the KCCA algorithm to the classification setting.

This method (Projected Nearest Neighbours (PNN)) is an extension of mate-based retrieval [106], and

is given in Algorithm 5. It is non-parameteric and essentially freeonce the KCCA directions have been

learnt.

KFDA can be formulated as a disciplined convex optimisationproblem, which was extended to

the multi-view setting MFDA using justifications from a probabilistic point of view. A sparse version

SMFDA was then introduced, and the optimisation problem further extended to account for directions

unique to each view PMFDA. Experimental validation was shown on a toy dataset, followed by experi-

mental results on part of the PASCAL 2007 VOC challenge dataset and a fMRI dataset, showing that the

method is competitive with state-of-the-art methods whilst providing additional benefits.

Mika et. al.[35] demonstrate that their convex formulation of KFDA can easily be extended to both

multi-class problems and regression problems, simply by updating the final two constraints. The same

is also true of MFDA and its derivatives, which enhances its flexibility. The possibility of replacing the

Naı̈ve Bayes Fusion method for combining classifiers is another interesting avenue for research.

Finally, for the special case of SMFDA there is the possibility of using a stagewise optimisation

procedure similar to the LARS [32] which would have the benefit of computing the full regularisation

path, or alternatively greedy methods such as OMP or PFP could be applied to the algorithm. However,

as shown theoretically and empirically, a far simpler and yet powerful MVL classification algorithm

could be created by combining SMFDA with the Nyström method. This remains as future work.

6.1.4 Experimental applications

Genre classification from polyphonic audio

Many different approaches to genre classification have beentaken both in terms of feature selection

and in terms algorithm choice. The MIREX 2005 results indicate that boosting with an aggregated
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feature set works well. However this really indicates that in a musical sense, the problem is still poorly

understood. The short-term spectral features that are commonly used are really only examining different

aspects of the texture of the sound, and not really the long-term temporal dynamics. Some attempts to

look at temporal dynamics using autocorrelation/autoregression have been attempted, but currently these

methods do not perform as well as methods based on short-termspectral features. Clearly some way

of combining these two methods appears to be desirable. The experimental results using a replication

of the AdaBoost currently have produced seemingly poor results. More work is required to determine

the source of the problems causing these results. Experiments with LPBoost are ongoing, but it is

expected that improvements will be shown over the existing AdaBoost technique, due to the sparsity of

the solutions and the faster convergence of the algorithm.

Compressed sensing for radar

Experimental results have been presented that showed how the ADC sampling rate in a digital radar can

be reduced—without reduction in waveform bandwidth—through the use of CS. The use of a Gabor

or chirp dictionary and BP allowed reconstruction of the radar backscatter signal in such a way that the

range profiles and resulting range-frequency surfaces werestill acceptable for conventional use.

The reconstructed data had a worse SNR than the original data. This was attributed to the BP

process attempting to reconstruct the noise from the entries in the dictionary. Since these entries are

not noise like, the matched filter no longer produced a maximized SNR output. Reconstruction of the

samples in low SNR situations is a recognized problem in CS [142, 143, 167, 10]. However, there

are other ways to approximate theℓ0 solution, such as by greedy iterative methods (Matching Pursuit,

Orthogonal Matching Pursuit [56]), and more recently with non-convex penalties and DC programming

[62, 63]. Such methods are more robust to noise than BP and it is possible that the presented results can

be improved though use of these methods. Investigation of these methods forms the basis of ongoing

research by the authors.

One potential problem encountered using this methodology,is that for very fast moving objects

there are significant deviations from one fast-time sample to the next. This manifests as a delay and phase

shift. As a result, the reconstructions that are generated from a series of such samples are less accurate,

because a single set of atoms cannot represent these modulations. One possible way to circumvent this,

which could be implemented in hardware, would be to create atoms whose definition include sequences

of the atom shifted and translated by some predefined amount.Now each signal is convolved with its

corresponding entry (the later signals with the more shifted entries) before performing reconstruction.

This would not increase the computation at the learning stage but would increase the size of the potential

dictionary.

In conclusion, this work has demonstrated that CS can be applied to conventional pulse-Doppler

radars. The reconstructed signals are accurate, and so longas the reduction in received pulses is accept-

able, the AIC could be used in radar.
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Classification of tonality from EEG recordings

The results demonstrate that using standard modern signal processing and machine learning techniques

with careful manipulation of the data can enable us to differentiate between certain patterns of brain

activity. Coherence analysis and other types of cross-spectral analysis may be used to identify variations

which have similar spectral properties (high power in the same spectral frequency bands) if the variability

of two distinct time series is interrelated in the spectral domain. The results demonstrate that it is possibly

to reliably distinguish between whether a listener was attending to tonal or atonal music. This can be

considered to be a task of high-order cognitive processing,rather than a simple sensory input task. As

the differentiation was based on properties of the EEG over relatively long timespans (i.e. the length of

an epoch, or 8 seconds), this is clearly not due to simple evoked potentials, but instead represents a more

fundamental change in the pattern of processing over time.

Further analysis using KCCA demonstrated that through the use of unsupervised methods it is possi-

ble to significantly improve the classification accuracy. The new classification method defined in Section

3.5.1 using the shared semantic space given by projections from KCCA weight vectors together with a

nearest neighbour method was applied. This was able to distinguish between the tonal and atonal exper-

imental conditions with a high degree of accuracy. It was also shown that an SVM trained on projected

data performed extremely well. The success of both of these methods is due to the KCCA projections

acting as a data cleaning step, in which a form of semantic dimensionality reduction is occurring. As

the musical stimuli are sufficiently distinct between conditions, the additional information extracts the

directions correlated with the differing experimental conditions. The key ingredient in the approach is

the introduction of a clean source of data that encodes a complex description of the experience of the

subject. It would ssem that this approach to information extraction has enormous promise in a wide

range of signal processing and time series data analysis tasks.

Subtler discriminations in the task of the listener were also reliably discriminated, such as distin-

guishing a move from one key to a close or distant key. Howeverthe results were not as convincing

as for the tonal-atonal distinction. There are several possible reasons for this. Firstly, there were fewer

examples of these events by a factor of 3, which on its own increases the difficulty in learning. Secondly,

the cognitive task is clearly much more subtle than the tonalvs atonal case, and as such the changes in

patterns of activity are likely to be much more subtle, although this is of course speculative. Finally, the

type of relationship between the patterns of activity in this case may be qualitatively rather than quantita-

tively different, meaning that the signal processing techniques employed were unable to detect them (as

opposed to the learning algorithm). Further experiments with larger datasets (more repetitions or more

participants) could provide the answers to these questions.

EEG data is notoriously noisy and unreliable, so it is extremely encouraging that it is possible

to generate reliable discriminations using fully automatic procedures. It is usual to perform artefact

rejection by hand during the preprocessing stage, as well asother manual techniques. In this work,

automatic techniques were used at every stage of the process(preprocessing, feature extraction, data

treatment, and classification). The methods presented demonstrate the ability to reliably discriminate
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between brain signals associated with different sequencesof music in both within-subject and out-of-

subject paradigms.

Classification of genre from MEG recordings

In this study it was shown that classification of musical genre from brain signals alone is feasible, but

unreliable. It was shown that through the use of sparse multiview methods, such as SMFDA, it was

possible to improve the discrimination between different genres.

The procedures [164, 12] both incorporate information fromthe stimuli themselves to improve clas-

sification performance. These were extended through the useof Sparse Multiview Fisher Discriminant

Analysis (SMFDA) [13]. The key difference is that SMFDA useslabel information to find informative

projections. It is also important that the method is sparse,as the MEG data is extremely high dimen-

sional.

The key ingredient in the approach of this work is the introduction of a clean source of data that

encodes a complex description of the experience of the subject. It seems that this approach has enormous

promise in a wide range of signal processing and time series data analysis tasks.

6.2 Further Work

6.2.1 Synthesis of greedy/Nyström methods and MVL methods

A very natural extension to the work described in Chapter 3 would be a synthesis of the greedy methods

(and/or Nyström methods) with the MVL methods described later in the chapter. Specifically, SMFDA

lends itself to this method of optimisation. A feature that makes KFDA and its derivatives an interesting

choice in many applications is its strong connection to probabilistic approaches. Often it is not only

important to get a small generalisation error but also to be able to assign a confidence to the final classifi-

cation. Unlike for the SVM, the outputs of KFDA can (under certain assumptions) be directly interpreted

as probabilities. A drawback is that the theoretical framework to explain the good performance is some-

what lacking, this very much in contrast toe.g.SVMs. Whilst maximising the average margin instead of

the smallest margin does not seem to be a big difference most up to date theoretical guarantees are not

applicable. Two possible ways to derive generalization error bounds for KFDA based on stability and

algorithmic luckiness were described in [168]. Note, however, that through the use of greedy methods

such as the described in Section 3.2.1, we were able to produce generalisation error bounds relying on

the compression scheme introduced by the Matching Pursuit (MP) algorithm. This provides the possi-

bilty that this theoretical analysis could also be extendedto the Multiview setting if we apply the same

MP framework. Similarly, it was shown in Section 3.4.1 that by working in the space defined by the

Nyström projection, we are still able to learn efficiently,and it should be straightforward to verify that

this is still true when performing multiple Nyström projections in multiple views.
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6.2.2 Nonlinear Dynamics of Chaotic and Stochastic Systems

There is an emerging field of nonlinear multivariate time series analysis of neuropsychological signals.

Multivariate time series analysis is used in neurophysiology with the aim of studying simultaneously

recorded signals from different spatial locations. Until recently, the methods have focussed on searching

for linear dependencies (e.g.cross power spectral density, cross phase, coherence). Recently the theory

of nonlinear dynamical systems (“chaos theory”) has increasingly been employed to study the pattern

formation of complex neuronal networks in the brain [169, 170]. One approach to nonlinear time se-

ries analysis consists of reconstructing for time series ofEEG or MEG recordings the attractors of the

underlying dynamical system. These attractors can be characterised in various different ways (e.g.Corre-

lation dimension, Lyapunov exponents), which in turn can act as features for the application of Machine

Learning methods.

Here, in the case of the analysis of the brain as a dynamical system, we are interested in nonlinear

continuous autonomous conservative systems. At present, it is of no great benefit to analyse this any

deeper, as we will be attempting to derive the properties of the dynamical system (the brain) from a

temporal series of empirical measurements (EEG data). As such we will not be explicitly creating

systems of differential equations or any other such mathematical models. This model free approach

requires that extreme care is taken in the interpretation ofresults, as factors such as experimental noise

can introduce dramatic effects.

As mentioned before, we will not be constructing explicit mathematical models of the brain’s dy-

namics. Instead, we will be using empirical time series datafrom EEG recordings and attempting to

reconstruct the dynamics of the system in reverse. There areseveral steps that need to be taken in order

to achieve this. Firstly, the time series data must be embedded into “phase space”. There are methods for

achieving this, known as temporal and spatial embedding. Once the data has been embedded into phase

space, the process of characterising the reconstructed attractors can then occur. While it is outside the

present scope to define these techniques formally, an overview will be given below.

The methods that are of interest here are statistical measures, such as Correlation Dimension, Lya-

punov Exponents, and Entropy. Each of these methods attempts to characterise the stastical nature of

the attractor, such as the exponential rate of divergence ofnearby paths on the attractor in the case of

Lyapunov Exponents. The first two of these will be described below. The nonlinear entropy measure has

been excluded for brevity, but may also prove to be useful.

The correlation integral is the likelihood that two randomly chosen points of the attractor will be

closer thanr, as a function ofr, and is determined by from the distribution of all pairwise distances

of points on the attractor. This can be numerically estimated by performing linear regression between

log(C(r, n)) andlog(r). If the attractor dimension is finite, then asn increasesDc saturates.

The exponential instability of choatic systems is characterised by a spectrum of Lyapunov Ex-

ponents [171]. These are calculated by examining the time evolution of small perturbations of the a

trajectory. This then allows the linearisation of the evolution operator. Here is a list, taken from [169], of

other nonlinear time series methods, some of which are multivarate, that have been developed recently.
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Clearly there are too many methods to go into detail here, andtoo many to be able to experiment with all

of them. Some in particular, such as phase synchronisation in multivariate systems [172, 173, 174] ap-

pear to be well suited to the particular nature of the system we are dealing with (i.e.EEG measurements).

Some analysis of this is given below.

• Nonlinear forecasting

• Local deterministic properties of dynamics

• Determination of optimal probability by Gaussian vs deterministic models

• Cross recurrence

• False nearest neighbours

• ‘S’ statistic for time irreversibility

• Nonlinear cross prediction

• Unstable periodic orbits

• Phase synchronisation

• Phase synchronisation in multivariate systems

• Cross prediction measure of generalised synchronisation

• ‘S’ measure of generalised synchronisation

• Synchronisation likelihood

• Mutual dimension (shared DOF of 2 dynamical systems)

It would be an interesting line of research to see if any of these methods are capable of producing

stable sets of features that can then be employed for patternrecognition tasks. With the framework

outlined in this thesis, it would be a simple case of “plug-and-play” to evaluate various different nonlinear

multivariate methods for feature extraction from the brainsignals.

6.3 One-class Fisher Discriminant Analysis

The problem of detecting outliers is a classical topic in robust statistics. Recent methods to address

this problem include One-Class Support Vector Machines (OC-SVM) [175, 3] and One-Class Kernel

Fisher Discriminant Analysis (OCC-FDA) [176], where a kernel induced feature space is used to model

non-spherical distributions. A natural extension of the mathematical programming to KFDA of Mika

and colleagues [34, 35, 36] would be to the one-class setting, which can be solved using off-the-shelf

optimisers. The approach allows the enforcement of sparsity through anℓ1-norm constraint on the weight

vector. Estimation of the boundary positions could be performed by calculating the quantiles of the

posterior probability, which in turn are derived from the conditional class density of the single positive

class. This method is simpler to compute and more intuitive than (non-convex) method proposed in

[176]. Adjustments to the size of the enclosing hyperspherecan then be made using different quantile

values adjusted by a single parameter. In fact one could alsonaturally extend the MFDA described in

Section 3.5.2 to this setting, which would result in a novel Multiview One-Class algorithm.
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6.4 Summary and Conclusions

This thesis detailed theoretical and empirical work drawing from two main subject areas: Machine

Learning (ML) and Digital Signal Processing (DSP). A unifiedgeneral framework was given for the ap-

plication of sparse machine learning methods to multivariate signal processing (Chapter 3). In particular,

methods that enforce sparsity were employed for reasons of computational efficiency, regularisation, and

compressibility. The methods presented can be seen as modular building blocks that can be applied to a

variety of applications. Application specific prior knowledge can be used in various ways, resulting in a

flexible and powerful set of tools. The motivation for the methods is to be able to learn and generalise

from a set of multivariate signals.

In addition to testing on benchmark datasets, a series of empirical evaluations on real world datasets

were carried out. These included: the classification of musical genre from polyphonic audio files; a study

of how the sampling rate in a digital radar can be reduced through the use of Compressed Sensing (CS);

analysis of human perception of different modulations of musical key from Electroencephalography

(EEG) recordings; and classification of genre of musical pieces to which a listener is attending from

Magnetoencephalography (MEG) brain recordings. These applications demonstrate the efficacy of the

framework and highlight interesting directions of future research.
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Mathematical Addenda

Sets
Z Integers
R Real numbers
R

+ Positive real numbers
C Complex numbers
|∆| Cardinality of set∆

Spaces
H Hilbert space
F Feature space
L1(R) Functions such that

∫
|f(t)| dt < ∞

L2(R) Finite energy functions
∫
|f(t)|2 dt < ∞

ℓ1(R) Vector space of absolutely convergent series
ℓ2(R) Vector space of square summable sequences
< f, g > Inner product
‖f‖

1
ℓ1 or L1 norm

‖f‖
2

Euclidean or Hilbert space norm
‖A‖F Frobenius norm of matrixA

Scalars, vectors, and matrices
x ∈ R

n Examples
y ∈ {−1, 1} Labels (for classification)
y ∈ R Labels (for regression)
X = (x1, . . . ,xm)′ Inputs as row vectors
y Outputs as a vector
X The space of all possible inputs
Y The space of all possible outputs
S ∼ {X × Y} A set input output pairs drawn i.i.d. from a fixed but unknown distribution
n ∈ R

n Vector of i.i.d. random variables with mean0 and varianceσ2

A′ Transpose of matrixA
A† Moore-Penrose pseudo-inverse of matrixA

Σ = X′X Covariance matrix
G = XX′ Gram matrix
w Primal weight vector
α Dual weight vector
e Unit vector
1 Vector of all ones
I Identity matrix
K Kernel matrix has entriesK[i, j] = 〈φ(xi), φ(xj)〉
K[:, i] ith column ofK
i = {i1, . . . , ik} Set of indices
K[i, i] Square matrix defined by index seti

ξ ∈ R
n Vector of slack variables

γ Margin
ǫ Epsilon (small value)

Functions
φ(x) Feature map
κ Kernel function
L Loss function

Probability
Pr(x) Probability of eventx
E[x] Expected value ofx
R (True) Risk
R̂ Empirical Risk

Table A.1: Table of commonly used mathematical symbols
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