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Abstract

This thesis details theoretical and empirical work thatgrdrom two main subject areas: Machine
Learning [[MI) and Digital Signal Processirig (DSP). A unifgaheral framework is given for the appli-
cation of sparse machine learning methods to multivarigtea$ processing. In particular, methods that
enforce sparsity will be employed for reasons of computatiefficiency, regularisation, and compress-
ibility. The methods presented can be seen as modular bgildbcks that can be applied to a variety
of applications. Application specific prior knowledge canused in various ways, resulting in a flexible
and powerful set of tools. The motivation for the methodsibé able to learn and generalise from a set
of multivariate signals.

In addition to testing on benchmark datasets, a series ofrimapevaluations on real world
datasets were carried out. These included: the classificafi musical genre from polyphonic audio
files; a study of how the sampling rate in a digital radar carrdsuced through the use of Com-
pressed Sensing (CS); analysis of human perception ofreliffenodulations of musical key from
Electroencephalography (EEG) recordings; classificatfogenre of musical pieces to which a listener
is attending from Magnetoencephalograghy (MEG) brain ndiogs. These applications demonstrate

the efficacy of the framework and highlight interesting diiens of future research.



Acknowledgements

To my parents, who have supported my education from stamithfithank-you so much for giving me
this opportunity. To my supervisor John Shawe-Taylor, vehbseadth and depth of knowledge never
ceases to amaze me, thank-you for your guidance.

The research leading to the results presented here haseedeanding from the EPSRC grant
agreement EP-D063612-1earning the Structure of Music”



Contents




Contents 6

|2 1.12 Subspace Methcl)ds ................................. 37
|2.l.l3_M.quuL|ﬂALLe.a.Ln.|£]g ................................ 38

2.2 Digital Signal Processm@P) .............................. 39
MS. . . . oo 39

3.4.1 Theory of Support Vector MachirIESlM,)_i_n_Nm&mﬁumls ......... 7

|3 4.2 Experiments: Claqeificatlon ............................ 77




Contents 7

4.3.1 Review of Compressive ¢ iNg . . . o 109
4.3.2 ApplicationofCB ToRadar . . ... .. ... ... ... .. .. .0.o... 109
|4 3.3 __Experimental AooroaL:h

|6 1.1 Greedy metholds

|6 1.2 L ow-rank approximation methcl)ds

6.2.1 Synthesis of greedy/Nystrom methods and Multi-\ie&rning s 139

|6 2.2 Nonlinear Dynamics of Chaotic and Stochastic SvJ;tems ........... 140




Contents 8

144

147



List of Figures

|3_]_Di_a,grammatic view of the process of machine learninmfnoultivariate sian:JIs ..... 50
|3_Ll:zi_a,grammatic representation of the Nystrom melthod O o Y

|3 6 Plotof f(e)=(1—¢/2)In(1+ fﬁ\ —¢/2 and f(e) =2 for e € {0,0 5}| ...... 76
3.7 Error and run-time as a function bn ‘Breast Cancer’ deNE]tKEﬂA ....... 79
[ ]
3.8 Error and run-time as a function bon ‘Flare Solar’ fo ......... 80
3.9 Error and run-time as a function bon ‘Bodyfat’ by[KRR [NRR an@ ....... 81
3.10 Error and run-time as a functionfor ‘Housing’ by[KRR [NRR an@? ....... 82
3.11 Diagrammatic view of the process of @) MSLIDYMVL an@ M . . . . . . ... .. 83
3.12 Plates diagram showing the hierarchical Bayesiandraétation ot MEDA . . . . . . . . 87

3.13 Weightsgivenmammhimmmliset R V. |

3.14 Average precision recall curves for 3 VOC 2007 datafseE:ME@_a.n_d_EiﬁQ[l/I ... 95




LIST OF FIGURES 10

4.8 Range-frequency surfaces for van target %S.. e e
4.9 Range-frequency surfaces for person target gCS. ..... . ............115
4.10 i
4.11




List of Tables

3.1 Error estimates and Standard Deviati¢ng (SDJmmmmmets . 60

3.2 Error estimates f i i i set . ............ 61

Wms_m&ueﬂ_um_mﬂmmalaset ...................... 93

[
3.9 [BER andAP for four VOI datasets, for PicSQOM, KADAIGMum andMEDA . . . . . 94
|
3.10 Leave-one-out errors for each subjecifor SVM, KUCAVBANdMEDA . . . . . . . . 96

5.1 Testerrors for Within-subjeIE_SEM_Ql_asgiﬁ_Qalion ................... 124
5.2 Testerrors for Ieave-one-J)IS]LM&Las_s_i_[LQalig_n_u_singaLke_m_e_ls ........... 125

5.3 Test errors for within-subject classification uding KXIENN anm_d_asaiiﬁgaldn. . 126

5.4 Test errors for leave-one-subject NN ... 127




Chapter

Introduction

1.1 Machine Learning

[MLlis a relatively young field that can be considered an extensf traditional statistics, with influences
from optimisation, artificial intelligence, and theoreticomputer science (to name but a few). One of
the fundamental tenets B ML is statistical inference ancigien making, with a focus on prediction
performance of inferred models and exploratory data arsalys contrast to traditional statistics, there
is less focus on issues such as coveragethe interval for which it can be stated with a given level of
confidence contains at least a specified proportion of thepkgmin statistics, classical methods rely
heavily on assumptions which are often not met in practicepdrticular, it is often assumed that the
data residuals are normally distributed, at least appratety, or that the central limit theorem can be
relied on to produce normally distributed estimates. Uttfoately, when there are outliers in the data,
classical (linear) methods often have very poor perforraafidis calls for theoretically justified non-
linear methods which require fewer assumptions. This i@ffiproach that will be taken throughout this
thesis, with a focus on developing a computational methagiofor efficient inference with empirical
evaluation. This will be backed up through analysis drawmfstatistical learning theory, which allows
us to make guarantees about the generalisation perfornfanother relevant properties) of particular

algorithms given certain assumptions on the classes of data

1.2 Sparsity in Machine Learning

In information theory, the concept eédundancys defined as the total number of bits used to transfer
a message minus the number of bits of actual informationénstnal. INCMI redundancy appears
in data in many forms. Perhaps the most common is noise - whéliis is measurement noise or
system noise - but there are also often domain specific sewfoeedundancy due to the nature of the
data itself {.e. high self-similarity) or to the way in which it is collectedn the particular application

domains of interest in this thesis, namely multivariatenalg, we are faced with potentially high levels
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of both of these type of redundancy. Whenever there is reghoyin a dataset, there is the potential
for sparse representations. In its most literal form, sparsay involve a reduction in the number
of data dimensions (“dimensionality reduction”), or in thember of examples needed to represent a
pattern (“sample compression”). These two types of spaasé known as “primal” and “dual” sparsity
respectively, due to the concept of duality from the optatien community (see.g.[1]). Both of these

types of sparsity have attractive properties, including:

e data compression,

e subset or feature selection,

e statistical stability (in terms of the generalisation oftpens),

e robustnessife.to outliers or small departures from model assumptions),
e space efficiency, and

e faster computations (after learning).

One of the biggest drawbacks of sparse methods tends to eenis bf computational efficiency during
learning. Much of the work in this thesis will be focussed qtimisation methods for sparse learning
that are computationally efficient. The most well known epéen of sparse methods in statistics and
[MClinclude methods such as the Least Absolute Shrinkage atet®on Operatof (LASI0) [2] and
[SVM[3], which are sparse in the primal and dual respectivEhere are close relations between both of
these methods as outlined by [4], and indeed with many oftemse methods such[as TPBadst [5] and
Kernel Basis Pursuilt{KBP) [6]. Other classes of sparse ottinclude greedy methods such as Kernel
Matching Pursuiti{KMP) and methods based on random subgagngich as the Nystrom methdd [7].
Chaptef2 will outline these and other methods and try to ersisk the linkage between them, whilst
Chapte B builds on these methods to produce novel algasitivat are theoretically motivated and

empirically validated.

1.3 Multivariate Signal Processing

As already alluded to, the specific class of data that willheegarticular focus of this thesis is multi-
variate signals. The issues of redundancy and sparsityaatieydarly magnified within this domain, as
the sensors used to gather the signals are often spatiatynpal, and as a result their measurements
are often highly correlated. In addition, many real-woillghsls are affected by a high degree of noise
(which can be systemic noise or measurement noise). Fimalg/to high rates of sampling and dense
sensor grids, the data is often extremely high dimensidbé.therefore especially important that the
methods used are capable of learning in this difficult domain

Standard batch or onlife "ML methods often fall short whenlyairag signals because the data
violates one of the basic assumptions: that the datedispendently and identically distributefdi.d)).
There are of course a range[of ML methods that deal specjfizéth nonfi.i.dl data and in particular
time series data, but the models are often highly complexdandot scale well to large datasets. In

particular, these approaches often become intractabheimultivariate case - when we are dealing with
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large sets of signals (as is often the case in biologicaliegmns, for example). Another approach to
take is to break the signal into “chunks”, perform a serieD8R operations on these chunks, and use
the resulting data as examples in standard ML algorithmsilstwthe[i.i.d] assumption is still violated,
its impact is often softened as significant integration aivee takes place. However care must be taken
to avoid learning trivial relations due to this issue. Thganhenefit of this approach is that it means the
problem of inference on signals can be “modulariseé@’,broken into subproblems, and subsequently
highly developed methods from bdth DSP &ndIML can be applibis approach will form the basis of
the machine learning framework for multivariate signalgassing that will be outlined in Chapfér 3.
The links betweef D3P and ML run very deep, often with the sarathematical methods being
used for different applications. In essence, both fieldsraezested in the solutions to underdetermined
problems, inverse problems, and sparse estimatione(gef@]). This means that there is fertile ground
for cross-pollination of ideas; for example in Section 3v2ill show how “greedy” methods frofln D$P
can be used to sohe ML optimisation problems, and use titafidearning theory analysis to give

guarantees on the performance of the resulting algorithms.

1.4 Application Areas

1.4.1 Learning the Structure of Music

The funding and therefore main application area for thisigwas the EPSRC project entitled “Learning
the Structure of Music”, which encompasses three fieldsiefise, music cognition, representation, and
machine learning. The project was a collaborative effotivieen the Centre for Computational Statis-
tics and Machine Learning at University College London, thierdisciplinary Centre for Computer
Music Research at the University of Plymouth, the Leibnigtitnte for Neurobiology at the Univer-
sity of Magdeburg, and the Department of Computational &®rcn at the Johannes Kepler University
Linz. The aims of the project were to develop models and tth@sapply novel signal processing and
machine learning techniques to the analysis of both mudeta and brain imaging data on music cog-
nition. The metrics of success for the project were in terfrisoth theoretical results and experimental
results. Specifically, the goals were to deepen the undhlistg of the relationship between musical
structure and musical performance, quantifiable by thétald predict performer styles; to deepen the
understanding of the relationship between musical stra@nd listening experience, quantifiable by the
ability to predict patterns of brain activity; and to deyekystems for generative performance and music
composition, quantifiable by the ability to generate coheneusical performances and compositions.
The experimental research that falls within the scope efttiésis seeks to find common patterns be-
tween the features extracted from polyphonic music, andgpeesentation of musical structures within
the brain through the use bf EEG dnd MEG recordings. Thisshesherefore targeted at the first two
of the three goals described above. To this end, the expetaheesearch initially naturally followed
two paths, namely the understanding of polyphonic audioaignd of brain activity recordings, before

integrating the two to search for common patterns. Eachesdlstages will be described in detail.



1.4. Application Areas 15

1.4.2 Music Information Retrieval

In the first part of the research, the goal was to investigathrtiques for extracting features from mu-
sic in two forms: score-based representatiang.Musical Instrument Digital Interfacé (MIDI)), and

polyphonic music €.g. Waveform Audio File Formaf{WAVE) audio). As most musicatpés are not

available in the former of these representations, and gmabprocessing required to extract information
from polyphonic audio is much more complicated, the rese&cussed on polyphonic audio. When
available, however, score-based representations pravida source of information and this led to their
use in later experiments involving human subjects. A br@adye of audio features were considered,
including musical structure, melody, harmony, chord segas, or more general spectral or timbral
characteristics. An initial survey of the field identifiecatitlassification of musical genre from audio
files, as a fairly well researched area of music researchviged a good starting point. What would

appear on the surface to be a relatively trivial task, is alitydifficult for a number of reasons, not least
that the concept of a genre is rather subjective and amoghidawever despite these shortcomings,
useful progress has been made in this area, including itssigto the types of features that are appro-
priate for this kind of task and the types of algorithm begteslito the classification problem. Chapter
[4 describes research into this area, and includes a désargftthe novel approach taken, as well as a

discussion of the complications unearthed by this research

1.4.3 Automatic analysis of Brain Signals

Neuroscience, like many other areas of science, is expniga data explosion, driven both by improve-
ments in existing recording technologies, such as HEG, ME@3jtron Emission Tomographly (PET),
and functional Magnetic Resonance Imaging (fMRI). The ioyements increase the quantity of data
through these technologies have had a significant impacaeit land clinical neuroscience research.
An analysis bottleneck is inevitable as the collection dfadasing these techniques now outpaces the
development of new methods appropriate for analysis of #ta,dand the dimensionality of the data

increases as the sensors improve in spatial and tempoodlties.

1.4.4 Additional Application Areas

Traditional processing of digital radar relies on samplittghe Nyquist frequencyi-e. twice the fre-
quency of the highest part of the bandwidth required. Thigires extremely fast and expensive Ana-
logue to Digital Conversior (ADIC) equipment, often opargtat rates of up to &'Hz. Methods that
can reduce the frequency at which fhe ADC operates, or aligaly increase the signal bandwidth
whilst operating at the same frequency, would be of greaéfiieto the radar community. A form of
Compressed Sensinig (ICS) known Analogue to Information &winon [AIG) [9,[10] that reduces the
sampling frequency from the traditional Nyquist rate by ping at the information rate, rather than the

rate required to accurately reproduce the baseband sigitidde applied to real radar datalih 4.
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1.4.5 Published Works

The following publications have resulted from this workdamill be referenced where appropriate in the

text.

Peer reviewed technical reports

Diethe, T., & Shawe-Taylor, J. (2007). Linear Programming#&ting for the Classification of Mu-
sical Genre. Technical Report Presented at the NIPS 200ksivop Music, Brain & Cognition.
[11]

Diethe, T., Durrant, S., Shawe-Taylor, J., & Neubauer, H0@). Semantic Dimensionality Re-
duction for the Classification of EEG according to Musicahality. Technical Report Presented
at the NIPS 2008 workshop Learning from Multiple Sourceg] [1

Diethe, T., Hardoon, D.R., & Shawe-Taylor, J. (2008). Muéw Fisher Discriminant Analysis.
Technical Report Presented at the NIPS 2008 workshop Lregafrom Multiple Sources[13]

Peer reviewed conference papers

1.5

Diethe, T., Durrant, S., Shawe-Taylor, J., & Neubauer, 80@). Detection of Changes in Patterns
of Brain Activity According to Musical Tonality. Proceedjrs of IASTED Artificial Intelligence
and Applications.[[14]

Diethe, T., Hussain, Z., Hardoon, D.R., & Shawe-Taylor,2D09). Matching Pursuit Kernel
Fisher Discriminant Analysis. Proceedings of the 12thrimiéional Conference on Artificial In-
telligence and Statistics (AISTATS) 2009, 5, 121-128][15]

Diethe, T., Teodoru, G., Furl, N., & Shawe-Taylor, J. (2009parse Multiview Methods for
Classification of Musical Genre from Magnetoencephaldgydpecordings. Proceedings of the
7th Triennial Conference of European Society for the CagmBciences of Music (ESCOM 2009)
Jyvskyl, Finland, online @it t p: /7 urn. i/ URN. NBN: i :]yu-2009411242. [16]

Diethe, T., & Hussain, Z. (2009). Kernel Polytope Faces &tr®roceedings of ECML PKDD
2009, Part I, LNAI 5781, 290-301.. [17]

Smith, G.E., Diethe, T., Hussain, Z., Shawe-Taylor, J., &dé@n, D.R. (2010). Compressed
Sampling For Pulse Doppler Radar. Proceedings of RADAR 2[I&)

Structure of this thesis

The work in this thesis draws from several disparate aregessefirch, including digital signal processing,

machine learning, statistical learning theory, psychglegd neuroscience. The next Chapkér (2) will

introduce some concepts from signal processing and mataneing that underly the theoretical and

algorithmic developments, which are linked together intmberent framework in Chapter 3. The fol-

lowing two Chapterg.]14 arid 5, will describe the experimentak described above in more detail, with
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a focus on univariate and multivariate signal processispgeetively. The final Chaptdrl(6) concludes by

giving some philosophical insights and discussion of ideghfuture directions.



Chapter

Background

Abstract

Space and Time. In this chapter | will provide background information fdre two main subject areas
that form the basis of the thesis: Machine Learning and Sigftacessing. Machine Learning is a
field that has grown from other fields such as Atrtificial Irngghce, Statistics, Pattern Recognition,
Optimisation, and Theoretical Computer Science. The coes of the field is to find methods that learn
statistical patterns within data that are generalisableuioseen data using methods that are efficient
and mathematically grounded. Signal processing is brodddne sense that there are multiple goals,
such as control, data compression, data transmission, idemy filtering, smoothing, reconstruction,
identification etc., but narrower in the sense that it (gextlg) focusses on time-series data (which can
be continuous or discrete, real or complex, univariate odftivariate). Where these fields intersect

interesting challenges can be found that drive developiindmth fields.

2.1 Machine Learning

An important feature of most developments in the fieldofl Mattts derived directly from a computer
science background is the notion of modularity in algorithesign. Modular programming (also known
as ‘Divide-and-Conquer’) is a general approach to algorittesign which has several obvious advan-
tages: when a problem is divided into sub-problems, diffeteams/programmers/research groups can
work in parallel, reducing programme development timegpamming, debugging, testing and mainte-
nance are facilitated; the size of modules can be reducetiton@nly comprehensible and manageable
level; individual modules can be modified to run on otherfplahs; modules can be re-used within
a programme and across programmes. In the contdxt df ML, faoguexists due to the existence
of so calledkernel functiongwhich will be explained below), which allow the problem efining to

be decomposed into the following stages: preprocessimadpie extraction, kernel creation (or alter-

natively weak-learner generation - see Secfion 211.11,learning. This flow is depicted in Figure
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2. Common to both ML arldD$P is a desire not only to find sohgito problems, but also to do so

Data Pre- Feature Kernel 3 j: 78711657[%;:(; j: | Learning
processing | | |extraction| | | | Function | |_,! 'Projection | Ll | algorithm
Xi K x) | |1

(€%

Figure 2.1: Modularity of kernel methods

efficiently. Drawing from optimisation theory, much workvadves around trying to find more efficient
methods for solving problems that are exactly correct oraxmately correct. The choice of optimi-
sation method often comes down to a trade-off between caatipattime and memory requirements,
or alternatively between accuracy of solutions and the tirtekes to achieve them. Much of the focus
of the next Chapter will be on different optimisation methdd achieve sparse solutions in computa-
tionally efficient ways. These methods include convex ofstion, iterative “greedy” methods, and
methods that involve random subsampling or random prajesti Examples of each of these methods
will be introduced later in this Chapter.

[ML]deals with a wide variety of problems, from ranking of wphges to learning of trading rules
in financial markets. However the present focus will be omtioge fundamental problems of classifica-
tion, regression (function fitting and extrapolation), spiéce learning and outlier detection. Many more
complex tasks can be decomposed into these fundaments] task is important to focus on the foun-
dations before building up to more complex scenarios. Heweemmon to all of the tasks is a focus
on the generalisation ability of learnt models, so this Wwélthe key metric upon which the empirical
validation is grounded.

The first part of the Chapter will introduce some of the basitaepts mentioned above, firdily ML
methods: regression, classification, regularisationgmamnaximisation, boosting, subspace learning,
andMVTI; following from this will belDSIP concepts such as dicaries, bases, sparse representations,
multivariate signal processing, and compressed sensihgor€tical insights from Statistical Learning
Theory [SLT) will be used to justify the methods as they ateoitiuced.

2.1.1  Reproducing Kernel Hilbert Spaces

Outside of MIl, the Reproducing Kernel Hilbert Spades (RKH®thod provides a rigorous and ef-
fective framework for smooth multivariate interpolatioharbitrarily scattered data and for accurate
approximation of general multidimensional functions. &ia Hilbert spacé{ and an examplg;, the

reproducing property can be stated as follows,

f(xi) = (f, 55 7)) gy (2.1)

of the reproducing kernel for every functionf (x;) belonging toH. This property allows us to work in
the implicit feature space defined only with the inner prddpand is the key to kernel methodsforML.
This allows inner products betweeonlinearmappingss : x; — ¢(x;) € F of x; into afeature

spaceF, as long as the inner produetx;, x,) = (¢(x;), #(x;)) can be evaluated efficiently. In many
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cases, this inner product kernel functiondenoted by) can be evaluated much more efficiently than
the feature vector itself, which can even be infinite dimenai in principle. A commonly used kernel

function for which this is the case is the Radial Basis Fumc{RBE) kernel, which is defined as:

x; — x|
Kree(Xi, Xj) = €xp <%) . (2.2)

2.1.2 Regression

Given a sample& containing examples € R™ and labelgy € R. LetX = (x1,...,X,,)" be the input

vectors stored in matriX as row vectors, wheredenote the transpose of vectors or matrices.

Table[A] in AppendikA is included as reference for some efrtiore commonly used mathemat-

ical symbols.

The following assumptions will be made in order to aid préagon: Data is centered (or alterna-
tively a column of ones can be added as an extra feature, wihiidunction as the intercept); the data is
generatefl1.i.dl. according to an unknown but fixed distidouD. Furthermore, a Gaussian noise model

with zero mean is assumed.

2.1.3 Loss functions for regression

Before going on to give specific examples of learning algong for regression, it is worth introducing
the different loss functions that are commonly used foresgion, along with their relation to the noise

model.

Defining the square loss as

Lioy = 1) —yll3, 2.3)

wherej = f(x) is the estimate of the outpugs This is also known as Gaussian loss as minimising this
loss is the Maximum Likelihood solution if a Gaussian noisedel is assumed. Alternatively we can
denote the vector of slack variablgs= |y — y| as the differences between the true and estimated labels,

and we divide by a half to make algebra easier, giving

1
Liay =5 €l (2.4)

The/, loss is similarly defined as,

Lyy =€l (2.5)

whose minimisation leads to the Maximum Likelihood solatimder a Laplacian noise model. Defining
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Loss functionalC(¢) density modep(€)
e-insensitive €], s o (- [€].)
Laplacian €l 5 exp (— [|€lly)
Gaussian L11€l15 \/% exp 7%

|€] — £ otherwise exp (% _ |§|) otherwise
d

2 . 2 .

Huber’s robust loss { 2%' I€ll; iflg] < o x { P (_5_0) iflel <o
2

i€l

Polynomial

3

d d
ar(1/d) “XP (_ €

Table 2.1: Common loss functions and corresponding density modedgtad from [19]

a region of widthe around zero within which deviations are not penalised l¢adsec-insensitive loss,

Licay = max ([[€]]; —€,0) =[&]|.,, forthel; noise model, and (2.6)

Lyc oy = max ([[€][; —€,0) =[|€]|.,, forthels noise model. (2.7)

Some loss functions and their equivalent noise models asngdn Tabld 2. For simplicity, the rest
of this Section will use the square loss of Equafiod 2.3. Hawrany of the loss functions given (or
other loss functions not given due to space constraintspeaubstituted to give different optimisation
criteria. This approach is known as the General Linear M@IEN). In all of the cases outlined here,
the loss function is convex which leads to exact optimiggpimblems. However, non-differentiable loss

functions such as the linear loss or thmsensitive loss are typically harder to solve.

2.1.4 Linear regression in a feature space

Assume that data is generated according to a linear regressidel,
Yi = XiW + N, (2.8)

wheren is assumed to be an i.i.d. random variable (noise) with nteand variancer?. Let X =
(x1,...,%,) be the input vectors stored in matr& as row vectors, ang = (y1,...,ym) be a
vector of outputs. Assume the square loss as defined in BB, as this is the Maximum Likelihood
solution to the linear regression problem of Equalion 2rBuitively it makes sense as the squaring of
the errors places emphasis on larger errors whilst ignadhi@gign. The formulation for linear regression

that minimises this loss is then given by,

min £(X,y, w) (2.9)

= min || Xw —yl. (2.10)
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By differentiating with respect tev, equating to zero and rearranging, it can be seen that tharedosed

form solution forw™*,
w* = (X'X)" Xy, (2.11)
provided that the matriX’'X is invertible. The dual of this optimisation is formed addals,

moitn||XX/oz _YH; (2.12)

— min |[Ka — y|? | (2.13)
which in turn has a closed form solution,

o = (XX')ly, (2.14)

=K ly, (2.15)

again provided that the matriX X’ is invertible. The function to test this model on a new datapis

given by,
f(x) = K(i, )a™. (2.16)

This kernel trick is based on the reproducing property thticed in Sectioh 2.71.1, with the observation
that in the equation to compute* (2.24) as well as in the equation to evaluate the regressiactibn
(2.16), all that is needed are the vectgysn inner products with each other. It is therefore sufficient
know these inner products only, instead of the actual veatprObserve that the kernel regression form
of EquatiorZ.Ib when used with Bn RBF kernel has higlagacitythan the linear regression form of
EquatioriZ.TMi.e. it allows for a richer class of functions to be learnt thanlwy standard linear model.
Whilst this increase in capacity may be desirable if the datet in fact linear, in the presence of noise
this can cause problems due to the ability of the model to ditrthise ¢verfitting. In this situation,

some form ofcapacity controis required.

2.1.5 Stability of Regression

In statistics, this capacity control can be seen through veHanown as thdias variance trade-off20].
Typically, a model with low capacity such as the linear maafdEquatior 2,111, will have high bias as
it will fit only a very restricted class of data, whilst the iarce is low as perturbing some of the data
points will have little effect. In contrast, if a high capgcinodel is used such as Equation 2.15 with the
[RBH kernel as defined i (2.2), the function can fit the datatx@ow bias) but if even a single data
point is perturbed the function will change drasticallygtinivariance). Hence it would be desirable to
optimise the trade-off between these two in order to geaenatdels with predictive power on new data.

This is closely related to the concepts of overfitting andifagsation that will be discussed in Section
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Z15.

McDiarmid's inequality [21], which is a generalization obkiffding’s inequality[[2P], is a result in
probability theory that gives an upper bound on the proligfdr the value of a function depending on
multiple independent random variables to deviate fromxgseeted value. This is a result that comes
from the law of large numbers by Chernoff in relation to thexargence of Bernoulli trial$ [23]. The

risk associated with a functiofiis defined as the expectation of the loss function,

R = Ex,ye{Xxy}[L(f(X, y))]a (217)

and the empirical risk as the expectation of a particulansars,

R = Bxyes[L(f(x)]

= =) £y, 218)
i=1

Given random variables; lying in the rangdas, b;], the probability that the expected empirical rigk
differs from the true risk (or errofR by a values can be bounded as follows,

. 2me?
Pr (|R - R| > e) < 2exp (—ﬁ) , (2.19)

This shows that there is an exponential decay of the differén the probabilities as the sample size
increases. This gives us a clue that to learn well, the bexj that one can do is to increase the amount
of data available. However, if this is not possible, the astlyer option is to control the capacity of the

the learning algorithm.

Another viewpoint introduced by Vapnik and Chervonenkisthie notion of Structural Risk
Minimisation [SRM) [24/25[26]. The real err® is upper bounded by the empirical errBrand
another value called thetructural risk R 5. The structural risk is a theoretical criterion that can bme
puted for certain classes of models and estimated in most otises. Choose the model that achieves

the lowest upper bound.
R=R+Rs. (2.20)

The idea is to impose a structure on the class of admissilletiins 7, such that each individual
function f; which has lower capacity than the neft, ;. This is depicted diagrammatically in Figure
[22. Another closely related approach to capacity conseégularisation which will be discussed
below in Sectio 2.116. If we choose to control the capac#ing a class of functions with bounded
norm, we are in fact using the set of regularised functiotéclvgives an additional justification for this

type of regularisation.
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Figure 2.2: Structural Risk Minimisation (adapted frofn [19]). The priple is to find the optimal functiofi* that
satisfies the trade-off between low capacity and low trajraérror

2.1.6 Regularisation

Inverse problems, such ds (2.22) ahd (R.24) are dftggosed This is usually due to the condition
numb(ﬂ of the matrix to be inverted, meaning that it needs to be rexftated for numerical treatment.
Typically this involves including additional assumptigssch as smoothness of solutions. This process
is known in the statistics community as regularisation, @ikthonov regularisation is one of the most
commonly used types of regularisation for the solutionéér ill-posed problem5[27]. There is also a
secondary reason why regularisation is importamérfitting Overfitting occurs when an inferred model
describes the noise in the data rather than the underlyittgrpaOverfitting generally occurs when the
complexity of the model is too high in relation to the quantf data availablei(e. in terms of degrees

of freedom). A model which has been overfit will generally égoor generalisation performance on

unseen data. Tikhonov regularisation is defined as,
. 2 2
min [ Xw — y|[3 + [|Awl]3, (2.21)

whereA is the Tikhonov matrix. Although at first sight the choice bétsolution to this regularised
problem may look artificial, the process can be justified feBayesian point of view. Note that for an
ill-posed problem one must necessarily introduce sometiaddi assumptions in order to get a stable
solution. A statistical assumption might be tlapriori it is known thatX is a random variable drawn
from a multivariate normal distribution, which for simgtizis assumed to be mean zero and that each
component is independent with standard deviatipnThe data is also subject to noise, and we take the

errors iny to be also independent with zero mean and standard deviafiodnder these assumptions,

1A “bad” condition number is one in which the quotient betw#e® maximal and minimal eigenvalue Bf = X’X is large
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according to Bayes’ theorem the Tikhonov-regularizedtsmfuis the most probable solution given the
data and the-priori distribution of X. The Tikhonov matrix is them\ = \I for Tikhonov factor

A = oy/0,. Of course this Tikhonov factor is not known, so must be estéd in some way. If the
assumption of normality is replaced by assumptions of haedesticity and that errors are uncorrelated,
and still assume zero mean, then the Gauss-Markov theorghesrthat the solution is a minimal
unbiased estimate [28].

It is therefore justified to set the Tikhonov matrix to be a tiplg of the identity matrixA = AI;
this method is known in the statistics dnd ML literature adgRiRegressioi (BR).

Ridge Regression
The primal formulation fof RR is therefore given by,
min || Xw —y |5+ Allwll3. (2.22)
Similarly to (Z.11), a closed form solution for RR exists,
wh = (X'X + \I)" ' Xy. (2.23)

Using the duality theory of optimisation and the kernelkrdmce more, we obtain the following formu-
lation for dua[RR and hence Kernel Ridge Regresdion (KRR),

min [XX'a — |5 + A | X all;

=min |[Ke - y|3 + \’Kex (2.24)
As with the unregularised case, there is again a closed folutien for thig
o = (XX + )ty
= (K+ D) y. (2.25)
2.1.7 Sparse Regression

There is, however, nothing in either the prinfal{(2.22) ordbal [Z.2#) formulations that would give rise
to sparsity in the solutionsx* or a* respectively). If we have prior knowledge that the weighttee
generating the data was sparse, or alternatively we wargrfonon feature selection or subset selection,

the above formulation can be modified to give sparse solsti®eplacing thé;-norm on the weights

2This comes from the normal equatiéK? + A\K)a = Ky, so the closed form solution again depend®b(or XX’) being
invertible.
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{1 norm ball f5 norm ball

Figure 2.3: Depiction of minimisation onto th& and /> norm balls inR?. Note that at the optimal solution, the
first coefficient (x-axis) is zero, and hence the solutiop@&se. Note also that this will almost never be the case for
the 2 norm.

with the pseuddo-normH leads to the following optimisation,

min || Xw — y |5 + Allwll, (2.26)
Finding this¢, solution is known to b&v P—hard. However thé, optimisation problem

min [ Xw — y|3 + Allwl, (2.27)

is a convex quadratic programming problem, and is known pr@pmate the/y solution (under certain
conditions the solutions are identical s=g.[29]). Since it is non-differentiable, unlike(2]11) &r22),
there is no closed-form solution. The problem is variousigwn as th€ LASSIO [30] and Basis Pursuit
(BP) [31]. The reason for the sparsitydnsolutions can be seen graphically in Figlurd 2.3. Methods for
solving thd LASSO problem include the forward stepwiseesgion algorithni[32], or the Least Angle
Regression Solve[ (LARS)[2]. The TARS algorithm computes full regularisation path, which is a
piecewise linear function between= 0 and\ = oo, which is a useful property if cross-validatidn (CV)
is employed for model selection.

Whilst the dual optimisation fdr LASSO can be formulated][d8does not lend itself easily to
“kernelisation” -i.e. the weights cannot easily be represented as a linear cotidrirtd the data points
in the formw = X’«. However, it is possible to perform “soft” kernelisationhere the inputs are
simply replaced with the kernel matrix and the primal weigéttor is replaced with the “soft” dual.

This is the approach taken Ky [6] for the algorithm they [CBIFK the formulation for which is,
min ||[Ka — |3 + A el , (2.28)

which can then be solved using any of the methods used to E#).

3The ¢, pseudo-norm of a vector is simply a count of the non-zerdesntr
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2.1.8 Classification

This Section will introduce methods for classificatione. where we want to separate our data into
two or more classes. The most obvious way to do this is to eraadiscriminant function, and as
such two methods will be introduced for creating such fuori Fisher Discriminant Analysis (FDDA)
and the margin-based approach of the Support Vector Mad&¥®1). Following on from this two
further algorithms will be presented which are based on titéeon of boosting- Adaptive Boosting
(AdaBoost) and Linear Programming Boostihg (LPBbost) - simalv how they are related to the margin
Bioto thd LASSD approach described

S
|V,

maximisation principle of theEZSVM but also in the casé of L6

earlier.

Preliminaries

Assume we have a sampfecontaining examples € R™ and labelsy € {—1,1}. As before let
X = (x1,...,X,)" be the input vectors stored in matiX as row vectors, angt = (y1,...,ym) bea
vector of outputs, wheredenote the transpose of vectors or matrices. For simpitoill be assumed
that the examples are already projected into the kerneletkfeature space, so that the kernel mai€ix

has entrieX[i, j] = (x;,x;).

2.1.9 Loss functions for classification

Before going on to give specific examples of learning algoni for classification, as with the regression
case it is worth introducing the different loss functionattare commonly used for classification. Again
there is a focus on convex functions, as these lead to otiiois problems that can (in general) be

solved exactly. Perhaps the simplest loss function foisfiaation is thezero-ondoss, defined as,

o 0 if y; =sgn(f(z)) (2.29)

1 otherwise.

If the output of the classifier can be considered a confideaed,lit may make sense to penalise larger

errors more. A simple modification of the zero-one loss ldadsehingeloss,

0 if i i) > 1
r_ it yif(z:) (2.30)
1—yif(z;) otherwise

wheref(x;) € R. Thisin turn closely resembles thagisticloss, defined as

L =log (1 +exp (—yif(z:)))- (2.31)

The square loss, which is closely related to the square twsedression, and is defined as,
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Finally, the linear loss, which relates to a Laplace noisel@has it did for regression, is defined as,

L=1—yif(x:)].

(2.33)

The relations between these loss function can be seen gadlptin FigurelZ#. These loss functions

Loss

Convex loss functions
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Figure 2.4: Some examples of convex loss functions used in classificht@ie that the hinge loss follows the linear
loss for margin values less than 1, and is zero otherwiseo Adde that the hinge loss is a convex upper bound on

the zero-one loss.

will play an important role in the rest of the discussion oassification. | will introduc&FDA and its

kernel equivalent, before showing how this can be cast am@s®ptimisation problem using the square

loss or the logistic loss.

Fisher Discriminant Analysis

We first review Kernel Fisher Discriminant Analys[s (KEDA) the form given by[[B]. The Fisher

discriminant choosew to solve the following optimisation problem

wX'yy' Xw

max

w  wWX'BXw

(2.34)
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whereB is a matrix incorporating the label information and the bakof the dataset as follows:

B=D-Ct-C~

whereD is a diagonal matrix with entries

2m~/m if y; = +1

D, =
2m*t/m ify; = —1
andC* andC~ are given by
o+ _ ) 2/ (mmT) ifys =41 =y,
Y 0 otherwise
3 2mT/(mm™) iy, =—-1=vy;
C; =

0 otherwise

Note that for balanced datasdswill be close to the identity matriX. The motivation for this
choice is that the direction chosen maximises the separafithe means of each class scaled by the
variances in that direction.

To solve this problem in the kernel defined feature splage first need to show that there exists
a linear expansiow = " | a;x; of the primal weight vectow [34,[3]. This leads to the following

optimisation problem:

o' XX'yy' XX«

P XX BXX o (235)
. o' Kyy'Ka
Y WKBKa
o' Qa
= U KRa (2.36)

whereQ = Kyy'K andR = BK. The bias ternb must be calculated separately, and there is no fixed
way to do this. The most common method is to adjustich that the decision boundary bisects the line

joining the two centres of mass,

b= —0.5y'Xw

= —-0.5y'Ka (2.37)

The classification function for KFDA is then,

f(xi) = sgn({w, xi) + )
=sgn(K[:, i) a +b), (2.38)

by substitutingw = X’a. There are several ways in which the optimisation prob[efgPcan then
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be solved. Some algebra shows that it can be solved as theatjseé eigenproble®a = AKR, by
selecting thex corresponding to the largest generalised eigenvalwe in closed form as given bi/[3],
a = R~ 'y. Note thatR is likely to be singular, or at best ill-conditioned, and s@gularised solution

is obtained by substitutinR = R + uI, wherey is a regularisation constant. This is equivalent to

imposing ans penalty on the primal weight vector.

However, it has been shown [35,36] that it is possible to@kfie structure of(2.36) to formulate

KFDA as a quadratic program. This is reviewed below.

Convex Fisher Discriminant Analysis

First note that any multiple af is also a solution td (2.36). One can further use the obdervttat the
matrix Q is rank one. This means thatKy can be fixed to any non-zero valuweg.2. By minimising

the denominator, the following quadratic programme result

min o’KRa
(a7

st. oKy =2. (2.39)

Casting the optimisation problein (2]136) as the convex dpttion problem[{2.39) gives several advan-
tages. Firstly, for large sample size solving the eigenproblem is very costly due to the siz@aind

R. The convex formulation also avoids invertiigin the closed form solution which can be unstable.
Itis also possible to introduce sparsity into #esolutions through the use of a different regularisation
operator. Finally, it will enable the extension of the fodation naturally to multiple views, which is not
easily done otherwise (see Section 3.5.2 in the followingp@ér). However the unintuitive matriz

still remains in this formulation. Using the fact that KEDAmmises the variance of the data along the
projection, whilst maximising the separation of the classeis possible to proceed by characterising

the variance within a vector of slack variables R”™. The variance can then be directly minimised as

follows,
min  L(€) + pP(c)
[
st. Ka+1lb=y+¢
e’ =0 for c=1,2, (2.40)
where
1 if Y = C

<n

0 otherwise.
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L(+), P(-) are the loss function and regularisation functions resyelgtas follows,

L&) = l€l>. (2.41)
Pla) = d'Ka; (2.42)

where: the first constraint forces the outputs onto the dis=ls whilst minimising their variance; the
second constraint ensures that the label mean for eachisldmslabel for that classe. for £-1 labels,
and the average distance between the classes is two. It Gasbewn by[35] that any optimal solution
a of (Z.40Q) is also a solution of (2Z.89). Note that now the basatis explicitly in the optimisation, and
therefore does not need to be calculated separately. Thifation [Z.40) has appealing properties that

will be used later.

2.1.10 Maximum Margin classification

Geometrically speaking, a maximum-margin hyperplane igeetplane that separates two sets of points
such that it is equidistant from the closest pointin eaclasdtis perpendicular to the line joining the two
points. ICMI, the concept of large margins encompasses miiffieyent approaches to the classification
of data from examples, including boosting, mathematicadjpgmming, neural networks, and SYM. The
key fact is that it is the margin (which can be viewed as a cenfig level) of a classification rather than
a raw training error that is used when training a classifi@f.[3his is known as tha@ard margin’SVY

in which the marginy is maximised as follows,

min  — 7y (2.43)

w,b,y

2
[wily = 1.

Note that this is equivalent to using the hinge loss defineignation [2.30). Cortes and Vapnik [38]
modified the maximum margin idea (also known as hard margiajlow for mislabeled examples. In
the absence of a hyperplane that can split the positive agatine examples, the soft margin method
chooses a hyperplane that splits the examples as cleantsaibfe, while still maximizing the distance
to the nearest cleanly split examples. The method introsistaek variabless;, which measure the
degree of misclassification of the point The objective function is then increased by a function Wwhic
penalises non-zery, and the optimisation becomes a trade off between a larggimend a small error

penalty. The2-norm soft margili SVIV defined as the following optimisation problem

min  —~+C|€|3 (2.44)

w,b,v,

2
[wily =1
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where the parametér' controls the trade-off between maximising the margin ardsize of the slack
variables. The resulting algorithm is robust to noise indhta but not sparse in its solutions. In order to

enforce sparsity, thé, norm is used once again, giving thenorm soft margii.SVIM

min 7+ C ¢, (2.45)

w,0,7,
wlis =1.

§i>0; izl,...,m.

The dual of this optimisation problem can then be derivedngius the kernel formulation,

moién Z 0G0y (T, T5) (2.46)
i,j=1

m

s.t. Zaiyi =0,
i=1
m
Zai =1,and
i=1

0<a; <C, i=1,...,m

The[SVYM in this form can be solved by quadratic programmingglternatively via iterative methods
such as the Sequential Minimal Optimisatibn (SMO) algoni{89].

2.1.11 Boosting

The term boosting describes any meta-algorithm for perfograupervised learning, in which a set of
“weak learners” create a single “strong learner”. A weakneais defined to be a classifier which is
only slightly correlated with the true classificatidre(slightly better than chance). By contrast, a strong
learner is strongly correlated with the true classificafiéj.

Boosting algorithms are typically iterative, incremehtaldding weak learners to a final strong
learner. At every iteration, a weak learner learns the imginlata with respect to a distribution. The
weak learner is then added to the current strong learnes i$hypically done by weighting the weak
learner in some manner, which is typically related to theknearner’s accuracy. After the weak learner
is added to the strong learner, the data is reweighted: eeantipat are misclassified gain weight and
examples that are classified correctly lose weight. Thusyréuweak learners will focus more on the

examples that previous weak learners misclassified.

Adaboost

is the best known example of a boosting algorithi}. [¥vithout a-priori knowledge, small

decision trees, or decision stumps (decision trees withléaees) are often used. The algorithm works
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by iteratively adding in the weak learner that minimiseseh®r with respect to the distributiob; at

stept over the weak learners,

h(t) = arg hmé% € = ZDt(i)[yi # hj(xi)], (2.47)

i=1

and then updating the distribution by using the weightedreate of the classifief;,

1 1-—
ay = = log c (2.48)
2 €
as follows,
o Di(i —oiYihe (X
Dy (i) = 2R Catiilxi) (2.49)

VA

whereZ is a normalisation constant to ensure thaf’ | D;;1(i) = 1.

The paper([42] describes how the original[EI] AdaBbost métitan be extended to the multiclass
casg. One of the approaches taken, known as AdaBoost.MH, usésatmning loss of the hypotheses
generated frond orthogonal binary classification problems. The Hamming lcan be regarded as an
average of the error rateon these binary problems. Formally, for each weak hypothésisX — 2Y,

and with respect to a distributial, the loss is

LBy [h0AY]], (250)

whereA denotes the symmetric difference, and the leadifig ensures that values lie in [0,1].
The resulting algorithm, called AdaBoost.MH, maintaingstribution over examplesand labels
£. On roundt, the weak learner accepts such a distribufigrand the training set, and generates a weak

hypothesidi; : X x Y — R. This reduction leads to the choice of final hypothesis, Wisc

T
H(x,{) = sgn (Z atht(x,€)> . (2.51)

t=1
The algorithm for AdaBoost.MH is given in Algorithm 1,

Theorem 2.1.1. The reduction used to derive this algorithm implies a boundi® Hamming loss of

the final hypothesis:

T
E(H) <Y Z (2.52)
t=1
In the binary classification problem, the goal is to minimise

Zy =Y Dy(i, £) exp(— s Yi oy he(xi, 0)) (2.53)
i0

4The authors also consider the more general multi-labelicashich a single example may belong to any number of classes.
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Algorithm 1 AdaBoost.MH: A multiclass version of AdaBoost based on Hanghhoss

Given training example&sy, Y1), . .. (Xm, Yo ), Y € {+1, 71}2, number of iteration§’
Initialise Dy (i, ) = LT
fort=1...7Tdo

pass distributiorD, to weak learner

get weak hypothesis; : X x Y - R

choosey; (based on performance bf)

update

Dy11(i, £) = Dy (i, €) exp(—a Y 0y he (%, 0)) | 2y

whereZ; is a normalisation factor chosen so ttit, ; will be a distribution
end for
Output final hypothesist (x, ¢) = sign(ZtT:1 arhi(x,0))

on each round, where=1...m and¢ = 1...k (m is the number of examples aids the number of

classes). Since eaéh is required to be in the rangel, +1, eacha; is chosen as follows,

1 1+ Tt
=21 2.54
o= oy (152 (254)
where
re =Y Dy(i,0)Y(iyhe(xi,0) (2.55)
il
This gives

Zy =1/1—1r2 (2.56)

and the goal of the weak learner becomes maximisatign, pfThe quantity(1 — ;) /2 is the weighted

Hamming loss with respect tD;.

AdaBoobt to the previous discussion of loss fenstiin Sectioh 2.119, the statistical
viewpoint is that boosting can be seen as the minimisati@aafnvex loss function over a convex set of

functions [43]. Specifically, the loss being minimized is #xponential loss
L= exp(—yiH(x:)) (2.57)
1=1

whereH (x;) = Zthl f(x;) is the final hypothesis.

Linear Programming Boosting (LPBoost)

Referring back to the 1-norm soft mardin SYM in Equatibn B},4t is possible to perform the same

optimisation using the weak hypothesis matx whereH = ", y;h(x;,-), which is equivalent to
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v’ (¢(x) + b). This would result in the following optimisation (written matrix form),

min  —vy+ C1'¢ (2.58)

w,7,€

st. Hw>~1—-¢,

2
w5 =1,

wherel is the vector of all ones. Since the number of weak learnettsammatrixH is potentially very
large, it is logical to enforce sparsity in the primal weigbttorw, which can be done by replacing the

£5-norm constraint with a#i; -norm constraint. This results in the following linear pragime,

min£ —v+C1'¢ (2.59)

w7,
s.t. Hw >~1—€,
1'w =1,

w >0, £€>0.

The dual of this optimisation can then be formulated as ¥edlo

Iniél I3 (2.60)
st. Ha <31,

o =1,

0<a<(1,

with dual variablesoe and 3, and the box constraints on tle variables are due to the primal slack

variablest.

The paper by([5] describes an efficient algorithm called [BBanimics a simplex based method
known as column generation in order to solve the optimisaimblem [Z.60). The simplex algorithm
is a method for finding the numerical solution of the lineawgramming problem, first introduced by
George Dantzig [44]. A simplex is a polytopewft 1 vertices inn dimensions: a polygon on a line, a

pyramid on a plane, etc.

The column generation method involves formulating the [obas if all possible weak hypotheses
had already been generated, with the resulting labels biagdhre new feature space of the problem. The
task that is solved by boosting is to construct a learningtion within the output space that minimises
misclassification error and maximises the (soft) margineyTprove that for the purposes of classifi-
cation, minimising the 1-norm soft margin error functioneiguivalent to optimising a generalisation

error bound. The linear programme is efficiently solved gsitechnique known as column generation.

[CPBoagst has the advantages over gradient based methodisasukdaBoost) that it converges in a fi-

nite number of iterations to a global solution that is oplimahin the hypothesis space, and that these
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solutions are very sparse.

The paper cites results that demonstrate[fhat LPBoostpesfoompetitively witi AdaBaoakst on a
variety of datasets. The authors also demonstrate thatigbeitam is computationally tractable. For
both small and large datasets, the computation of the weakdes outweighs the linear programme
running time, which means that in general the time[for [PHdi@sations are in the same order of
magnitude as"’AdaBadst, though slightly higher.

Many linear programs are too large to consider all the véggmbxplicitly. Since most of the vari-
ables will be zero in the optimal solution, only a subset afalzles need to be considered. Column
generation generates only variables which have the pateatimprove the objective functioné. neg-
ative reduced cost). The problem being solved is split im problems, known as the master problem
and the subproblem. The master problem is the original problith only a subset of variables, and the
subproblem is a new problem created to identify a new vegiabhe objective function of the subprob-
lem is the reduced cost of the new variable with respect tatineent dual variableg. TPBobst can be
proved to converge in a finite number of iterations to a gliybaptimal solution within the hypothesis
space. In the dual form the constraints are the weak learners

The algorithm proceeds by adding a weak learner, and chgdkiine linear programme is solved.
If not then the weak learner is found that violates the caiists the most. This process is repeated until

the linear programme constraints are not violated, whialddeo the global optimum solutidn. LPBdost

iterations are typically slower thd Bdost, but it caigess much more quickly. The TPBaobst algo-

rithm is given in Algorithni 2.

Algorithm 2 [[PBoagst algorithm

Given training example&ky, 1), . - . (Xm, Ym), ¥i € {+1, —1}, upper limit on weight«”
Initialise c <~ L1, H « ()
while H« > 5 do

h < maxpey Z:’;l Yy,

H « (y)

Updatea: Solve Linear Programme:

argmin [
st. Ha <31,
0<a<(Cl.

end while
Setw to Lagrangian multipliers

Although at first the boosting methods described above sat#rerdisjoint from the convex meth-
ods described under the general loss minimisation andadgation framework, there are in fact distinct

similarities. If one considers that a gendrallML princifgea minimise the regularised empirical loss:
min £ + P(a), (2.61)
«

it can be seen that in fact there is a direct relation betidéBdost and_ LASSO which both uge
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regularisation with differening loss functions (hingedamnd quadrtic loss respectively), and between
regularised forms di_’AdaBodst[45] (exponential loss) ame[EVM (hinge loss). We can also see the
relation between KRR and the convex formulatioh of KEDA giute Sectior 2.1]9 where the differences

are only in the constraints. See for example [46] 47, 48]doent discussions of this issue.

2.1.12 Subspace Methods

In standard single view subspace learning, a parallel calndyen between subspace projections that are
independent of the label space, such as Principal CompeAeatysis[[PCA), and those that incorporate
label information, such as Fisher Discriminant Analy§I®A. searches for directions in the
data that have largest variance and project the data ontbsetsof these directions. In this way a
lower dimensional representation of the data is obtainat ¢aptures most of the variance._BCA is
an unsupervised technique and as such does not includeitdbehation of the data. For instance,
given 2-dimensional data from two classes forming two lond #hin clusters, such that the clusters
are positioned in parallel and very closely together, thal teariance ignoring the labels would be in
the lengthwise direction of the clusters. For classifiagtibis would be a poor projection, because the
labels would be evenly mixed. A much more useful projectiould be orthogonal to the clusterg.in
the direction of least overall variance, which would petffeseparate the two classes. We would then
perform classification in this 1-dimensional spdce. DA lddind exactly this projection.

However if classification is not the goal, but instead thel godo take a subset of the principal
axes of the training data and project both the train and t#st idto the space spanned by this subset of

eigenvectors, the PGA performs this projection by maxingighe following criterion,

max w'Xw, (2.62)
st wlly =1,

whereX: is the covariance matrix of theentreddata -i.e. & = L 3" (x; — p)(x; — ,uﬂ. The dual

7=

form of[PCA can be formed as follows,

max o XX'XX'«a, (2.63)
«

s.t. o/ XX a=1.

Using again the kernel trick, the nonlinear versiof_of PCAwWn as Kernel Principal Components
Analysis [KPCA) [49] is defined as follows,

max o'Ka, (2.64)

(o7

st. odKa=1.

5The purpose of centering data (transforming data to z-sgiseo remove undesirable fluctuations. Part ofThe PCAtismiu
is the minimisation of the sum of squared errors. Overadl,gbal is to find the best affine linear subspace.
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Each of these problems can be solved efficiently as eigetgmsh

2.1.13 Multi-view Learning

Canonical Correlation Analysi§ (CTA), introduced by Harélotelling in 1936([50], is a method of
correlating linear relationships between two sets of rdinttensional variable§._CGA makes use of two
views of the same underlying semantic object to extract ancomrepresentation of the semantics.
can be viewed as finding basis vectors for two sets of bl$asuch that the correlations between
the projections onto these basis vectogs= w,¢.(x) andz, = wy,¢n(x) are mutually maximised.
Defining the covariance between the two viewssag and the variance of the views a%,, and 3,

respectively, we have the following optimisation problem,

max W, X,,wp (2.65)
Wq ,Wp

/
St WoXaaWe =1,

wgzbbwb =1.

The major limitation o CCA is its linearity, but the methodrcbe extended to find nonlinear rela-
tionships using a the kernel trick once again. Kernel CaradnCorrelation AnalysisC.{KCCA) is an
implementation of this method that results in a nonlineasiom offCCA. Each of the two views of the
data are projected into distinct feature spaces suchkthat X! o, andw;, = Xj o, before performing
in the new feature space. The dual forfi of GCA is

max o), X, X! X, X}y (2.66)

Qg ,Op
s.t. a;XaX;XaX;aa =1,

agXbngngab = 1,

(2.67)
which leads to the kernelised form, KCCA
max o, K. Ky (2.68)

Qg p
!/
st. A Kla, =1,

angab = 1,

whereK, andK, are the kernel matrices of the two views.

There have been several successful experimental applisatf KCCA on bilingual text corpora,
firstly by [51] and later by[[52]. In the latter study the auth@ompare the performance[of KCCA
with alternative retrieval method based on the Generaligador Space Mode[{GVSM), which aims

to capture correlations between terms by looking at co+1weage information. Their results show that



2.2. Digital Signal Processing (DISP) 39

Random Signals

Analysis Filtering
Spectral Signal Adaptive Array
Estimation Modelling Filtering Processing

Figure 2.5: Common tasks in Digital Signal Processing

[KCCAloutperform§ GVSM in both in content retrieval and in medtrieval tasks.

Recent work[[5B] presents a novel method for solVing CCA iparse convex framework using a
greedy least squares approach, called Sparse Canonicald@ion Analysis[[SCCRA). Stability analysis
using Rademacher Complexity is givenfor SQCA which prosiddéound on the quality of the patterns
found. The authors demonstrate on a paired English-Spaaighis that the proposed method is able to
outperfornf KCCA with a tighter bound.

2.2 Digital Signal Processing (DSP)

In this Section the focus moves to the principles underlfa&g. It will become clear that there are many
links betweell M1 an D3P, and that both fields are able to draeech other to bring novel advances.
For the sake of brevity, it will be assumed that the AnaloguBigital Conversion[[{ADC) process has
already taken place, and as such all of the signals undeidszaton are discrete with equal time steps.
All of the theory is able to deal with unequal time steps, Imat &nalysis becomes more complicated.
However some of the formulas used to describe quantitiepadations will be given for continuous
signals, as their presentation is more straightforwardh&common tasks [DD$P are depicted in Figure
[2.3. Within the scope of this thesis the primary concesigaal analysisand hence spectral estimation

and signal modelling. However many results can be carried w/filtering as well.

2.2.1 Bases, Frames, Dictionaries and Transforms

A frame of a vector spacE with an inner product can be seen as a generalisation of dzedtla basis
to sets which may be linearly dependent. More preciselyaméris a set of elements Bfwhich satisfy

the following condition:

Frame condition: There exist two real numberd, and B such that

0< A< B< o,

2 2
Alv|F <0< B|v|*.
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Parseval’s identity is a fundamental result on the sumntwlof the Fourier series of a function. Geo-

metrically, it is the Pythagorean theorem for inner-prddypaces.

Theorem 2.2.1(Parseval’s Theorem [54))If {e; : j € J} is an orthonormal basis of a Hilbert space

H, then for everyr € H the following equality holds:

2l = [ e5} .
=
Although frames do not in general consist of orthonormatmes; the frame representation of a
vector may still satisfy Parseval’s identity. The conssatt B are called the lower and upper frame
bounds respectively. Whe#i = B the frame is a tight frame.
Fourier analysis represents any finite continuous enenggtion f (¢) as a sum of sinusoidal waves

exp(iwt),
1) = 5= | ) explit)aa. (2.69)
The amplitudef(w) of each sinusoid is equal to its correlation wjthalso called th&ourier transform
f(w)::t/fn F(8) exp(—iwt)dt. (2.70)

The more regular the functiofi(¢) is, the faster the decay of the amplituféw)| asw increases. If
f(t) is defined only over an intervas,g.[0, 1], the Fourier transform becomes a decomposition into an
orthonormal basis {exp(i27mt)},, ., of [0, 1] H If the signal is uniformly regular, then the Fourier
transform can represent the signal using very few nonzegfiicents. Hence this class of signal is said
to be sparse in the Fourier basis. The wavelet basis waslintenl by Haar [55] as an alternative way
of decomposing signals into a set of coefficients on a badie Haar wavelet basis defines a sparse
representation of piecewise regular signals, and hasftitereeceived much attention from the image

processing community. The piecewise constant functiohla@ratom is defined as,

1 if0<t<05
Pt)=< -1 if0s5<t<1 (2.71)

0 otherwise.

An orthonormal basis oh» can be formed by dilating and translating these atoms asas|

{W$MU;%7w<i%%h>}imﬁ2 (2.72)

Thus far all definitions have been for continuous signalsatT$ because a dictionary can be created
through dilations and translations of the single functigrbut dilations and translations are not defined

for discrete signals. The transition from continuous taidite time must be done with great care to

6L[0, 1] is the set of functions such th# | f()|d¢ < oo
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preserve important properties such as orthogonality.
The definition of a time-frequency dictionady = {wV}weF is that it is composed of waveforms of

unit norm (|4, ||, = 1) which have a narrow spread in time) @nd frequencyd?).

[P}
Choice of the dictionary should, if possible, be based on knowledge of propertieh®tignal.
One of the most common choices for a general class of redthgagnals is the Gabor dictionary, as
it can represent a wide range of smooth signals. The Chitiodary is a generalisation of the Gabor
dictionary with an extra parameter (the chirp rate). Botthese will be described below, and empirical

comparisons will be made between each method.

Gabor Dictionary

Gabor time-frequency atoms are scaled, translated andlatedGaussian functiongt) (Gabor atoms)

[56]. Without loss of generality, discrete real Gabor atawilsbe considered, which are given by

Gvy.0(t) = % g <tTu) - cos(0t + ¢) (2.73)

whereZ is a normalisation factor (to ensure that for each aligmy|| = 1), v» = (sn, un, 6,) denotes
the series of parameters of the functions of the dictioregly(t) = exp~ ™" is the Gaussian window.
Chirp Dictionary

Chirp atoms were introduced to deal with the nonstationahglior of the instantaneous frequency of
some signals, and shown to form an orthonormal bas|s [5Thdpresent analysis only linear chirps are

required for the empirical applications provided later.e&lrchirp atom is then given by

t—u

o) = o (5) ool ) + 50— 0 +) 274)

wherec is the chirp rate and all other parameters are the same dwefogdl Gabor atom. The chirp atom

has an instantaneous frequengy) = 0 + ¢(t — u) that varies linearly with time.

Dyadic Sampling

A sampling pattern is dyadic if the daughter wavelets areeggird by dilating the mother wavelet as in
Equatiod Z.7P by’ and translating it by:27, i.e.s = 27, u = k27. Dyadic sampling is optimal because
the space variable is sampled at the Nyquist rate for anyndiregiuency. The dictionary is then defined

as,

Vja= {n = g’Y=¢(t)}0§q<AN2*j70§k<A2j ) (2.75)

whereg, 4(t) is the discrete Gabor atom or Chirp atom as defined above iattems 2.7B anf 2.74
respectively. An example of this sampling scheme is givefainle[Z.2 for a signal of length 128 and

dilation factorA = 2.
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J ¥ 275 N2 jlq 2

2 4 1/2 64 0:128 08
3 8 1/4 32 0:64 016
4 16 1/8 16 0:32  0:32
5 32 1/16 8 0:16  0:64
6 64 1/32 4 0:8  0:128

Table 2.2: Example of the dyadic sampling scheme for a signal of leng&ahdA = 2.

2.2.2 Sparse and Redundant Signals

As with[ML] finding sparse solutions to underdetermined isegoroblems is a fundamental challenge
encountered in a wide range[of DSP applications, from sigoalisition to source separation. Recent
theoretical advances in our understanding of this problawe liurther increased interest in their appli-

cation to various domains. In many areas, such as for exametical imaging or geophysical data

acquisition, it is necessary to find sparse solutions to lage underdetermined inverse problems that
therefore require fast methods. The decomposition of aasigimto a dictionaryll € R"*? solves the

following problem,
Yo = x. (2.76)
If the dictionary is a tight frame, the simplest solutionhgstwould then be the inverse problem
a=U"ly. (2.77)

If additionally all of the atoms of the dictionary are ortlowmal then®—! = ¥’. However in most
practical applications, the dictionary is designed tolsercomplete i.e. p > n, and hence there are
many possible solutions to this inverse problem. Tethod of framef58] uses the minimund,-norm

solution (also called minimum energy or minimum length solu):

min a3 (2.78)

st. x=Va.

It can be seen that this is equivalent to the least squareS@oto the regression problem as defined in
Equatiodn 2111, and that it likewise has a closed form safutio= (¥/¥’)~1¥'x. However, the unknown
(not sampled) coefficients seldom have zero energy. A minactive solution would be minimising the

Lo-norm, or equivalently maximising the number of zero coddfits in the new basis:

moitn llexllo (2.79)

st. x=Va.
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However, this is NP-hard (it contains the subset-sum propland so is computationally infeasible for
all but the smallest datasets. Thus, followind [59], fhanorm, is usually what is minimised. This leads

to comparable results to using thenorm, often yielding results with many coefficients beiregy,

moitn Il (2.80)

st. x=Va.

This method is known as Basis Pursif {BP)/[31]. Note thatdflwing the constraint into the optimisa-
tion using a Lagrange multiplier, this is in fact equivalenthelLASS® problem for regression that was
defined earlier in Equatidn 2.P7.

2.2.3 Greedy Methods for Sparse Estimation

There are other ways to approximate thesolution, such as by greedy iterative methods. These ieclud
(but are not limited to) Matching Pursulf (WMP), Orthogonaate¢hing Pursuitl{OMP)/T56]), Polytope
Faces Pursuif{PFP) [60,161] and more recently with non-ewpenalties and Difference of Convex
(OC) programming([62,63]. There are also many modificatiohsach of these methods, including
stepwise approaches that bring more than one basis intolitgos at each step. For brevity these will
not be covered here, but offer an interesting path for ptessiledifications of algorithms based on these

methods.

Matching Pursuit and Orthogonal Matching Pursuit

Matching Pursuitl{MP) was proposed as an attempt at findipguese set of basis functions (atoms) for a
signal from a given dictionary [56]. In many ways this prablean be interpreted as a sparse version of
least squares regression when the Orthogonal Matchingi®(@VIP) version is applied [64]. [ OMP
each time a dictionary atom is chosen, the remaining weigttors are projected into a space orthogonal
to those chosen such that future atoms are only consideyeddrset far from those already picked. To
link back toMI once again, as with Kernel Basis Purduif (KBRgrnel Matching Pursuif (KMP) [65]
has been proposed as the kernel counterparf of MP.

Given a signalf and dictionaryl = {1,,} IT'| > n of atoms with unit norn_MP begins by

pel»
initialising the residuery = f, and then iterates by projecting the functigronto all of the vectors

1, € W and computing their residue

f=app+r, p=1,.... T, (2.81)

implying thata, = (f,,). The atom with the maximum inner produget;, ;) is then selected along
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with its weighte;.

— 2.82
i = argmax oy, (2.82)
Q= O,
e = ;.
The residue is then updated as follows,
Tip1 =T — it (2.83)

The final solution is then given bZ'tTZI by, which can be shown to converge to the optimal solution
given that the dictionary forms a tight franie [5&[._MP approations are improved by orthogonalis-
ing the directions of the projection using a Gram-Schmidicpdure[[66]. The resulting pursuit then
converges within a finite number of iteratiofsinstead of in the limit, which balances the fact that the
orthogonalisation is expensive to compute. The Gram-Sadtalgorithm orthogonaliseg, with respect

to {wq}q:p@ as follows,

N 1/1 )
bp=tp— Y LIk (2.84)
o Il
The orthogonalised version of the atafp is then used for calculation of the residue. The next Section
describes a further modification of the MIP/OMP frameworkt tmakes use of the geometry of the

solution space.

Polytope Faces Pursuit

The algorithm Polytope Faces Pursli (IPFP) [61] is basedemeometry of the polar polytope [60]
where at each step a basis function is chosen by finding thénmhxertex using a path-following

method.

Further investigation of the criteria under whi€fi¢; equivalence holds led to consideration of the
d—dimensionapolytope(the d—dimensional generalisation of a polygon)|[60]. Using thémaetric
interpretation, a greedy algorithm called PFP has beengsexp[67] which adopts a path-following
approach through the relative interior faces of the poldytppe. The first step is to convefi(2180) into

its standard form,

min ||, (2.85)

st. x=¥%a, a>0,

wherel = [¥, —¥] and&a has2m nonnegative components, with the standard weight vectoverable



2.2. Digital Signal Processing (DISP) 45

by a; = &; — @1, [68]. The corresponding dual of this linear programis,

max y'c (2.86)

st. ¥e<l1

which has an optimal dual weight vectomhich corresponds to the optimum of the primal formu-
lation. At each step the approach to the solution of this jerolis to identify the optimal vertex which
is the maximiser ok’c, which is similar to the way in which-OMP builds up its soluticHowever the
difference is that at each step, the path is constrainedepdlytope face" given by the vertex of the
previous step. This is achieved by projectingnto a subspace parallel foto giver = (I — Q)x where
Q= ﬁ% Sincea = \iflx (whereAT is defined as the Moore-Penrose pseudo-inverse of a matrix
), andx = VU,q, it follows thatr = x — ¥;a = x — X meaning that is the residual from the
and PEP

arises, involves projecting within the faééthat has just been found, rather than from the origin. This

approximation at step The second step, which is where the main difference betitddh

is done by projecting along the residual Therefore to find the next face at each step, the maximum
scaledcorrelation is found

. Ur
i; = arg max

b (2.87)

where bases are only considered such #at> 0.

[PEP then proceeds by removing any constraints that vidiatedndition thatx contains any neg-
ative entries. This is achieved by findifig= i such thatx; < 0, removing; from i and removing the
face from the current solutior is then recalculated, and the algorithm continues uati> 0,V j.

The algorithmic complexity is of a similar order to OMP whiteing able to solve problems known
to be hard fofF MP and OMP.

2.24 Compressed Sensing (CS)

In this Section, some of the theory of Compressed Senkin} (@@ known as compressive sampling
and sparse sampling) will be reviewdd.|CS is a techniquealf@ws signals to be acquired or recon-
structed sparsely, by using prior knowledge that the signspparse in a given bas|s [$9,/69]. The main
result is that signals can be reconstructed exactly evem ddta deemed insufficient by the Nyquist-
Shannon critericH'n Formally, given a signak € R" and a dictionary € R™*? which forms an

orthonormal basisx is said to be sparse # can be represented as a linear combinatiok atoms

from ¥, ie.z = Zle a; U _; wherek < d. According to the CS theory it is possible to construct a
measurement matri € R™*"™ with m < n, and perform stable reconstructions of the signal from

measurementg = ox if and only if the measurement matrix is incoherent with tietidnary,i.e. the

"Note that if¥; forms a tight frame theliI/I = W/ -i.e.the inverse is equal to the transpose.
8The Nyquist-Shannon sampling theorem states that if aifamgt(t) contains no frequencies higher th&H z, it is com-
pletely determined by giving its ordinates at a series ofifsospaced /(2B) seconds apart
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sensing waveforms have an extremely dense representatiﬂa\ i Ordinarily, the problem of recon-
structingx from y would be severely undetermined.

Estimating a sparsely represented function from a set ofitiga examples is a classical problem
in regression. Fortunately the methods used for sparsessign can be directly applied[foICS. Again,

beginning with they-minimisation,

min |l (2.88)

st. y=®Va.
Finding this/, solution is known to bévV P—hard. However the equivaleft optimisation problem

min |l (2.89)

st. y=®Va.

is a convex optimisation problem and can be solved usingrgéperpose solvers. As before, this can be
reformulated such that it directly minimises the regres$iss, as with the LASIO [80], which is given

by
min|ly — 2Vall; + A e, , (2.90)

i.e. a form of /1-penalised least squares. This can then be solved with thetlAngle Regression
Solver [LARS) as before, or with greedy methods sudh_as IO NFEGY.

2.2.5 Incoherence With Random Measurements

One major issue that has not been addressed is how to desigretisurement matrik such that when
sampled using this matrix, the signal will be sparse withia basis of the dictionarg. The[C$ theory
states when certain conditions hold, namely that the fansti,, € ¥ cannot sparsely represent the
elements of the basis,, € ® (a condition known as incoherence of the two dictionafi€s[[®69[ 71]
and the number of measurementss large enough, then it is indeed possible to recover theasig
x from a similarly sized set of measuremegts This incoherence property holds for many pairs of
bases, including for example, delta spikes and the sinesv@iv& Fourier basis, or the Fourier basis and
wavelets. Significantly, this incoherence also holds withhfprobability betweerany arbitrary fixed
basis and a randomly generated orffdis means that in general[df L.lld. Gaussian or Bernaonéirices
are used fow, this incoherence will still hold with high probability. Thsurprising result is a direct
follow-on from the Restricted Isometry Properfy (RIP) whicharacterises matrices which are nearly

orthonormal when operating on sparse vectors.

9“Dense” here is in the sense that each of the measurememtrs€oows of &) must be spread out in the domain. An
example would be a Dirac function (spike) which is dense @Rburier domain as it has a flat frequency response. Cofyerse
sine wave has a sparse representation in the Fourier domiis aepresented by a single frequency
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2.2.6 Multivariate Signal Processing

This Section will introduce some signal processing openatifor multivariate signals. Given a set of
signalsz;(n), i = 1,..., M from a system, it is important to study whether there areiptesmterde-
pendencies between the signals. Such interdependenaiseaundancies, which can be exploited for
data compression. Interdependencies between the indivstgnals can also contain useful information
about the structure of the underlying systems that gerethgeset of signals. The individual signals are

often mixtures of unknown (latent) source signgjén), such that,

M

:zzl(n) :Zamsj(n), = 1,,M (291)
j=1

= x(n) = As(n) (2.92)

The problem of finding the source signals:) from a set of measured signat$n) is called source-
signal separation. If the mixing matriX is known, it is trivial to determine the source sigséh) by
inverting the linear relation in Equatign 2]91. However inshcases this is not known; the problem
of finding the source signals from the measured signals sditwation is calledlind deconvolution

In order to solve the blind deconvolution problem some aggions on the source signals have to be
made. The most natural ones are that they are mutually wlated or independeri_ PCA, which was
introduced in Section 2.1.112 can be used for signal dectivel.

Independent Components Analydis (ICA) is a method thatopers deconvolution under the as-
sumption that the latent sources are independent. Theithlgoworks by adaptively calculating the
vectors ofA and setting up a cost function which either maximises the@aunssianity of the calculated
s = A’x or minimises the Mutual Informatiof (MIJ [72]. In some casaspriori knowledge of the
probability distributions of the sources can be used in the function.

The original sources s can be recovered by multiplying treeoled signals with the inverse of
the mixing matrixW = A !, also known as theanmixing matrix Here it is assumed that the mixing
matrix is squargn = m). If the number of basis vectors is greater than the dimeatitgrof the

observed vectors, > m, the task is overcomplete but is still solvable.



Chapter

Sparse Machine Learning Framework for

Multivariate Signhal Processing

Abstract

Building blocks. This Chapter present a unified general framework for theliapfion of sparse ma-
chine learning methods to multivariate signal processifige methods presented can be seen as modular
building blocks that can be applied to a variety of applicats. Application specific prior knowledge
can be used in various ways, resulting in a flexible and pawesdt of tools. The motivation for the
methods is to be able to learn and generalise from a set ofvatikite signals.

In Pursuit of a Sparse Basis. Given a dictionary of atoms from a given basis, a signifidaody of
research has focussed on methods to select a sparse seesftbaspresent a signal. Similarly, sparsity
has been seen to be desirable for Machine Learning, for reaed computation efficiency, regularisa-
tion, and compressibility.

Greed is Good. Within the suite of tools described in this chapter are acfetub-optimal greedy se-
quential solvers for the sparse recovery problem. These baen shown to have desirable properties
in the signal processing and statistics literature, it i9sim through analysis and experimentation that
these properties are also desirable in Machine Learningliapgions.

Two Eyes are Better than One. The final part of the chapter will detail developments in &nea of
“Multi-View” or “Multi-Source” Learning. We will present dgorithmic developments in this area which
will allow the incorporation of two or more sets of signalern different sources that will prove to be

valuable in applications.

3.1 Framework Outline

The goal of this Chapter is to outline a general modular fraark designed for performing Machine

Learning [MI) tasks. These are general purpose methodérkdbgether to enable efficient inference
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on a particular class of data, namely multivariate signéle general approach is to combine methods
from Digital Signal Processing (DSP) with methods fiomIMLniovel ways that leverage the power of
the methods from both fields. The main focus for this chaptkibe the development of the framework
for [ML] although various approaches[io DSP will be outlinézhg the way. The key will be to take

a set of signals (such as recordings of a set of individuakhbactivity), and learn patterns that are
then generalisable to a new set of signals generated unelsathe conditiond.é. another individual

performing the same task).

Multivariate signal processing is a source of challengelsmaportunities. The traditional approach
to multivariate signals has been to perform mass univaaiasdysis of the signals making the assump-
tion that the signals are independent. However this indégece assumption is violated more often than
not, and as a result a great body of work has grown up aroumbttg make the univariate statistics
more robust. For the purposes of this work the assumptionb@imade that the sensor arrays being
dealt with are distributed in space but measured simultagigdqor as near as is possible), and that
the sampling rate is fixed. There are of course situationgevtiés assumption does not hold, but the
methods outlined here can be extended, although the tedit@tails become more complicated. For a
univariate signal, there exist many well refined technidoegrocessing and classifying signals. These
include Bayesian methods.§.using Markov Chain Monte Carl@ (MCMC) methods[73]), Autgres-
sive Moving Average[{ARMA) models [74], and analysis of dpalcqualities of the signal (such as in
[75]).

Figure[3.1 shows a top-level diagrammatic view of the preaddearning from signals. Whilst
the importance of the preprocessing stage should not beestdeated, it is not the focus of the present
work. Hence the preprocessing used in all of the empiristiitg will be via tried and tested methods that
are well established in the various application areasedsiDetails of specific preprocessing methods
will be given such that the results of the experiments carepeoduced, but an extensive discussion is
beyond the present scope. In addition, the diagram segaratereprocessing from signal processing;
of course most of the preprocessing is in fact signal pracgsbut | have chosen to separate out the
processing that is necessary to clean up data and remofactstesuch as eye-blinksin EEG data) from
the processing that is necessary to generate a set of fedhatedescribe the signals, which are then
used as inputs {G ML algorithms. This approach allows thegdo be maintained on the aspects of the

interplay betwee D3P and ML of interest to the current study

Of course the process outlined in Figlire] 3.1 is rather sitipliand in fact in some cases can be
improved upon. Specifically, a central theme that will besagpd throughout the thesis is that, wherever
possible, one should make use of multiple paths of inforomafiow. This can take the form of Multi-
Source Learnind(M3L) (where two separate sources of irdtion are combined], MML (where two
views of the same underlying semantic object are combiraj, Multiple Kernel Learning (MKL)
(where multiple kernels are generated from a single soureéew). These concepts will be described
further in Sectiof 315, in which algorithms that attemptake advantage of these various paradigms will

be developed.
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Data source

l l lMulitivariate signals

Preprocessing

!

Signal Processing

l Model
formulation

Machine Learning

Figure 3.1: Diagrammatic view of the process of machine learning fronitirrariate signals

Sparse estimation and sparse recovery of patterns or sigreaplaying an increasingly important
role in the statistics, signal processing, andIML commasitiSeveral methods have recently been de-
veloped in both fields, which rely upon the notion of spargity.penalty methods like tHe TASSO or
greedy methods such BS'MP). Many of the key theoretical idadsstatistical analysis of the meth-
ods have been developed independently, but there is incgeasiareness of the potential for cross-
fertilization of ideas between statistics, signal prosesand Ml communities.

Much of the early effort has been dedicated to algorithmsdbke sparsity inducing optimisation
problems efficiently. This can be through first-order meth[t€], or throughhomotopymethods that
lead to the entire regularization paile(, the set of solutions for all values of the regularizatiorapa:
eters) at the cost of a single matrix inversibni[32]. A wellekvn property of the regularisation by the
£1-normis the sparsity of the solutions., it leads to weight vectors with many zeros, and thus perform
model selection on top of regularisation. Recent works havieed precisely at the model consistency of
the[LASSQO [77/78]. It has been shown that a condition knowihagrepresentablecondition, which
depends mainly on the covariance of the predictor varialsteses thdi LASSO selects the true model
consistently if and (almost) only if the predictors that ace in the true model are “irrepresentable” by
predictors that are in the true model (sg€l [77] for a disamgsiThis is effectively a statement that if
it is known that the data were generated from a sparse wegghor thd LASSO does actually recover
the sparsity pattern as the number of observations grows.afalysis has been extended to the Group
and t¢_MKI [78].

Furthermore, there are interesting links between pergfig-methods and boosting (particularly,
[CPBaost), as well as with sparse kernel regression. Thesebban interest in sparse methods within
Bayesiar ML €.g.sparsé PCINNCCI [79] or the Relevance Vector Machine (RVIMJ] )8 Sparse es-
timation is also important for unsupervised learning mdth@.g.sparsé PCA and One-Class Support
Vector Machine[[OC-SVM) for outlier detection). Recent miae learning techniques for Multi-Task
learning [MTT) [81,/82[ 88] and collaborative filtering [84hve been proposed which implement spar-
sity constraints on matrices (rank, structured sparstty).e At the same time, sparsity is playing an
important role in various application fields, ranging frammeige and video reconstruction and compres-
sion, to speech classification, text and sound analysis.

In this Chapter we will begin by introducing a method thatvasan the greedy method for sparse
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signal reconstruction introduced in the previous chafP) and applies it to classification using
the[EDA objective function. Experimental results are gifenthis method showing that it performs
competitively with state-of-the-art methods such adth&Bwvhilst producing solutions that are much
more sparse. Furthermore, there is a clear performancew&in the datasets are very high dimensional
and contain many potentially irrelevant features. Foltoyvon from this, we show that another greedy
method from signal processing (BFP) can be applied to spagsession problems in a kernel defined
feature space. Again experimental results are given tloay gfe power of this class of techniques. We
will then go on to show that, surprisingly, it is in fact sgibssible to learn using a much simpler method
of choosing basis vectors - that of random selection. Ther#ieal analysis shows that this result is
due to a compression scheme being formed, which acts as aofozapacity control. Sparse learning
can then be seen as a trade-off between finding the (neamayparse solution by a greedy method,
or finding sub-optimal solutions quickly that ageod enough

The final Sectior(3]5) of the Chapter is devoted to Multiwiesarning [MVI). The first contribu-
tion is an extension of the way in whiEh KCTA projections asedifor classification. Traditionally, an
(or any other standafd ML algorithm) is trained on thejgcted subspace of the view of interest.
However | show that good classification performance is fpbssising a method that is essentidiige
once the projections have been learnt. This method will leel fsr experimental analysis in Chagiér 5.
A natural extension to this is to try to incorporate the dfasstion and the subspace learning into a sin-
gle optimisation routine. This was the motivation for Muiéiw Fisher Discriminant Analysi§ (MFDA)
and its variants, which will be presented towards the enth@fchapter, along with some experimental
results on toy data and benchmark datasets. Empirical sinaly real-world datasets will be presented
in Chaptefb.

3.2 Greedy methods for Machine Learning

This Section will introduce two novel spafse ML methods. Ting is based on the ideas of Match-
ing Pursuit[[MP) and Orthogonal Matching Purs[iif (OMP) fpaise recovery in signal processing in-
troduced in the last Chapter in Sectlon 2.2.3, and focussebe problem of classification using the
[KEDAlalgorithm outline in Sectioh 2.7.9. This will be foll®d by a method based on Polytope Faces

Pursuit [PEP).

3.2.1 Matching Pursuit Kernel Fisher Discriminant Analysis

A novel sparse version di_KFDA is derived using an approackebaon Orthogonal Matching
Pursuit [OMP). This algorithm will be called Matching Puitskiernel Fisher Discriminant Analysis
(MPKEDA). Generalisation error bounds are provided analmgto those constructed for the Robust
Minimax algorithm together with a sample compression bangéechnique. Experimental results are
provided on real world datasets, which show thal MPKFDA impetitive with thelKEDA and the
[SVM on University of California, Irvine[{UCI) datasets, aadditional experiments that show that the
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[MPKEDAIon average outperforrhis KEIDA ahd SYM in extremely hétiimensional settings.

The idea of MPP is chosen for its fast greedy iterative propemd is applied t6 KEDA in order
to impose dual sparsity. It will be proven that this sparseiea results in generalisation error bounds
guaranteeing its future success. The novel bounds cometfreranalysis by Shawe-Taylet. al. [85]
of the Robust Minimax algorithm of [86], which is similar iraflour td FDA. Together with the bounds
of [85], a compression argumeht[87] is applied in order tm@gm advantage due to the dual sparsity
that results from the algorithm. However, the algorithmsloet form a traditional compression scheme,
so a similar idea to that of [88] is used to bound the genextadis error in the sparsely defined subspace
by amalgamating both theories mentioned above. In some thaysounds justify the choice of the fast
iterative greedy strategy, which is not provably optirhdl][®y guaranteeing that for a random choice of
dataset from any fixed distribution, the predictions madelvei probably approximately corredPAQ)
[89].

One of the practical advantages[of MPKHDA lies in the evadmatn test points - only: kernel

evaluations are required (whekds the number of basis vectors chosen) compared tohe number

of samples) needed fEr KEDA. It is also worth stating fhaf MIPH like KEDAlhas the advantage of
directly delivering conditional probabilities of classiition (unlike thé_ SVM). There has been some
research suggesting that one cannot estimate conditioolébilities without involving all of the data
(see [90]) - hence kernel methods cannot deliver this effilsie but here all of the data is taken into

account whilst still having an efficient kernel representat

Preliminaries

Most of the key quantities have already been introduced iap@h[2, so this Section gives a brief
summary. We denote with a sample containing: examplesx € R™ and labelsy € {—1,1}. Let

X = (x1,...,X,) betheinputvectors stored in mat¥as row vectors, wheredenotes the transpose
of vectors or matrices. For simplicity it is assumed thattk@mples are already projected into the kernel
defined feature space, so that the kernel m&rixas entrie¥ |7, j| = (x;,x;). In the analysis Section,
¢(x) will explicitly denote the feature map for some vector The notationK[:, 7| will denote theith
column of the matrixK. When given a set of indicas= {i1,...,ix} (say) thenK[i, i] denotes the
square matrix defined solely by the index set

For analysis purposes it is assumed that the training exemape generatéd .ild. according to an
unknown but fixed probability distribution that also govethe generation of the test data. Expectation
over the training examples (empirical average) is denoydﬁ[t}, while expectation with respect to the
underlying distribution is denotef(-].

For the sample compression analysis¢bepression function induced by a sample compression
learning algorithmA on training setS is the mapA : S —— A(S) such that thecompression set
A(S) C Sisreturned byA. A reconstruction functio is a mapping from a compression 2€tS) to
a setF of functions¥ : A(S) — F.

Let A(S) be the function output by learning algorithrhon training setS. Therefore, a sample
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compression scheme is a reconstruction funciomapping a compression s&{.S) to some set of
functionsF such thatA(S) = T(A(S)). If F is the set of Boolean-valued functions then the sample
compression scheme is said to be a classification algorithm.

Definefi(p) to be the empirical (true) mean of a sampleropoints from the sef projected into

a higher dimensional space usitg

p = E[¢(x)],

L&
M= E ; d)(x’b)v
and3(X) its empirical (true) covariance matrix.

Algorithm
can be formalised as a general framewofkin ML, that vesrepeating the following two steps:

1. Function maximisatiorand

2. Deflation (orthogonalisation).

It can result i OMP algorithms for learning tasks other thegression. This Section presents an ap-
plication of this general framework [0 KEDA, resulting in passe form of KEDA that we refer to as
IMPKEDA

An algorithm folEDA can be built in the following way. kally, one exampld = {i,}
is chosen that maximises the FDA criterion and the remaitraiging examples are projected into the
space defined biy Following this the data matriX (or kernelK) is deflated to allow the next index to
be chosen. Finally this results in a $eif training examples that can be used to compute the finallweig
vectorw, together with th€ EDA decision functiof(x) = sgn (w’'x + b) whereb is the bias and an
example.

Using the notation froni]3], the maximisation problem[forAi3 given by the following:

w'X'yy' Xw

whereB is defined as in Sectidn 2.1.9 of Chayiter 2.

To begin with, the Nystrom method of low-rank approximataf the Gram matrix([[7] is applied.

This is defined in the following Section.

3.2.2 Nystrom Low-Rank Approximations

The Nystrom method generates a low-rank approximation Gram matrixG using a subset =
(i1,...,1x) of k of the columns[[7]. The method will readily apply flo RKHS simpy replacing
G with the kernel matrixiK, but the more general definition will be given here. Given msa of k

columns ofG selected by some method, I§t= G:, i] be then x k& matrix of the sampled columns, and
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Figure 3.2: Diagrammatic representation of the Nystrom method

W = G(i, i) be thek x k matrix consisting of the intersection of theseolumns with the corresponding

k rows of G. The Nystrom method usd&, N to construct a rank-approximatiorGy, to G,
Gy =NW/ !N ~G. (3.2)

In practice the matri¥W ; may not be invertible, especially for sméllin which case the pseudo-inv&ﬂse
is used. The Nystrom approximation is depicted in figuré BefineR is the Cholesky decomposition
of W,:,l such thalR is an upper triangular matrix that satisfil@éR. = G|i,i]~!.

Nystrom for Matching Pursuit Kernel Fisher Discriminant Analysis (MPKEDA)

Using the assumption that the inpXshave already been projected into the kernel defined fegpaees
the Nystrom approximation can be applied to the kernelimaf. A greedy algorithm will be used to
select a set of basds such thatN = K[:,i] and W, = K]i,i]. The Nystrom approximation for

MPKEDAis then,

K = K[:,i]K[i, i 'K[:, i]’ (3.3)
= K[;,ijR'RK[;,i]’ ~ K,

whereR is the Cholesky decomposition &/i,i]~! such thatR is an upper triangular matrix that
satisfiesR'R = K]i, i] .

However, rather than use the f(ith x m] low rank approximation, it would be preferable to work
in the [k x k] space wheré < m. In order to do thiK[:, i]R’ is treated as a new inpX in [EDA]

which results in a projection into ak-dimensional subspace:
o(x;) = K[, i|R/. (3.4)
Within this space the following

3, = RK[,i]K[;,i]R/, (3.5)

1A is defined as the Moore-Penrose pseudo-inverse of a n#trix
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is the covariance matrix within this space. This enablegelacale problems containimg data points
to be solved with linear algorithms usikgfeatures. This trick allows nonlinear discriminant anaye

be performed on a sparse subspace using standardlinear FDA.

Greedy Selection of Bases

For the algorithm to proceed, a method for the greedy selecti basis vectors is required. The follow-
ing maximisation problem for a dual sparse versiof oI FDA lsamlefined by settingr = X’e; where
e; is theit™ unit vector of lengthm, and substituting into tHe EDA problem described abovediomy
constants) to yield:

e/ XX'yyXX'e;
e, XX'BXX'e;
_ K[, i)'yy'K[:, 4]
K[, i)BK[,1]

(3.6)

argmax p; =
K2

Maximising the quantity above leads to maximisation of tigh&r Discriminant Ratid (FDR) cor-
responding t@;, and hence a sparse subset of the original KFDA problem. ®hbgto find the optimal
set of indiced. The approach taken here is to proceed in a greedy mdnnér iiMfuch the same way
as [37] and([65]. The procedure involves choosing basisovethat maximise the Fisher Discriminant
ratio iteratively until some pre-specified numberofectors are chosen.

The next step is to orthongalise the malikbwith respect to the chosen basis veetos K[:,4]. In
the primal form of PCA, the deflation can be carried out usimgeting’s method[[911] with respect to

the features (columns of an input mat¥y) by,

X' = (I - ““/) X, (3.7)

whereu is a chosen eigenvector aiXlis the deflated version d. However because we are working
in the dual (kernel) space, the projection directions amgbi the examples ilX, sou = X’e. If we

definer = XX'e = K[, 1], the deflatiorK of the kernel with respect to the chosen basssthen,

/
K = (I—TT)K.
T'T

(3.8)

This deflation ensures that remaining potential basis veetdl be chosen from a space that is orthog-
onal to those bases already picﬂed\fter choosing thek training examples, giving = (i1, ..., ),
RK][;, i)’ can be defined as a new data matrix as defined in Sectiod 3.8v2.dfDA is then used
for training as in Equation 3.1 in this new projected spacéno a k-dimensional weight vectow;,,
which is indexed over the bases of the kernel matrix and hbasesparsity: in the dual sense. Given

the index; of a test pointx;, and using the train-test kernel on this pol&fj, i| and its projection

2|t is assumed that the vectors of the mafiixdo not form an orthonormal basis
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#(x;) = RK]j,i]’, predictions can be made using (he BDA prediction function,

f(x;) = sgn ((W, ¢(x;)) +b) (3.9)

The algorithm foEMPKEDA is given in Algorithrfl]3.

Algorithm 3 Matching Pursuit Kernel Fisher Discriminant Analysis

Input: kernelK, sparsity parametér > 0, training labelsy.
1: calculate matriXB
2: initialisei = ()
3 forj=1tokdo
4

K[:,i]yy' K[:,i
t e arg max g R

5 i+ {i,t}
6: T« K[, t] to deflate kernel matrix like so:
Ke (1- 77 )k
Klt,1]
7: end for

8: calculate the projectioRK[:, i)’ whereR is the Cholesky decomposition &[i,i]~! andi =
(ila et ik)
9: train[EDA using Equatioh 3l 1 in this new projected space b disparse weight vecter and make
predictions using Equatidn 3.9
Output: final seti, (sparse) weight vectar, bias termh

Generalisation Error Analysis

56

A generalisation error bound for MPKEDA can now be const&ddty applying the results frorh [85]

with a compression argument. The following two results fi{8&] will be needed. The first bounds the

difference between the empirical and true means.

Theorem 3.2.1(Bound on the true and empirical meanksgt S be anm sample generated independen

at random according to a distributiof?. Then with probability at least — § over the choice of),
i~ ExfoG))l| < = (24 /215 (3.10)
/'l/ X — \/7’% n (S 9 .

wherefi = E[¢(x)] and whereR is the radius of the ball in the feature space containinguipesrt

of the distribution. Consider the covariance matrix defiasd

T =E|l(o(x) — p)(d(x) — p)'[l-

Let the empirical estimate of this quantity be

X =El(o(x) — i) (d(x) — )|l -

The following corollary bounds the difference between thggical and true covariance.

tly
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Corollary 3.2.2 (Bound on the true and empirical covariancesgt S be anm sample generated inde-

pendently at random according to a distributiéh Then with probability at least — § over the choice

of S,
HfJ—EHFgf/—}i_j <2+,/21n§), (3.11)

where||A|| . = y/trace (AA’) is the Frobenius norm of a matriX, and provided

2
/ 2
m2<2+ 21115) .

The following Lemma is connected with a classification aiipon developed in[86]. The basis for

the approach is the following Lemma.

Lemma 3.2.3. Let i be the mean of a distribution ari its covariance matrixw # 0, b given, such

thatw'u < banda € [0, 1), then if

Pr(w'o(x) <b) >«
We will of course be using empirical estimatesggond3:. In order to provide a true error bound,
the difference between the resulting estimate and the thatevould have been obtained had the true

mean and covariance been used must be bounded.

Bound for Matching Pursuit Kernel Fisher Discriminant Analysis

The above bound is applied to a subspace defined from a snmabenk < m of basis vectors. Let
i= (i1,...,1) be a vector of indices used to formkadimensional subspace such as the one defined
by[MPKEDA. The notationS; is used to denote the samples pointed td.blyirstly a general bound is

given, which is then specialised to the case_of MPKIFFDA.

Theorem 3.2.4(main). LetS be a sample ofn. points drawn independently according to a probability
distribution D where R is the radius of the ball in the feature space containing thpp®rt of the
distribution. Lety, (1;,) be the empirical (true) mean of a samplenef— & points from the sef \ S;
projected into ak-dimensional spaceﬁk (Xx) its empirical (true) covariance matrixyw;, # 0 with
norm 1, andb,, given, such thaw u, < b, anda € [0,1). Then with probabilityl — ¢ over the draw

of the random sample, if

bk — ch;ik Z QD(OL)\/ wﬁcﬂkwk,
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then

Pr(wio(x) —br >0) < 1—a,

where

(b — Wity — A)?
w;Ekwk + B+ (bk — W;cljk — A)

o = PR

such that| i, — || < A where

A= _f (2+\/2kln%+21n?)

2R? 2
p— 2B <2+\/2kln%+21n7m>.

Proof. First,b, — w'p1 > ¢(a)vw'Ew from Lemmd3.21 can be rearranged in terms@f):

b —w'pn
o) < =——. 3.12
o) S e (3.12)

These quantities are in terms of the true means and covaganahe chosen subspace. In order to
achieve an upper bound, Theorem 3.2.1 and Cordllaryl3.2s2 heuapplied for each of tl*(qb) choices

of the compression set, and we further apply a factot of: to § to ensure one application of the
bound for each possilbe choice lof This leads to the substitution 6f (m(’})) in place ofs, and the

substitution ofm — k for m for the size of the dataset,

||nk—Exmk<x>1||s¢%<2+ 21n’"5;‘)),

and

A 2R? 2m(")
[B0m], <2F (2+ QIHM).
F m — k 1)

Use the fact thaf’}') is upper bounded bfem /k)*, and rearranging gives,

R em m
(1, — (] < - — =
1o, — Ex e (x)]]] < N <2+ \/len ’ +2In 5> A,
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and

N 2R2 em 2m
2—2H<72 \/21— om) .= B.
H k Bl = rk(—i— knk—i— n5>

Given Equatio_3.12, the empirical quantities for the meamd covariances can be used in place of
the true quantities. However, in order to derive a genuingeupound, the upper bounds between the
empirical and true means also need to be taken into accohaselare included in the expression above

for () by replacing) with 6/2, to derive a lower bound, like so:
o(a) = b — Wibts, — 4 A.
A/ w}cﬂkwk + B
Finally, making the substitutiop(«) = \/g and solving forx yields the result. O

The following Proposition upper bounds the generalisatioar o MPKEDA.

Proposition 3.2.5. Let wy, b, be the (normalised) weight vector and associated threshetrned
by the[MPKEDA algorithm when presented with a training SetFurthermore, Ietiz (2,) be the
empirical covariance matrices associated with the posifivegative) examples of the — & training
samples frond ~ S; projected into & dimensional space. Then with probability at least § over the

draw of the random training set of m training examples, the generalisation errors bounded by
e<max(l—at,1—-a")
wherea’, j = +, — are given by,

(3(whih, —by) — C7)

" , — N2
wﬁcEiwk + Di + (j(wgg/ﬂsk —by) — CJ)

ol =

where
. R em 2m
V= [ 2 2kln — +2In— |,
¢ \/mj—kj<+\/ "t n5>
and
. 2R? \/ em 4m
J — i i
D m<2+ 2k In 3 +2In 5 )

Proof. For the negative-{1) part of the proofp, — w/ ft,, > gp(a)\/chi,;wk is required, which is

a straight forward application of Theordm 312.4 witheplaced withj /2. For the positive 1) part,
observe-by + wifi > @(a)\/W;EZWk is required, hence, a further application of Theofem 8.2.4
with ¢ replaced by /2 suffices. O
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Experiments

A comparison on 13 benchmark datasets derived frori theé U&tia Bbr Evaluating Learning in Valid
Experiments[(DELVE) and STATLOG benchmark repositorigiofes. The performance ¢f KEDA,
MPKEDA| and[SVM usind RBF kernels are analysed. The data edmé00 predefined splits into
training and test sets (20 in the case of the image and spdizselts) as described :El] For each

of the datasetfs 0V was used to select the optimal paramé¢hefRBE kernel width parameter, the C
parameter in theeSVM, anklthe number of iterations I MPKEDA). 5-fold GV was used oves first
five training datasets with a coarse range of parameter sagetecting the median over the five sets
as the optimal value, followed by a similar process using @ fange of parameter vaIHesThis way

of estimating the parameters leads to more robust comparisetween the methods. The means and
[SDs of the generalisation error for each method and dateseiveen in Tabl€3]1. It was found that the
performance dEKEDA and MPKFEDA are very similar, and both evenpetitive with th&_ SVM. This is

demonstrated by the values for the mean over the datasets.

Dim | Train | Test KFDA MPKFDA SVM

Error [SO| Error [SD k Error k
Banana 2 400 | 4900 | 0.1069 0.00| 0.1101 o0.01 31| 0.1068 0.00 122
Breast Cance 9 200 77 | 0.2886 0.05| 0.3174 0.04 19| 0.2603 0.05 113
Diabetes 8 468 300 | 0.2596 0.02| 0.2543 0.02 18| 0.2332 0.02 260
Flare Solar 9 666 400 | 0.3500 0.02| 0.3457 0.02 19| 0.3239 0.02 557
German 20 700 300 | 0.2672 0.02| 0.2808 0.02 27| 0.2345 0.02 392
Heart 13 170 100 | 0.2125 0.03| 0.1599 0.03 13| 0.1543 0.03 98
Image 18 | 1300 | 1010 | 0.0092 0.02| 0.0136 0.03 39 0.0061 0.01 27
Ringnorm 20 400 | 7000 | 0.0685 0.01| 0.0573 0.03 15| 0.0164 0.00 216
Splice 60 | 1000 | 2175| 0.0397 0.08| 0.0314 0.06 37| 0.0223 0.05 110
Thyroid 5 140 75| 0.0392 0.02| 0.0699 0.03 29| 0.0520 0.02 87
Titanic 3 150 | 2051 | 0.2259 0.02| 0.2468 0.05 70/ 0.2256 0.01 76
Twonorm 20 400 | 7000 | 0.0253 0.00| 0.0253 0.00 14| 0.0280 0.00 231
Waveform 21 400 | 4600 | 0.1228 0.01| 0.1027 0.00 13| 0.1031 0.00 131
Mean 0.1550 0.02| 0.1550 0.03 26.5 0.1359 0.02 185.3

Table 3.1: Error estimates and Standard Deviatiofis {SDs) and spalsitgl ¥ (number of bases for MPKFEDA or
number of support vectors for SYM) for 13 benchmark datasets

Results from the Neural Information Processing Systdm®#)12003 challenge datasefs1[92]
geiﬂhese datasets were chosen with the belief

ARCENE, DEXTER and DOROTHEA are presented
that the main advantage [of MPKEDA will be shown when the diaislin high dimensions. Compar-
isons were made between the performande of MPKIFDA with statifFDA and SVM, again using
[RBH kernels for each of the classifiers. 5-fBld]CV was usedhenttaining set to select the optimal
parameters for each algorithm as before, and then testdukeoratidation set. For each dataset the fol-
lowing are shown: the number of features; the number of e¥a@srip the training and validation sets;
the generalisation error of each classifier on the validag&t. All problems are two-class classification
problems. As can be seen from Table] 8.2, MPKEFDA outperforats[EEDA and SVM on these high

3Available to download fromhttp: /71 da. first.fraunhof er. de/ proj ect s/ bench/ benchmar ks. ht m
4The coarse values wei® 53 and the fine range consisted of 9 logarithmically spacecegahetweerni 0?1 and10v+1
wherew is log, of the value chosen at the first stage
5The train and validation sets and associated labels arbleafor download from:
http://ww. ni psfsc. ecs. soton. ac. uk/ dat aset s/


http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm
http://www.nipsfsc.ecs.soton.ac.uk/datasets/
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dimensional datasets, whilst giving very sparse solutions

Dim | Train | Test | [KEDAI MPKEDAI SVM|
Error Error k Error k
Arcene| 10000, 100| 100 | 0.2000| 0.1800 40 | 0.2600 80
Dexter| 20000 300| 300| 0.1133| 0.0800 40 | 0.0733 257
Dorothea| 100000f 800 | 350 | 0.0971| 0.0571 11 | 0.0686 711
Mean 0.1368| 0.1057 30.3| 0.1340 349.3

Table 3.2: Error estimates for MPKEDA on 3 high dimensional datasets.

Figured3.B a) and b) show plots of the train and test errr BKDA on two of the datasets
PR EDA

(‘German’ and ‘Banana’) ak increases compared againstKHDA. The plots demonstrat]
algorithm is very resistant to overfitting, and gives goodegalisation performance with relatively small
k. The value of the bound is also plotted. However it is too eesstic (it levels off for much highek)

and therefore cannot be used for model selection.

It is also interesting to investigate why the algorithm isiseant to overfitting. Firstly note that the
deflation step means that the rank of the kernel matrix isgosdduced by at least at each iteration.
Also, the Frobenius norm of the kernel matrix is being rediyeéthough the effect of this will be greater
at earlier steps. Meanwhile, the norm of the weight vecfanrfnormalised) grows as bases are added,
but the rate of this reduction decreases over time. This m#wat ask grows the bases that are added
will have less and less impact on the solution. Figuré 3.4vstbe relative sizes of the Frobenius norm
of the kernel matrix and the generalisation errok &screses (different scales on the y-axis). Effectively
the deflation step is acting as a strong regulariser, whigdmnvwdombined with the intrinsic regularisation

effects of the compression introduced by the sparsity ofthetions, leads to a resistance to overfitting.

In this Section a novel sparse version[of KHDA was derivethigisin approach based bn MP.
Generalisation error bounds were provided that were apnakgo that used in the Robust Minimax
algorithm [86], together with a sample compression bougdéthnique. As shown the bound is too
loose to perform model selection, but further analysis magbée the bound to drive the algorithm.
Experimental results on real world datasets were presgntedh showed thaf MPKEDA is competitive
with bothKEDA and’SVM|, and additional experiments that sedwhalf MPKEDA performs well in high
dimensional settings. In terms of computational compjettie demands ¢df MPKEDA during training
are higher, but during the evaluation on test points @ritgrnel evaluations are required comparegito
needed fof KEDA\. This does, however, pose a problem forrsgadi very large datasets, as the deflation

step isO(m?) at each step.

In the next Section an algorithm based on another greedyadgBolytope Faces Pursuit (BFP), is
presented. This time the focus will be on nonlinear regoesshowing that greedy methods are widely
applicable il MIL.
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Figure 3.3: Plot of generalisation error bound for different valuesiofising RBF kernels for the a) ‘German’ and
b) ‘Banana’ data set. The generalisation error is shown o@glaxis. The plot shows the training error (in blue),
the test error (in green), the bound value (in red), and tret &gror of theLKEDA classifier (in black, with dotted
lines showing the Standard Deviatidn (SD)). Note tha{TheKIABA algorithm is very resistant to overfitting, and
gives good generalisation performance with relatively BrhaThe bound is too pessemistic (it levels off for much
higher k) and therefore cannot be used for model selection.
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Test error and Frobenius norm of deflated kernel matrix
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Figure 3.4: Plot showing how the Frobenius norm of the deflated kernetimand the test error vary as basis
vectors are added to tfhie MPKFEIDA solution.

3.3 Kernel Polytope Faces Pursuit

Polytope Faces Pursuif (PFP) is a greedy algorithm thabappates the sparse solutions recovered by
41 regularised least-squardés (LASSO)I[60, 61] in a similar wedfB and"OMIP[[98]. The algorithm

is based on the geometry of the polar polytope where at eaphasbasis function is chosen by finding
the maximal vertex using a path-following method. The atfanic complexity is of a similar order to
OMP whilst being able to solve problems known to be har@fotdiE[OMP [MP was extended to build
kernel-based solutions to machine learning problemsithegin the sparse regression algoritim, KIMP
[65]. A new algorithm to build sparse kernel-based soluiosing PEP is presented here, called Kernel
Polytope Faces Pursulf (KPFP). The utility of this algarittvill be demonstrated firstly by providing
a generalisation error bound [88] that takes into accourdtaral regression loss, and secondly with

experimental results on several benchmark datasets. foltheing thelKPEP algorithm will be derived,
which is a generalisation 6fPFP tf a RKHS.

[PER was outlined in the previous Chapter in Sedfion P.2.2ash step the approach to the solution
of this problem is to identify the optimal vertex which is tmaximiser ofy’c, wherec is the dimensional
weight vector of the/;-minimisation in its standard form, which is similar to theawin which[KMP
builds up its solution. However the difference is that atestep, the path is constrained on the polytope

face F' given by the vertex of the previous step. This is achievedrbjeptingy into a subspace parallel

to F'to giver = (I—Q)y whereQ = %ﬂ“ﬂ, Sincea = K[, i)'ty andy = K[:, i]a, it follows that

r =y — K[;,i{Jaa = y — y meaning that is the residual from the approximation at ste he second
step, which is where the main difference betwgen ®MP[and PiEEsainvolves projecting within the



3.3. Kernel Polytope Faces Pursuit 64

faceF that has just been found, rather than from the origin. Thiige by projecting along the residual

r. Therefore to find the next face at each step, the maxiseatedcorrelation is found

i; = arg max ~7 (3.13)
ie{t,..nn\i (1 — K[:,4)'c)
where bases are only considered suchKgti]'r > 0.

Constraints are then removed that violate the conditiondhzontains any negative entries. This is
achieved by finding € i such thaix; < 0, removing; from i and removing the face from the current
solution. & is then recalculated, continuing until; > 0,V j. Although this step is necessary to provide
exact solutions td(2.86), it may be desirable in some cistantes to remove this step due to the fact
that the primal space is in fact the dual space df an RKHS. Whidd result in faster iterations but less
sparse solutions. In Sectibn 3.13.2, a comparison of thepaence of the algorithm with and without
this step[(KPEP and KPFPv respectively) is made. The fubiritlgm is given in Algorithni 4.

Algorithm 4 Kernel Polytope Faces Pursuit

Input: kernelK, sparsity parameté<r> 0, training outputsy
1: InitialiseK = [K, -K],a=[],a=[],y=0,A=[],r=y,c=0
2. fori=1tokdo
3 Find facei; = arg max;¢; K[, i]'r/(1 — K[, i]'c) whereK[:, i)'r > 0
Add constraintA = [A, K[:,i;]]
UpdateB = (A)f, & = By
(Optional) Release violating constraints:
while 3 &; <0,V j do
Remove facg: A=A~ K[ jhi=i~{j}
UpdateB = K[ )T, a =By
10:  end while
11: Setc=B'l,y=Aa,r=y-—y
12: end for
13: Calculatea; = &; — &jpm, 1=1,...,m
Output: final seti, (sparse) dual weight vectar, predicted outputg

© ® N g

3.3.1 Generalisation error bound

For the generalisation error bound it is assumed that treeadtatgeneratédi.ild. from a fixed but unknown

probability distributionD over the joint spac&’ x ). Given thetrue error of a functionf:
R(f) = IE(x.,y)ND [‘C(f(x)a y)] )
whereL(y, y) is the loss between the predictgadnd truey, theempirical riskof f givensS:
1 m
= Z Xl yz
m :
and the estimation errest( f)

est(f) = |R(f) — R(f)l,
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the aim is to find an upper bound fest(f). In order to construct this bound we can use Vapnik-
Chervonenkis[{VC) theory, which relies on the uniform cagesmce of the empirical risk to the true
risk. For a general function class, a well known quantity teasure its size, which determines the
degree of uniform convergence, is thevering numbef94]. The covering number is calculated by

discretising the parameter space so that the risk can lmagstl at discrete locations.

Definition Let B be a metric space with metric p. Given observati¥ns [xy, ..., X,,], and functions
[ € B™ thatform a hypothesis clags, the covering number in thg-norm, as denoted by, (¢, H, X),

is defined as the minimum numbepf a collection of vectors, ..., v, € B™, such tha8 v;:
lp (£ (), v5)ll,, < m*Pe,

and further thatV,, (e, H, m) = supx Ny (e, H, X).

Note that from the definition and Jensen’s inequality, weehtimat\,, < N for p < ¢ (see[95]
for a discussion), meaning that tlig, covering number is always an upper bound on#heovering
number. A result that is relevant here (Theorem 17.1 ffonj) [86unds the rate of uniform convergence
of a function class in terms of its covering number, (usirgth covering number as opposed to the

covering number):

Pr{3f e H:R(f)~ R(f)| = e} < 4N (%v”ﬂm) exp (_S,Zm) ’

This covering number can be upper bounded using Theorenfrb2iq96]:

d
NoolesHym) < (”"R> |

ed

whereR is the support of the distribution aridienotes theseudo-dimensiois with[KMP [88],[KPEP
also ha§ VC-dimension (pseudo-dimensibmvhenk is the number of basis vectors chosen. However,
in contrast to th€ KMP bound of [88] the pseudo-dimensionsisdto apply a natural regression loss
function, the so-called squared error as defined in Seciib32

L(f(x),y) = (f(x) —y)*.

Therefore there is no need to fix a bandwidth parameter asheasse with the bound ¢f [88E., there
is no need to map the regression loss into a classification Bime proof technique of [88] is followed
but instead the sample compression technique is appliadoseeido-dimension bounds, which results

in a slightly more involved proof.

Theorem 3.3.1.Let f € H : X — [0, 1] be the function output by any sparse (dual) kernel regressio
algorithm which builds regressors using basis vectatghe size of the training se&t and k the size of
the chosen basis vectoisLet S = S < S; denote the examples outside of the $etAssume without

loss of generality that the lagtexamples it form the setS;. Let R be the radius of the ball containing
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the support of5, then withl — § confidence the true erroR( f) of functionf given any training sef

can be upper bounded by,

X /322 4 128(m — k) (kIn 2 + kIn32e(m — k)R + 1+ In 2m) — 32

R(f) < Rs(f) 2(m — k)

Proof. First consider a fixed and a fixed set of indices Assume that the first: — k& points fromS are

drawn independently and apply Theorem 17.1 (and Theore®) fitdm [9€] to obtain the bound

Pr{S; IR(f) — Rg(f)] 26} <4 (W)kexp <%> (3.14)

Given that the goal is to choosebasis vectors fromn choices, there ar€)') different ways of selecting
them. Multiplying the r.h.s. of Equatién 3114 §%) like so:

Pr{S:3i il = k,3f € span{S;} s.t. |[R(f) — Rg(f)| > e} (3.15)

o) (25 e (*571).

. (%)k (326(Trzk k)R)"’ exp (8(?2 k:)) |

where we use the fact théf') < Zf:o (M < (%)]c — In ('}) < kln <%, Next by setting the r.h.s.

IN

IN

of Equation[[3:1b) td, taking logarithms and rearranging gives

e2(m — k)

4
39 :kln%+kln326(m—k:)R—lne—i—lnk—i—ln—.

)

It would be desirable to write this bound in termseo@ind we therefore use the following resiilt[97]
which states that for any > 0, Ine < lné — 1 4 ae. Substituting this result with = 1 (a smallera

can be used but would make the bound less neat) gives

e(m — k) =32 (kln%quln?)Qe(mk)Rlnqule+1nk+ln§),

which yields the following quadratic equation:
9 em 4k
(m —k)e* + 32¢ — 32 kln7+kln326(m—k)R+1+ln7 =0.

Therefore, solving for gives the result when the bound is further appliedimes for each value of

k. O

This bound can be specialised tofhe RBF kernel that useséhe syuared error loss and for which

the support of the distributioR = 1, which leads to the following corollany.

6The quadratic equation is solved only for the positive qaadr
"The[RBE kernel was used in the experiments.



3.3. Kernel Polytope Faces Pursuit 67

Corollary 3.3.2. For a[RBF kernel and using all the definitions from TheotemIBtBe loss of KPFP
can be upper bounded by:

. /322 +128(m — k) (KIn 42 + kIn32e(m — k) + 1+ In 2&m) — 32

R(f) < Rs(f) s :

where

m—k
Rs(f) = == 3 Ls(70xi) )

Remark The consequences of Theorédm 3.3.1 (and Coro 3.3.2has dlthough the pseudo-
dimension can be infinite even in cases where learning isess a bound will be generated that is
alwaysfinite. Also, this is the first bound f@r KMP afid KPP to use tia¢ural regression losi order

to upper bound generalisation error. The bound is natuti@lling off empirical error with complexity
— as the training error decreases the bound gets smalleasahé number of basis vectors (complexity)
increase the bound gets larger. A good trade-off is to findlgra&ing error whilst using a small num-
ber of basis vectors. Clearly, the KMP dnd KIPFP algorithmsxtioptimise this trade-off, and the bound

suggests that this will result in good generalisation.

It is quite obvious that the output of the function cldg¢s X — [0, 1] is not bounded betweeh
and1 in most ‘real world’ regression scenarios. Therefore, asnpuactically useful bound can be given

for a function clas${ : X — [—B, B] where the outputs are bounded in the range-d8, B] € R.

Corollary 3.3.3. Let|w|, < B € Rand|x;|, < 1,i=1,...,m. Letf € H : X — [-B, B] be
the function output by angparse (dual) kernel regressialgorithm which builds regressors using basis
vectors,m the size of the training sef and k the size of the chosen basis vectordet S = S\ S;
denote the examples outside of the&etAssume without loss of generality that the lagixamples in

S form the sefS;. Let R be the radius of the ball containing the support%fthen withl — § confidence

the true errorR( f) of functionf given any training ses' can be upper bounded by,

\/322 +128(m — k) (kIn €2 + kIn32e(m — k)R + 1 + In 4m) — 32
2(m — k) '

R(f) < Rs(f) +2B

Proof. Denote the function clas = {f;—BB 1 fe 7—[} : X — [0,1]. Therefore, given any function
f € H TheorenT3311 holds. Furthermore, for any function clss X — [—B, B] the following

results:

\/322+ 128(m — k) (kln% +kln326(m—k)R+1+ln4kTm) —32
2(m — k) '

R(f) < 2B-Rs(f) +2B

which completes the proof under the substitutiog(f) = 2B - R5(f). 0

8Note that the pseudo-dimension is a generalisation of thedv@nsion and hence the same problems of infinite VC-
dimension also apply to the pseudo-dimension.
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3.3.2 Experiments

A comparison on 9 benchmark datasets derived frorhi the UGtl_8t and DELVE benchmark reposi-

tories is presented. Details of the datasets are given ile[BB. The performance bf KPHP, KMP, KRR
andKBP are analysed usihg RBF kernEls. KBP was implemertedlging thd LASSO on the features
defined by th& RBF kernel using the TARS. 10 randomised splitstraining and test sets were used.
For each of the dataséis CV was used to select the opiimal RBfelkwidth parameter f(r KRR. This
kernel was then used as input to the KNIP, KBP and KPFP algosithFor both KMP and KPEP the
initial sparsity levelk was set in training by a heuristic method to the lesser of 10®@ number of
training examples. The means and standard deviations afetheralisation error for each method and

dataset are given in Talle B.4.

The results show that overall the sparse methiods (KMP, KRBP) all perform better than KRR.
Itis interesting to compare the performancEof KPFP withwitlout the release of violating constraints
(KPEBv and KPEP respectivelyl._KPFPv performs nearly a$ asgKMRB on all datasets except for
cpusnal |, whilst requiring fewer bases in the final solutions. On titleeo hand[KPEP results in
solutions that are the least sparse of the three methodsesuits in the lowest generalisation error.
[KBP which gives an exact solution to the TASISO problem penfothe worst here, showing that the
solution is not necessarily the optimal one for generatisatThe key to the performance of all of these
methods is in selecting the appropriate stopping pkinThis is quite difficult to achieve in KMP, as
the algorithm tends to overfit quite quickly, and there is bwious criterion for stopping. For example,
if cross-validation were used to seldctthe resulting value would be too low, as the number of bases
would be selected from a smaller validation set. In the drpants it was found that by selecting an
initial £ through a heuristic method and then choosing the minimistireotraining error resulted in the
best compromise. INKPFP ahd KBFPv the optimal value:fisrmore easily achieved, as the training
and test error curves tend to follow each other quite welldifidnally there is an (optional) stopping
parameted,, ... In fact, the value o# to which#,,,. is compared also follows the error curves. It was

found that by taking the minimiser éfas the number of bases was a reliable way of estimating

Dataset #examples # dimensions

abalone 4177 8
bodyfat 252 14
cpusmall 8192 12
housing 506 13
mpg 392 7
mg 1385 6
pyrim 74 27
spacega 3107 6
triazines 186 60

Table 3.3: Number of examples and dimensions of each of the 9 benchratasets
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Dataset KRR KMP KBP KPFPv KPFP

m o m o k m o k m o k m o k
abalone 8.70 1.79 5.70 256 | 49.2 21.64 | 28.80 5.4 6.07 | 1.16 7.3 482 | 0.24 37.7
bodyfat 0.00 0.00 0.00 0.00 | 49.1 0.01 0.02 5.7 0.00 | 0.00 | 30.1 0.00 | 0.00 | 129.7

cpusmall | 216.35 | 64.04 | 15.66 251 | 24.0 | 519.06 | 9545 | 10.3 | 69.97 | 251 | 13.4 | 1250 | 1.51 54.2
housing 72.19 | 19.59 | 21.93 7.17 | 50.3 56.84 | 19.35 8.9 | 3416 | 819 | 21.9 | 23.22 | 6.67 | 150.8

mpg 39.47 | 24.57 | 20.70 | 14.37 | 50.6 42.05 | 48.27 7.7 13.11 | 3.35| 115 | 1098 | 1.97 | 161.1
mg 0.04 0.01 0.02 0.00 | 49.0 0.11 0.19 4.4 0.02 | 0.00 7.6 0.02 | 0.00 48.7
pyrim 0.02 0.01 0.02 0.02 | 243 0.02 0.01 | 11.6 0.02 | 0.01 | 17.8 0.01 | 0.01 39.0

spacega 0.03 0.01 0.02 0.00 | 49.9 0.05 0.05 4.8 0.02 | 0.00 6.0 0.02 | 0.00 38.2
triazines 0.02 0.01 0.03 0.02 | 50.9 0.02 0.00 | 11.3 0.02 | 0.00 | 344 0.02 | 0.00 | 109.7
wins 3 34 6 9 39

Table 3.4: (Mean) Mean Squared Errof (MM$E)) and[SDs ¢) for 9 benchmark datasets for KRR, KMP, KBP
and[KPER with and without violation releade (KPFPv, KRFPheTtotal number of wins over all splits of the data
for each algorithm is given in the last row. Numbers in boldidate the best performing algorithm for each dataset.

3.3.3 Bound Experiments

Finally results of the performance of the bound will be preed. Figurd_3]5 shows typical plots of
the bound. For Figurle 3.5 (b) the number of training examghesen was 450 and the number of test
examples was 56, with the RBF width parameter set t00.035. The bound values tend to fall as basis
vectors are added, before rising again as the complexityeo§olution rises. Hence the first minimum
of the bound value could serve as an appropriate point tote®plgorithm. This is clearly much more
efficient than using cross-validation to select the valuk, ¢fie number of basis vectors to use. However
in the experiments this resulted in stopping too early, ltegpin underfitting. Further refinement of the

bound may improve its performance in this respect.

s ‘ KPFF“ error on Boston housing data set KMP error on Boston housing data set
T T T T T

1500

estimation error
training error
Norm(weights)
bound

— KPFP test error | |

estimation error
training error
bound

— KMP test error

1000 -

Loss or bound
loss or bound

I A N e
Figure 3.5: a) Plot of generalisation error bound for different valudsaising RBF kernels for the ‘Boston housing’
data set. Théog of the generalisation error is shown on theaxis. The plot shows the empirical error of the Set
(denoted training error, in green), the estimation erran flue), the norm of the weight vector (in red), the bound
value which is calculated from these three values (in cyandl the generalisation error (in magenta). Note that
the empirical error follows the true error very well, whichstifies its use in the setting of the sparsity parameter.
However the bound value is swamped by the norm of the weigtinf@eeded according to Corrollofy-3.3.3), and
as such is not useful. b) The bound values fofthe KMP algmritNote that in this case the bound (which is valid
for this algorithm too) is more useful, simply because themof the weight vector does not blow up as quickly.

[PEP is a greedy algorithm that approximates the sparse@mutcovered by; regularised least-
squareE LASSI [60, 61] in a similar waylio MP and OMP [93]. Tlyedathm is based on the geometry
of the polar polytope where at each step a basis functiondsehby finding the maximal vertex using
a path-following method. The algorithmic complexity is osimilar order td_OMP whilst being able
to solve problems known to be hard for MP dnd QMP. In this Sedive PEP algorithm was extended
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to a kernel version, callddKPFP. The utility of this algbnit was demonstrated by providing a novel
generalisation error bound which used the natural regre$sss and pseudo-dimensionin order to upper
bound its loss. The experimental results showedThai KPFRRcampetitive against the KMIP ahd KRR.
The next Section will present an alternative to the greeditesyies for the selection of bases pre-
sented thus far. It will be shown theoretically and empihjcthat, surprisingly, it is still possible to learn

when the bases are selected at random, providing thatcagaiimptions hold.

3.4 Learning in a Nystrom Approximated Subspace

“No random actions, none not based on underlying principles

Marcus Aurelius, Meditations Book IV

Givenm observations, it is possible to define a framework that eaiwut learningin & < £ < m
dimensional subspace that is constructed using the Nystméthod. A recently advocated and theoret-
ically justified approach of uniform sub-sampling withoaptacement will be adopted to cheaply find
a k-dimensional subspace in time complexi®y1). Any linear learning algorithm can then be used in
this uniformly sampled:-dimensional Nystrom approximated subspace to help ¢dekbe data sets.
Furthermore, for an_ SVM constructed in this Nystrom apprated space an upper bound on its ob-
jective function is proved in terms of the objective of theNs\golved in the original space, implying
successful learning whenever the objective of the SVM indtiginal space is small. Finally, the pro-
posed methodology will be demonstrated on several UCI iepggatasets for both classification and
regression, using prima[ SVINVL, FDA, ahd RR.

Kernel methods continue to play an important role in machéaening due to their ability in ad-
dressing real-world problems, which often have non-lireeadt complex structures. The key element
of kernel methods is the mapping of data into a kernel indutiluert space where a dot product be-
tween the points can be computed efficiently. Thereforeermgin sample points, am x m symmetric
positive semi-definitd (SP3D) kernel matrix is all that reedbe computed. Computing the kernel ma-
trix requires an operation with a complexity term@fm?). Despite the obvious advantages of kernel
methods, the methodology begins to falter wivebhecomes very large.

This potential draw back of kernel methods has been addtésdbe literature through the pro-
posal of a number of methods for kernel matrix low-rank agpnations. These methods have a com-
putational complexity smaller thafi(m?). In particular, one would perform a low-rank approximation
of K = C'C, whereC € R**™ such thatt < m. For example,[[37] have approximated the kernel
matrix by incrementally choosing basis vectors so as tomigg an upper bound on the approximation
error. Their algorithm has a complexity 6f(k*>m¢) where/ is a random subset siz€. 98] have pro-
posed a greedy sampling scheme, with comple&ity>m), based on how well a sample point can be
represented by a linear combination of the current subdpases in the feature space. The Nystrom ap-
proximation, originally proposed by [99] to solve integegjuations, was proposed lyy [7] as a technique

to approximate the kernel matrices to speed up kernel-bagefictors. The Nystrom approach samples
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k columns of the kernel matrix to reconstruct the completeé&ematrix, it has a complexity term of
O(k3). Whenk < m this is computationally much more efficient than the othettrods.

It has recently been demonstrated that when approximdtenggrnel matrix using the Nystrom ap-
proach, uniform subsampling without replacement is abtaitperform other sampling techniques[L00].
The authors show that the most computationally efficiend, @reapest, sampling technique is to ran-
domly select columns of the kernel matrix. However whilgitiprovide upper bounds on the approxi-
mation error, they do not give a theoretical analysikafnability in the Nystréom subspace.

This question has in fact been investigated by Bitral.[101,/102] who show that a Nystrom pro-
jection (their projectiory, although they do not refer to it as a Nystrom projectio@gerves margins.
By this they mean that if there is a classifier with margjrma suitably large Nystrom subspace will have
margin of at leasty/2 for a high proportion of the training data. In practice oneuldonot normally
expect data to have a large hard margin even in a high dimeaisspace, but rather have a small primal
objective that combines both the margin and the slaclalies. Hence, their result leaves open
the question of how the projection will affect the size of [BMl objective, since they do not take into

account

e some points with non-zero slack variables may fail to aghi@arginy in the original space;
e the size of the slack variables of the fractioof points that fail to achieve margip/2 in the

Nystrom projection.

These issues will be investigated, resulting in a theaaikdgtension of the Blunet. al. approach, fol-
lowed by experiments to verify the effect of the Nystrom jpotion on the quality of generalisation
obtained using Support Vector classification.

Sectior 3.211 gave details ofa OMP algorithm[for KBEDA thagrisedy in its approach to finding a
small number of basis vectors with a complexity®@fm?>k). greedily chooses basis vectors
by maximising the Fisher quotient to solve fhe HDA algoritinnthe Nystrom approximated space|[15].
The[KPEP algorithm described in Section]3.3, which was usegetform regression, has the same
complexity [17]. The idea of uniformly sampling (with or Witut replacement) [100] will be used to
generate the Nystrom subspace and demonstrated exp&llyanboth of these settings, as well as for

the[SVM. The experimental results will be strengthened wiigmificance testing.

Preliminaries

Recall the definition of the Nystrom approximation of thea@rmatrixG, as defined in Sectidn 3.2.2.
For any such Gram matrix, there existXac R™*" such thatG = XX’. Again if we assume that
the examples have already been projected into the kernakdefiéature space this analysis will hold for
kernel matriceX in place of the gram matri&.

¢ < m columns ofG are sampled at random uniformly without replacement.Ndie them x ¢
matrix of the sampled columns, an¥ be thel x ¢ matrix consisting of the intersection of theée

columns with the correspondinfgrows of G. The Nystrom method usé&/, N to construct a rank-
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approximatiorG, to G for k < ¢, like so:
G, =NWIN' ~ G, (3.16)

Recent studied [100, 108, 104] have shown that for a Gramixm@trand a Nystrom approximated
matrix Gy, constructed front uniformly sampled columns d, the expected loss (H(G — Gy, HF can

be bounded by the difference betwea@rand its optimak rank approximatiorGy, .

Theorem 3.4.1. (Quoted from[[10D]) LeiG € R™*™ be a[SPSD matrix. Assume thatolumns of
G are sampled uniformly at random without replacement@gtbe the rankk Nystm approximation
to G as described in Equatio(3.2), and &t be the best rank-approximation toG. For e > 0, if

¢ > %k then

sfle-al,] <ie-cue|[F X

i€D()

WherezieDu) G, is the sum of the largegtdiagonal entries of5. Further, letny = w

with (¢, m — ¢) = (e(m’f)) <1 L > andif¢ > 664—4’“ then with probability at least — ¢,

m—3 T Tmax{l,m—C}

~ m
o, <16-aueee| (2 5 @

m Z G2 + nmax(mGy;)
ieD(0) =1

3.4.1 Theory of Support Vector Machine (SVM) in Nystrém Subspace

The theories for the Nystrom approximation have been theviing:

e An upper bound on the expected reconstruction of the low raattix approximation described
above.
e A bound which shows that if there exists a separator with maadgin~ in the original space a

Nystrom projection of dimension

d> 8 [iz +In 1} (3.17)
€ | 1)
will with probability 1 — § over the selection of thé points defining the projection create a margin

of at leasty/2 for all but at most an fraction of the training data.

The second statement implies the potential for good gesat@n since a large margin classifier
misclassifying some points has a provable bound on gesatiain. Nonetheless it is not clear that this
will be found by the margin maximizing SV, since it deals kvihargin errors using slack variables
that do not simply count margin errors. Furthermore, theiaggion that there exists a hard margin

separator in the original space is in practice unrealisicSVM solution with small objective might
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be found, implying good generalisation but at the expense mimber of points with non-zero slack

variables. The theorem as stated would not apply to this case

The main result of this work is an adaptation[of [101] as foko

Lemma 3.4.2. Consider any distribution over labeled examples (with ingctors having support con-
tained in the unit ball in Euclidean space) such that theristexa linear separatofw,x) = 0 with

margin~ on all butk points. Drawing

1 1
d2§[—2+ln—]
€

5 1)
exampleszy, . . ., zg [L1.d] from this distribution, with probability at least — ¢, there exists a vector
w € span(zi, ..., 2z4) that has error at most + k/m at marginy/2.
Proof. Given the set of exampleS = {zi,...,z4} as defined above withz;|| = 1,Vi, we define

V = span(S) as the (possibly not unique) span of this set, &hd as its orthogonal complement.
Suppose we have a (weight) vectorin the spacepan(z) also assumed to be normalisélav(| = 1).
Let w;,, be the part ofw that lies inV/, andw,,; be the part ofw that lies inV/+. By definition

Win L Wour andw = wy,, -+ Woys.

We need to make the following definitions:

1. w,y islargeif Pr,((wWout,z) > v/2) > €, and

2. Wout IS smallif Pr,((wous,2) > 7/2) <€,

where we usé®r,(-) to denote the probability over random sampling from thentrey set. Ifw,,; is
small, then agw;,,,z) = (w,z) — (Wout,2) and it was assumed thBi, ((w,z) > ) =1 — k/m, it
can be seen thatr, ((w;,,z) > v/2) > 1 — e — k/m as required, and the proof would be complete.
For the rest of the proof, we consider the situation wherg; is large,i.e. the setz has not yet been

informative enough that the weight vector enabling seardies sufficiently within its span.

Forw,,: that is large, we consider what happens when a new (randoim)pe- z4 1, ||z| = 1
is added to the set, with the resulting induced spéice: S U {z}. Consider the case that ¢ V
(i,e.z € V- whereVL = span(S)L = VL U {z}). We can by the definition of andw,,; deduce
that (w,.:,z) > /2. Letz;, andz,,; be the normalised projections ®PontoV andV * respectively.
Similarly let w;,, = proj(wi,, Vl) andw,,; = proj(Wout, Vl) be the projections ofv;,, andw .

ontoV - respectively. Observe that,

Win = PrOj (Wv ‘7)7
= pI‘Oj (Wv V) =+ pI‘Oj (Wv i)v

= W, + proj(w,z). (3.18)
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Sincew;,, L Wy, Wour must shrink by a concordant amount,

‘;Vout = Wout — proj (Wa i)a
= Wout — proj (Wout7 i)a

= Wout — <W0ut7 i> Z. (319)

Sincez = proj(z, S), and by definitiorz L V, we have

[Winll®> = (Win + proj(w, z), Wy, + proj(w, z)),

and as before the corresponding norm of the orthogonal cammait must shrink by a concordant
amount,

¥ ouel® = [Iwourl® = ((w,2)2)°,

= HWOutH2 - (<inout> iout)z . (321)

Using that,

<Wout; i> S <Wout; iout> )

= <Wouta Z> ) (322)
and by definition ofz, we have,
||V~Vout||2 = HwoutH2 - (<Waiout> iout)za
< [ Woutll* = (v/2). (3.23)

We have therefore shown that the new paihis at least anchance of significantly improving the sgt

by a factor of at least?/4, under the assumption that,,; is large. Sincélw]||* = ||proj(w,®)|* = 1,
this can happen at mosf~? times.

Under the assumptions above, and due to the strict inegualEquatio 3.28, we can then use
Chernoff bounds to determine the number of projectidnisat are needed. The bounds in the multi-

plicative form state that the probability of independemidtam events\y, X, ..., X,, taking the values
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Oorl,

E[X]
exp(¢)
PrX>0+QEX]) < | ———=— . 3.24
(X > (1+¢)E[X]) <a+®HJ (3.24)
To use this form we need to switch round the statement abafetbat our random event is the chance
that S will not be improved i(e. 1 — (¢/2)), and we are bounding the probabilifythat overn in-
stantiations the mean value of the random events are largant— ne/2). In this case we have that

E[X] = n(1 — €), and this means that,

(I+n(l—¢€) =n—mne/2,

= (= %i (3.25)
Substituting into Equatio (3.24) leads to,
€ exp(¢) \"
We now rearrange fot,
o (e \"
1+ ’
exp(¢)
1I1(5) = TL(l — 6) 111 <W> y
1 1+
1H57’L(16)1H<W y
In s =n(l -6 [(1 + Q1+ -,
S o § . (3.27)
1—e€[(1+¢)In(1+¢) =]
Substituting[(3.25) intd (3.27) gives us,
1 ln%
n= )
Lo+ £2ma+2) - 2]
1 (1—€lnt
1—e {(1 —e—¢/2)In(1 + L 6/2} ,
ln%
= ) 3.28
(1—¢/2)In(1+ £L2) —¢/2 (3.28)

We will now pull together the result froi (3.23) with the alede lower bound the number of projection
dimensionsn. SettingT to be the denominator in Equatidn (3.28), we can use the feattrt < 2
for e € [0,0.5], as shown in FigurE_3.6, together with the consequence fBEB) that is that with
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probability1 — & we will have at leaste/2 > 4/42 heads (implying that > %) as follows,

>3 [i +In 1} . (3.29)
€l

log((1-e/2)/(1-e))*(1-e/2)-e/2 ——
el8

0.05
0.04
0.03
0.02

0.01

e

Figure 3.6: Plotof f(e) = (1 — ¢/2)In(1+ £2) —¢/2 and f(e) = & for e € {0,0.5}

We now extend this to the soft margin case with the followingotlary. We use the fact that the

analysis still holds if some of the points fail to attain thangin.

Corollary 3.4.3. Given a soft margin seperator characterised by a margiand slack variableg in
the original space, wherg| = k, then a Nystm projection of dimension
8 1 1
d> —— | +In=
T e—k/m [72 " n5]
will with probability 1 — § over the selection of thépoints defining the projection create a margin of at
least~/2 for all but at most are + k/m fraction of the training data. In particular, the objectivé a
support vector optimisation in the Ny8tn space is bounded by
4 2(k +
4. (k+em)

¥? y o

If we now minimise in the new space the objectjwe||5 + C 3, & can only increase.
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In the following Section the proposed methodology will b@lexed empirically for both classification

and regression.

3.4.2 Experiments: Classification

Firstly, a comparison on 13 benchmark datasets derived fhentCl, DELVE and STATLOG bench-
mark repositories is presented, which are all binary diassion problems or converted such that they
are. The performance bf KEDA, SVM, Nystrom KFDA (NEFDA) ang$trom SVM [NSVM) are com-
pared. Results are also included for Matching Pursuit Kefishier Discriminant Analysi$ (MPKEDA)
as presented earlier in Sectlon 312,11 [15], which was tchorethe same benchmark datasets using the
same splits. Radial Basis Functi@n (RBF) kernels were usedlfexperiments. The data comes in 100
predefined splits into training and test sets (20 in the ca8edmage and splice datasets) as described
in [34]. For each of the datasets two rounds of cross-validafion) (@e used to select the optimal
parameters (tHe RBF kernel width parameter, the C pararimetee[SVM, andk the number of itera-
tions in[NEDA). For the first round a coarse range of parametiies was evaluated on the first 5 splits
of the training set, with the parameter value corresponttirte median of the lowest error of the five
splits being chosen for the second round. A fine range of patensiwas constructed around this value,
from which the optimal value was chosen using 5-fold CV ovkslits of the training set.This way of
estimating the parameters leads to more robust compatisiween the methods.

The sparsity parametérfor both[NEDA and NSV were set t,/n;,, as this is justified by the
upper bound. Previously [1D0] had selecteds20% of the dataset but in cases of large this could
resultin a complexity worse than the SVM (which¥n?)). The means and Standard Deviatidnsl(SDs)
of the generalisation error for each method and datasetizea o Tableg 3} for the_ SVM ad 3.6 for
FDA

From casual examination of the data, it can be seen thatajthihd SVM performs best in most sit-
uations (followed bj/ KEDA), the differences are not largelditionally, the differences betweEn NFDA

and MPKEDA are even smaller. This is somewhat surprisinf/J&l

KFEDAlis much more expensive to
compute O(kn?)), and at each step is supposedly finding an “optimal” basisa@ing to the Fisher ra-
tio). Two-sided heteroscedastitests were performed to test whether the null hypotheaisliie results
for the[SVM versus the NSVM, KEDA verslis NEDA, and MPKEDA vesENFDA were drawn from
the same normal distributions. All of these tests were mfitant p = 0.37, p = 0.39 andp = 0.42
respectively) which means that under the assumptions déitehe null hypothesis cannot be rejected.
This means that the differences between the results arégmificant. Note also that the solutions given
by the NSVM are much more sparse (in the dual sense) than tMes®lutions, and that the solutions
given by NFDA have a comparable degree of sparsity with tigdsen by MPKFDA.

Furthermore we compare in figufesl3.7 3.8, for the Bremst € data set and Flare Solar dataset

respectively, the error and computational cost as a funaifd: for Nystrom as compared with KFDA.

9Available to download fromhttp: /71 da. first.fraunhof er. de/ proj ect s/ bench/ benchmar ks. ht m


http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm
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SVM NSVM

Dataset error SVs error (8D k

Banana 0.1061 0.01 76.4 0.1195 0.01 40
Breast Cancer 0.2584 0.05 58.1 0.2684 0.04 28
Diabetes 0.2367 0.02 168.8 0.2350 0.02 43
Flare Solar 0.3334 0.02 338.9 0.3361 0.02 52
German 0.2365 0.02 208.2 0.2415 0.02 54
Heart 0.1564 0.03 68.5 0.1677 0.03 26
Image 0.0061 0.00 216 0.0536 0.02 72
Ringnorm 0.0176 0.00 67.7 0.0190 0.00 40
Splice 0.1102 0.01 336.6 0.1618 0.01 63
Thyroid 0.0415 0.02 7.6 0.0532 0.03 24
Titanic 0.2243 0.01 48.3 0.2346 0.02 24
Twonorm 0.0275 0.00 48.7 0.0296 0.00 40
Waveform 0.0999 0.00 112.5 0.1070 0.00 40
Overall: 0.1426 0.01 146.3 0.1559 0.01 42

Table 3.5: Generalization error estimates and Standard Deviatigd3s)For 13 benchmark datasets for {he VM,

Nystrom SVM{NSVM)

KFDA NFDA MPKFDA

Dataset error error (3D k&  error k

Banana 0.1056 0.00 0.1072 0.01 40 0.1101 o0.01 31
Breast Cancer 0.2892 0.04 0.3104 0.11 28 0.3174 0.04 19
Diabetes 0.2505 0.02 0.2548 0.02 43 0.2543 0.02 18
Flare Solar 0.3423 0.02 0.3471 0.03 52 0.3457 0.02 19
German 0.2643 0.01 0.2784 0.02 54 0.2808 0.02 27
Heart 0.1638 0.03 0.1613 0.03 26 0.1599 0.03 13
Image 0.0273 0.01 0.0571 0.01 72 0.0136 0.03 39
Ringnorm 0.0152 0.00 0.0179 0.00 40 0.0573 0.03 15
Splice 0.1203 0.01 0.1710 0.03 63 0.0314 0.06 37
Thyroid 0.0483 0.02 0.0600 0.03 24 0.0699 0.03 29
Titanic 0.2319 0.01 0.2478 0.02 24 0.2468 0.05 7
Twonorm 0.0261 0.00 0.0260 0.00 40 0.0253 0.00 14
Waveform 0.0983 0.00 0.1042 0.01 40 0.1027 0.00 13
Overall: 0.1525 0.01 0.1648 0.02 42 0.1550 0.02 21.61

Table 3.6: Generalization error estimates and Standard Deviatigd3)Sor 13 benchmark datasets for fhe KHDA,
INEDA, and MPKEDA

Note that in these two examples, as with all of the other @tdéase tested, a very small proportion of
basis vectors is required for good generalisation errat,that the computational cost for these values
of k is of an order of magnitude less than standard KFDA.

In the experiments the Nystrom classifiers were roughlyrdemof magnitude faster than the kernel
equivalents during training for the smaller datasets, aughly two orders of magnitude faster for the

larger datasets. This is born out by the fact that the conitylekboth algorithms wa€)(n;,.,'>) due

to the method for choosingthat was used.

3.4.3 Experiments: Regression

Next, results on 7 benchmark regression datasets derivetthre UCI, StatLib, and DELVIE benchmark
repositories will be presented. The performancE of KRR apstiim KRR [NRR) along with KMP
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Figure 3.7: Classification error (and log run-time) as a function fofor the ‘Breast Cancer’ dataset as achieved
by[NEDA[KEDA.

KRR NRR KMP

Dataset #ex #dim k MMSE MMSE SO | MMSE SD
bodyfat 252 14 30 0.0000 0.0000 0.0000 0.0000 0.0156 0.0012
housing 506 13 43 11.0323 4.8159 24.2497 9.6874 82.9434 29.2603

mpg 392 7 38| 7.3085 2.9387 10.0276 2.6627 47.5519 12.8119
mg 1385 6 71| 0.0144 0.0008 0.0177 0.0030 0.0467 0.0159
pyrim 74 27 16| 0.0057 0.0124 0.0124 0.0130 0.0514 0.0130
spacega 3107 6 10q 0.0107 0.0030 0.0100 0.0039 0.0261 0.0026

triazines 186 60 26 0.0202 0.0094 0.0242 0.0103 0.0308 0.0073

Table 3.7: (Mean) Mean Squared Errof (MM$E) and Standard Deviation)(f8b7 benchmark datasets for Kernel
Ridge Regressiofi (KRR), Nystrom KRRINRR)[andIKMP.

were analysed again usihng RBF kernels. The comparisonstf@MP was included as it is a state-of-
the-art method for greedily selecting basis functions. dfidomized splits into training and test sets
were used. For each of the datasets two rounfs ¢f CV were agathto select the optimfal RBF kernel
width parameter for each of the algorithms and the regudddn parameter in and NRR. For
both[KMB and KPEP the sparsity parametervas set using the same method as for the classification
experimentsi.e. k = 2,/n;.,. Note that this method of choosirgis by no means optimal for KMP
(or[NRR for that matter), but in the absence of a more robustistic this avoids costly CV (as with
MPKEDA] the complexity of KMP isO(km?)). The means and standard deviations offhe MMSE for
each method and dataset are given in Table 3.7.

The results show that although NRR does not perform as wlIRig, for the same choice df
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Figure 3.8: Classification error (and log run-time) as a function/ofor the ‘Flare Solar’ dataset as achieved by
INEDAIKEDA.

it comfortably outperforms KMP. Our observations were thaor performances 6fNRR ahd KMP on
housing andmpg were caused by overfitting, indicating that the heuristithud for choosing: should
not be relied upon. Overall the results demonstrate thatiylstrom method can be successfully applied

to regression as well as classification.

Remark: Greedy versus random sampling. The theoretical and empirical analyses given above serve
to demonstrate that greedy methods for sparse selecticasef bectors are extremely powerful and can
often outperform standart] methods for enforcing sparsity, both in terms of generatigaerror and
also in terms of the sparsity of solutions. However it is akgar that by simply choosing basis vectors
at random it is still possible to learn effectively, whildtapurse this method is significantly cheaper. It
therefore comes down to a trade-off between exactness atiGuds and computational resources. If a
slightly sub-optimal solution is sufficient for the appliican, then the Nystrom method provides a simple
way of providing sparse solutions in a computationally effit way. However if the best possible sparse
solution is sought, greedy methods sucl as OMP[and PFP grewuidtions that closely approximate

(and in many cases achieve) the best posgipfesseudo-norm solutions (as introduced in Sedfion B.5.2).

In the next Section the attention is turned to the probleneafring from multiple data sources or
views [MSI and MV respectively). There is certainly oppority for a synthesis between the methods
presented above and those presented below, but this islewkihe present scope. A discussion of

possibilities for such a synthesis will be presented in Gi.
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Figure 3.9: Regression error (and log run-time) as a functiorkdbr the Bodyfat dataset as achieved by KRR, NRR
andKRR.

3.5 Multi-View Learning

In the canonical form two or more “views” of the same data seware given, which are representations
of the same underlying semantic object. Multi-View LeamniiMVL) seeks to use information from
both views in order to improve learning. Given two sets ohalg which are in some way related, it
would stand to reason that by making use of both signals teigiive power of the learned models can
be improved.

Although often used interchangeably, it can be useful fdhlotarity of exposition and theoretical
arguments to differentiate between Multi-Source LearM8L), MVLland Multiple Kernel Learning
(MKL). The key differences are whether or not there are tadparate sources of informatién (MSL),
or whether these are simply views of the same underlying semabject [MVT), or whether different
kernels are created given a single view of a data solirce (MKhilst this might seem like splitting
hairs, it can be an important distinction. Although in piple any algorithm developed for ML can be
used fof MKI andvice-versathe way in which data is amalgamated may be suboptimal. ¥ample,

a typicalMKD will involve minimising over a convex set of kegls, but this assumes that the kernels
are in the same family and is particularly sensitive to ndisation etc[MVI algorithms such as Kernel
Canonical Correlation AnalysiE (KCGA), are designed tetalvantage of correlations between views,
but would perform poorly for standafd MKL applications.

For example[_ZMKL algorithms do not make any attempt to irdé®ithe sources of information
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Figure 3.10: Regression error (and log run-time) as a functionkofor the Housing dataset as achieved[by KRR,
[NRR andKRR.

from each view, and work by simply placing weights over thenkés [10%]. Anecdotally, it seems that
in many practical situations in which the number of kerngklsmall, the performance of MKL algorithms
can actually be worse than simply choosing the best kermelith a heuristic method such I_a_s_E.\/

In the[MVL or[MSI paradigm, we are assuming that the numberi@fis or sources is typically small
(i.e.2 — 10), and hence another viewpoint is needed in which the soareesombined more usefully.
The basic idea ¢fMVL is to introduce one function per view fhonly uses the features from that view,
and then jointly optimize these functions such that leagrisnenhanced. I MVL, we are also usually
interested in having weight vectors and loadings for eagh®¥iews, which we do not have when we
concatenate features (or equivalently sum kernel majrioesake convex combinations of kernels as in
the[MKTl setting.

The distinction betweeh M3L arid MVL is more subtle, and hemgest often confused. It is
also, however, less important. Generally the distinctietwieen singlerersusseparate sources typically
does not affect the modelling process. For the rest of thapt, it will be assumed that the canonical
paradigm i€ MVIL, although the applications may be to oth MaHAd[MSIl. A diagrammatic view of
this distinction is included in Figufe 31 1.

Firstly[KCCAlis reintroduced, followed by an algorithmicwddopment that allows it to be extended

to the classification in an efficient way.

10Amongst others, this topic was discussed at the NIPS 200%sNop “Understanding Multiple Kernel Learning Methods”
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Figure 3.11: Diagrammatic view of the process of a) Multi-Source LeagnfR[SIl), b) Multi-View Learnind (IMVL)
and c) Multiple Kernel Learnind (MKIL)

Kernel Canonical Correlation Analysis (KCTCA) was introdddn the previous Chapter in Sec-
tion[2Z.1.I38.[KCCA finds basis vectors for two sets of variatslech that the correlations between the

projections onto these basis vectors are mutually maxaniee optimisation is given by,

max o, KKy (3.30)

Qg ,0p
I W2 _
s.t. o, Kia, =1,

aKiay =1,

whereK, andK, are the kernel matrices of the two views.

3.5.1 Kernel Canonical Correlation Analysis with Projected Nearest Neighbours

In order to perform classification, typically the test datani one of the viewsd.g.K,) is projected
into the shared feature space (using), and then a linear classification algorithm such as a primal
[EVMis then trained on this new feature space. However tiseaeniay in which the projections can be
used directly for classification, without incurring thisditibnal computational cost. By usirgg.the
100 largest correlation values and the corresponding gliojes, the labels given by the corresponding
example in the training set kernel from the other view arel@sethe classification. The reported errors
are then the mean of the differences between these labeltharitlie test labels. This method is an
extension of mate-based retrieval[106], and is given irofithm[3. It is non-parameteric and essentially
free once thd_ KCCA directions have been learnt. Because thigitiigois searching for the nearest
neighbour in the shared semantic space definéd by KCCA ofrtijegtion of test point into this space,
we have called this algorithm Projected Nearest Neighb@HN).

A natural extension to this is to try to incorporate the dfasstion and the subspace learning into a
single optimisation routine. This was the motivationfor Band its variantd[13], which are presented

in the following Section, along with some experimental fessan toy data and benchmark datasets.
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Algorithm 5 Projected Nearest Neighbous {PNN) Classification

1. Given Kernels from each vielK, andK,, dual weight vectorsx, anday, from[KCCA training labelsy, and
vectors of train and test indicésindj respectively
2: Compute the projection of the training kernel of the firstwie

P, + K,[i, i]aa

3: Compute the projection of the train-test kernel of the sdooaw:

Pb < Kb[j, i]ab

4: Compute the covariance matrix of the projections:

S — PP,

5: Find the indices of the maximal values of each column:

k[j] = argmax (Xap[i,j]) forje€j
ici

6: Select the labels of the training examples of those indisgbh@predictions:

v < ylk|

3.5.2 Convex Multi-View Fisher Discriminant Analysis

As discussed in the previous Sectibn, GCA [52] aptetimintegrate two sources of informa-
tion by maximising the correlations between projectionsaxth view. They are unsupervised techniques,
and as such are not ideally suited to a classification set#ir@pmmon way of performing classification
on two-view data using KCCA is to use the projected data frara of the views as input to a stan-
dard classification algorithm, such a§ a SVM, or to use_ThelPhithod described above. However,
the subspace that is learnt through such unsupervised dgethay not always align well with the label
space.

SVM-2K [107] was an attempt to take this to its logical corsitun by combining this two stage
learning into a single optimisation. The algorithm intreda the constraint of similarity between two
1-dimensional projections which identify two distiict S¥Nh the two feature spaces. However SVM-
2K requires extra parameters (theparameter for eadh"SVIM, and another mixing parameter,galon
with any kernel parameters) that the methods presentediiéreot require. In addition, it is not easy
to see how the SVM-2K formulation can be generalised to moae two views. There has been one
related approach that tries to find the optimum combinatioRisher classifierd [108] using the MKL
architecture[[105]. In its initial form this problem is n@envex, although the authors do recast the
problem in terms of a Semi-Definite Programie (§DP), at tipeesive of an increase in the problem
scale. In addition, the MKIL architecture means that the wudpthe algorithm is a single weight vector
for the convex combination of kernels. The formulation présd here has some similarities to that of
[108], except cast here in the MVL framework and also prowjcidditional modelling flexibility.

Here the convex formulation for EDA that was presented inpitewious Chapter in Sectign 2.1..9

will be extended to multiple views. Given“views” of the same data source, or alternativelgligned
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data sources, to form am—sampleS with input outputp + 1 tuples(x),x), ..., X, y). Itis
assumed that each view has already been projected intouadesgtacer;, so that the kernel matrikK ;

for that view has entrieK [, j] = (x(4)i» X(a);)- Given matrices of inputXy = [x(a)1, - - -, X(a)m)’s

the formulation[[2.400) is extended to fipddual weight vectorgxy,d = 1,...,p. The concatenation
of these weight vectors will be denoted By= [}, ..., a,]". The convex form of Multiview Fisher
Discriminant Analysis[(MEDA\) is given in equatioh (3131)Ibw. The goal is now to minimise the
variance of the data along the projection whilst maximighgdistance between the average outputs for

each class over all of the views.

min, £(6) + 1P(&),

aq,b,§
P
s.t. Z(Kdad+1bd):y+€7 d=1,...,p
d=1
ge =0 for c=1,2, (3.31)

whereL(-) is the loss function as befole(2141),

L) = [€ll3,

and the regularisation functigp(-) is as follows,
P
P(a) =Y (aKaow). (3.32)
d=1

The first constraint il.3.31 ensures that the average losseketthe output and its class label is min-

imised. The second constraint ensures that the averagetdatpeach class is each label. The classifi-

cation function on a set of examplesg; ; from viewsd = 1, ..., p now becomes,
P
f(x().i) = sgn <Z f(X(d)i)> (3.33)
d=1
p
= sgn (Z ]E(d[:7 i]/ad + bd> . (334)
d=1

Observe that the solutions given will be equivalent to sungkiernels (as justified by the probabilistic
interpretation). Meaning that viewed in the primal forme tiesult is the standard criterion in the space
defined by the concatenation of the features, and the norimeofull weight vector is given bl 3.32.
However this formulation leads to two main advantages.tliré provides a flexible framework that
allows for different noise models and regularisation fiores. Secondly, explicit weight vectors are
available for each view, which allows the calculation of lrop weightings over the views (see Section

B.5.2 below).

Further intuition on the operation of the algorithm is addak. Given two viewsx(,) andx ),

and using the standar@ loss function[MEDA is trying to minimise the summed errommmitted:
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|| fa(%(a)) + f(x@)) — yHi So if some slack is added to one of the exampéeg, x(,);, then the
algorithm will try to push the corresponding exampgig,; the other way to try to minimise the overall
slack. This can be seen as “view disagreement” which meatstté algorithm tries to use information
from both views to aid the classification. However of coutsealgorithm can “give up” and allow the
slack to be big for that example, meaning tkafy andx ;) can be pushed the same way.

It is actually possible to state the problem as the reveraging that normally il_MVL the goal is
to search for view agreement, which would be minimisjigx,)) — f(x(b))”z (ignoring the labels).
This is one particular form of the so-called “Co-Trainingdplem, which in order to work requires that
each of the views arsufficientfor classification, and methods that use this break down wihere is
significant view disagreement. A recent paper tried to getirad this by learning separate classifiers
and then looking for view agreement/disagreement betwleem t before combining them into a final
classifier (a form of bootstrappin@)[109]._MFDA should hae advantage over this as it is directly
optimising the combined classifier. However, the altexsatPrivate’ method Private Multiview Fisher
Discriminant Analysis[(PMEDA) has separate slacks for edelw as well as the overall slacks (see
Sectior 3.5.P to follow). This should allow the problem tp fliround in some cases. Basically, if there
is a “trouble” point in viewx,, but not in viewx ), the disagreement can be soaked up by the private

slack, allowing the two views to move into agreement withozgrared slack.

Probabilistic Interpretation

Following the analysis of [35], it is possible to view fhe KAlalgorithm from a probabilistic point of
view. It is known thaf EDA is Bayes optimal for two Gaussiastdbutions with equal covariance in
the input space. The data may not fall naturally into this edpblut it may be the case that for certain
feature space®(g.the space defined by the RBF kernel), the examples projeattea imanifold in this
space may be well approximated by Gaussian distributiotisdidgonal covariance. In this cdse KEDA
would be Bayes optimal in the feature space.

If one consider§ KEDA as regression on to the labels, then ws&an noise model (as defined
in Section[2.T}1) with known varianee would result in the following expression for the likelihood
Pr(y|a) = exp(— ||§|\§). If a prior over the weights with hyperparameterss used, the log of the
posterior is simplyog(Pr(y|a)Pr(ajp)) = — H{Hg —log(Pr(ap)). The choice of prior then becomes
equivalent to the choice of regularisation function, whigiti be discussed in Sectidn 3.5.2. When
viewed in this way the outputs produced by KFDA can be intetgnt as probabilities, which in turn
makes it possible to assign confidence to the final classditat

This view of[KEDA also motivates the Multiview extension it algorithm. We can extend and
combine the graphical interpretations [of [110] and |114hgghe above definitions as seen in Figure
[3.12. Note that explicit mixing weight8 paramaterised by are shown (dotted). Note that due to the
optimisation (which constrains the functions over eaclui@aspace with the shared slack variable) and
the fact that we have separatevectors for each view, we are able to drop the mixing weighfsom

our formulation. Under the assumption that the kernels arealised, we can calculate these weigths
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post-hocas will be shown in Section 3.5.2. Taking the approach ofvBl&ayes Probabilistic Label

[ Q pl

N
d /L:f:::\::,,,d,i
10)
C
m

Figure 3.12: Plates diagram showing the hierarchical Bayesian intetatien of[MEDA. 3 are the hypothetical
mixing parameters with prior weights if an explicit mixing was used - in the case[of MADA these aedfiand
hence can be removed, but can be calculated post-hoc.

Fusion [NBF) [112], the first step is to assume conditiondkjmendence between classifiers given a
class label. Suppose the set of labels {s1,..., s, } are given fronp classifiers for a given poim;.
DenotingPr(s4) as the probability that classifiép, labels an examplg; in classw,. € €, (in this case

Q = {—1,+1}), then the likelihood of the classifiers given a label is,

Pr(s|we) = Pr(s1,. .., splwe) (3.35)
p
= H Pr(sqlwe)-
d=1

The posterior probability needed to labglis then given by,

Pr(we)Pr(s|w.)
Pr(s)

= —Pr (we H r(salwe),

Pr(w|s) = (3.36)

whereZ is a normalisation constant. Assume a uniform prior ovegllglihe log posterior is then given

by,
log(Pr(w.|s Zlog Pr(sq|lwe)). (3.37)

This implies that by directly optimising this sum, we areiopsing the[NBF ovef KEDA classifiers,
which is precisely the motivation for both the objective d¢tion and the classification function for
both of which will be described in the next Section. Asfiglance it seems that this conditional
independence assumption could be problematic, as thisnasisun is seldom true. However, Kuncheva
made the point that despite this NBF is experimentally olesito be surprisingly accurate and efficient

[112]. However, it does open the door to further possiketitior combining KEDA classifiers, but this is
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outside the scope of the present work.

Implicit Weighting

In order to determine the importance of each of the views aféning, following [113] it is possible

to calculate the implicit weighting of each view simply thigh the weighted sum of the absolute values
of the classification functions. This is justified by the ititn made in Sectiof 3.5.2 that the outputs
of each classifier can be interpreted as probabilities, thithassumption that each kernel is normalised
as per[[B],i.e. trace(K;) = m. This in turn means that the overall confidence of the classifin be
calculated as the sum of the log probabilities that the foncf(x4);) for classifierd on example give

the class label...

1
ua ~ — > _log(p(salwe))
ceQ
o Kl i) ag + bal
= . - 3.38
S > |Kal: i) oeg + bal ( )

Regularisation and Loss Functions

The natural choices for the regularisation functiBféa) would either be the sum of thé-norms
of the primal weight vectors (as if_(3]32)), or the sum of thenorms of the dual weight vec-
tor P(a) = b, ||ad|\§. However more interesting is th@-norm of the dual weight vector,
P(a) =Y 4_, |laqll;, as this choice leads to sparse solutions (as previousiysied) due to the fact
that the/;-norm can be seen as an approximation to the (pseigei@drm. In the rest of the chapter the
£1-norm regularisation method is denoted as Sparse Multiffisiver Discriminant Analysi$ (SMFDA).

In some situations these regularisation functi@t{s) may be too simplistic, in which case addi-
tional domain knowledge can be incorporated into the fumctiFor example, there is reason to believe
a-priori that most of the views are likely not to be useful, but thevidiial weights in that view are,
thenP(a) = [|A[,, could be used wherd = [a,..., ;| is & reshaped as a matrix of weights
and the blocKr, p)-norm of A is defined agA||, , = (>_i2, ||ai|\;)1/1’. Another example would be a
situation it may be desirable to impose sparsity on somes/law not others. For two views, this would
simply beP (&) = || |5 + ||z ]|, in order to promote sparsity in the second view but not the @se
could also promote sparsity in the primal version of one Wigvpassing in the explicit features for that
view (if available) and penalisin¥/,a4. In this way any mixture of linear with nonlinear featuresian
primal with dual sparsity can be combined across the vielhs, a single optimisation framework. One
can also pre-specify the weights of views by parameterigieqn, if one has a strong prior belief that a
view will be more or less useful, but it in general it is not assary or helpful to do this.

Following [114] the assumption of a Gaussian noise modelatsm be removed, resulting in dif-
ferent loss functions on the slacks For example, if a Laplacian noise model is cho#eﬂlg can be
replaced with||£]|, in the objective function. The advantage of this is if thenorm regulariser from

above is chosen, the resulting optimisation is a linear fanogne, which can be solved efficiently using
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methods such as column generation. From a modelling pergpgeit may be advantageous to choose
a noise model that is robust to outliers, such as Huber’'s &dbsgs, which can easily be used in the

framework presented h

Incorporating Private Directions

The above formulations seek to find the projection that isimaly discriminative averaged across
views. However these problems are very tightly constragiaed optimisation may be difficult in sit-

uations where one or more of the views is not informative efldbels {.e. is essentially noise). This

leads to considering the allowance of some extra s{gdkat is private to each view, which is similar in
vein to the approach taken Hy [83] to Multi-Task learning ([ &nd [115] to probabilistic latent space
modelling. This leads to the following formulation which wesm[PMEDA,

min H(£7&77)+up(ad); d= 1,...,p
aq,b.€,¢y
st. Kjag+1lb=y+ &+, d=1,...,p
16=0 i=1,2, (3.39)

with ¢ = ¢, ..., ¢,). The regularisation functio®(-) is as before[(3.32), and the loss function is

updated to incorporatg, as follows,

P
P 2 2
H(E ¢, m) = 1€l +7 ) ISalls- (3.40)
d=1
Note the extra parametemwhich enables the tuning of the relative importance of peiwa shared slacks.
If 7 = 1 the penalties of the private slack for an exampéee proportional t&, /p, which means that
the more views that are added, the less each view is allowedrtonate. In the experiments conducted

here this was simply set heuristically to 0.1 to allow a reatde amount of leeway for each view.

Generalisation Error Bound for [MEDA

We now construct a generalisation error boundfor MFDA bylgpg the following results from([85]
and [86] and extending to the Multiview case. The first bouhedifference between the empirical and

true means (Theorem 3 in [85]).

Theorem 3.5.1(Bound on the true and empirical meanggt S, be a view of a sample of points
drawn independently according to a probability distrilmriiP;. Consider the mean vectes,; and the

empirical estimatg:, defined as

> é(xa). (3.41)

11see Sectiof Z.11.9 in the previous Chapter for an outline miesloss functions for classification
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Then with probability at least — 6 over the choice of;, we have
. R 1
kg — Ex,[o(xa)]ll < NG 2+ /25 | (3.42)

Consider the covariance mat,; and the empirical estimafg, defined as

!

E [(¢(xa) — tg)(d(xa) — 1g)'],
0= E[(0(xa) — tig)(d(xa) — Hig)']. (3.43)

d

™M

The following corollary bounds the difference between th&ical and true covariance (Corollary 6 in

[83)).

Corollary 3.5.2 (Bound on the true and empirical covariancelsgt S; be anm sample fromP; as
above, whereR,; is the radius of the ball in the feature spa&g containing the support of the distribu-
tion. Providedm > (2 + /21n2/§)?, we have

’fzd—deFgf/—}% (2—1—\/211&;), (3.44)

The following Lemma is connected with the classificationoaihm “Robust Minimax Classifica-
tion” developed by([86], adapted here lor MEDA.

Lemma 3.5.3. Let 1, be the mean of a distribution arel; its covariance matrixw, # 0, b given,
such thatw/,u, + b < 0 andA € [0, 1), then if

— (Waktq +b) = K(A)/WiEawa,

wherex(A) = /2., then
Pr(wyp(xq) +b<0) > A

In order to provide a true error bound we must bound the diffee between this estimate and the

value that would have been obtained had the true mean andaosmbeen used.

Theorem 3.5.4(Main). LetS; be a view of a sample ofi points drawn fromP; as above, wheré,
is the radius of the ball in the feature spagg containing the support of the distribution. Lgf; (1t,)
be the empirical (true) mean of a samplerafpoints from the views,, 34 (X4) its empirical (true)
covariance matrixwy # 0, | w||, = 1, andb given, such that/,i, + b < 0 andA € [0, 1). Then with

probability 1 — ¢ over the draw of the random sample, if

7(W:i/jd+b)2K’(A)\/ W&ide dil,...,p,
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then
Pr((wyga(xa) +) >0) <1-A,

where

(Wit +b— Ag)®

A - = )
W, BqWa + Ba + (Witiy +b — Ag)°

such that]| i, — p|| < Ag whereA,; = % (2 +4/2In 2_m)
A _ 2R? am
andHEd — ZdHF < B,;whereB,; = ﬁ <2+ \/2In 5§ )

Proof. (sketch). First we re-arrange); i, + b > k(A) /W, Xqwq from Lemmd3.5.18 for each view in

terms ofx(A):

Walta +b

\ /W&EWd.

These quantities are in terms of the true means and covasann order to achieve an upper bound

K(A) = (3.45)

we need the following sample compressed results for theaindeempirical means (Theorém 3]5.1) and
covariances (Corollafy 3.3.2):
2m

g — Ex,lfta(xa)]]| < Aa = N (2 +14/21n T) :

. 2R2 4m
272H<B:—dQ i
Hd d||p = Pd m(*\/“a

Given equation[(3.45) we can use the empirical quantitieth®means and covariances in place of the
true quantities. However, in order to derive a genuine uppend we also need to take into account the
upper bounds between the empirical and true means. Ingulése in the expression above fd\)

by replacing) with 4/2, to derive a lower bound, we get:

\/ ngf:dwd + By

Finally, making the substitution(A) = /ﬁ and solving forA yields the result. O O

K(A) =

The following Proposition upper bounds the generalisagioor of Multiview Fisher Discriminant

Analysis [MEDA).

Proposition 3.5.5. Let wy, b, be the (normalised) weight vector and associated thresheilirned by
the Multiview Fisher Discriminant Analysis (MEDA) when peated with a view of the training s&f.
Furthermore, Ie'ri;r (2;) be the empirical covariance matrices associated with th&tjve (negative)
examples of then training samples fronb; projected usingv,. Then with probability at least — §

over the draw of all the views of the random training §gt d = 1, ..., p of m training examples, the
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generalisation errorR is bounded by
R <max(l—- AT, 1-A7)
whereA7, j = +, — such that
i (S, + 0 - c))
(S0 wiSiwa) + D3+ (3 whith, +8) — 7).
whereC = ZizLilt (2+ ,/21114%?), DI = 22zt <2+ ,/21118"%).

Proof. For the negative part of the proof we requiw§ it + b > x(A)y/ Wéli;Wd which is a straight
forward application of Theorein 3.5.4 withreplaced withy/2. For the positive part, observe that we
requirewji/lj —b> m(A)\/wng;wd, hence, a further application of TheorEm 35.4 witteplaced
by 6/2 suffices. Finally, we take a union bound over théews such thatn is replaced bynp. O O

A =

Experiments: Toy Data

In order to validate the outlined methods, experiments iesseconducted with simulated toy data. A
data sources was created by taking twb—dimensional Gaussian distribution$(, S~) which were
well separated, which was then split ifto0 train and50 test points. The sourcg was embedded into
2—dimensional views through complementary linear projexi@; , ¢2) to give new “views"X;, Xo.
Differing levels of independent “measurement noise” wetdeal to each viewr(;, ny), and identical
“system noise” was added to both viewss]. A third view was constructed of pure noise to simulate a

faulty sensorXs). The labelsy were calculated as the sign of the original data source.

S={ST,57} (source)

St~ N(5,1), 8~ ~N(=5,1)

y = sgn(S) (labels)

o1 =1[1,—-1],¢2 = [-1,1] (projections)
n1 ~ N(0,5)%,ny ~ N(0,3)>  (meas. noise)
ns ~ N(0,2)? (system noise)
X = ¢S +ny+ns (view 1)

Xy = ¢hS +n2+ng (view 2)

X3 =ng (view 3)

X; andX, are noisy views of the same signal, with correlated noiséghvban be a typical problem in
multivariate signal processing.g.sensors in close proximity). Linear kernels were used fohegew.
A small value for the regularisation parameter 10~ was chosen heuristically for all the experiments.

Table[3.8 gives an overview of the results on the toy dat&®mhparisons were made against:
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[KEDAlon each of the views (denoted #61), f(2) andf(3) respectively);
summing the classification functions of thega{m);
summing the kernels of each viewsum);

followed by[MEDA,[PMEDA and SMEDA.

Note that an unweighted sum of kernels is equivalent to deneding the features before creating a
single kernel. The table shows the test error over 10 randmaats of the experiment in first column,
followed by the implicit weightings for each of the algonitis calculated via[{3.38). Note that the
ksum method returns single,—dimensional weight vector, and unless a kernel with an eitféature
space is used it is not possible to recalculate the implieightings over the features. In this case,
since linear kernels are used the weightings have beenlatdu For the three methods outlined in
this paper[(MEDA PMFEDAN, SMFDR), as expected the perforneisaoughly equivalent to thiesum
method. The last row in the table (actual) is the empiricgn&l to Noise Ratio[(SNR) calculated
asSNRy; = Y (X! Xy)/var(S — Xg) for view d, which as can be seen is closely matched by the
weightings given.

The sparsity o SMEDA can be seen in figlire 3.13. The spamity lquoted in the figure is the
proportion of the weights below)—>.

Method Test error W (1) W(2) W (3)
f(a) 0.19 1.00 0.00 0.00
f(b) 0.10 0.00 1.00 0.00
fle) 0.49 0.00 0.00 1.00

fsum 0.39 0.33 0.33 0.33
ksum 0.04 0.29 0.66 0.05

MEDA 0.04 0.29 0.66 0.05

PMFEDA 0.04 0.29 0.66 0.05

0.04 0.29 0.66 0.05

Actual 0.35 0.65 0.00

Table 3.8: Test errors over ten runs on the toy dataset. Methods desttiib the text.JV(-) refers to the implicit
weightings given by each algorithm for each of the viewseNuwit the weightings closely match the acfual BNR.

Experiments: VOC 2007 DATASET

The sets of features (“views”) used can be foundin [116]hwit extra feature extraction method known
as Scale Invariant Feature Transformat[on ($1FT) [1I7]BRBrnels were constructed for each of these
feature sets, tHe RBF width parameter was set using a h'eum'etho. The Pattern Analysis, Statis-
tical Modelling and Computational Learning (PASCAL) Vis@bject Classed (VOC) 2007 challenge
database was used which contains 9963 images, each withsatll®bject. The number of objects in
each image ranges from 1 to 20, with, for instance, objecteople, sheep, horses, cats, dogs etc. For
a complete list of the objects, and description of the dataesth¢ VOT 2007 challenge Wedz!
Figure[3.I# shows Recall-Precision curves[for SMFDA witi213 or 11 kernels and PicSOM

e

12For each setting of the width parameter, histograms of theckeralues were created. The chosen kernel was the one whose
histogram peak was closest to O.® (furthest from 0 and 1).
Bnttp:/www.pascal-network.org/challenges/VOC/voc2@rkshop/index.html
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Figure 3.13: Weights given by MFDA arid SMFDA on the toy dataset. Noticentiaay of the weights for SMEDA
are close to zero, indicating sparse solutions. Also ndtiet most of the weights for view 3 (pure noise) are close
to zero.

[118], and Tablé_319 shows the balanced error rate (the geebthe errors on each class) and overall
average precision for the PicSOM, KEDA using cross-vaiateato choose the best single keriel, KHDA
using an unweighted sum of kernels, and MEDA. For the purposéraining, a random subset of 200
irrelevant images was used rather than the full training Ressults for three of the object classes (cat,
cow, dog) are presented. The results show that, in gena@iing more kernels into the optimisation
can assist in recall performance. For each object classutbsets of kernels.€. 1,2, or 3) were chosen
by the weights given by SMFDA on the 11 kernels. The best sitkginel (based on SIFT features)
performs well alone, yet the improvement in some cases ie quarked. Results are competitive with

the PicSOM algorithm, which uses all 11 feature extracti@tirads, and all of the irrelevant images.

Dataset— Cat Cow Horse
Method | [BER [ABR [BER [AP [BER [AP
PicSOM n/a 0.18 n/a 0.12 n/a 0.48
0.26 036 0.32 0.14 0.22 0.51
MEDA 0.26 0.36 0.27 0.15 0.19 0.58

Table 3.9: Balanced Error Rate{BHR) and Average Precisionl(AP) for fafithe[VOT challenge datasets, for four
different methods: PicSONI_KEDA with cross validatibn (KEIOV),[KEDA using a sum of kernelssum) and

Experiments: Neuroimaging Dataset

This section describes analysi§ of IMRI (that was acquired from 16 right handed healthy US college

male students aged 20-25 which, according to a self repidrfyat have any history of neurological or

14Data kindly donated by Mourao-Mirands. al. [118].
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Figure 3.14: Average precision recall curves for 3 VOC 2007 datasets RFBA plotted against PicSOM results

psychiatric illness. The subjects viewed image stimuliloke different active conditions: viewing
unpleasant (dermatologic diseases), neutral (peopkgspht images (female models in swimsuits and
lingerie), and a control condition (fixation). In these esipeents only unpleasant and pleasant image
categories are used. The image-stimuli were presented liock fashion and consisted @2 images
per category. During the experiment, there were 6 blocksohactive condition (each consisting of 7
image volumes) alternating with control blocks (fixatiofiyamages volumes.

In a similar fashion to the study in[63], pleasant imagesgiven positive labels and unpleas-
ant negative labels, the image stimuli are represented)(8IRT features [117]. Conventional pre-
processing was applied to the TMRI data. A detailed dedonpif the[fMRI pre-processing procedure
and image-stimuli representation is given[in|[53]. The eipents were run in a leave-subject-out fash-
ion wherel5 subjects are combined for training and a single subjecttisheid for testing. This gave
a sum total ofi2 x 2 x 15 = 1260 training and42 x 2 = 84 testing fMRI volumes and paired image
stimuli. The analysis was repeated for each participant¢@é6 times) using linear kernels. In the

following experiment, the following comparisons were made

e An[SVM on thdTMR] data (single view)

e [KCCAlon the[fMRI + Image Stimuli (two views) followed with &aV®ltrained on thé TMRIl data
projected into the learbf KCOA semantic space

o on thdIMR] + Image Stimuli (two views)

The results are given in Table_3110 where it can be obsenagdoth average MEDA performs better
than both th& SVIM (which is a single view approach), and Th&€RISVM which similarly tolMEDA
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Sub. [SVM [KCCAIGVM] MEDA |
1 0.1310 0.1667 0.1071
2 0.1905 0.2739 0.1429
3 0.2024 0.1786 0.1905
4 0.1667 0.2125 0.1548
5 0.1905 0.2977 0.2024
6 0.1667 0.1548 0.1429
7 0.1786 0.2262 0.1905
8 0.2381 0.2858 0.2143
9 0.3096 0.3334 0.2619
10 0.2977 0.3096 0.2262
11 0.1191 0.1786 0.1429
12 0.1786 0.2262 0.1667
13 0.2500 0.2381 0.0714
14 0.4405 0.4405 0.2619
15 0.2500 0.2977 0.2738
16 0.1429 0.1905 0.1860

Mean: 0.21580.08 0.2508:0.08 0.186Gt0.06

Table 3.10: In the table above the leave-one-out errors for each sulgiezpresented. The following methods are
compared{ SVM on tHe TMRI data alorie, KOCA analysis on thevieq TMR]l and Image Stimuli followed by an
on the projectdd TMRI data; the propo§ed MEDA on the tew{fMR]+Image. Numbers in bold indicate the
best performing algorithm for a particular subject.

incorporates two views into the learning process. In thigedhae label space is clearly not well aligned

with the[KCCA projections, whereas a supervised method agdfiEDA is able to find this alignment

3.6 Conclusions and Further Work

This goal of this Chapter was to present a unified generaldveork for the application of sparse WL
methods to multivariate signal processing. The methodsepted can be seen as modular building
blocks that can be applied to a variety of applications. Tgifb&vith, the focus was on greedy meth-
ods for sparse classification and regression, specificalljcMng Pursuit Kernel Fisher Discriminant
Analysis [MPKEDA) and Kernel Polytope Faces Purduif (KPFR)is was followed by a presentation
of methods that take advantage of the Nystrom method forrlovk kernel approximation for large
scale data, including Nystrom KRR{NRR), Nystrom KFOA (NS, and Nystrom SVM [[NSVM).
For the rest of the Chapter the attention was turned to thblgmo of learning from multiple data
sources or view$ (M3L aid MVL respectively), with the deyeh@nt of Multiview Fisher Discriminant
Analysis [MEDA), Sparse Multiview Fisher Discriminant Aligsis (SMEDA) and Private Multiview
Fisher Discriminant Analysi§ (PMFDA). Detailed conclussdfor each of the methods presented can be
found in[®.



Chapter

Applications |

Abstract

Styles of Music. The first application area for the “LeStruM” projtﬂt/vas the classification of musical
genre from polyphonic audio files. This is a task that testsaplication of Machine Learning (ML)
methods to Digital Signal Processing (DSP), albeit in thévariate domain. It is also potentially an
area in which sparsity can be exploited, as we are given grimwledge that the signal was created by
a finite set of instruments, be they physical or electromic] that the degrees of freedom at any one time
are far less than the sampling rate of the audio fil&adar The next application area was a study of
how the Analogue to Digital Conversidn (ADC) sampling rate digital radar can be reduced—without
reduction in waveform bandwidth—through the use of Conse@Sensing (TS). Real radar data is used
to show that through use of chirp or Gabor dictionaries angB&ursuit[[BFP) the Analogue to Digital
Conversion[{ADC) sampling frequency can be reduced by afaft128, to under 1 mega sample per
second, while the waveform bandwidth remainsM@ z. The error on the reconstructed fast-time

samples is small enough that accurate range-profiles andedrequency surfaces can be produced.

4.1 Introduction

Before moving on to multivariate signal processing (seep@#éd), a natural stepping stone is to test
some of thd_ ML methods described to this point on univariggaads. By this it is meant that the
signal of interest is characterised by a single variabléithaarying through time. This variable may
come from a sensor or be a direct digital instantiation ofgmai. It is important to distinguish the
terms univariate and multivariate with respect to signath the same terms as they are used in general
mathematical (and indeEdML) nomenclature. The processid@nalysis of the signals will certainly be
multidimensional, and hence multivariate, even thouglotiginating signal was univariate. Throughout

most of the Chapter, the signals will be treated as if theybealoroken down into small enough segments

1EPSRC ICT project reference: EP/D063612/1
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such that the temporal shift from one segment to the nextadl smcomparison with the variation within
the signal. This allows the signals to be modelled usingrijesans based on short-term features.

The first part of the Chapter examines the classification ofical genre from raw audio files.
Although most musical files are produced in stereo format¢bedivariate), for the purposes of this
study the files were downsampled to a mono format (univgriatéis is justifiable in this setting as
it is clear that humans do not require stereo informationifieréntiate betweeen genres. It will be
shown that sparde ML methods are advantageous in thisgeftime rest of the Chapter examines the
application of C¥ to conventional radar. Again the signaésimivariate, but in this case with a much
higher frequency. Here the focus islon DSP, although the adsthised are directly applicable[in ML

settings as well, and there is scope for further analysiisfdata in al ML setting.

4.2 Genre Classification

To begin, an analysis was performed of the state of the agdtufe extraction from polyphonic music
through the use di D3P techniques. To this end, classifitationusical genre from raw audio files
(MPEG-1 Audio Layer 3[(MP3) format), as a fairly well resdzed area of music research, provided
a good starting point. The Music Information Retrieval Exailon eXchangd (MIREIX) is a yearly
competition in a wide range of machine learning applicationmusic, and in 2005 included a genre
classification task, the winner of which [75] was an applaatf the multiclass boosting algorithm
.MH[42]. The method was duplicated, and then medlifirough the use bfLPBob5i [5]. The
hypothesis is thdt LPBodst is a more appropriate algorithinthiis application due to the higher degree
of sparsity in the solutions. The aim was to improve on fhe [@éSult by using a similar feature set
and the multiclass boosting algorithm TPBdost .MH. This kwaas presented at the Neural Information
Processing Systenis (NIPS) 2007 Workshop “Music, Brain asgh@ion” [11].

A music genre is a categorisation of pieces of music thatesharertain style. Music is also cat-
egorised by non-musical criteria such as geographicalmrigough a single geographical region will
normally include a wide variety of sub-genres. Any given rngenre or sub-genre could be defined by
the musical instruments used, techniques, styles, cootesttuctural themes.

The groupings of musical genres and sub-genres leads Iatioréghe idea of a genre hierarchy.
However, the distinctions both between individual subrgerand also between sub-genres and their
parent genres are not always clear-cut. While attempts lbe@e made to automatically construct genre
hierarchies €.g9.[119,[120/121]), the performance of such systems do notaappewarrant the ad-
ditional complexity they entail. In addition, the MIREX sap uses only flat classifications, and for
simplicity and comparability of results the focus of theremt research is also flat classification.

One of the problems with the grouping of musical pieces itiorgs is that the process is subjective
and is directly influenced by the individual’s musical baakgnd. This is especially true in sub-genres.
Another difficulty is that a single artist or band will oftepam multiple genres or sub-genres (sometimes

intentionally), often within the space of a single albumdam some cases a single song!). It becomes
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virtually impossible to classify the artist or the albumara single genre. Further confusing the matter
is that some genre labels are quite vague and non-deseriptor example, the genresrld andeasy
listeningare often used a catch-all for music that does not fit nagunalb more common genres such
asrock or classical(which are themselves extremely broad and rather vagudigreTare additional
problems that have been noted, such as the “producer efie¢tibum effect” [122], where all of the
songs from a single album share overall spectral charatitsrimuch more than from other albums from
the same artist. This can even extend to greater similafitgdween artists sharing the same producer
than between the artist's albums. Despite these issuesautoenatic classification of new material
into existing genres is of interest for commercial and mtinkereasons, as well as generally for ML
researchers.

The performance of humans in classifying musical genre leas lnvestigated iri [123]. In this
study participants were trained using representative ksnfippm each of ten genres, and then tested us-
ing a ten-way forced-choice paradigm. Participants aguen accuracy di3% correct after listening
to only 250ms samples ard% correct after listening to 3s samples. Another study by [t¥8gorts
similar results. Although direct comparison of these rsswith the automatic musical genre classifica-
tion results of various studies is not possible due to diffiegenre labels and datasets, it is notable that
human performance and the automatic retrieval systemmeafoce are broadly similar. Moreover, these
results indicate the fuzzy nature of musical genre bouedali also indicates the difficulty of gathering
ground truth annotations, and explains why some datasptsaapo be afflicted with particularly poor
annotations.

However, probably the main practical problem for reseanctiné field of automatic music classi-
fication is the lack of a freely available high quality datagaue to legal obstacles it is not possible to
publish datasets of popular music in the way that is posgibi¢her fields, such as text recognition. As
a result the datasets that are publicly available consisbite label” recordings which are ostensibly
of poorer quality than mainstream recordings (subjedfiireterms of musical quality, but objectively in
terms of production quality). The present study uses onégiyhvailable dataset (Magnatune) and one
provided by a fellow researcher (Anders Meng, seel[124])e fimmer has been used for he MIREX
competition on more than one occasion, and the latter hasussal in studies [125, 124], which will be

used for comparison.

4.21 MIREX

The Music Information Retrieval Evaluation eXchange (MIRHESs part of the annual International

Conference on Music Information Retrieval (ISMIR). It takibe form of a series of competitions that
have been running since 2004. The 2005 competition inclasedudio Genre Classification task, in
which the task was classification of polyphonic musical auio a single high-level genre per example.
The audio format for the task wias MIP3, CD-quality (PCM, 1644100 Hz), mono. Full files were used,
with segmentation being done at authors’ discretion.

Although the categories were organised hierarchicallpnsitied software was only required to
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produce classifications of leaf categories. This meansettitaaints did not implement hierarchical clas-
sification and could treat the problem as a flat classificatifectively ignoring the hierarchy. The
hierarchical structure was suggested because this retfiectatural way in which humans appear to or-
ganise genre classifications, and it allows hierarchi@asification techniques if desired. The approach
taken at MIREX had the advantage of allowing entrants td thesproblem as either a flat or hierarchical
classification problem. In addition all of the recordingedi®elong to one and only one category.

Two sets of data were used, ‘Magnat d ‘USPORi. The Magnatune dataset has a hierarchical
genre taxonomy, while the USPOP categories are at a singde [Ehe audio sampling rates used were
either 44.1 KHz or 22.05 KHz (mono). More data informatioimishe following table:

The results for MIREX 2005 are summarised in tdbld 4.1 belese (the contest WiIE for full
results). It should be noted that the statistical validityh® results of the MIREX competitions have
recently been called into questidn [126], due to the testieghods employed. The result is that the

reported test accuracies are artificially high, so care feisaken when making direct comparisons.

Participant Algorithm Features Score
Bergstra et al. [CAdaBodst Aggregated features 82.23%
Mandel & Ellis SVM KL-Divergence 78.81%
West Trees,LDA Spectral & Rhythmic 75.29%
Lidy & Rauber SVM Spectral & Rhythmic 75.27%
Pampalk et al. 1-NN MFCC 75.14%
Scaringella SVM Texture & Rhythmic 73.11%
Ahrendt & Meng SVM Auto-Regression 71.55%
Burred GMM/ML Aggregated features 62.63%
Soares GMM Aggregated features 60.98%
Tzanetakis LSVM FFT/MFCC 60.72%

Table 4.1: Summary of results of the Audio Genre Classification task flMIREX 2005 (Mean of Magnatune
Hierarchical Classification Accuracy and USPOP Raw Clasatfon Accuracy)

4.2.2 Feature Selection

The various methods for classifying musical genre genedifiler in the way that acoustic features are
selected, how sub-song level features are aggregatedantplevel features, and the machine learning
techniques used to classify based on the features. ThigoBadtscribes briefly some different ap-
proaches to feature selection, followed by a more detaikednénation of the approach taken ky [75].
The techniques that are employed for extracting acoustitufes from musical pieces are inspired by
speech perception, signal processing theory, and musicythén most cases the audio waveform is
broken into short frames (in the case bf][75] these were 46s4ifh length, or 1024 samples of audio
at 22050Hz), and then frame level features are construdteelse frames are then assumed to be inde-
pendent draws from a Gaussian distribution over featuresilst\this assumption is clearly false, it is
a simplifying assumption that allows a rangd_of ML methodbéeaapplied, such as the Support Vector
Machine [SVM) oi AdaBookt .

2http://www.magnatune.com
Shttp://www.ee.columbia.edu/ dpwe/research/musicsipp2002.htm
4http://www.music-ir.org/evaluation/mirex-resultsthorgenre/index. html
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4.2.3 Frame level features

The frame level features that are used to describe the aigghial @re described below.

Discrete Fourier Transform (DFT)

The[DET is an application of the Fourier Transform (Seel2n7®ectio 2.2]1) on digitised data. Fourier
analysis is used to analyse the spectral composition ofréimeds. Given a signal of lengif, the[DET

and the inverse operation (Inverse Fourier Transforml(liefe defined as,

f(d)zzf(t)exp_ﬂ;dt, d=1,...,7 (DED), 4.1)
;_To‘l . i2mdt

f(t):T f(d)exp T t=1,...,7 (ED. (4.2)
d=0

A 512-point transform of each frame was performed, of whiehlbwest 32 coefficients were retained
during experiments. In practice a Fast Fourier Transf@iTjjFs used, which is a reorganisation of the

calculation that involve® (T log, T') calculations instead &P (7?) [127].

Real Cepstral Coefficients

The motivation behind ‘cepstral’ analysis is the sourdeffimodel used in speech processing. It is
used to separate the source (the voicing) from the filter yt@al tract). In musical instruments the
source would be the excitation impulse caused by for exapiptking a string, and the filter would be
the reverberations from the body of the instrument. In galnerspectrum can be seen as having two
components - a slowly varying part (the filter or spectraltope) - and a rapidly varying part (the source
or harmonic structure). These can be separated by takingteefuFourier Transform of the spectrum.
This is known as the ‘cepstrum’ (which is an anagram of spec)r and is said to be in the ‘quefrency’

domain (an anagram of frequency). Formally, the real capstf a signal is defined as:

2RCC _ real (f (1og (|f(t)|))) (4.3)
wheref (-) is the Fourier transform angl(-) is the inverse Fourier transform.

Mel Frequency Cepstral Coefficients

The[MECQ is a measure of the perceived harmonic structurbeofound. It is similar to the RQC,
except that the input is first projected according to the Mel-scdle [128]. The nateécomes from the
word melody to indicate that the scale is based on pitch coisgres. A Mel is a psychoacoustic unit of
frequency which relates to human perception, the Mel scatebe approximated from the frequengy
in Hz by,

m(q) = 1127.01048 log (%) . (4.4)



4.2. Genre Classification 102

Zero Crossing Rate

The[ZCR of a signal is the rate of sign changes along the sidrds is a measure which for a single
instrument is correlated with dominant frequericy [124.(t is a primitive pitch detection routine). The
meaning of this measure is less clear for polyphonic musitit s included for completeness. Defining

the indicator variable(t) as

u(t) = { - (4.5)

2ZCR = b g(t,t—1). (4.6)

The complexity of the ZCR amounts €@(7") and is the cheapest of the features discussed to extract.

Spectral Centroid

The spectral centroid describes the center of gravity obttiave spaced power spectrum and indicates
whether the spectrum is dominated by low or high frequentiés related to the perceptual dimension

of timbre. Given the Fourier transforfi(¢), the spectral centroid is formulated as,

T—1 r

Bl @7

Spectral Spread

The audio spectrum spread describes the second moment loigtfieequency power spectrum. It in-
dicates whether the power is concentrated near the centiflit is spread out in the spectrum. A
large spread could indicate how noisy the signal is, whesesmall spread could indicate if a signal is
dominated by a single tone. The spectral spread is fornikge

LASS _ 1o (=292 f (1) (4.8)

i—o lf@®)

Spectral Roll-off

Spectral roll-off is defined as thequantile of the total energy iﬁ(t). In other words, it is the frequency

under which a fraction of of the total energy is found, and is defined as

2RO = m{ I < a2|f<t>|2} (4.9)

The spectral roll-off was calculated at 16 equally spaceektiolds in the intervd0, 1].
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Autocorrelation

The ¢ Linear Predictive Coefficient§ (LRC) and the Correlatioreffioient [LPCE) of the (original)

signalx are defined as:

T 14
LLPC — arg min Z(xt - Z a;Ti—;) (4.10)
t=1 i=1
T 14
ZLPCE — min Z(:z:t - Zaizt,i) (4.11)
t=1 i=1

which is equivalent to an autoregressive compression aftsgieenvelope. The LHC can be efficiently

computed using Levinson-Durbin recursion.

4.2.4 Feature Aggregation

In order to convert the sub-song level feature sets into aageable feature set for statistical pattern
analysis, some form of aggregation of sub-song level featimto a single song-level feature set is

required.

Gaussian Features

Possibly the simplest approach is to calculate the mean tandard deviation over segments, which
amounts to fitting a single Gaussian distribution with dia@aovariance over the features of the data.
The resulting full feature vector is created by concatewgtine means and variances of 256 RCC, 64
[MECQ, 32TPC, 1TPCFE, 3P EHRT, 16 roll-off, and I ZCR. This leanld02 x 2 = 804 parameters for

each song.

Autoregression (AR) Features

Another idea is to try to incorporate some of the temporabrimfation over the length of each song
into the feature aggregation. Genres may, for example, Beedemore by changes in their spectral
qualities than the average of those given by the Gaussiamgfithutoregressioi (AR) coefficients can
be calculated with an all-pole model using the Yule-Walketmod. This method uses Levinson-Durbin
recursions on the biased estimate of the sample autociiorelequence to compute the coefficients
[130Q]. Using a10*" order model and ignoring the zeroth order component regulté2 x 10 = 4020
parameters for each song. This method was used on the swfattes two datasets presented here in

combination with the Gaussian feature aggregation.

4.2.5 Algorithms

The empirical testing here will follow/[75] by using multad$ AdaBoobi (AdaBodst .MH), as was intro-
duced in Section 2.1.11, in combination with aggregatetlifea. However as the number of features is

already large before the creation of weak learners, whidh@gult in a larger number of weak classifiers
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for the boosting algorithm to choose from, it may be the chaéan algorithm that enforces sparsity in
the solutions would be preferable. The natural extensidingsefore to use tHe LPBobst algorithm, as
introduced in Section 2.1.111.

Multiclass

Both[AdaBoost anH LPBadst must be extended to cope with tHeatass setting presented here. Any
binary classifier can be turned into a multiclass classif@ngithe “one-versus-rest” approach, where
binary classifiers are built for each class versus the resttlae classifier that gives the most positive
decision value (or least negative in the case that all arative is the class label given. This is the
first approach taken far LPBaoost ,
.MH (see Algorithml1).

and AdaBoost is extendedsimilar manner to give the algorithm

Uneven loss function

Multiclass classification problems in the one-vs-rest feamork are inherently unbalanced, as the class
which is being classified will tend to have far fewer membdrant the rest of the dataset. Both
an@TPBodst can be modified with uneven loss funstio try to mitigate against this prob-
lem. This involves increasing the weight of false negativese than false positives, and decreasing
the weight of true positives less than true negatives. Thelrref this is that positive examples main-
tain higher weight (misclassification cost). This leadsxo hew algorithms known as AdaUBoost and
LPUBoost [131].

Another approach to Multiclass classification is to map thgots to binary codes using Error-
Correcting Output Code§ (ECDC) [132]. This theoreticalipdd aid classification as it overcomes
the standard one-versus-rest imbalance. Experiments eagr@ucted using this method, but it was
found that due to the small number of classes in the presgeriement (4, 6, or 11), no difference in
performance was observed. In fact for the smallest numbelas$es (4), the performance was actually

worse. This is most likely due to the artificial way in whiclkelECOC encoding partitions the data.

4.2.6 Multiclass [LPBoost Formulation (LPMBoost )

This section details the formulation of a new multiclasseaston, to be called LPMBoost , of the
algorithm in which the original objective functignsuch that the margin between the correct
class and each of the incorrect classes is maximised. Itnigasiin flavour to the multiclass extension
of the[SVM [133], and also resembles the linear programnongtilation of structured output learning
over a path[[134]. However to the author’s knowledge thigesion of LPBoost to the multiclass setting
is novel. Letk be the number of classes, whére- 2. Lety* € {—1,1} be the vector of labels for the
one versus rest classification for clgswherej = 1,..., k. 7 = [y';...;4"] is the vertical concate-
nation of these vectors into a column vector of length. The goal is then to maximise the margijn

(or minimise the negative margin) between the output of tireect class and that of the other classes,
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i.e.Vi,H; (ws —w;) > 7,5 # s = y;. Thisis done by replacing matr®d (whereH = ). y;h(z;, -))
in the first constraint of the primdl(2569) and ddal(2.60)falations with another matrik1.

The matrixM is formed by augmenting the hypothesis matrix into a largé&imaith all of the
necessary comparisonise( the hypotheses for the correct class for each example vérsusegative
of the hypotheses for every other class). The rows are geketlaat correspond to an example with
a negative label, of which there ake— 1 for each example, and a zero row for the comparison of the
hypothesis with itself. The zero row will create a constrdivat can't be satisfied, so although this
could be mopped up by the slack variable, it is better to reribfrom the matrix, giving a total of
m(k — 1) rows. The weak learners correspond to a weak learner fortecylar class, and as such
there arenk columns. An example matrix is given in Taljle}4.2. Learninthisn performed using the
standar CPBaakt algorithm. At the testing stage, given @ima/,.,; containing one row for each test
point and one column for each weak learner, and the set oecheesak learnersand primal weights
w’,j =1,...,k (the Lagrange multipliers from the final step of the dual mpsiation for each class),

the decision function is now simply,

fj :Mtest[:ai]wja J =1,...,k, (412)

and the classification is then given by,

§ = arg max { fa} . (4.13)

j=1,...k

Example| Comparison| y; | Class1 Class2 Class 3

1 1v2 1 h; —h; 0
1v3 h; 0 —h;

2 1v2 2 —hy hsy 0
2v3 0 hsy —hy

3 1v3 —hs 0 h;
2v3 0 —hg h;

4 1v2 2 —hy hy 0
2v3 0 hy —hs

Table 4.2: An example of the augmented hypothesis maifixin this example there are four examples with class
labelsy = {1, 2, 3,2} and corresponding weak learner vectdrs, . . . , h4, which are row vectors of weak learners
hi = {hia), . hitm) }

4.2.7 Experiments

The dataset used in the MIREX 2005 genre classification &sloi freely available due to licensing
issues. Experiments were run using two datasets: an oldgnafane 2004 dataset which is publicly

available and a dataset provided by Anders Méngl[124]. Taesdescribed below.



4.2. Genre Classification 106
Magnatune 2004

The RWC Magnatune database used for the MIREX 2004 Audiaiggien contest is still available (see
[135]). Whilst this suffers from many of the problems disgers at the beginning of this chapter, it has
the advantage of being released under the slightly moreré¢fiamework of the “Creative Commons”.
The dataset is split into 6 genreddssical electronic jazz & blues metal & punk rock & pop, and

world).

Anders Meng dataset d004

Dataset consisting of 11 genres, with 1100 training exasyguhel 220 test examples. The integrity of the
data-set has been evaluated by humans (experts and norsg¢gpa decision time horizon of 30 seconds
[124]. Itis interesting to note that human performance émdhataset is only at 57.2% in a 11-way forced
choice paradigm (sée4.1). This suggests that either thendrsuth annotations are inaccurate or that
the genre labels are not very descriptive. The genres inatasdt aralternative country, easy listening

electronica jazz latin, pop/dancerap/hip-hop R&B/sou| reggae rock. However, the dataset was used

with some success in previous studies [136) 137]. Duringetiaduation of this method, the full dataset

alternative
country
easy-listening
electronica
jazz

latin

pop&Dance | 4o 13 107 107 00

13 27
rap&hiphop | 13 00 53 13 13 00 13
rb&soul | 27 13 133 13 27 IRl 27 40

Teggae | 53 g0 00 40 00 00 13 53 2_? 0.0

rock [ 120 13 93 00 13 27 80 13 27 0_0

Figure 4.1: Confusion Matrix of human performance on Anders Meng date4

of all 11 genres was used along with a subset of this contitia 4 genres that had the highest rate
of accuracy for human performangaz pop/dancerap/hip-hop andreggag. The reasoning behind
this was that if the main problems encountered with thissidtevere based on inaccuracies or vagaries
of the ground truth labelling, these would be reduced byngkihe most consistent results from human

evaluation.



4.2. Genre Classification 107

4.2.8 Results

In all the experiments tHe_ AdaBaobst stopping parameter elested by 5-folf CV. The average classi-

fication accuracies of the different algorithms on the dztsagre shown in Tablés 4.3 dndl4.4. The labels
for the datasets are as follows: MAGNAG refers to the Magnatlatabase (6 classes); MENG4 refers to
the reduced Anders Meng dataset, where the 4 classes wiltigihest accuracy of human performance

were chosen.

MAGNAG (6 classes)

Algorithm Accuracy
IAdaBoost 59.3%
AdaUBoost 59.8%
[PBoosS 55.1%
LPUBoost 57.8%
LPMBoost 60.9%

Table 4.3: Average 6-class classification accuracy on Magnatune 2G04dset using_ AdaBodsf, TPBdpost , and
LPMBoost classifiers

Due to the large size of the MAGNAG dataset only the Gaus®atufe aggregation method was
used. The results show that, somewhat against expectatimperformance df [PBadst is actually
worse than that dC/AdaBodst . The modifications for the unenamire of the dataset due to the one-
versus-rest classification, LPUBoost and AdaUBoost , beghlted in slight improvements in classifica-
tion accuracy, and narrowed the difference between the Igarithms. However the best performance
on the dataset was obtained by the LPMBoost algorithm, wilitctly optimised the margin between

the multiple classes whilst enforcing sparsity.

MENG4 (4 classes)

Algorithm Gaussian features AR features All features
[AdaBoost 41.2% 35.0% 46.2%
AdaUBoost 42.5% 35.0% 50.0%
[LPBoost 46.2% 35.0% 43.8%
LPUBooOst 46.2% 35.0% 47.5%
LPMBoost 43.8% 38.7% 53.8%

Table 4.4: Average 4-class classification accuracy on MENG(4) dataseiglAdaBoost[[ TPBodst , and LPM-
Boost classifiers

For the MENGA4 dataset both the Gaussian feature aggregatibthe Autoregressive feature ag-
gregation were used individually, and also together. FerGawussian feature aggregation method, the
[CPBaost algorithm performed better than fhe”AdaBloost dtlgar, and in this case with only 4 classes
the uneven modifications AdaUBoost and LPUBoost made bitieo difference. In this case the LPM-
Boost algorithm performed slightly worse than the stand&dBoost algorithm. For the Autoregressive
feature aggregation method the overall classification royuwas somewhat lower than for the Gaus-
sian feature aggregation method in all cases, with the LPd4Balgorithm performing the best in this
case. Interestingly, by combining the two feature extoactnethods together, the performance of the
algorithms was improved in nearly all cases. As with the MAKBNlataset, when using all features the

algorithm initially outperformed the TPBdostailighm, and again the AdaUBoost and LPU-
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Boost modifications improved classification accuracy. Cagain, however, the LPMBoost algorithm
gives the best overall classification accuracy, which destrates the efficacy of this method. In general,
the performance of all of the algorithms on this datasetislthan may be expected. However, results
of human performance cited in[124] suggest that the daissxtremely difficult to classify - possibly

indicating that the ground truth labelling is inaccuratethat there are other confounding factors.

4.3 Compressed Sensing for Radar

This Section presents a study of how the Analogue to Digitaiv@rsion[[ADC) sampling rate in a dig-
ital radar can be reduced—without reduction in waveformdeadth—through the use of Compressed
Sensing[(CB). Real radar data is used to show that throughf abérp or Gabor dictionaries and Basis
Pursuit [BP) th&_ ADC sampling frequency can be reduced bytafaf 128, to under 1 mega sample
per second, while the waveform bandwidth remains\i4@l z. The error on the reconstructed fast-time
samples is small enough that accurate range-profiles agé+fa@quency surfaces can be produced.

is a new paradigm in Digital Signal Processing (DSP) tlaalels sampling frequency for com-
puting power and allows accurate reconstruction of sigaaiged at rates many times less than the
conventional Nyquist frequendy [59,169]. This new techeitpas been applied successfully in Synthetic
Aperture Rada(SAR) to both achieve higher resolution iesdd 38/ 130] and to reduce the number
of measurements made of the backscatter signal, which mreduces data transfer and storage re-
quirements[[14i0, 141]. Additionally there have been stidi@de of how CS can be used to reduce the
sampling requirements of Ultra Wide Bad (UWB) radar syst¢td2 [ 143] although the latter of these
did not consider the impact of the Doppler shift on CS @atgm, and both have been conducted
entirely with simulated data.

In this work, thd C8 approach usedin [143] 10] will be extehideinclude processing of data that
includes Doppler shifts. Additionally, data from a real aadystem will be used that includes noise
and non ideal measurement conditions, such as the preséoteéter, small amounts of interference
and clipping of the signal at thie ADC. The form[ofICS being emyptl iSAICQ [9,10] that reduces the
sampling frequency from the traditional Nyquist rate by ping at the information rate, rather than the

rate required to accurately reproduce the baseband signal.

Conventional sampling theory requires that digital samplean analogue signal be measured at a
rate sufficient for the signal to be reproduced without &ligsthis is the Nyquist frequency. Sampling
in this way is concerned purely with accurate reconstruatithe signal and does not consider that the
information contained within the signal that is really innfamt. It is likely that the true information rate is
much lower than the Nyquist frequency, and so long as the kagrggpproach captures this information
then the original signal can be reconstructed. Itis impurt@arealize that while the sampling frequency
has been reduced, the computational overhead has increiasedt is now required that the original
signal be reconstructed. Such a trade may be desirable @m apglications to allow relaxation of the

sampling requirements to reduce cost or to permit gaps tefbimlthe radar bandwidth [144] that might
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Figure 4.2: The modified receiver chain for CS radar.

then be used in other applications. These possibilitiesrttakstudy df CIS for regular radar applications
attractive.
The principal contributions of this study are the use of radhr data in R30S study and the consid-

eration how the Doppler shift affects reconstruction inAfi€lapproach.

4.3.1 Review of Compressive Sampling

This section provides a brief review of the theory of CompegsSensind (GS) as first introduced in
Sectio 2.2K, a technique that allows signals to be acgdjwireeconstructed sparsely, by using prior
knowledge that the signal is sparse in a given basis [59, B9 principal result is that signals can be
reconstructed exactly even with data deemed insufficierthbyNyquist criterion. Formally, given a
signalz € R™ and a dictionary € R™*¢ which forms an orthonormal basis,is said to be sparse if
x can be represented as a linear combinatioh afoms from¥, i.e. x = Zle a; ¥ ; wherek < d.
According to the CS theory itis possible to construct a mesament matrixp € R™*"™ with m < n, and
perform stable reconstructions of the signal from measargsy, wherey = ®V«, if the measurement
matrix is incoherent with the dictionary.

This principle of incoherence extends the duality betwdentime and frequency domains. For
we need a stable measurement mabriand a reconstruction algorithm to recowefrom y. The
Restricted Isometry Properfy (RIP) describes a sufficientiion for a stable solution for botrsparse
and compressible signals[59]. It has been shown[fhai fandom Gaussian and Bernoulli matrices
satisfy both th€RIP and incoherence conditions with higibpbility [59] (see also Sectign 2.2.5).

This study used a form of;-penalised least squares knowr"ag BP, which has been sham to
proximate thes—sparse/y solution [31].

Hgnl\y—‘b‘l’al\;Jr)\llaHl, (4.14)

BB can be solved using the LTARS [3P]. LARS computes the fgllitarisation path, which is a piecewise
linear function between = 0 and\ = oo (as described in Sectign 2.1..7).

Details of the dictionaries and measurement matrices usegivgen in Sectionh 4.3.3.

4.3.2 Application of [CS To Radar

To allow the[ADQ to run at a sub-Nyquist rate, the radar remedhain must be modified to alldw CS.

Figure[4.2 shows the additional components required fdr BEl ieceiver. After the standard filters,
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downconverters and amplifiers, but before f[he_ ADC, two nempmonents are added—another mixer
and an integration filter. The first input of the mixe(¢), is the baseband signal. The second input is
a pseudo-random signal,(t), that can take a value of eithéror —1. Such a signal can be readily
generated using direct digital synthesis. Following thgamis an integration filter that sums the output
of the mixer over an intervalcs:

Tos = NTsample (4.15)

whereTsqmpie is the Nyquist sampling interval and the undersampling factor. This process of mixing
and then summing the signal constitutes the projectioneféceived backscatter signal onto the mea-
surement basisp, that is defined by.(¢), see Section'4.3.1. The algorithm, and seed, of the random
number generator used to creatét) must be known, since a replica of the signal is needed duhieg t
reconstruction of-(t).

Each output of th€_AIC is a projection of the baseband sigeet¢ived during the interval g
on to the measurement basis. The AIC samples emerge at afrg\;g%o These slower-rate samples
cannot be used in the conventional processing that maywaligitisation, such as matched filtering
and Fourier analysis, as they stand. Instead, the fastgamgples must be reconstructed uding CS.
To achieve this, multiple observations of the target arearequired. Fortunately, the radar already
gathers these observations since in pulsed, or Frequendylisted Continuous Wave (EMOW) radar,
the same waveform is transmitted repeatedly. Only one sktstftime samples will be reconstructed
from the multiple observations: so while the radar operaiés one Pulse Repetition FrequenEy (PRF)
the emerging range profiles have a different, loler,JPRF.ratie of the twd PRFs will be the number
of pulses used to reconstruct the fast-time samples. Tixt®n in thd PRF will ultimately reduce the
range of Doppler frequencies that may be detected.

It is possible to synthesise the AIC approach to radar peiegsising data gathered with a conven-
tional digital radar. During data collection, the basebsigaal is digitised with ah’/ADIC that runs at the
Nyquist frequency. Once the samples have been stored, gnikth the signap..(¢) and the subsequent
integration are performed digitally. The output of thisqpr@cessing will produce samples comparable

to those that would be output by a tfue AIC receiver. This Waasapproach taken for this study.

4.3.3 Experimental Approach
The Radar Dataset

Data was gathered using a single node of University Collegredon [UCIL)'s NetRAD radar [145].
The radar had a 2.& H ~ carrier frequency and was set to transmit a linear Frequitodulated [EM)
pulse, with width 0.6:s and a 4QV/ H > bandwidth, and to usdla PRF of 2@ ». The[ADQ digitised the
baseband signal at 100 mega-samples per secendl, = 100 M H z, and 128 samples were collected
per pulse. There was a delay in starting[the ADC, so that #mesinitted signal would not be recorded,
resulting in ranges between@0and 280.% being measured. The targets were placed at ranga120

When moving, the velocity of the target was along the radael®f Sight[LO%) and always towards the
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radar. Three targets were used: a stationary flat metal, platgning person; and a transit van travelling
at 15mph. For the flat plate, 40,000 pulses were recorded while fontbeing targets the number was
increased to 60,000.

Specific[CS|Implementation

The[AIQ was implemented entirely in post processing, asriEstin Section 4.3]2. The 128 fast-time
samples collected during each pulse were compressed imgla sampld.e. the integration duration
was128 X fsampie, @and the under sampling facta¥,, was 128. This meant that if tfie"AIC had been
implemented in hardware, rather than software[the ADC dibalve needed a sampling rate of under 1
mega sample per second, a substantial reduction over theajature card used in NetRAD. The random
Bernouilli signalp.(t) was generated using the Matlab functiomndn andsi gn.

The fast-time samples were reconstructed ukin BP, se@®8EEB.1. The reconstruction was
performed based on 60 compressed samples, or radar pa@adsg to th&€ PRF of the reconstructed
data being 33H z, one sixtieth of NetRAD's original 20H . Within the[BP algorithm the regularisation
parameter), was set by taking the value that minimised the reconstra@iror on the calibration set.

Chirp atoms were introduced to deal with the nonstationahalior of the instantaneous frequency
of some signals, and shown to form an orthonormal basis [Bi}ther, it is clear that the domain in
which a radar signal should be most sparse is that compostelayfed and frequency shifted versions

of the transmitted sign&l [143]. A real chirp atom is given by

S

Gy, e(t) = % g <t — u> - cos (é(t —u)+ g(t —u)® + qb) (4.16)

whereZ is a normalisation factor (to ensure that for each aligq, | = 1), vn = (s, un, &) denotes
the series of parameters of the functions of the dictioremglg(t) = exp~™ is the Gaussian window,
andc is the chirp rate. The chirp atom has an instantaneous freyugt) = ¢ + ¢(t — ) that varies
linearly with time. For the construction @b the parameters of the atoms were chosen from dyadic
sequences of integers with the octave paranmyeterl [56]. The Gabor dictionary is constructed in the

same way, except that the chirp rate- 0.

Testing Strategy

Each target dataset was processed using the sim{ilaiéd déCswgstem, describedin 4.B.2, and both the
Gabor and chirp sparse basis. Once the reconstructedrfessamples had been formed the normalised

error between the reconstruction and the actual data ceutdlculated according to:

€ — ||X0M'g - XCSHQ (417)

||X07'ig I 2

wherex,;, is the original signal before projection onto the measurdrbasis andcs is the recon-
structed signal. In this study, the reconstructed signal feamed from sixty original signals, but for

the calculation ot only first signal was used. The use of a mean signal was carsideut averaging
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Figure 4.3: Fast-time samples of the stationary target.

radar signals is a form of integration that would improve[R. This improvement would not be in
the reconstructed signal making the comparison unfavéeirab
The reconstructed fast-time samples were processed usiogvantional matched filter to obtain

range profiles, and the DFT was then used to produce rangeeney surfaces.

4.3.4 Results And Analysis
Stationary Target

Initial testing was conducted using the data for the statigrilat-plate target. Measurement of the
received signal power indicated that foe_3NR for the targetaa22dB. Simulation of thd_AITC was
performed using the Gabor dictionary and the chirp dictigres the sparse basis for reconstruction.
From the original 40,000 pulses 666 reconstructed setssttifae samples were reconstructed. During
reconstruction the normalised error, see (4.17), had a malae of 0.70 with a standard deviation of
0.18for the Gabor dictionary, and 0.58 mean with 0.23 stahdeviation for the chirp dictionary. Figure
[4.3 shows the reconstructed fast-time samples using ther@all chirp dictionaries in parts (b) and (c)
respectively, with the samples from the first pulse in thelbaf sixty used for reconstruction in part (a)
for comparison. In this case, the normalised error was @#42hie Gabor dictionary and 0.28 for the
chirp. Visual inspection of the figure shows the reflectiotheftransmitted chirp at a range of 12@nd
both the Gabor and chirp dictionaries appear to reconstniscpart of the curve well (seen as the peaks
in Figurd4.3). Conversely, beyond the limits of the refldatkirp the reconstruction appears poor, and it
is thought that the majority of the normalised error comesifthese regions. Application of a matched
filter to the samples resulted in the range profiles showndnfe[4.4. Again, both the Gabor and chirp
dictionary reconstructions, parts (b) and (c) of the figame, a good match with the Nyquist sampled
data, part (a). It was observed that the square root of thk ipgensity for the Gabor reconstruction
was~ 10, 000 less than the actual data, and that for both types of reaaigins the noise regions were
much more pronounced.

Observation of the atoms from the two dictionaries usedndutine reconstruction indicated why
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Figure 4.4: Range profiles of the stationary target.
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Figure 4.5: Fast-time samples constructed from largest three codffisie

the noise parts of the reconstructed range profiles cortaimae energy than the original data. In the
case of the chirp dictionary it was clear that the most sigaift atoms used related to the target. Since
each atom was a delayed chirp it was straightforward to wtaled why th€ BP algorithm had selected
it. The most significant atom was at a delay correspondingeddrget range. After that there were
several atoms, with much smaller amplitude coefficientstrithuted throughout the fast-time samples.
It was thought these atoms were being used to approximatbe¢heal noise. In the case of the Gabor
dictionary comprehension of the BP process was less cesitaie the atoms did not correspond directly
to the transmitted waveform. There was a series of signif@fmms, with narrow scale, that appeared to
representthe reflected chirp at the target range. In addfiere was a series of atoms with long scale but
coefficients indicating a small amplitude; these werelaited to an attempt to reconstruct the thermal
noise. Figure6 415 ard 4.6 show the reconstructed fastsan®ples and range profiles, respectively,
when only the three most significant atoms are used duringnstruction.  In both figures part (a)
shows the Gabor result and part (b) the chirp. It was obsehagdhe chirp result is almost identical to
the full reconstruction, but with less energy in the noiggals, while the limited Gabor reconstruction
had not been successful. The ability to reconstruct withefeatoms in the chirp case suggests a larger
regularisation paramete,in (@.14), could have been used. In this case the effect ofased sparsity

would be that automatic denoising of the signal would begrered during reconstruction.
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Figure 4.6: Range profiles constructed from largest three coefficients.
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Figure 4.8: Range-frequency surfaces for van target uging CS.

Moving Targets

When considering moving targets, it is the range-frequesucface that is of interest, rather than the
range profile, since it provides information on the targBtgpler shift as well as its range. The surface
is calculated by first performing matched filtering of the-fimie samples and then performing a Fourier
transform over the pulses in each range-bin. Fifure 4.7 shiogvrange-frequency surfaces for the two
moving targets when rig €S was employed.

The results for processing the van target data with the sitad[AIQ are shown in Figufe 4.8. It
is apparent that there is very little difference betweengigihe Gabor and chirp dictionaries, shown in

parts (a) and (b) respectively. Close inspection of theas@d indicate that the shape of the main peak
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Figure 4.9: Range-frequency surfaces for person target uing CS.

Table 4.5: The normalized errors for the moving targets

Dictionary Van Person
Av. Error | Std Dev | Av. Error | Std Dev
Gabor 1.094 0.109 0.784 0.143
Gabortop 10] 1.051 0.095 0.892 0.133
Chirp 1.153 0.145 0.733 0.189
Chirptop 10| 1.120 0.516 0.970 1.197

from the chirp dictionary gave a slightly better match witle briginal surface (Figufe 4.7 part (a)), but
the improvement over the Gabor dictionary was only slightvds also observed that the noise floor for
the[C3 results was higher than in the Nyquist sampled daia.can be seen by comparing the figures.

The running person results are shown in Fiquré 4.9, agaiG &®r dictionary is in part (a) and the
chirp, part (b). In this instance it was not possible to dis@ny difference between the two dictionaries
by inspection of the range-frequency surfaces. Both wesemed to be a good match with the Nyquist
data, although again the surfaces contained more noisenhan C$ was not used.

The mean normalised errors, and their standard deviatietseen the reconstructed fast-time sam-
ples and the original Nyquist versions are shown in Table Bhe table details the errors for both targets
and both dictionaries as well as the cases when reconstnugtis performed using only the ten largest
coefficients. It was observed that in this instance therelittksdifference between the two choices of
dictionary. For the van target the Gabor dictionary had tlweekt error while the chirp was superior for
the person. In both instances, however, the differenced®tvwerrors was in the second decimal place.
Furthermore, reducing the number of atoms used in recarigindid not have an appreciable affect on

the error.

Dynamic Time Warping (DTW)

Dynamic Time Warping[{DTW) is an algorithm for measuring samity between two sequences which
have different temporal exterit [T46[_DTW has been appleethany different signal processing ap-
plications including video, audio, and graphics. A well iwmoapplication has been automatic speech

recognition, where it used to align the signals from speakéth different cadences and inflections (see
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Figure 4.10: [DTW applied to the person target. In this instance the waggias little effect as target is moving
slowly, meaning that the warping is minimal. There is, haavestill an improvement in the resulting reconstruction
(bottom right).

Chapter 4 of[14]7]). For targets such as the van target inithgept dataset, the deviation between suc-
cessive fast time samples may become quite large, with amgeanying phase shift due to the Doppler
effect.[DTW is one possible way of dealing with this. Resoltapplying thd DTW algorithm to suc-
cessive samples for firstly the person target and then thearget are presented in Figuies 4.10 and
[4.17 respectively. It can be seen that for the person tardpéth is slow moving and therefore results in
little phase shift or signal offset, the effectfof DTW is mstieHowever for the van target, the effect is
much more pronounced. The resulting signal has been realiguch that it is in phase, and the resulting
reconstruction is greatly improved. This is demonstratetaibld 4.6, where the results of the improved

reconstructions can be seen by the effect they have on suipthie matched filtering.

Dataset | Original | DTW
Calibration| 0.1118 | 0.0997
Person 0.1237 | 0.0986
Van 0.1628 | 0.1138

Table 4.6: Effect of Dynamic Time Warpin§{DTW). The figures quoted lagenbrmalised/s distances between
the results of the matched filter with and withbui CS. Not¢ithavery case tHe DTW improves the reconstructions

(and hence range-profiles) made[byl CS
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Figure 4.11: [DTW applied to the van target. In this instance the warping hamuch greater effect as target is
moving more quickly resulting in a bigger deviation betwéss two signals. The warping here has the effect of
realigning the signals such that they are in phase, and tlselting reconstructing is improved greatly (bottom

right).

4.4 Conclusions

The first part of the Chapter examined the classification cfioal genre from raw audio files. This was
demonstrated through the use[of DSP for feature generatidraggregation, and the ML algorithms
[CPBaost and a novel multiclass extension LPMBoost . It wasedfore demonstrated that sparselML
methods are advantageous in this setting.

The rest of the Chapter examined the application df CS to emtional radar. As with the genre
classification task, the signals are univariate in the sefisesingle sensor or time series, but in this
case with a recording frequency orders of magnititude highere the focus is on D$P, although the
methods used are directly applicabld In ML settings as vegit] there is scope for further analysis of

this data in al M1 setting.



Chapter

Applications Il

Abstract

This Chapter presents the core application area of the nusthiescribed in Chaptél 3: Multivariate
signal processing. Signals recorded from the brain agtiwit participants via Electroencephalography
(EEQ) and Magnetoencephalography (MEG) are both multatarithere are many sensors) and high
frequency (up to 100Hz). As such they present interestiatieriyes for the application 6f ML afid DSP
methods. Additionally, information contained in the sfinpresented to the participant may itself be
useful for classification purposes, rather than simple labén this situation Multiview methods are
required. Two experimental studies will be describ&dnality The first is concerned with the task of
distinguishing between tonal and atonal musical sequestiesili througH EEG recording<Genres In
the second experiment we seek to detect the genre of musia listener is attending to froln MEG

recordings.

5.1 Introduction

When sensory stimulation reaches the brain, the summettieté@ctivity of populations of neurons
results in characteristic sequences of waves which can seredd in Electroencephalography (EEG)
signals. These are known as sensory evoked potentials. @na&lso0 measure the corresponding mag-
netic fields associated with these electrical fields usingmMétoencephalograpHy (MEG). The evoked
potentials differ in each sensory modality and also depenithe intensity of the stimulus. They have a
very reliable temporal relation to the stimulus onset. Eatgotentials have very low amplitude and are
drowned by the ordinaly EBIGIMEG rhythms. In order to see theetarge number of identical stimuli
must be presented and averages taken over all the signa&lse aie also motor evoked potentials, related
to the brain activity preceding movements. Event-Relatetitial [ERFP) analysis has been primarily
used for vision researcle.Q.[148]) and auditory researck.g.[149]).

However[ERP analysis is not well suited for examining tHfea$ of music, due to the way which
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we process musical structures. By definition, a piece of calesvelops over time and thus engages both
short-term and long-term memory systems. The individugpoeses to particular stimuli.€. notes

or chords) play only a small part in the cognition of a musjzieace. Secondly, ERP analysis requires
many repetitions of identical stimuli with identical profies (duration, inter stimulus interval, envelope,
timbre), which when applied to musical sequences leadsstmdily unmusical sets of stimuli! The first
experiment that will be described, conducted in the Leilhnstitute for Neurobiology, suffers from this
problem somewhat, as the experimental design was interatenoth[ERFP analysis and the analysis

described in this Chapter.

The analysis of brain scans with a view to accurately idgimtif the semantic processing of the
subject has received increasing attention recentlyl [180&lysis of subjects listening to music has also
received some attention [151] though in some cases thissused some controversy[152]. This chapter
will focus on two experiments: the firstis BN EEG experimeretamine the brain activity related to the
tonal processing of music, and the second iEfan MEG expetitoesxamine the brain activity related
to the processing of musical genre. In both experiments Wédwperforming single trial classification.
In both cases a similar approach to the classification of serees data will be taken as in the previous
Chapter: each “example” will be a segment of data corresipgrtd a specific musical stimulus.g.of
duration 8 seconds) and features will be calculated for eaample using multivariale DSP with feature
aggregation. However the major difference is that we willvrize attempting to use information from
the stimuli themselves to improve the quality of the clagsifiusing the Multivew methods described in
Chapte[B (Sectidn 3.5).

5.2 Experiment 1: Classification of tonality from [EEG] recordings

A common structural element of Western tonal music is thenghaf key within a melodic sequence.
The present Section, based 0nl[12] examines data from a spefiments that were conducted to
analyse human perception of different modulations of kegcttoencephalographiy (EEG) recordings
were taken of participants who were given melodic sequenoataining changes in key of varying
distances, as well as atonal sequences, with a behaviagkabt identifying the change in key. Analysis
of EEQ involved derivation of 122120 separate dependeidbias (features), including measures such
as inter-electrode spectral power, coherence, and phasepr¥ent a novel method of performing
semantic dimension reduction that produces a representatiabling high accuracy identification of
out-of-subject tonal verses atonal sequences.

The present study is concerned with the task of distingnghietween tonal and atonal stimuli
through the observéd EEG recordings of the subjects. Itldimuistressed that EEG data is notoriously
noisy and making reliable cross-subject predictions hagqat difficult even for simple tasks. Indeed it
will be seen that a naive application[of SYMs to the collectigghals is unable to make out-of-subject
predictions much better than chance, although withinesihyredictions were possible. The key con-

tribution will be the demonstration of a novel semantic disien reduction method that makes use of
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a complex description of the stimuli to identify key dimesss in the space of signals that are highly
correlated with the stimulus. Using even a simple neareghbeur classifier in this semantic space can

achieve very high accuracy in both within-subject and desthject prediction.

The proposed analysis to discover statistical relatigsslhietween musical structure and BEG
recordings of participants to the same music is based onrémige that the brain represents structural
elements of the auditory signal that it receives throughtishi patterns of activity. This activity may
take many forms, ranging from generalised changes in &ctivicertain brain regions to more complex
relationships. By taking a multivariate approach to thealgrocessing of tHe EBG signal, it is possible
to analyse a wide range of such relationships. As such p=grelectrode comparisons, which provide an
indication of communication between brain regions, areavmount importance. The analysis to date
has included pairwise statistics such as cross power arete@ote. Cross phase is another interesting
statistic that will be investigated, as it indicates tha@réhmay be an increase (or decrease) in synchrony
between brain regions. The collection of statistics derivem thd EEG analysis procedure will then be

compared with the features derived from the audio recosdimgrder to seek common patterns.

The encoding of the information about the stimulus is thioagkernel designed to capture the

melodic and harmonic structure of a musical score availatdesimple midi format.

The data under examination in this Section was produced BEB experiment conducted in
partnership with the University of Magdeburg. The printipgpothesis was that neural patterns should
reflect relative changes in the key of music that a listenattisnding to. In order to examine this, a
series of stimuli (chord sequences) were constructed atet@d such that there were the following five

experimental conditions:

Distant key (two stimuli)
Close key (two stimuli)
Same key (two stimuli)
No key (one stimulus)
Initial (two stimuli)

AR R

Section[5.2P gives details of the setup and protocol of #peement upon which the analysis
was performed, including details of the EEG data prepraegssSectior 5.2]5 gives details about the
process of the multivariate signal processing technigusesl wo extract features from the EEG data
for classification. Section 5.2.6 describes the machinmiea analysis approaches taken, including

conventiond[SYM analysis as well as a semantic dimensiduatéon method based 6n KCCTCA.

5.2.1 Participants

16 right-handed participants (9 female, 7 male), aged 19ltoa8th normal hearing took part in the
experiment. None had received any formal musical educa#idinparticipants gave written informed

consent to the study, which was approved by the ethics casarof the University of Magdeburg.
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5.2.2 Design

The stimuli consist of sequences of chords, with each stigial a single key (or no key). All sequences
consist of 16 chords with onsets at 500ms intervals and witatén filling the entire 500ms, giving a
total length of 8s. The experimental conditions are defineddmtiguous stimulus triplets with changes
in relative key (listed below). Relative key is establistgdtonal stimuli, and reset by atonal stimuli.
Stimuli from the first three conditions are followed by a silos from condition four as a contrast and
a reset of relative tonality. 48 stimuli required altogettedl chordal (in root position), of which 32
are tonal and 16 atonal. Tonal stimuli to be transposed asresjto fulfill experimental role. First
stimulus in each tonal pair is to be in C major, to eliminatg Emg-term tonality effects (or at least to
take advantage of them); second is in either F# major (cmdit), G major (condition 2) or C major
(condition 3). In total there were 48 initial, 48 atonal, 16se and 16 distant trials per participant, giving
a total of 144 trials.

Ordering Principles:

1. Each condition should appear an equal number of times

2. Each different melody type (a,b etc.) should appear aalegumber of times

3. The three conditions should appear in each permutatiamiftimise condition order effects)

4. Each different melody type should be used once for eadiedhtree main conditions (to minimise
individual melody effects)

5. Each tonal pair in the conditions should use the same ktgnu

6. Each tonal pair should be followed by a unique atonal dtisito reset tonality (and provide a
control condition)

7. Same order for each run and for each subject (for direcpanison in subsequent analysis)

5.2.3 EEG Measurements

EEG recordings were acquired at the Leibniz Institute foufdbiology (Magdeburg, Germany). 64
unipolar channels, including 2 Electrooculogrdm (EOG)reteds and one nose reference electrode
were recorded at a sampling of 580 and a resolution of.1xV. Across all participants the voltage
range was3.2767mV and the impedance was less th@2. The music was played to the partici-
pants using a Terratec EWX 24/96 soundcard, Black Cube LiBei@ance amplifier by Lehmann Audio
(www.lehmannaudio.de), and Eartone 3A Insert Earphon€susing binaural presentation. The vol-
ume of the amplifier was at notch 6. Stimulus delivery and stancoordination were controlled with

Presentation© software (Neurobehavioural Systems Inc, Albany, USA) gisitustom-written script.

5.2.4 Data Preprocessing

Muscular activity related to eye movements and eye blintes éhe electromagnetic fields around the
eyes and typically introduce artefacts intoffhe EEG, esflgdn frontal regions. A number of algorithms

have been proposed to correctfor HOG artefacts, which alecofor[EQOG artefacts by subtracting a
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proportion of one or morEZEQG channels from [he EEG channglstudy by [153] evaluated four
correction techniques by correcting blinks, vertical and4ontal eye movements from 26 subjects. The
study concluded that in the absence of specific calibratiotopols, the method described hy [154],
based on multiple regression, was the best solution. Theoapp taken by[[155] was based on the
algorithm suggested by [154], with modifications descrilmefd56]. This latter method was chosen for
the present study.

Prior to time-frequency analysis, the data was filteredgisivo-way least-squares FIR filtering.
Digital filters: 0.2H z low pass filter. 108/ z high pass filter. The 58z component of the signal was
removed using a notch filter betweenH9 and 51H = due to AC mains signal.

The electrodes were then re-referenced using the nosecelect

5.2.5 Feature Extraction

The data from the 64 chandel EEG system at/B0Gampling rate was imported as a single matrix
such that the format was [channels x frames]. The data wasesggd into 8 second epochs, giving 144
epochs per subject. These epochs have a one-to-one caordespe with the experimental stimuli. This

results in a data matrix of shape [channels x frames x epochs]

Time-Frequency Analysis

Thetime averagef a discrete-time random signal is defined as,

L 1 <
() =lim N — SN t;N(-). (5.1)

We can then describe ensemble averages in terms of this vienage, as follows:

Mean value pu, = (x(t))
Variance o, = (|z(t) — pa|?) (5.2)
Autocorrelation 7, (1) = (x(t)x * (t — 1))

PSD R, =3, ra(l)

Until now, the discussed estimation techniques for the adatjpn of spectral properties of signals
have all beemunivariate(i.e. those given in Section 4.2.3). In many applications we hawedr more
jointly stationary random processes and we wish to studdticelships between them (as is the case
for the class of signals in this Chapter). We will use mudipivariate spectral estimations to perform
multivariateanalysis. Assume tha{t) andy(t) are two zero-mean, jointly stationary random processes.

The following quantities can then be defined,

Cross-correlation r,, (1) = (x(t)y = (t — 1))
Cross-PSD R,y =Y 0 Tay(l) exp(—iwl) (5.3)

2
Coherence C,y = %
x ity



5.2. Experiment 1: Classification of tonality frém EFG rediogs 123

For the analysis df EEIG, these bivariate estimations shioufztinciple be more stable that the
univariate estimations. Coherence between pairs of| EE@kigecorded simultaneously from different
scalp sites provides a high time resolution measure of tgee@eof dynamic connectivity between brain
regions. Coherence measures the correlation between affsagnals as a function of frequency. Thus
it provides a means for identifying and isolating frequebeyds at which the EEG displays between-
channel synchronization (seeg. [157] for a recent review). In addition, electrodes haveradéncy
to “drift” over time (in terms of both amplitude and mean aihple), meaning that univariate estima-
tions can become unstable. Bivariate estimation methodscowme this problem as electrodes that are
spatially proximate tend to drift in a linearly dependentmer.

A multitaper spectrum is produced by averaging multipledewed EETs generated with a set of
orthogonal data tapering windows known as Discrete Pr@ateeroidal Sequencds (DRSS) or Slepian
functions. Since each of the windows in a specific sequengedsrrelated, an unbiased average spec-
trum can be produced. A multitaper spectrum offers no gréagquency resolution than a single tapered
spectrum. In fact, the spectral peaks resulting from therdlgn have a flat-topped envelope shape
which makes the central frequency determination more diffiVhat is gained is a reduced-variance
spectral estimator that retains a high dynamic rarige) [158]

Using[DPSS§, inter-channel coherence, cross phase andmrass were computed, for all pair-
wise combinations of channels, excludingfhe EOG electade nose reference electrode. Cross power
simply refers to the ratios of the power within each of theérency bandwidths. The coherence function
measures the correlation between two signals as a functitire drequency components they contain,
and is therefore a correlation spectrum [159,/160]. It aeiees the likelihood of two stochastic signals
arising from the same generating process.

This differs from the cross-correlation function, whichvatves calculating Pearson product-
moment correlation coefficients for the two signals at vasidisplacements of sampling interval. Quan-
titative analysis[160] has shown that the cross-cormtegsbmetimes fails in situations where coherence
does not, as well as being more expensive to compute. Coraplany to the computation of the co-
herence spectrum is the phase spectrum, which indicatghtse relationship between two signals as a
function of frequency - information that is lost using oralig spectral methods. An important feature of
all of these methods is that they are independent of ampljtasithe amplitudes of electrodes are known
to vary greatly both within and between recording sessions.

The resulting 256 Fourier coefficients for each of the measwrere divided into bands, providing

estimates of spectral power within the following recogdifequency bandwidths:

e delta (0.3-3.912)
theta (4-7.91z2)
alpha (8-131z)
betal (13-197z)
beta2 (20-301 2)

In addition,
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low gamma (30-427z)
40H = (38-42H z)

mid gamma (43-68 z)
high gamma (64-108 z)
general gamma (30-100z)
global (0.01-10@7 =)

bandwidths were computed. The means and variances of e#lth wieasures within each of the wave-
bands were computed. The data was then flattened in ordeedteca large feature vector of length

122120 for classification.

5.2.6 Results
SV Analysis

Recall that we are aiming to predict whether the partcipaet® attending to tonal or atonal sequences.
The data was standardised across the features to obtamiésthnormal” random variables with mean
0 and standard deviation 1. The data for each subject wagaptiomly into 75% train, 25% té€sand
then concatenated to form the full training and test sets. sEme random split was applied for all of the
analysis. Classification was performed using the SVM-Lighpport Vector Machine implementation
[161] with linear[RBF and laplace kernels (where the lapkernel is the same as {he RBF kernel except
that the 2-norm is replaced with a 1-norm). 5-fioldICV was perfed on the training set to discover best
setting of the C and sigma parameters. Table 5.1 shows thertess for the SVM classifier on the split
of the data described above. The significance of the clasgifie evaluated using the upper bound of
the cumulative distribution functiob ({CDF) of the binomdi$tribution of a random classifier, calculated

as follows:

p < exp (—QLT; k)Q) (5.4)

wheren is the number of trials (test examples)js the probability of success (0.5 for a random

classifier) and: is the test error of the classifier.

Test #Train # Test Linear RBF Laplace
Tonal vs Atonal 1152 384 0.2298** 0.1175* 0.2742**
Close vs Distant 384 128 0.3125**0.2422* 0.4375

Same vs Distant 384 128 0.2656** 0.2344**0.2109*
Same vs Close 384 128 0.2031**0.164F* 0.164%*

Table 5.1: Test errors for within-subje¢f SVM classification. ** deestsignificance at the < 0.001 level (see
text)

Table[5.2 shows the leave-one-out test error for each of dnicpants using a linear kernel. In
this test the data from 15 of the participants is used as #ieing set and the data from the remaining

participant is used as the testing set. This is a much mdieudiftest, in the sense that the goal is now to

1Each trials were treated as a single example, and therefithel& participants and 96 trials each training set conthine
16 x 72 = 1152 examples and each test set contaihedx 24 = 384 examples
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learn features that can generalise from one set of braina¢svebrain. It is therefore not surprising that
with a subject pool of only 16 participants the classificaorors are close to chance for most subjects.
Results (not given) for the RBF and Laplace kernels were igmificantly different. It is interesting

to note that the distinction between “close” and “distariteg the best classification results rather than
tonal vs atonal. As such it appears that conditions with keynges result in more consistent prediction

across brains than those for processing atonal music.

Subject Tonal v atonal (96) Close v distant (32) Same v distaif32) Same v close (32)

1 0.4583 0.3438 0.3125 0.3750
2 0.4947 0.4688 0.3438 0.4375
3 0.4688 0.3438 0.3750 0.4062
4 0.4688 0.4375 0.5000 0.4062
5 0.4896 0.4688 0.5000 0.4062
6 0.5000 0.5000 0.4375 0.4688
7 0.4583 0.4688 0.4375 0.4375
8 0.4896 0.3750 0.3438 0.5000
9 0.4896 0.4375 0.5000 0.5000
10 0.4688 0.4062 0.3750 0.4688
11 0.4792 0.3438 0.5000 0.4688
12 0.4792 0.3125 0.4062 0.5000
13 0.4583 0.3750 0.4375 0.5000
14 0.5000 0.3750 0.5000 0.4062
15 0.4688 0.4375 0.3125 0.4688
16 0.5000 0.3125 0.3750 0.5000
mean 0.4795 0.4004 0.4160 0.4531
median 0.4792 0.3906 0.4219 0.4688

Table 5.2: Test errors for leave-one-ollf_ SYM classification usingdimkernels. The numbers in parentheses
represent the number of test examples. None of the tesseaached significance at the< 0.01 level

KCCA| Analysis

Various methods have been proposed for searching for conpaterns between two sets of signals,
including kernel canonical correlation analy$is (KOCAhieh can be viewed as a generalised form of
kernel independent components analysis [162]. Canonaatlation analysis (CCA) is a technique to
extract common features from paired multivariate data.aRéitatf KCCA is a nonlinear version of this

technique which allows nonlinear relations to be found leetwmultivariate variables effectively [52].

oK, K, 3
p=max ———
“P  Ja'K2ap'K23

For this analysis it was necessary to calculate kernels enmthsical stimuli. For simplicity of

(5.5)

analysis, the only distinction being examined in this setis tonal vs atonal, as the experimental setup
does not lead to a simple calculation of relative pitch famati that were presented following silence.

The midi audio files used to generate the experimental stinerk first embedded into pitch class space.
Pitch class space [163] is the circular (quotient) spach thie result that differences between octave-

related pitches are ignored. In this space, there is nondifdin between tones that are separated by
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an integral number of octaves. The pitch class vectors foln simulus were then formed into kernels
using a squared exponential kernel. As a sanity check, ngnai_SVM on these gives a test error of
0.0261, showing that this kernel representation is val@tfdet classification was not achieved as there
appear to be outlier stimuii,e. atonal sequences that appear tonal in this representation.

For the purposes of the KCCTA analysis, a linear kernel is tsethe[EEG, as the dimensionality
of the RBF kernel in this case is too high. Both kernels wemggated into Gram-Schmidt space using
the partial Gram-Schmidt decomposition outlined’in| [52heTprecision parameter was set to 0.3 using
a heuristic method. The use of this decomposition resulssiimplicit regularisation, and as such the
[KCCAlregularisation parameter was set to zero. Experintiemtavith different values of this parameter
did not show any improvement in results.

The kernels from each view were then projected into the shfe&ture space using the top 100
resultinglKCCA directions. The test kernel for {he BEG wasgirojected into this space, and then
normalised such that thig-norm of each vector was 1. Using the 100 largest correlatadunes with the
corresponding projections of the training data, the mopupar labels of the corresponding example in
the music kernel were used as the classification. The raperters are then the mean of the differences
between these labels and the true test labels. This mettaodestension of mate-based retrieVal [106],
was given algorithmically in Algorithfal5 in Chapfer 3.

The classification results using fhe PNN classification apgin are given in table §.3. It can be seen
that this method is able to classify between the tonal antbh&xperimental conditions almost perfectly.
As a comparison, dn_SVIM was trained on the projection of th€]E&ta into the shared feature space,
using a linear kernel and 5-fol[d CV to select the C paraméibe results show that tfie PNN method
performs competitively with the"SVM, whilst being esseliyian unsupervised method. It is also much

more computationally efficient as there are no parametersim

Classifier # Train # Test Linear
[KCCAl+[PNN 1152 383 0.0183**
[KCCA|+[SVM] (linear) 1152 383 0.0157**

Table 5.3: Test errors for within-subject classification for Tonal vieAal usind KCCA witi PNN arfd SYM classi-
fication. ** denotes significance at the< 0.001 level

5.2.7 Leave-one-out Analysis

We now present results for leave-one-out analysis of the. ddtis is the (much more difficult) classifi-
cation task of taking each participants’ data as the teshsgetn, using only the data from the remaining
participants as the training set. We therefore are givenrioo knowledge of the unique physiology of
the test participant, nor do we have any knowledge of theifipgeof the particular recording (such as
the raw electrode amplitudes). This means that the featises for classification must be robust across
participants and recording sessions.

Table[5.4 shows the leave-one-out test error for each ofahtecipants using the PNN classification

approach, along with tHe_SMM trained on the projection of & data into the shared features space,
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again using a linear kernel and 5-f¢IdICV to select the C patam The results show that the PNN
method performs competitively with the_SW¥M, whilst both rsificantly outperform the naive_SVM
approach (see Taldle.2).

Participant KCCAI PNN] KCCA ¥ $VM (linear)

1 0.2708 0.1667**
2 0.2737 0.2421

3 0.3125 0.2500

4 0.2083* 0.1667**
5 0.4062 0.2500

6 0.2500 0.2500

7 0.5625 0.1667**
8 0.2500 0.2500

9 0.2708 0.2500
10 0.1667** 0.1667**
11 0.7396 0.2500
12 0.2500 0.2500
13 0.1562** 0.1667**
14 0.3542 0.2500
15 0.2500 0.2500
16 0.4688 0.1667**
mean 0.3244 0.2183
median 0.2708 0.2500

Table 5.4: Test errors for leave-one-subject-gui KOCA projected estaneighbour classification. * and ** denote
significance at the < 0.01 andp < 0.001 level respectively, using the upper bound of[the CDF of therbial
distribution of a random classifier as before

5.3 Discussion

The results demonstrate that using standard modern Digitadal Processind (D$P) and Machine
Learning [MII) techniques with careful manipulation of theta can enable us to differentiate between
certain patterns of brain activity. Coherence analysisahdr types of cross-spectral analysis may be
used to identify variations which have similar spectralgaies (high power in the same spectral fre-
quency bands) if the variability of two distinct time serisdnterrelated in the spectral domain. The
results demonstrate that it is possible to reliably distialy between whether a listener was attending to
tonal or atonal music, including in the case when the testiasta “new brain” (leave-one-out analysis).
This can be considered to be a task of high-order cognitieegesing, rather than a simple sensory
input task. As the differentiation was based on propertfeth®EEG over relatively long timespans
(i.e.the length of an epoch, or 8 seconds), this is clearly notdséple evoked potentials, but instead
represents a more fundamental change in the pattern ofgsiogeover time.

Further analysis usitig KCQA demonstrated that throughskefiunsupervised methods it is possi-
ble to significantly improve the classification accuracye Hew classification method defined in Section
[B.5.3 using the shared semantic space given by projectiong KCCA weight vectors together with a
nearest neighbour method was applied. This was able togisth between the tonal and atonal exper-

imental conditions with a high degree of accuracy. It was atsown that ah ' SVM trained on projected
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data performed extremely well. The success of both of thestbaus is due to tHe KCQA projections
acting as a data cleaning step, in which a form of semantiedgionality reduction is occurring. As

the musical stimuli are sufficiently distinct between cdiudlis, the additional information extracts the
directions correlated with the differing experimental ditions. The key ingredient in the approach is
the introduction of a clean source of data that encodes a lexndjgscription of the experience of the
subject. It would seem that this approach to informatiomastion has enormous promise in a wide
range of signal processing and time series data analy&is tas

Subtler discriminations in the task of the listener were atdiably discriminated, such as distin-
guishing a move from one key to a close or distant key. How#weresults were not as convincing
as for the tonal-atonal distinction. There are severaliptesseasons for this. Firstly, there were fewer
examples of these events by a factor of 3, which on its owreeses the difficulty in learning. Secondly,
the cognitive task is clearly much more subtle than the tesatonal case, and as such the changes in
patterns of activity are likely to be much more subtle, alifjo this is of course speculative. Finally, the
type of relationship between the patterns of activity irs tase may be too slight to detect, meaning that
the[DSP techniques employed were unable to detect them paseq to the learning algorithm). Fur-
ther experiments with larger datasets (more repetitiomaane participants) could provide the answers
to these questions.

EEG data is notoriously noisy and unreliable, so it is ex&glgnencouraging that it is possible
to generate reliable discriminations using fully automatiocedures. It is usual to perform artefact
rejection by hand during the preprocessing stage, as weth&s manual techniques. The present study
used automatic techniques at every stage of the procegspessing, feature extraction, data treatment,
and classification). The methods presented demonstraaility to reliably discriminate between brain

signals associated with different sequences of music imbithin-subject and out-of-subject paradigms.

5.4 Experiment 2: Classification of genre from recordings

Classification of musical genre from audio is a well-reskadcarea of music research. However to
our knowledge no studies have been performed that attenigémdify the genre of music a person is
listening to from recordings of their brain activity. It ieleved that with the appropriate choice of
experimental stimuli and analysis procedures, this disicition is possible. The main goal of this ex-
periment is to see whether it is possible to detect the geimeusic that a listener is attending to from
brain signals. The present experiment focuses on Magnegpbalography(MEIG), which measures
magnetic fields produced by electrical activity in the bréinvill be shown that classification of musical
genre from brain signals alone is feasible, but unreliaBllerough the use of sparse multiview meth-
ods, such as Sparse Multiview Fisher Discriminant AnalfSFIFDA), reliable discriminates between
different genres are possible.

The motivation for this study came from the analysis preseirnt Sectiofi 4]2, with the same caveats

regarding the task of genre classification applying here &l vAs highlighted there and in[11], the
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choice of an appropriate dataset was shown to be of greatrtenm®. This is interesting from a cognitive
perspective, as genre classification may represent bottalogdvhigh-order cognitive processes. Using a

combination brain recordings and carefully chosen stiralliws us to analyse this question further.

The analysis procedures employed in this study are baseldose used fdr IMRI using standard
[GLM] and[SVMIKCCA methods[164], and methods used for analg$[EEG using KCCA as a se-
mantic dimensionality reduction method prior to classtfiwa [14]. The analysis begins with genre
classification from the audio source only, as outlined’ir [#%cept that in this study the features used
are derived from the midi versions of the audio files rathantraw audio files. The reasons for this are
twofold. Firstly, the features of interest are more readihgilable from the midi, as direct access to the
pitch values and note durations of the musical sequencedgdn.gSecondly, the nature of the stimuli
means that there is no timbral information available. Mdghe features used in previous studies such
as [75[11] are based on short-term spectral informatiorst mfowvhich are strongly picking out timbral

features.

Following this, features are derived from the MEG data usipgctral methods common to the
neuropsychological literature, after which machine leggralgorithms are used to classify these features
according to genre. Multiview methods are then appliedp¥zhg on from [164/14], which attempt
to use the stimuli themselves as another view of the phenomenderlying the brain signals. These
methods are improved upon through the use of Sparse Muitiigher Discriminant Analysi§ (SMFDA)
[12]. The key difference between this and previous appreachthal SMEDA uses label information to
find informative projections of each view into a shared spadgch are more appropriate in supervised
learning settings. In additioh, SMFEDA seeks to find spar$eatisms by using/; optimisation, which is
known to approximate the optimally spargesolution. This is also a form of regularisation that pregent
overfitting in high dimensional feature spaces. Sparsitgaditions is important in this setting as the
feature set constructed from the MEG data is extremely higtedsional, with a low signal-to-noise

ratio.

From Chaptel13 and13], the optimisation for MEDA is given by

mibn£ L&) + pP(a), d=1,...,p
@q,0,
P
st Y (Kaog +1bg) =y +&,

d=1

ge =0 for c=1,2,

The natural choices for the regularisation functift) would either be thé;-norm of the dual weight
vectorsj.e.P(&) = S7_, [lewall5, or thelz-norm of the primal weight vectd? (&) = S°5_, o, K e
However more interesting is tg-norm of the dual weight vectoR (&) = >-5_, |||, as this choice
leads to sparse solutions due to the fact thattheorm can be seen as an approximation to/throrm.

This version i$ SMFDA.

We can also follow/[114] and remove the assumption of a Gansmise model, resulting in differ-
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ent loss functions on the slacks A noise model with longer tails, such as the Laplacian noiselel,
may be more appropriate for the class of signals under exainin(see[[165] for a recent review). In
this case we can simply repla¢e||§ with ||€||; in the objective function. The advantage of this is if the
¢1-norm regulariser from above is chosen, the resulting dpétion is a linear programme, which can
be solved efficiently using methods such as column generatio

The main goal of this experiment is to see whether it is pdssiddetect the genre of music that
a listener is attending to from brain signals. The presepegment useE MEIG, which is an imaging
technique used to measure the magnetic fields produced tiyiedé activity in the brain. The data is
from an experiment conducted at the Functional Imaging tatooy [EIL) of[UCT.

5.4.1 Participants

MEG recordings from 2 participants are from a 275-channdt Gfistem with SQUID-based axial gra-
diometers at a sampling rate of 1280. Sensors were automatically rejected whose mean power were
beyond a static threshold, and trials were rejected in wifiehe was a “sensor jump”. The data is filtered
using least-squares FIR filters: low pass at GO notch filter at 49-5H z. The data is then split into

epochs and then downsampled to 200

5.4.2 Design

Stimuli were 9 seconds long, with an inter stimulus interwBP seconds during which behavioural
responses were collected. The behavioural task was idetiiifn of genre. Participants were presented

four blocks of 20 stimuli.

5.4.3 Procedure

The independent variable was the genre of the musical piétte4 levels. Each stimulus was 9 seconds
in duration, with an inter-stimulus-interval of 2 secondghin which participants gave their responses
for the behavioural task. The behavioural task was ideatifia of genre. Participants were presented
four blocks of 20 stimuli, with a break between each blockod&ks were randomized to ensure that
practice and fatigue effects are accounted for.

The following genres were included in the experimediassical, Jazz, Ragtime, Pom order to
avoid confounding factors of spectral or timbral propextid the pieces within each genre being the
main criteria of discrimination, all pieces are based onrglsi instrument, the piano. The stimuli
were sourced and selected as MIDI files from various soured,then rendered to WAVE format
using a single instrument and normalized according to peagliude. Most of the excerpts in the
Pop category were solo piano introductions. The experimertiaudi were validateda-priori firstly
by classification of genre from the MIDI files using the anaysrocedures described by [75, 5] and

secondly by examination of the behavioural results.
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5.4.4 Feature Extraction

The following two subsections will describe the extractafrfeatures from each of the sources of in-
formation. Recall that in addition to the MEG recordingsnirthe participants, we will also be using
the stimuli themselves (in the form of the original MIDI aadiles) to generate a complementary set of
features. These two sources of information will be combitoggther to build a stronger classifier than
would be possible from tHe MEG alone. For testing purposewill®nly use thee MEG datai €. the
weights found for thE MEG kernel) to show that effect of thei&idn of information from the stimuli on

classification accuracy.

Feature Extraction from Audio

Following [75/11], the general approach to genre classifindaken was to create a large set of features
from the audio, and then use a sparse boosting algorithmd@bBBwhich effectively performs feature
selection during the classification stage. Since midi filesteing used rather than raw audio, it is
possible to take advantage of a range of features that adéyrel@rivable from the midi. The features

used along with the dimensionality of each feature are giv@iable5.5.

Feature Dimensionality
Meter features

Tempo 1
Meter 1
Proportion of concurrent onsets 1
Note density 1
Autocorrelation of onset times 33
Melodic features

Ambitus (melodic range) 1
Tonal features

Pitch class profiles 12
Distribution of pitch classes (DPC) 12
Krumhansl-Kessler (KK) key estimation 1
Correlation of DPC to KK profiles 24
Mean & standard deviation of KK profiles 2
Statistical features

Entropy 1
Distribution of note durations 9
of from Number of notes 1
Total 101

Table 5.5: MIDI features used for genre classification

For extraction of the features the midi Matlab toolbox of &arand Toiviainen was used [166].

These features are then concatenated to produce a singlesfgactor of length 101.

Feature Extraction from Brain Signals

After preprocessing, the data from each trial were split Bisegments, representing the first, middle
and last 3 seconds of each stimulus presentation. Each ¢ 8egments were then used as an exam-

ple for classification. Dimensionality reduction was themfprmed using both Principal Components
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Analysis [PCA) and Independent Components Analysis [10%r ¢he channels, to create two sets of
10 “virtual electrodes”. The segments were flattened to farf@ature vector of lengtt2D x 1800 for

each example.

5.4.5 Results
Classification of Genre by Participants

Table[5.6 shows the confusion matrix of the behaviouralgrerfince of the subjects. The order of the
genres ixclassical jazz pop, rag. The true labels are on the rows. Firstly results of the bichasl
task of the participants are presented. The overall err@rlS (.e. 85% classification success). Note
that for 4 classes a random classifier would achieve 0.2%isdstsignificantly better than chance. This
appears to validate the stimuli, and is similar to (or abd&e¢ls of accuracy reported elsewhere (see

[124] for a review). From the user experiments it can be skatpopappears to be the hardest of the

classical jazz pop rag Error
classical 48 1 5 6| 0.20
jazz 2 51 4 3| 0.15
pop 8 1 49 2| 0.18
rag 2 2 1 55| 0.08
average 0.15

Table 5.6: Confusion matrix for classification of genre by participanirue labels are in rows, estimates in columns.

genres to classify. This makes sense, givenaha@opas a genre is very derivative, and many themes
are borrowed from other genres suctclsssicalandjazzandb) poppieces were chosen that had a solo

piano part €.g.as an introduction) meaning that to the uninitiated they s@mynd uncharacteristic.

Classification of Genre from Audio Features

Using the feature set generated from the midi stiniull, [PE{6] was applied using decision stumps
as the weak learners as per][75], which results in 6262 weakdes for the algorithm. In order to
boost classification performance we split the files into 3gand then took the sum of the classification
functions for each of the 3 parts before normalising andsdfigag. The overall 4-fold cross-validation
(C\) error is 0.05 (e. 95% classification success). This further validates timeutj and shows that the
methods are appropriate.

Tracing back from the chosen weak learners (of which theme Ww&4/6262), it is possible to see
which features were chosen. Interestingly a wide spreateofdatures were used (52 of the vector of
length 101). The only blocks of features not used at all wiit€:key estimationMean of KK profile
Onset autocorrelationThe key advantage of the TPBdost method is that you can thsawany features
as possible at it and it will only pick the useful ones, as # isparse method. This means that the same
method can be applied to a variety of classification tasksatgorithm effectively performing feature
selection and classification simultaneously.

Figure[5.1 shows a spider diagram of the overall confusiottireesulting from classification of
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genre using audio. This diagram demonstrates that the mpeaifce of the classification algorithm is
similar across all four genres, with no particular bias tagaconfusion between any of the genres. The
exception israg, for which the performance is generally improved. This carekplained by the fact
that the genre is generally more homogeneous, and alsodesstiVe of the other genres. In each of

the other genres examples can be found which are in some mégusio one of the other genres.

All {confusion)

— classical
jazz
fazz pop
rag

-T- o014

classical

Figure 5.1: Spider plot of the overall confusion matrix resulting frofagsification of genre using audio. This is
a way of visualising the confusion matrix between classé® tilue labels are the axes, and the lines denote the
patterns of correct and incorrect classification by classté\thatrag (red) has the most “peaked” profile showing
that the confusion between this and the other classes watesma

Classification of Genre from [MEG] Features

Using the feature set generated from[fhe MEG data, linearekemwere constructed used With KEDA
[3]. As with the classification of genre from audio featurtbe files were split into 3 parts, and then the
sum of the classification functions for each of the 3 partevteken before normalising and classifying.
The overall 4-fold cross-validation error is 0.71 for peigant 1 and 0.70 for participant 2€. 29% and

30% classification success respectively). Note that thésilissome way above chance level (25%) but

far from reliable.
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Classification of Genre using both Data Sources

Using the feature sets generated from the MIDI data andth€lMd&ta, linear kernels were constructed
and applied Sparse Multiview Fisher Discriminant Analy§MFEDA]) [13]. 4-foldlCM was used for the
selection of parameters. Since the sparse versibn of MF&iisy used, the regularisation parameter
can be set using a heuristic method to a small vadup(—3)) as it has little effect. As with the classifi-
cation of genre from audio features, the files were split 3yparts, and then the sum of the classification
functions were taken for each of the 3 parts before nornmaliand classifying. Note that in testing we
use only the function learnt on the brain signals. In this wegycan be sure that we are not simply
classifying on the basis of the MIDI data alone. Furthermthis is closer to the traditional supervised
learning setting where the labels or other significant imfation regarding correct classification is not
known.

The overall 4-fold’CV error is 0.65 for participant 1 and 0f68 participant 2 {.e. 35% and 37%
classification success respectively). In itself thesesdiaation results are not so impressive, but the side
benefit is that the weights of the classifier overlthe MEG festican be used to then calculate the brain

regions involved in classification of musical genre.

5.4.6 Discussion

In this study it was shown that classification of musical gefinom brain signals alone is feasible, but
unreliable. It was shown that through the use of sparse vimiktimethods, such 4s SMFDA, it was
possible to improve the discrimination between differesnigs.

The procedures[164, 112] both incorporate information ftbenstimuli themselves to improve clas-
sification performance. These were extended through thefuSparse Multiview Fisher Discriminant
Analysis [SMFEDA) [13]. The key difference is tHalt SMEDA udabel information to find informative
projections. It is also important that the method is spaasehd MEG data is extremely high dimen-
sional.

The key ingredient in the approach of this work is the intrcthn of a clean source of data that
encodes a complex description of the experience of the sultjseems that this approach has enormous

promise in a wide range of signal processing and time seatsahalysis tasks.



Chapter

Conclusions

6.1 Conclusions

6.1.1 Greedy methods

The first part of Chaptéil 3 focussed on greedy methods fossgdassification and regression, firstly by
applying Orthogonal Matching Pursulif (OMP)[fo KEDA to pregéua novel sparse classification algo-
rithm (Matching Pursuit Kernel Fisher Discriminant Anak/@VPKEDA)). Generalisation error bounds
were provided that were analogous to that used in the Robimsindx algorithm [86], together with a
sample compression bounding technique. Experimentaltsesu real world datasets were presented,
which showed thafMPKEDA is competitive with bdfh KEDPA dnd®land additional experiments that
showed thdt MPKEDA performs extremely well in high dimemsibsettings. In terms of computational
complexity the demands bf MPKEDA during training are higltert during the evaluation on test points
only & kernel evaluations are required compareditaeeded fo KEDA.

In a similar vein, the greedy algorithm Polytope Faces Ru(BE&R) (which is based on the geom-
etry of the polar polytope, where at each step a basis fun&ichosen by finding the maximal vertex
using a path-following method) was applied to nonlinearesgion using th&ernel trick resulting in
[KPER. The utility of this algorithm was demonstrated by [dowy a novel generalisation error bound
which used the natural regression loss and pseudo-dimemsiorder to upper bound its loss. The

experimental results showed thaf KIPFP was competitivenagdid KMP an@ KRR.

6.1.2 Low-rank approximation methods

Moving away from greedy methods, the following Sectibn](Zdnstructed algorithms that took ad-
vantage of the Nystrom method for low-rank kernel appration for large-scale data. Recent work
which empirically justifies using a uniform subsamplingteitjue for the Nystrom approximatidn [100]
was theoretically extended. An upper bound orthe $VM objedtinction solved in this subspace was
given, followed by empirical validation for both classifitm and regression using the SYM, KEDA

(classification) anCKRR (regression) algorithms. The eiogli results support the use of uniform
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sampling to maintain good learnability in the Nystrom gudxse. The results show that in the case
of MPKEDA! it is possible to substantially improve on the cdexity of O(n3k) to a reduced com-
plexity of O(k3), and even improve generalisation performance on some afséés$. This is surprising
and counter-intuitive, 4s MPKFDA selects projection dii@ts that directly optimize tHe FDA quotient.
The main conclusion from the performancé of NHDA agdinst PR and[NRR against KMP is that
the method by which basis functions are choseniandomly or according to an objective function) is
probably of secondary importance in most cases, unlessofldgyfor the best possible generalisation
error. It seems that the power of these methods are in thegiiof into the Nystrom approximated

subspace.

6.1.3 Multiview methods

For the rest of Chaptél 3 the attention was turned to the pnololf learning from multiple data sources
or views [MSIl and MV respectively).

To begin with a method was presented that extends the KCG#itlgn to the classification setting.
This method (Projected Nearest Neighbolrs (IPNN)) is ameida of mate-based retrieval [106], and
is given in Algorithn®. It is non-parameteric and essehtifiee once thé KCCA directions have been
learnt.

[KEDA]I can be formulated as a disciplined convex optimisapooblem, which was extended to
the multi-view setting_MEDA using justifications from a puttilistic point of view. A sparse version
was then introduced, and the optimisation problenthirrextended to account for directions
unique to each view PMFDA. Experimental validation was shaw a toy dataset, followed by experi-
mental results on part of the PASCAL 2007 VIOC challenge éatasd & TMRI dataset, showing that the
method is competitive with state-of-the-art methods wigeviding additional benefits.

Mika et. al.[35] demonstrate that their convex formulatio. of KHDA casity be extended to both
multi-class problems and regression problems, simply ldatipg the final two constraints. The same
is also true ofF MEDA and its derivatives, which enhances éifflility. The possibility of replacing the
Naive Bayes Fusion method for combining classifiers istaardhteresting avenue for research.

Finally, for the special case bBf SMEDA there is the posgibilif using a stagewise optimisation
procedure similar to the LTARS [32] which would have the beraficomputing the full regularisation
path, or alternatively greedy methods such.as OMP ot PFRId®applied to the algorithm. However,
as shown theoretically and empirically, a far simpler ant p@verful[MVL] classification algorithm

could be created by combinibg SMEDA with the Nystrom methBlas remains as future work.

6.1.4 Experimental applications
Genre classification from polyphonic audio

Many different approaches to genre classification have lean both in terms of feature selection

and in terms algorithm choice. The MIREX 2005 results intcdiat boosting with an aggregated
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feature set works well. However this really indicates timaé imusical sense, the problem is still poorly
understood. The short-term spectral features that are coyrased are really only examining different
aspects of the texture of the sound, and not really the leng-temporal dynamics. Some attempts to
look at temporal dynamics using autocorrelation/autasgjon have been attempted, but currently these
methods do not perform as well as methods based on shortsgentral features. Clearly some way
of combining these two methods appears to be desirable. Xerimental results using a replication
of the AdaBoost currently have produced seemingly poorltesiore work is required to determine
the source of the problems causing these results. Expetsméth LPBoost are ongoing, but it is
expected that improvements will be shown over the existidgRoost technique, due to the sparsity of

the solutions and the faster convergence of the algorithm.

Compressed sensing for radar

Experimental results have been presented that showed eOAOR sampling rate in a digital radar can
be reduced—without reduction in waveform bandwidth—tlgiothe use of GS. The use of a Gabor
or chirp dictionary anffBP allowed reconstruction of thearoiackscatter signal in such a way that the

range profiles and resulting range-frequency surfaces stdracceptable for conventional use.

The reconstructed data had a wdrse 8NR than the original dats was attributed to the BP
process attempting to reconstruct the noise from the enimi¢he dictionary. Since these entries are
not noise like, the matched filter no longer produced a maaniiSNR output. Reconstruction of the
samples in low_SNR situations is a recognized probleiin_ih [CB,[143,/16F7[_10]. However, there
are other ways to approximate thgsolution, such as by greedy iterative methods (Matching@®yr
Orthogonal Matching Pursuit[56]), and more recently witlhrconvex penalties and DC programming
[62,[63]. Such methods are more robust to noise fhdn BP asgdssible that the presented results can
be improved though use of these methods. Investigationasetimethods forms the basis of ongoing

research by the authors.

One potential problem encountered using this methodolisgihat for very fast moving objects
there are significant deviations from one fast-time sanplbe next. This manifests as a delay and phase
shift. As a result, the reconstructions that are generaited & series of such samples are less accurate,
because a single set of atoms cannot represent these niodsi@dne possible way to circumvent this,
which could be implemented in hardware, would be to creatmatwhose definition include sequences
of the atom shifted and translated by some predefined amdlow. each signal is convolved with its
corresponding entry (the later signals with the more sthiéetries) before performing reconstruction.
This would not increase the computation at the learningestag would increase the size of the potential

dictionary.

In conclusion, this work has demonstrated CS can beeapid conventional pulse-Doppler
radars. The reconstructed signals are accurate, and sasahg reduction in received pulses is accept-
able, thé AIT could be used in radar.
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Classification of tonality from[EEGIrecordings

The results demonstrate that using standard modern sigmeg$sing and machine learning techniques
with careful manipulation of the data can enable us to difiéiate between certain patterns of brain
activity. Coherence analysis and other types of crosstsgd@malysis may be used to identify variations
which have similar spectral properties (high power in thrasapectral frequency bands) if the variability
of two distinct time series is interrelated in the spectmahain. The results demonstrate that it is possibly
to reliably distinguish between whether a listener wasndiiteg to tonal or atonal music. This can be
considered to be a task of high-order cognitive processatger than a simple sensory input task. As
the differentiation was based on properties oflthe EEG aslatively long timespans.é. the length of

an epoch, or 8 seconds), this is clearly not due to simpleesvpbktentials, but instead represents a more

fundamental change in the pattern of processing over time.

Further analysis usiig KCGA demonstrated that throughskefiunsupervised methods it is possi-
ble to significantly improve the classification accuracye Hew classification method defined in Section
[B:5.1 using the shared semantic space given by projectiong KCCA weight vectors together with a
nearest neighbour method was applied. This was able togisth between the tonal and atonal exper-
imental conditions with a high degree of accuracy. It wae alsown that ah SVM trained on projected
data performed extremely well. The success of both of thestbauds is due to tHe KCQA projections
acting as a data cleaning step, in which a form of semantiedgionality reduction is occurring. As
the musical stimuli are sufficiently distinct between cdiwis, the additional information extracts the
directions correlated with the differing experimental ditions. The key ingredient in the approach is
the introduction of a clean source of data that encodes a lexndescription of the experience of the
subject. It would ssem that this approach to informatiomaetion has enormous promise in a wide

range of signal processing and time series data analy&is tas

Subtler discriminations in the task of the listener wer® atdiably discriminated, such as distin-
guishing a move from one key to a close or distant key. Howt#weresults were not as convincing
as for the tonal-atonal distinction. There are severaliptesseasons for this. Firstly, there were fewer
examples of these events by a factor of 3, which on its owreames the difficulty in learning. Secondly,
the cognitive task is clearly much more subtle than the tesatonal case, and as such the changes in
patterns of activity are likely to be much more subtle, alifjo this is of course speculative. Finally, the
type of relationship between the patterns of activity iis tase may be qualitatively rather than quantita-
tively different, meaning that the signal processing téghes employed were unable to detect them (as
opposed to the learning algorithm). Further experiments l@rger datasets (more repetitions or more
participants) could provide the answers to these questions

EEG data is notoriously noisy and unreliable, so it is ex&lynencouraging that it is possible
to generate reliable discriminations using fully automatiocedures. It is usual to perform artefact
rejection by hand during the preprocessing stage, as walthtees manual techniques. In this work,
automatic techniques were used at every stage of the pr@megzocessing, feature extraction, data

treatment, and classification). The methods presented mi&nate the ability to reliably discriminate
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between brain signals associated with different sequesifterisic in both within-subject and out-of-

subject paradigms.

Classification of genre from[MEG] recordings

In this study it was shown that classification of musical geinom brain signals alone is feasible, but
unreliable. It was shown that through the use of sparse vieitimethods, such 4s SMEDA, it was
possible to improve the discrimination between differesigs.

The procedure§[164, 11.2] both incorporate information ftbenstimuli themselves to improve clas-
sification performance. These were extended through thefuSparse Multiview Fisher Discriminant
Analysis [SMEDA) [13]. The key difference is tHat SMEDA udabel information to find informative
projections. It is also important that the method is spaasehd MEG data is extremely high dimen-
sional.

The key ingredient in the approach of this work is the intrcithn of a clean source of data that
encodes a complex description of the experience of the sultjseems that this approach has enormous

promise in a wide range of signal processing and time seatsahalysis tasks.

6.2 Further Work

6.2.1 Synthesis of greedy/Nystrom methods and [MVLI methods

A very natural extension to the work described in Chaglter Bldibe a synthesis of the greedy methods
(and/or Nystrom methods) with the MVL methods describeelrla the chapter. Specifically, SMEDA
lends itself to this method of optimisation. A feature thatk@d KEDA and its derivatives an interesting
choice in many applications is its strong connection to philistic approaches. Often it is not only
important to get a small generalisation error but also totdde @ assign a confidence to the final classifi-
cation. Unlike for th& SV, the outputsof KEIDA can (underta@r assumptions) be directly interpreted
as probabilities. A drawback is that the theoretical framéwto explain the good performance is some-
what lacking, this very much in contrasteay[SVMk. Whilst maximising the average margin instead of
the smallest margin does not seem to be a big difference npast date theoretical guarantees are not
applicable. Two possible ways to derive generalizationrdoounds foE KEDA based on stability and
algorithmic luckiness were described n [168]. Note, hogrethat through the use of greedy methods
such as the described in Section 3.2.1, we were able to peagkreeralisation error bounds relying on
the compression scheme introduced by the Matching Pulldiy @lgorithm. This provides the possi-
bilty that this theoretical analysis could also be extenieithe Multiview setting if we apply the same
[MP framework. Similarly, it was shown in Sectibn 314.1 thgtveorking in the space defined by the
Nystrom projection, we are still able to learn efficienéiyd it should be straightforward to verify that

this is still true when performing multiple Nystrom profems in multiple views.
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6.2.2 Nonlinear Dynamics of Chaotic and Stochastic Systems

There is an emerging field of nonlinear multivariate timéeseanalysis of neuropsychological signals.
Multivariate time series analysis is used in neurophygglaith the aim of studying simultaneously
recorded signals from different spatial locations. Urgdently, the methods have focussed on searching
for linear dependencieg.q.cross power spectral density, cross phase, coherencenfRethe theory

of nonlinear dynamical systems (“chaos theory”) has ingsiredy been employed to study the pattern
formation of complex neuronal networks in the brdin [1690]170One approach to nonlinear time se-
ries analysis consists of reconstructing for time seridSE68 ofMEG recordings the attractors of the
underlying dynamical system. These attractors can be cteaised in various different ways.g.Corre-
lation dimension, Lyapunov exponents), which in turn careadeatures for the application of Machine
Learning methods.

Here, in the case of the analysis of the brain as a dynamistdsy we are interested in nonlinear
continuous autonomous conservative systems. At pregastpf no great benefit to analyse this any
deeper, as we will be attempting to derive the propertiehefdynamical system (the brain) from a
temporal series of empirical measuremefis (EEG data). Al we will not be explicitly creating
systems of differential equations or any other such mattieedanodels. This model free approach
requires that extreme care is taken in the interpretatioeilts, as factors such as experimental noise
can introduce dramatic effects.

As mentioned before, we will not be constructing explicittheanatical models of the brain’s dy-
namics. Instead, we will be using empirical time series diatan EEG recordings and attempting to
reconstruct the dynamics of the system in reverse. Thersesezal steps that need to be taken in order
to achieve this. Firstly, the time series data must be ermdmbotdo “phase space”. There are methods for
achieving this, known as temporal and spatial embeddinge@me data has been embedded into phase
space, the process of characterising the reconstructedtatts can then occur. While it is outside the
present scope to define these techniques formally, an @vewill be given below.

The methods that are of interest here are statistical messsuch as Correlation Dimension, Lya-
punov Exponents, and Entropy. Each of these methods atempharacterise the stastical nature of
the attractor, such as the exponential rate of divergencearby paths on the attractor in the case of
Lyapunov Exponents. The first two of these will be describeldw. The nonlinear entropy measure has
been excluded for brevity, but may also prove to be useful.

The correlation integral is the likelihood that two randgrohosen points of the attractor will be
closer thanr, as a function of-, and is determined by from the distribution of all pairwidstances
of points on the attractor. This can be numerically estihdtg performing linear regression between
log(C(r,n)) andlog(r). If the attractor dimension is finite, thenasncreased, saturates.

The exponential instability of choatic systems is charmdsge by a spectrum of Lyapunov Ex-
ponents[[171]. These are calculated by examining the tino&ugwen of small perturbations of the a
trajectory. This then allows the linearisation of the evioln operator. Here is a list, taken from [169], of

other nonlinear time series methods, some of which are vaudtie, that have been developed recently.
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Clearly there are too many methods to go into detail heret@nthany to be able to experiment with all
of them. Some in particular, such as phase synchronisatiowitivariate systems$ [172, 173, 174] ap-
pear to be well suited to the particular nature of the systenang dealing withie [EEG measurements).

Some analysis of this is given below.

e Nonlinear forecasting

e Local deterministic properties of dynamics

e Determination of optimal probability by Gaussian vs detiaigtic models
e Cross recurrence

e False nearest neighbours

e 'S’ statistic for time irreversibility

e Nonlinear cross prediction

e Unstable periodic orbits

e Phase synchronisation

e Phase synchronisation in multivariate systems

e Cross prediction measure of generalised synchronisation
e ‘S’ measure of generalised synchronisation

e Synchronisation likelihood

e Mutual dimension (shared DOF of 2 dynamical systems)

It would be an interesting line of research to see if any of¢h@ethods are capable of producing
stable sets of features that can then be employed for pateognition tasks. With the framework
outlined in this thesis, it would be a simple case of “plughqutay” to evaluate various different nonlinear

multivariate methods for feature extraction from the biagnals.

6.3 One-class Fisher Discriminant Analysis

The problem of detecting outliers is a classical topic inusibstatistics. Recent methods to address
this problem include One-Class Support Vector Machines-@M) [175,[3] and One-Class Kernel
Fisher Discriminant Analysis (OCC-FDA) [176], where a kelrimduced feature space is used to model
non-spherical distributions. A natural extension of thethmenatical programming fo KEDA of Mika
and colleagues [34, 85, 136] would be to the one-class settihich can be solved using off-the-shelf
optimisers. The approach allows the enforcement of spdtsibugh ar?;-norm constraint on the weight
vector. Estimation of the boundary positions could be penéd by calculating the quantiles of the
posterior probability, which in turn are derived from thenddional class density of the single positive
class. This method is simpler to compute and more intuitiat(non-convex) method proposed in
[178]. Adjustments to the size of the enclosing hyperspbarethen be made using different quantile
values adjusted by a single parameter. In fact one couldrelsorally extend theElMEDA described in

Sectio 3.5 to this setting, which would result in a novellfitiew One-Class algorithm.
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6.4 Summary and Conclusions

This thesis detailed theoretical and empirical work dranirom two main subject areas: Machine
Learning [MI) and Digital Signal Processidg (OSP). A unifgheral framework was given for the ap-
plication of sparse machine learning methods to multitaisegnal processing (Chaplér 3). In particular,
methods that enforce sparsity were employed for reasormmpatational efficiency, regularisation, and
compressibility. The methods presented can be seen as anduiiding blocks that can be applied to a
variety of applications. Application specific prior knowlge can be used in various ways, resulting in a
flexible and powerful set of tools. The motivation for the s is to be able to learn and generalise
from a set of multivariate signals.

In addition to testing on benchmark datasets, a series offig@evaluations on real world datasets
were carried out. These included: the classification of oalgienre from polyphonic audio files; a study
of how the sampling rate in a digital radar can be reduceditiineche use of Compressed Sensingl(CS);
analysis of human perception of different modulations ofsical key from Electroencephalography
(EEQ) recordings; and classification of genre of musicateseto which a listener is attending from
MagnetoencephalograpHy (MEG) brain recordings. Thesbcapipns demonstrate the efficacy of the

framework and highlight interesting directions of futuesearch.
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Appendix

Mathematical Addenda

Sets

yA Integers

R Real numbers

Rt Positive real numbers

C Complex numbers

[A| Cardinality of setA

Spaces

H Hilbert space

F Feature space

L1 (R) Functions such thaf | f(t)| dt < oo

La (R) Finite energy functiong’ | f(¢)|? dt < co
1 (R) Vector space of absolutely convergent series
£2(R) Vector space of square summable sequences
< f,g> Inner product

[1f1l, £y orLy norm

[1flo Euclidean or Hilbert space norm

Al & Frobenius norm of matriA.

Scalars, vectors, and matrices

x € R" Examples

ye{-1,1} Labels (for classification)

yeR Labels (for regression)

X =(x1,...,%m) Inputs as row vectors

y Outputs as a vector

X The space of all possible inputs

Yy The space of all possible outputs

S~ {X x YV} A set input output pairs drawn i.i.d. from a fixed but unknovistiibution
n € R" Vector of i.i.d. random variables with mearand variancer>
A’ Transpose of matriA

Af Moore-Penrose pseudo-inverse of maiix
> =X'X Covariance matrix

G = XX’ Gram matrix

w Primal weight vector

o Dual weight vector

e Unit vector

1 Vector of all ones

I Identity matrix

K Kernel matrix has entrieK [, j] = (¢(xi), ¢(x;))
K[:, 1] ith column of K

i={i1,...,0} Set of indices

KIi, i] Square matrix defined by index det

£ eR” Vector of slack variables

0 Margin

€ Epsilon (small value)

Functions

o(x) Feature map

K Kernel function

L Loss function

Probability

Pr(z) Probability of event

E[x] Expected value of

R (True) Risk

R Empirical Risk

Table A.1: Table of commonly used mathematical symbols
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Acronyms

AdaBO00St AdAPLIVE BOOSHNG . . . . .ot ettt ettt ettt e ettt et e e e e e e 27
ADC Analogue t0 Digital CONVEISION . . .. ...ttt et et e et et e e e e e et e et et et et e e b
AlIC Analogue to INformation CONVEISION . . .. ...ttt e i e ettt et e e e e e e e e e e et e et et b
AP Average Precision

AR Autoregression

ARMA AULOregresSIVE MOVING AVEIAGE . . . . ..ottt ettt e it + e e ettt et et e e e e et et e e [4b
BER Balanced Error Rate

BP BaSIS PUISUIL. . . ot ottt sttt et et e e e e et e e e e e e e e e e [ 26
CCA Canonical Correlation ANAIYSIS . . .. .. ...ttt i e e e e e [ 3B
CDF cumulative distribution fUNCHION . .. ... . ettt e e 24
Cs COMPIESSEA SENSING . .. ..ttt et ettt et i e e e e e e e e e e e [B
cVv Lot o TSRz [T =1 e o A 26
DC DiIffEreNCE OF COMNVEX . . . . oot et ettt e e e e e e e e e e e e e e e e e e e e e e 4B
DELVE Data for Evaluating Learning in Valid EXPEIMENTS . . . . oo vttt et e e e e e e [ 6D
DFT DisCrete FOUNEr TranS O M . . . o oo ittt e e e e e e et et e e e e e e e e e e e [Ion
DPSS Discrete Prolate Spheroidal SEQUENCES . . . ... ..ttt et e e e e e
DSP Digital SigNal PrOCESSING . . . .o ot ettt et ettt e it e e e e et e e e e e e e e [B
DTW DYNamiC TIME WaIPING . .« ¢t ettt ettt ettt et e e e e e e e e e e e et e e e [
ECOC Error-Correcting OUEPUL COOES ... .. ...ttt i e ettt et e et ettt e CIon
EEG Electroencephalography . . .. ... ... e B
EOG [ 1=Yed g Yo oV [oTe =1 2 o 1A O il
ERP Event-Related POENTIAL. . . . ...\ttt et e e e e e e et e e e e e e 118
FDA Fisher DISCrmMINaNt ANGIYSIS . . . ...ttt e e et et e e e e e e e =27
FDR Fisher DISCHMINANT RALO . . . . . ..ottt et e e e e e e e e e e e e e e e e e e e e
FFT Fast Fourier Transform .. ... ... e e [ 10
FIL Functional IMmaging LabOratory . . . ... ...ttt e s e e et e et et e e e e e e s
FM Frequency MOGUIAEM. . . ... ...ttt et et e e e e e e e e e e e e e e e e e e [I1o
FMCW Frequency Modulated CONtINUOUS WAVE . . . . ... ..ottt e e et e et e et e et et e e e et e [IIb
fMRI functional Magnetic ReSONANCE IMAGING . . . . .« .o\ttt e ettt et ettt ettt e e e e et [Ib
GLM General LINEar MOGE! . . ......ou ittt ittt et e e e e e e e e e e e e e e e n
GVSM Generalised Vector Space MOdel. . ... ... . e e 3B
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ICA
IFT
ISMIR
KBP
KMP
KCCA
KFDA
KPCA
KPFP
KRR
LARS
LASSO
LOS
LPBoost
LPC
LPCE
MCMC
MEG
MFCC
MFDA
Ml
MIDI
MIREX
MKL
ML
MMSE
MP
MPKFDA
MP3
MSL
MTL
MVL
NBF
NFDA
NIPS
NRR
NSVM
OC-SVM
OMP
PAC
PASCAL
PCA

PET

independently and identically diStributed. . .. ... .. . s a3
Independent COMPONENES ANAIYSIS . . ... ..ttt et i e et e et e e e ettt et e e e e [ 4V
INVEISE FOUN T TranS O M . . ..t i e e e e e e e et e e e e e e e e e e e e e e e [Ioh
International Conference on Music Information Retrieval............ ... .. . 9D
KENEI BASIS PUISUIL . .. . .ottt et et et e e e e e e e e e e e e e e e e e e e e e B
Kernel MatCRING PUISUIL . . . .. ..ttt et e et e e e e e e e e e e e e e e et et e e et e e e et e B
Kernel Canonical Correlation ANAIYSIS . . . ... ..t e e et e e e e e et e e e [ 3B
Kernel Fisher DISCriminant ANAIYSIS . . . .. ...ttt ettt e e e e e e e e e e e e e [ 2B
Kernel Principal Components ANAIYSIS . .. . ..ottt e et e et e et e e e e e e e [ 3l
Kernel POIYtOPE FACES PUISUIL . . . . ..ttt e et et e e e e e et e e et e e e et et i 613
Kernel Ridge REGIESSION . . . ...ttt ettt e ettt e e e e et et e e e e e
Least ANgle RegreSSION SOIVET .. ... ...ttt ettt et et et e e e e
Least Absolute Shrinkage and Selection OPEIALOr. . . . .o v .ttt ettt et et e ettt B
L= @ o [I1o
Linear Programming BOOSHNG . . . ... oottt et i e et e e [b
Linear Predictive COBffiCIENTS . .. ...ttt et i e e e e e e e e e e e 103
Correlation COBMICIENT. . . ..\ttt e e e et e e e e 103
Markov Chain MONEE CarlO .. .. ...ttt e e e e e e e e e e e e e e e 2
Magnetoencephalograpiy . . ... .. e e [B
Mel Frequency Cepstral COeffiCIENtS . . .. ... . e e e 10N
Multiview Fisher DiSCriminant ANGIYSIS . . . .. ...ttt e et e e et e e e e e e e Bn
MULUAT INFOFMALION . . . . o et ettt e et e e e e e e e e e e e e e e e e e e e (nrd
Musical Instrument Digital INtEIfACE . . . .. ... . e e e (i3
Music Information Retrieval Evaluation @XChanQe . . . . e oot e [ OB
Multiple KErnel Learning . .. .. ... ..t i e ettt et ettt et et e e b

Machine Learning

(Mean) Mean Squared Error

MAECHING PUISUIL . .« .ottt et e e e et e e e e e e e e e e et e e ettt e et 2B
Matching Pursuit Kernel Fisher DiSCriminant ANAIYSIS ... .« .o .v vt ettt et et e [BL
MPEG-L AUAIO LAYET 3. . ottt ettt ettt et et e e e et e e e e e e [O8B
MUHI=SOUICE LEAINING . .« . ettt ettt et e et e e e et e et et et e et e et e e [Zb
MUI-TASK IAIMING .+« e et et e et et e e e e e e e e e e e e e e e et 5o
MUI-VIEW LEAIMING . . o v ettt e et e et e e e e e e e e e e e e e e e e et e e e e e e e r
Naive Bayes Probabilistic Label FUSION. . ... ... . e e e 87
NYSHEOM KEDA . e e 7
Neural Information ProCeSSING SYSIEMS . . .. ..ttt e i ettt e e et et e et e et e [ 6D
NYSEOM KRR . oottt ettt ettt e e e e e e e e e e e e 7B
NYSHOM SVM . ..ot (71
One-Class SUPPOIt VECIOr MACKINE .. .. ...ttt e et ettt e e e e e

Orthogonal Matching Pursuit

probably approXimately COMTECT . . .. ...ttt e e e et et et et e e e e e 152
Pattern Analysis, Statistical Modelling and ComputatldrBBRIMING . . ... ... v vttt eas [ OB
Principal COMPONENTS ANGIYSIS . . . . ..ottt ettt it et ettt e et ettt et e e (g

POSItron EMISSION TOMOGIAPNY . . . . oo ottt et et e et et e ettt et et e [Ib



PFP

PMFDA

PNN

PRF

RBF

RCC

RKHS

RIP

RR

RVM

SAR

SCCA

SD

SDP

SIFT

SLT

SMFDA

SMO

SNR

SPSD

SRM

SVM

(0]¢]]

UCL

UuwB

VvC

VvOoC

WAVE

ZCR

POIYIOPE FACES PUISUIL. . . o .ttt ettt e e et et et e e et e et et et e 4B
Private Multiview Fisher DISCHmMINant ANGIYSIS . . . . .« ottt et e et e e et 38k
Projected Nearest NeighbOUIS . . . ... e e e e e e e e e 8B
Pulse REPELItioN FIEAUENCY . . ..o vttt ettt e e e et e e e e e e e e et e e e e e et e e [I1o
Radial Basis FUNCHON. . .. ...ttt i e e et e e e e ettt e e .20
Real Cepstral CoeffiCients. . ... .. ... e 101
Reproducing Kernel HIIDErt SPacCES . . .. ...ttt e e e e e [Ip
ReStriCted ISOMELIY PrOPEITY . .. .\ttt ittt et et e e et e e e e e et et et e e ettt e s b
RIAGE REGIESSION . . .. .ottt ettt ettt e et e e e e e e e e e e
Relevance VECIOr MaCKING . . .. ...ttt e ettt e e e e e e e e e
SYNthetiCc APEITUIE RATAT . . . . ..ottt e e e e e e e e e e e e e e e e [ 10B
Sparse Canonical Correlation ANAIYSIS . . .. ...t et e e s [ 3P
StANAArd DEVIALION . . . . ottt ettt et e et e e o e e e e e e e e e s I
Semi-DefiNite PrOgramme . . . ...t e et e e e e e e e [8u
Scale Invariant Feature TranSforMation . .. ... ...t ettt e [ OB
Statistical Learning TREOIY . . .. ..ottt i e e e e e e e e e e e e [Ib
Sparse Multiview Fisher Discriminant Analysis ... ... ..ottt e 8B
Sequential Minimal OptIMISALION . . ... ...ttt e [3p
SIGNAltO NOISE RALIO . . . ..o ottt ettt et e i e e e e e e e e e e e e e e e OB
symmetric positive Semi-definite . .. ... .. .. . e [0
Structural RiSk MINIMISALON . . .. ... e et et e e e et e [ 213
SUPPOTE VBCIOT MACHINE . . . . ..ttt e et et i e et ettt ettt ettt et et et e [b
University of California, INVINE . .. ... e e e =
UNIVETSItY COlEGE LONMUON . . . .\ttt ettt e et e e et e e e e e e e e e e e e e e e e [IIo
URIaWIAE BaNG . . .o oottt e e et et e e e e e e e e [ 10B
VAPNIK-CREIVONENKIS . . . .o .ottt e ettt et e e e e e e e e e e e e e e e e et e e e e b
ViISUAI ODJECE CIASSES . . . .ottt ettt ettt e e e e e et et et e e e e e e e e e e e e [ OB
Waveform AUdiO FIle FOMMAL. . . .. ...t ettt e e e e e e e e e e e e e e [Ib

ZEI0 CIOSSING RAIE . . ..ottt ettt ettt e e e e e e e e [0k
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