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Abstract

Wireless sensor networks (WSNs) are used for event detection and data collection in

a plethora of environmental monitoring applications. However a critical factor limits

the extension of WSNs into new application areas: energy constraints. This thesis

develops self-organising energy efficient data collection and dissemination protocols in

order to support WSNs in event detection and data collection and thus extend the use

of sensor-based networks to many new application areas.

Firstly, a Dual Prediction and Probabilistic Scheduler (DPPS) is developed. DPPS

uses a Dual Prediction Scheme combining compression and load balancing techniques

in order to manage sensor usage more efficiently. DPPS was tested and evaluated

through computer simulations and empirical experiments. Results showed that DPPS

reduces energy consumption in WSNs by up to 35% while simultaneously maintaining

data quality and satisfying a user specified accuracy constraint.

Secondly, an Adaptive Detection-driven Ad hoc Medium Access Control (ADAMAC)

protocol is developed. ADAMAC limits the Data Forwarding Interruption problem

which causes increased end-to-end delay and energy consumption in multi-hop sensor

networks. ADAMAC uses early warning alarms to dynamically adapt the sensing

intervals and communication periods of a sensor according to the likelihood of any

new events occurring. Results demonstrated that compared to previous protocols such

as SMAC, ADAMAC dramatically reduces end-to-end delay while still limiting energy

consumption during data collection and dissemination.
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The protocols developed in this thesis, DPPS and ADAMAC, effectively alleviate

the energy constraints associated with WSNs and will support the extension of sensor-

based networks to many more application areas than had hitherto been readily possible.
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Chapter 1

Introduction

For several centuries, devices have been used to observe and measure important aspects

of the earth in order to facilitate vital decision making. As long ago as 800BC, ancient

Egyptians used nilometers to observe and monitor the depth of the River Nile. This was

vital for their survival as it enabled them not only to assess the likelihood of flooding

or drought, but also to anticipate agricultural yields [BA52]. Since the invention of the

telescope at the beginning of the 17th Century, scientists have been able to observe and

monitor the position and movement of celestial bodies and gain further understanding

of the universe [Kin94]. Over 300 years after the invention of the telescope, the first

artificial satellite was launched into space. Since then satellite monitoring technology

has been used to understand and monitor different aspects of the earth’s environment.

In 1971 the first geo-stationary satellite was deployed to monitor the earth’s vegetation

and minerals from outside the stratosphere [Wei72]. In recent years, as computing

became ubiquitous, scientists started using computer-related devices to observe and

measure vital phenomena such as natural disasters including floods and landslides

[BM08].

It is important to monitor events because they can have serious implications on the lives

of many, either through loss of life or damages to infrastructure and the environment.
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For example, according to the Association of British Insurers, the problems created

when extreme weather caused flooding in 2007 led to estimated losses of £3 billion in

the UK [Pit08]. Flooding also caused large losses in previous years, not only in the UK

but also in other parts of the world. To deal with this type of problem, computer-related

devices could be used to monitor weather systems as well as different parameters, such

as soil moisture content, over a given period of time in vulnerable regions. The resulting

data could then be analysed and used to determine a threshold of imminent flooding.

This could lead to the implementation of an early warning system, allowing immediate

remedial action to be taken when necessary, thereby reducing loss of life or damage

to property. The data collected could also be used to identify trends and predict future

events. As will be further discussed and explored in the next section, Wireless Sensor

Networks (WSNs) are uniquely suited to this kind of monitoring. Furthermore, WSNs

can be usefully implemented for data collection and monitoring in a wide range of

other areas including security surveillance applications [ASYS02], habitat monitoring

[MPS+02, DFB+07] and agricultural management [BTB04b, BTB04a, TGL05].

1.1 The Monitoring of Phenomena: A problem of

resource use and efficiency

The monitoring of vital phenomena has been conducted for centuries using different

tools, and has been useful to many peoples, as illustrated in Figure 1.1. However, each

monitoring tool, including nilometers, telescopes, satellites and semiconductor chip-

based devices, although operational and useful to a certain degree, also has engineering

limitations that ultimately impede its effectiveness. Satellites, for example, are

advantageous because they can be used to collect data covering large areas measuring

hundreds of square kilometres, but this comes at the expense of spatial resolution.

Nilometers, though accurate, were labour intensive; nilometers were manually operated

and required going to the river Nile every day to monitor and record water levels.
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Figure 1.1: Event monitoring tools through the ages

Sensor networks, the most modern of the devices shown in Figure 1.1, are useful for

monitoring a variety of environments. Sensor nodes in a sensor network comprise of

three units: processing, communication and sensing units. Wirelessly interconnected

systems of such nodes form a wireless sensor network. Sensor nodes within a WSN

can exist in orders ranging from tens to thousands of devices to a user and are therefore

uniquely different from other large scale systems such as the Internet.

As Figure 1.2 illustrates, when data on an event or a phenomenon is observed in a

sensor field, sensor nodes send reports to a base station (BS) via multi-hopping. The

BS is equipped with the capability for long-range communications and can therefore

facilitate data access by a remote user.
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Figure 1.2: A wireless sensor network

As shown in Table 1.1, WSNs are currently the most favoured environmental

monitoring tool, in comparison with other non WSN-based tools, for a variety of

reasons. Non WSN-based tools are often not suitable for certain types of terrain,

may be ineffective or impractical due to the physical characteristics of the device

itself and are sometimes unusable due to the monetary costs involved in their

installation. These non WSN-based tools can also be impractical and less reliable

due to the logistics of deployment and can be difficult to install and complicated to

use [TUML07, FW02]. For example, data loggers used in seismic exploration for oil

consist of large geophone sensors which are powered from cables linked to a power

supply [Hei00]. These sensors are extremely expensive to deploy [WZW06]. Other

data loggers are impractical because they require lengthy calibration processes for set-

up, or specialised knowledge during operation. Still others require large, heavy battery

units which make them uneconomical as well as impractical [Wai07].

WSNs, on the other hand, are extremely small in size and require no wiring for data

transport which means that they are easy to install in most locations and applications.
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Table 1.1: The advantages and disadvantages of given monitoring instruments

Instrument Advantage Disadvantage

• Nilometer • in-situ collection • poor failure tolerance

• no automation

• calibration required

• no remote monitoring

• small spatial coverage

• Telescope • useable for remote

monitoring

• large spatial cover-

age possible

• poor failure tolerance

• no automation

• calibration required

• poor spatial granularity

• relatively bulky

• Satellite • useable for remote

monitoring

• large spatial cover-

age possible

• autonomy possible

• poor failure tolerance

• poor spatial granularity

• relatively bulky

• WSN • useable for remote

monitoring

• large spatial cover-

age possible

• autonomy possible

• in-situ collection

• relatively short lifetime

They are relatively inexpensive and yet reliable, with a high fault tolerance, because

of the nature of distribution: with WSNs, multiple interconnected nodes are used,

for example scattered over a field or distributed throughout a building, and each
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device has the capacity to collect data independently. The fact that the nodes are

deployed in large numbers and that not all nodes need to be operational at the same

time leads to increased tolerance of faults [ASYS02]. WSNs are also simple to use

and extremely versatile because of their physical nature, thus rendering them usable

for monitoring environments as contrasting as outbreaks of fire [Lad07] as well as

glaciation [MOH04]. The characteristics of WSNs and non-WSNs devices are further

contrasted in Table 1.2.

Table 1.2: Comparison of WSN and non-WSN based devices

Requirements WSNs Non-WSN e.g. data

loggers

Application One-to-many One-to-one

Size Small Often bulky

Price Relatively inexpensive Can be expensive

Communication Short-range Long range

Architecture Distributed Centralised

Battery supply Portable Wired

Fault tolerance High Low

Energy restriction Relatively high Low

Despite all the obvious and aforementioned advantages which make WSNs potentially

extremely effective for data collection and dissemination and superior to other

alternative electronic monitoring devices, the widespread usability of WSNs is

restricted by one engineering limitation: short lifetime. The critical resources required

for operating a system are inherently limited. WSNs require an energy supply, usually

in the form of batteries, the lives of which are often too short to fulfil application

requirements [CES04]. While some efforts have been made to extend the lives of

such batteries, the progress achieved has not been remarkable and would not make a

notable difference to the functioning of such applications. (To date there has only been

a modest improvement in the nominal capacity contained in Nickel-Cadium batteries,

the most popular battery unit used over the last forty years [SCB96, Lim06].)

These energy constraints restrict the implementation of WSN monitoring operations in

existing application areas such as environmental monitoring. Though expensive cabling
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is not required for WSNs, the battery replacement they require is highly impractical,

costly and sometimes impossible because of the nature of the environment [BS06].

The short lifetime of sensors also prohibits innovative extensions of such programmes

to new areas. The broad objective of this thesis, therefore, is to maximise the usability

of WSNs by developing protocols that enhance energy efficiency. Minimising energy

consumption will improve energy efficiency in data collection and dissemination,

thereby enabling WSNs to reach their full potential in monitoring vital environmental

phenomena, as well as in other areas and applications.

1.2 Benefits of Energy Efficient Data Collection

Protocols

Maximising energy efficiency in data collection applications would result in both

practical and monetary benefits in a number of varied sectors. In order to demonstrate

the value of the protocols developed in this thesis, benefits associated with five

monitoring applications, including environmental monitoring, irrigation management,

soil conservation, oil/gas pipeline management and reservoir management are outlined

below:

1.2.1 Environmental Monitoring

Monitoring the environment with regard to certain phenomena such as flooding is

extremely important as the devastation caused can be catastrophic [Pit08]. Early

determination that flooding is imminent is critical in order to give emergency services

sufficient time to set up protective measures and implement evacuation procedures.
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Previous monitoring systems for flood detection used bulky units similar to that shown

in Figure 1.3 which were expensive, had a low fault-tolerance and required manual

data collection. Researchers have already demonstrated that WSNs are a cost effective

and reliable alternative monitoring system for flood detection in developing countries

[flo08]. The collection and wireless reporting of data to a remote base station extends

the time period during which evacuation can take place. The algorithms developed in

this thesis could further extend this evacuation period by increasing the rate at which

events are reported.

Figure 1.3: Air monitoring unit

1.2.2 Irrigation Management

One of the consequences of climate change is a disproportionate distribution of water

and global shortages of fresh water [Law08]. At the same time, world irrigation systems

need to improve to increase food production rates in order to feed the growing global

population [Ora91, PHP+97]. This issue has highlighted the need for greater efficiency

in irrigation management methods that minimise water wastage [CC82, Bag05]. One
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such method that has been developed is Regulated Deficit Irrigation, (RDI), which

maintains a slight water deficit in order to improve the partitioning of carbohydrates

and limit excessive vegetative growth [CC82]. This process requires accurate and real

time soil sensing in order to irrigate little and often.

WSNs are natural candidates for RDI and, in fact, sensors have already been deployed

in such systems to manage water usage and optimise production [HP05]. But irrigation

systems could be further improved and expanded through the use of the algorithms

developed in this thesis. These algorithms allow relevant events, such as drought, to be

captured and logged without the need for continual and constant levels of monitoring.

Thus they reduce the amount of redundant data being relayed, while increasing the

lifetime of the network.

1.2.3 Soil Conservation

Every year, the continent of Africa loses billions of dollars worth of soil nutrients

[HB06] due to poor soil conservation practises. A combination of deforestation, soil

erosion and inadequate crop rotation policies have led to poor crop yields and food

shortages. Consequently the vital importance of demonstrating to policy makers and

development partners the positive contribution that can be made by increasing and

sustaining agricultural productivity through soil conservation is increasingly apparent

[TB09]. Soil conservation practises are facilitated through the monitoring of soil

conditions and the algorithms developed in this study could facilitate the collection of

such decision data. Through analysis, this data could then be used to test and measure

the integrity of agricultural management practises, allowing corrective action to be

implemented and providing long-term improvement in crop yields and food production

[CLBA+07, PRP+06].
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1.2.4 Oil/Gas Pipeline Management

Oil and gas pipeline operators lose millions of pounds every year due to leakage

incidents in pipeline infrastructure [TB08]. Therefore, early detection and location

of leakages is essential. Traditional pipeline monitoring techniques use centralised

systems, connecting measurement devices to remote terminal units installed along the

pipeline infrastructure. Collected data is then typically delivered to station operators at

control centres via satellite systems. This method of data collection is less effective

and reliable when compared with a system that uses wireless sensors. Wireless

sensors offer a decentralised approach whereby a large number of small nodes can

be deployed throughout the pipeline infrastructure without the need for a planned

framework [SNMT07]. As a result, WSNs have a higher fault tolerance when compared

with traditional monitoring methods. Furthermore, the algorithms developed in this

study would lead to faster relaying of reports when leakages occur, allowing remedial

action to be taken more quickly.

1.2.5 Reservoir Level Monitoring

Dams play a critical role in many developing countries where hydroelectric power is

used to generate electricity [Cal07]. Hydroelectric power comes from the potential

energy of dammed water driving a water turbine and generator. The effectiveness of a

dam is heavily influenced by its water holding capacity and, in sites with high erosion

rates, the build up of in-flowing sediment and mud can limit the efficiency of a dam.

Sensors are therefore used to monitor the rate of mud build-up in the dam to indicate

when the capacity of the reservoir has decreased to a low level and to highlight the

need for dredging [Wai07]. Previous work on sensor monitoring of hydroelectric dams

used a centralised system where deployment was planned and fixed and thus changes

or improvements were either difficult or impossible to implement [FHAM95]. The

protocols developed in this study could be deployed more simply and in a flexible
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manner; a large number of nodes could be scattered across the site of the dam. The

resulting data would be more accurate and provide a more complete analysis of the

health of a dam because these sensor nodes could collect data from various locations

across the site of the dam, rather than from one centralised point.

1.3 Objectives of the thesis

In comparison with other alternative electronic monitoring devices, WSNs have the

potential to be effective for data collection and dissemination in a wider variety of

applications. However, they are restricted by their short life span. The improvement of

energy efficiency in WSNs would not only enhance the effectiveness of data collection

in current monitoring programmes, but would also facilitate innovative extensions of

such programmes to new application areas.

The specific objectives of the thesis are as follows:

• To develop data collection techniques that efficiently manage energy usage of

sensor nodes in order to elongate battery life in sensor networks

• To develop techniques that will improve data collection efficiency in multi-hop

sensor networks by reducing delay in communication between a source node and

a remote base station

• To demonstrate that, by combining the new techniques developed, WSNs could

be a more effective tool for monitoring events in diverse application areas

This thesis addresses the problem of energy limitations affecting WSNs by developing

techniques that minimise energy consumption. The most effective method of achieving

such minimisation is through the use of energy efficient data collection algorithms.

To date, many algorithms have already been developed in order to address energy

inefficiency in the communication unit of a sensor node. It is generally believed



Chapter 1 Introduction 27

that the communication unit consumes the highest proportion of energy while energy

expenditure in the sensing unit is negligible and therefore not worth addressing

[CES04]. However, over a given period of time many specialised sensors expend

more energy in the sensing unit than the communication unit [HHM+09]. Therefore, it

is particularly advantageous to develop methods which reduce energy consumption in

the sensing unit in order to considerably increase the lifetime of a sensor node.

Dynamic sensing algorithms have already been developed which increase the lifetime

of a sensor node by trading off energy consumption in the sensing unit with the quality

of data collection required in an application. Essentially these algorithms achieve

energy savings by adjusting the sampling rate of a sensor. However, adjusting the

sampling rate of the sensor can cause a number of events to be missed because the

sensing unit is switched off when an event occurs or lead to increased false alarms if the

sensing frequency is too high. In order to address this trade-off relationship between

energy efficiency and data comprehensiveness, a Dual Prediction and Probabilistic

Scheduler (DPPS) is proposed in this thesis. DPPS can be used to improve energy

efficiency in event detection and data collection in monitoring applications. More

specifically DPPS improves the energy efficiency of the sensing unit in a sensor node.

This is achieved by combining Compression and Load Balancing techniques through

a Dual Prediction Scheme. Thus DPPS adjusts the sensing frequency more effectively

while also allowing fewer missed events and false alarms during the monitoring process

when compared with other scheduling protocols.

Another issue that needs to be addressed in order for WSNs to reach their full potential

as monitoring devices is the Data Forwarding Interruption problem which occurs

during the process of dissemination [LKR07]. Sensor nodes disseminate data to a

remote base by relaying through several intermediate nodes in a hop-by-hop manner.

Delay is incurred when the forwarding of data is interrupted by sleeping nodes. Either

data cannot be passed on because of an adjacent sleeping node, or data is lost when a
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node falls asleep before it has forwarded the data. Further delay is incurred due to the

Broadcast Storm problem [NTCS99]; when an event is detected by several nodes at

the same time in the same geographical region, their radio signals overlap resulting in

high contention for a share of the wireless medium. Such congestion leads to increased

collisions necessitating the rebroadcasting of data, thus considerably increasing delay.

In the second part of this thesis, the effects of the Data Forwarding Interruption problem

in periodic scheduling algorithms are addressed using an Adaptive Detection-driven Ad

hoc Medium Access Control (ADAMAC) algorithm. ADAMAC minimises the delay

incurred during the dissemination of data whilst at the same time reducing energy

consumption.

In light of the energy constraints involved when using WSNs in the monitoring of

critical events, the thesis will demonstrate that self-organising scheduling techniques

can improve the efficiency of data collection and dissemination and facilitate the

extension of WSNs to more application areas than had hitherto been readily possible.

These objectives have resulted in the following publications thus far:

C. Edordu, L. Sacks, “Self Organising Wireless Sensor Networks as a Land

Management Tool in Developing Countries: A Preliminary Survey”, LCS ’06:

Proceedings of the 12th London Communication Symposium,IET, IEEE UK and RI

Communication Chapter, 2006

C. Edordu, V. Shum, N. Thornhill and Y. Yang, “Environment Aware Sampling

For Sensor Networks”, LCS ’07: Proceedings of the 13th London Communication

Symposium,IET, IEEE UK and RI Communication Chapter, 2007

C. Edordu and Y. Yang, “Towards ARIMA Models for Resource Management in Sensor

Networks”, PGNET ’08: Proceedings of the 9th annual postgraduate symposium on
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the Convergence of telecommunications, networking and broadcasting,The School of

Computing and Mathematical Sciences LJMU, 2008

C. Edordu, Y. Yang, “Dual Prediction and Probabilistic Scheduling for Efficient

Event Detection”, Wireless ViTAE ’09: IEEE International Conference on Wireless

Communications, Vehicular Technology, Information Theory and Aerospace &

Electronic Systems Technology, 2009

C. Edordu, Y. Yang, “Lessons from a Pilot Deployment of Energy Efficient Data

Collection Protocols in Wireless Sensor Networks”, Sensors & their Applications (S &

A XV), Journal of Physics, Volume 178, Issue 1, Institute of Physics Publishing, 2009

1.4 Organisation of the thesis

This thesis comprises of six chapters. This introductory chapter provides the primary

motivation for the thesis which is to demonstrate that self-organising scheduling

techniques can be used to improve the efficiency of data collection and dissemination

in a Wireless Sensor Network, thereby facilitating the extension of WSNs into more

application areas.

In Chapter 2, literature covering model-based techniques for optimising energy

efficiency in wireless sensor networks are reviewed. The techniques of data

compression, load balancing and scheduling are discussed in detail and relevant

methodologies are examined.

Chapter 3 of this thesis outlines principles of self-organisation in communication

systems. The advantages and disadvantages of both centralised and self-organised

systems are discussed and contrasted. In particular, comparisons are made with regard

to robustness and scalability.
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A Dual Prediction Scheme and an energy efficient data collection framework are

presented for data collection in self-organised systems in order to manage the instability

and unpredictability inherent in such systems. By addressing these problems, the

framework allows increased energy savings to be made in WSNs.

In Chapter 4, a Dual Prediction and Probabilistic Scheduler (DPPS) is developed

as a means of improving energy efficiency in the use of WSNs. DPPS is then compared

and contrasted with eSENSE, an alternative data collection protocol, with regard to

energy consumption and data collection accuracy.

In Chapter 5 an Adaptive Detection-driven Ad hoc Medium Access Control

(ADAMAC) algorithm is developed in order to address the Data Forwarding

Interruption problem and the Broadcast Storm problem. ADAMAC is then compared

and contrasted with SMAC (Sleep Medium Access Control), a periodic scheduling

protocol, with regard to minimising end-to-end delay and limiting energy consumption.

The thesis culminates in Chapter 6 where conclusions are drawn and possible future

extensions to this study are considered.



Chapter 2

Data Collection Systems and

Energy Efficiency

2.1 Introduction

Monitoring of phenomena is an age-old practice widely conducted in many areas

of society including business [DAL+10], energy related industries such as oil and

gas [TCP09, CPD08], agricultural [Bag05] and environmental entities [SHX+09];

defence and security administration [ASYS02]; and for policy making and governance

[PRP+06]. Devices used for monitoring are numerous and have experienced

improvements over the years to enhance their effectiveness. Several phenomena,

for example solar eclipses or the movement of migratory birds, attract considerable

public interest and the monitoring of such events is often widespread and voluminous.

However, this thesis focuses on the collection of data which can be used for vital

decision making.

Environmental monitoring requires that sufficient data is collected in order to record

certain phenomena. The effectiveness of this process however, can be constrained

by limited resources. While older monitoring devices were mechanical, the most
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recent versions are electrical and electronic in form. Indeed, since the development of

semiconductor technology in the 60’s, a host of electronic devices have emerged which

collect data on given phenomena in alternative forms including sound, light, heat

and other properties [Jeo09]. Among the most modern of such electronic monitoring

devices are wireless sensor networks which possess numerous advantages (such as

robustness to failure) over other monitoring technologies. Unfortunately, in spite

of these advantages, their effectiveness is constrained by the limited energy supply

available to them during data collection [DGM05].

Improving the effectiveness of WSNs as tools for data collection and dissemination has

attracted the attention of researchers and scholars who seek to bring energy efficiency to

monitoring applications. The purpose of this chapter is to demonstrate that although the

problem of energy efficient data collection has been explored to alleviate constraints in

a sensor network, further improvements are needed. In multi-hop WSNs for example,

bringing efficiency gains in environmental monitoring necessarily involves reducing

end-to-end delay; this is the time elapsed between the occurrence of an event at a

source and its detection by a base station (BS) several hops away.

This chapter is organised into four sections. Section 2.2 examines the anatomy and

functioning of the typical network hardware of a sensor node in order to provide a

basis for illuminating efficiency issues of the system. Section 2.3 reviews writings

and techniques designed to achieve efficiency through the use of models embedded in

the WSN which are aimed at controlling the functioning of the system. Section 2.4

evaluates the merits and limitations of the major techniques examined and provides a

basis for developing new techniques. Finally, section 2.5 summarises the discussions.
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2.2 The Wireless Sensor Network and Data Col-

lection System

The typical wireless sensor network in a monitoring and data collection environment

has a number of standard components as depicted in Figure 2.1. Because efficiency

issues immediately arise as a result of the design of these components, it is appropriate

to formally outline their role and functions. The major components of the WSN include

the sensing, communication, processing and power units. Their functions and resource

needs are outlined below.

P O W E R  U N I T

S E N S O R       A D C

P R O C E S S O R

S T O R A G E
T R A N S C E I V E R

D A T A  C O L L E C T I O N  

P R O T O C O L S

( O P T I O N A L )

E X T E R N A L  P O W E R  

G E N E R A T O R

( O P T I O N A L )

A C T U A T O R

( O P T I O N A L )

A N T E N N A

S E N S O R  U N I T P R O C E S S O R  U N I T C O M M U N I C A T I O N  U N I T

Figure 2.1: Typical hardware components in a wireless sensor node

Sensing unit - This is the part of the sensor node which physically reads and collects

data from an environment. According to Raghunathan et al. [RSPS02], such units

fall into one of two categories: passive and active. Passive sensors take measurements

at a point in space without directly interacting with the point through active probing.

Some passive sensors can be self-powered and hence can operate without a dedicated

power supply. Examples of passive sensors include light sensors, thermometers and

pressure sensors. Active sensors on the other hand must probe the environment to take

measurements as exemplified by sonar and radar sensors. A large majority of sensors
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used in WSNs are passive because they are less expensive and consume less energy.

Traditionally it has been argued that the energy used in the sensing unit is negligible

compared to the other components in a sensor node. However, as will be discussed,

this assumption is not always valid. The development of techniques in Chapter 4

is motivated by those applications in which the energy usage in the sensing unit is

considerably higher than that of the other units.

Communication unit - Considerable research has been done on the communication

unit because it is believed to be the most energy demanding component of a sensor

node [Hae03, MC02]. Indeed, it is thought that the power required to send just one

bit of information could power 1000 processor operations [YG03]. The transceiver

units form a major part of the communication unit and are tasked with the transmission

and reception of data. Some examples of popular radio transceiver units include the

CC2420 family and the EMBER RF transceiver range, both of which consume about

20 mA per cycle for either data transmission or reception [Emb04, cc207]. This leads

to very significant energy consumption when the communication unit is used over

extended durations [YG03]. Because this energy increases by a factor proportional

to the squared transmission distance, short range transceiver units that utilise multi-

hopping scheduling protocols have become the standard. Typically, these protocols

assume that applications are insensitive to end-to-end delay and therefore trade-off this

delay in order to increase energy savings. Chapter 5 is motivated by the need to reduce

energy consumption and limit end-to-end delay in monitoring applications.

Processing unit - The processing unit is a microunit responsible for computation and

provision of intelligence. In conjunction with the operating system, it delivers and

receives instructions from the sensing and communication units through microdevice

drivers as shown in Figure 2.2. Energy consumed in the processing unit can be

subdivided into switching and leakage energy. Energy is consumed during switching

when software instructions are executed. Leakage energy concerns the nominal
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consumption of energy even when no computation is occurring and can be as high

as 50% of the total computing energy [WH06].

O p e r a t i n g  S y s t e m  ( O S )

A C T U A T O R

D R I V E R

M I N I

A P P L I C A T I O N S

C O M M U N I C A T I O N  

N E T W O R K  

T O P O L O G Y

P R O C E S S O R M E M O R Y S T O R A G E

S E N S O R

D R I V E R

C O M M S  R A D I O

D R I V E R

Figure 2.2: Typical software components in a wireless sensor node

Power unit - A suitable power unit is required to maintain all computational, sensing

and communication operations from a few hours to several years depending on

the application. Battery sources within these units may be categorised into two

groups namely non-rechargeable (primary) and rechargeable (secondary) batteries.

In untethered wireless sensor nodes, the finite supply of energy, typically 2 AA

batteries with 2.2 − 2.5Ah at 1.5V [RSF+04], presents unique problems because

replacements can be costly and recharging impossible. For example, renewable

methods like photovoltaic panels can only generate about 15mW/cm2 which, for a

standard 10 × 10cm sized panel, would amount to only 1.5W assuming consistent

replenishment [RAdS+00]. Another method of replenishing depleted power supplies

has formed a body of work in itself called energy scavenging [RAdS+00, Rou03] which

seeks to utilise sources of energy around a node’s immediate environment.
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The four components of the sensor node as outlined above: communication, sensing,

power and processing units, represent the hardware environment in which specific

efficiency issues can be addressed using model-based data collection techniques.

Figure 2.3: Wireless sensor network protocol stack

Data Collection System:

Reducing energy consumption in data collection protocols may be discussed in terms

of the protocol stack design, which illustrates the different levels of communication

required within a network. At its conception in the early 80’s, Zimmermann’s protocol

stack design was acclaimed to be an accurate representation of the state of networking

in communication systems [Zim80]. The advantage was that it had clearly defined

layers which facilitated the partitioning of the network into smaller parts and thus

allowed protocols to be configured independently in each layer. Since the invention

of WSNs, a management plane has been superimposed on Zimmermann’s original

architecture, as shown in Figure 2.3.

WSNs require a more flexible protocol stack which includes management planes

for power, mobility and task execution because of the highly dynamic environments in

which sensors are deployed. The power, mobility and task management planes monitor

the power, movement and task distribution respectively and help WSNs designers
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develop protocols that co-ordinate sensing tasks between nodes in order to reduce

overall energy consumption and allow sensor nodes to perform a broader range of

functionality [KFV11]. Table 2.1 summarises some of these functions performed using

WSNs.

Table 2.1: Functions of layers in the protocol stack

Layers Communication Protocol

Upper 5-7 In-network applications for data

aggregation, query processing and

data collection

Transport 4 Transport layer for assuring data

reliability and integrity

Networking 3 Networking including routing,

topology control

Data link 2 Managing medium access, timing

etc.

Physical 1 Communication channel, sensing,

actuation

2.3 Model-based Data Collection Techniques in

Wireless Sensor Networks

Given the critical roles of the various components which make up a sensor node,

efficiency is essentially an issue of minimising energy consumption within a given

unit while still maintaining the ability to collect and disseminate data effectively. It is

advocated by some writers [Zha03, RV06] that as communication energy is a major

factor influencing the total energy dissipated in a sensor node, only vital parts from

a stream of data should be transmitted, thereby reducing the overall amount of data

transmitted leading to a decrease in energy consumption. Other writers have advocated

in-network processing techniques which achieve energy reductions by processing data

locally and using short range multi-hop communications to disseminate data from a

source to a destination [PK00]. Another method of minimising energy consumption
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is through scheduling sensor nodes in multi-hop systems to sleep periodically.

However, it is apparent that efficiency gains achieved in one area typically compromise

performance gains in another area. For example scheduling sensor nodes conserves

energy by putting nodes to sleep but, as a result, end-to-end delay is increased.

The next section reviews research that has been done to generate alternative techniques

for addressing the energy efficiency issue in sensor networks. This will include a

discussion of the more traditional techniques for minimising energy consumption in

the communication unit, as well as more recent approaches which include minimising

energy in the sensing unit. Figure 2.4 summarises the model-based data collection

techniques discussed in this section.

Figure 2.4: Model-based data collection protocols
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2.3.1 Compression

Compression techniques use models, estimates or other forms of approximation to

reduce the amount of data required to represent a given time series. These include but

are not limited to Aggregation, Time Series Modelling and Approximate Caching. By

compressing data, energy consumed during data transmission and reception is reduced.

2.3.1.1 Aggregation

Aggregation is a type of compression technique which seeks to gather and fuse

critical data before delivering them to a base station for potential access by a user.

In order to maximise efficiency, several factors including the architecture of a network

and the aggregation protocol have to be considered. Several aggregation protocols

have been specifically designed for implementation in specific network architectures

[HHW97, HP05, MFH02, ABDH08]. In energy constrained networks, it is unnecessary

for all sensors to forward collected data directly to the base station. Instead data

communication is reduced by selecting local aggregator nodes, also called clusterhead

nodes, which are given responsibility for long-ranged communication with remote base

stations. Data communication is reduced by aggregating data from non-clusterhead

nodes before transmission by clusterhead nodes. One of the earliest and arguably most

popular cluster-based data aggregation protocol is LEACH (Low Energy Adaptive

Clustering Architecture Hierarchy) [HCB00]. LEACH focuses on reducing the

energy dissipated for communication by using a randomised clusterhead selection

technique to evenly distribute the communication load among sensors and therefore

increase the network lifetime as compared to a direct transmission method. However,

LEACH, like other cluster-based aggregation protocols, is only aimed at reducing data

communication. It is not appropriate for use in environmental monitoring because it

does not address the main emphasis of this thesis which is limiting energy consumption

while also enhancing the quality of the collection process.
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One problem encountered in cluster-based protocols occurs when non-clusterhead

nodes are located a long distance away from the clusterhead node. This makes long

transmission distances necessary thus increasing energy consumption considerably.

This is resolved using a chain-based data aggregation scheme where sensors transmit

data only to neighbours close by. Lindsey et al. developed PEGASIS (Power-Efficient

data GAthering Protocol for Sensor Information Systems) [LR02] using such an idea.

PEGASIS organises all nodes into a linear chain from a source to a base station. The

node farthest away from the base station sends data to its closest neighbour. This

neighbour in turn fuses this received data with its own and forwards the combination to

the next node along the chain. This process continues until a clusterhead forwards the

aggregated data to the base station. Although PEGASIS uses aggregation techniques

to reduce energy consumption in the communication unit, it is less suited for some

monitoring applications because it does not seek to improve the quality of the collection

process.

Researchers such as Yoon et al. [YS05] and Sharaf et al. [SBLC03] proposed the

earliest protocols in a class of aggregation protocols which offer some guarantees

on the quality of the collection process. TiNA (Temporal in-Network Aggregation)

developed by Sharaf et al., allows users to specify a tolerance requirement during the

data collection process. This means that data can be compressed while ensuring a

certain level of quality in the data collection process.

The efficiency of aggregation protocols is highly influenced by the topology and density

of a network [IEGH02]. The effectiveness of aggregation is hindered if there are not

enough nodes to aggregate data across a particular path in the network. In this instance

spatial and temporal correlations in the data itself can be used to directly limit the

volume of data transmitted by each node. This limitation of data can be achieved using

Time Series Modelling techniques as discussed in the following section.
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2.3.1.2 Time Series Modelling

Time Series Modelling techniques are used to reduce the amount of information

required to represent raw time series data and thereby limit the amount of

communication required for data collection [Mid00].

An example of such an approach is PCA (Piece-wise Constant Approximation) built

by Iosif Lazaridis and Sharad Mehrotra [LM03]. PCA is effective because data are

approximated at a base station using a prediction model. Using temporal correlation

among readings, the amount of data transmitted is significantly reduced and therefore

energy is conserved.

Further reductions of energy usage in the communication unit can be achieved

using the spatial correlation exhibited among data. For instance in SBR (Self Based

Regression), a data compression technique by Deligiannakis et al., spatial correlation

between multiple data streams is modelled using a regression type technique [DKR04].

Although results indicated that SBR increased the quality of measurement while

saving energy, it incurs significant latency in order to populate the sensor network

with measurements before any compression can be carried out. Furthermore the

degree of spatial correlation between nodes is greatly reduced as the distance between

these nodes increases. These factors render SBR unsuitable for use in environmental

monitoring applications.

A more robust approach to compression involves both spatial and temporal

correlation. One of the earliest adopters of spatio-temporal correlation techniques

was DIMENSIONS, a general purpose data collection tool [GEH03]. DIMENSIONS

sought to support long term data collection and communication in the context of

resource constrained networking while satisfying a user specified quality constraint on

collected data. Spatio-temporal compression in DIMENSIONS was achieved using
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a Wavelet type technique. Because this technique is computationally intensive and

requires that nodes take measurements at regular intervals, it is inadequate for many

monitoring applications.

More energy can be saved in communication units if sensor nodes are able to adjust

their spatial and temporal sampling rates in accordance with the occurrence rate of an

event being monitored [BTC05]. For example, it is desirable to decrease the amount of

data transmitted by reducing the sampling rate when the dynamics of an environment

are consistent and increasing the sampling rate as the dynamics change more rapidly.

Adjusting the spatio-temporal sampling rate requires co-ordination of all sensors but

can yield useful results. The potential for efficiency gains using this method was

demonstrated by Mehmet C. Vuran et al. whose CC-MAC algorithm modelled spatial

and temporal correlations among WSNs and produced an energy efficient medium

access and data transportation protocol [VAA04, VA06]. To account for spatial

correlation, the authors proposed a spatial correlation function which summarised

the reliability of data received from spatially separated nodes around an event. This

spatial function was supported by a temporal function that modelled the relationship

between sensor measurements. CC-MAC reduced energy consumption and ensured

reliable results by collecting data using a small subset of powered nodes (as opposed

to all nodes) around an event.

Further work seeking to take advantage of spatio-temporal correlations using control

theory was done by Emekci et al. who developed a sensor monitoring framework called

BINOCULAR [ETAA04]. A spatio-temporal model was used to estimate the value of

readings of all sleeping sensor nodes using a few working nodes thus saving energy.

BINOCULAR however assumes that a subgroup of working sensor nodes always exists

around sleeping nodes. In some monitoring applications, this scenario cannot always

be guaranteed and therefore BINOCULAR is inadequate.
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A more flexible method of taking advantage of the spatio-temporal correlations was

introduced by Deshpande et al. who built a data collection framework, called BBQ,

using probabilistic models [DGM+04]. BBQ based these probabilistic models on

time varying multivariate Gaussians in order to allow users to specify tolerances and

confidence intervals during the collection process. Analogously DSC, by Lidan Wang

et al., used similar probabilistic models to construct a distributed algorithm for data

collection which exploited correlations while also taking advantage of the broadcast

nature of wireless sensor networks [WD08]. Experiments done using synthetic and

real datasets suggested that both BBQ and DSC reduced the communication overhead

and limited the amount of error to within the application requirements. However, these

algorithms have been designed to report all data to a base station in their entirety while

satisfying an error requirement. In such a system no distinction is given to capturing

event data and therefore would be inefficient for environmental monitoring. The

authors also assume that spatial data will always have high correlation thus making

compression advantageous. In fact results indicate that for correlation ratios lower

than 0.75, DSC offers no advantage over traditional data collection techniques such as

aggregation [WD08].

Time Series Modelling techniques have been shown to be effective at reducing the

communication energy even with low correlation ratios. Liu et al. produced the first

Auto Regressive Integrated Moving Average (ARIMA) model for energy efficient

data collection in a WSN [LWT05]. The ARIMA model was constructed using a

combination of real and predicted data. This allowed energy savings to be made

because a sensor node transmitted real data to a base station less frequently. Liu

et al. also expanded their data collection framework into an ARIMA-based spatio-

temporal correlation algorithm [LWP07]. More energy was saved by adjusting the

ARIMA model to use a subset of sensor nodes for data collection while other sensor

nodes could be switched off. The ARIMA model however requires a long and

computationally intensive training phase which is impractical in some sensor-based
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monitoring applications. Using a lighter weight time series model may help to avoid

this intensive training phase. Tulone et al., for instance, developed PAQ (Probabilistic

Adaptable Query) [TM06]. PAQ used a light weight AR (Auto Regressive) model to

predict sensor measurements in order to efficiently answer queries in a sensor network

database. Like Liu’s ARIMA framework, energy is saved in the communication unit of

sensor nodes because sensors only communicate when significant changes are detected.

PAQ is constructed for a database application and is unsuitable for an environmental

monitoring application. Moreover algorithms like PAQ focus on minimising energy in

the communication unit at the expense of energy consumption in the sensing unit.

2.3.1.3 Approximate Caching

Prediction models used in Time Series Modelling techniques that aim for precision may

require frequent updates when the measurements being taken are highly variable and

thus consume high amounts of energy. Therefore the trade-off relationship between

data comprehensiveness and energy efficiency must be considered. An effective

approach for managing the trade-off between data quality and energy usage without a

prediction model is to maintain a stored/cached value of sampled data at a base station.

This technique is called Approximate Caching.

In Approximate Caching techniques, a sensor must automatically report data to a base

station. This reporting, done by any sensor in the network, transmits measurements

that exceed a specified threshold. This threshold is called the caching width. This

transmitted data is cached at a base station for user access and analysis. Energy

is saved in the communication unit because only data outside the caching width is

transmitted to the base station.

Arguably the most popular approximate caching algorithm was proposed by Olston

et al.; Olston’s APS (Adaptive Precision Setting) algorithm adjusted the caching width
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so that the amount of communication energy expended by sensor nodes was minimised

while satisfying precision requirements of the collecting application [OLW01]. As

Olston’s precision setting algorithm does not provide any latency guarantees during

data collection, a more recent algorithm called QUASAR by Qi Han et al. was

developed. QUASAR expanded APS by incorporating a latency constraint that allowed

application users to explicitly guarantee response times of any requests made to a base

station [HMV07, HMV04]. The authors proposed three models for guaranteeing this

response time; an active-active (AA) model, an active-listening (AL) model and an

active-sleeping (AS) model. In an AA model, the communication unit is always fully

active; the communication unit alternates between being either fully active or listening

in the AL model and the communication unit is either fully active or asleep in an AS

model. Experimental simulations indicated that the AS model was the most energy

efficient sensor state for data collection because it maximised the network’s lifetime.

Although these results demonstrate that AS models maximise lifetime, approximate

caching is unsuitable for environmental monitoring because of a heavy reliance on

prior knowledge about the characteristics of the data.

An alternative to Approximate Caching techniques which is useful in applications

where less is known about the characteristics of the data being collected is Load

Balancing.

2.3.2 Load Balancing

Load Balancing techniques can be described as a class of heuristic methods that use a

set of rules or standards to sustain the performance level of a component in a sensor

node. These rules reduce the amount of work done by a processing unit during

data collection. Load Balancing techniques fall into two categories: Dynamic Power

Management (DPM) and Load Shedding.
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2.3.2.1 Dynamic Power Management

In Dynamic Power Management (DPM) techniques, energy consumption is minimised

by scheduling the flow of data in order to allow a system to be idle when there is

no workload to be processed. This is exemplified in MSUS (Multiple Sensing Unit

Scheduling) proposed by Poornachandran R. et al. [PAC05]. MSUS was developed

for managing energy consumption in a sensor node by scheduling the flow of data from

the sensing to the communication unit. MSUS organises this scheduling by assigning

the resources of a sensor node’s processing unit according to a user’s priorities. MSUS

saves approximately 50% of energy in comparison with a greedy algorithm and limits

missed events [PAC05]. MSUS, however, is unsuitable for the types of sensor nodes

used in many monitoring applications because it requires sensor units with eight sensor

states; most sensor units used in sensor-based monitoring applications have only two

sensor states.

Sinha et al. demonstrated that by embedding DPM techniques into a sensor

node’s operating system, power consumption in the processing unit can also be

reduced without compromising system performance [SC01]. This power reduction is

demonstrated using various filters that calculate the expected processor’s workload in

the future: MA (Moving Average), EWMA (Exponential Weighted Moving Average)

and LMS (Least Mean Square). In certain applications, where high performance is not

always a requirement, energy can be conserved in the processing unit, by scaling down

a processor’s operating frequency and voltage to match the workload expected in the

processor. This type of voltage scaling is also called DVS (Dynamic Voltage Scaling).

Because DVS is primarily focussed on minimising energy consumption in a processing

unit, it has also been shown to be a useful tool for managing power usage in a wide

variety of devices. For example Xiaotao Liu, Prashant Shenoy and Weibo Gong

showed that by using statistical techniques to dynamically compute processor demands
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in multimedia devices, the rotational speed and voltage requirements on processors

and disks can be reduced [LSG04]. This was done using a Time Series Based Power

Management (TSPM) approach of which there are two forms: TSDVFS (Time Series

Dynamic Voltage and Frequency Scaling) and TSDRPM (Time Series based Dynamic

Rotations Per Minute). TSDVFS uses time series methods to optimise processor

settings for various tasks and TSDRPM uses time series methods to adjust the disk

rotational speeds to match the access patterns of the disk. Results indicated that TSPM

saved 36% more energy in comparison with devices without any power saving features

and 20% when compared with traditional power management based tools [LSG04].

Jacob R. Lorch and Alan J. Smith also used a DVS based algorithm called RightSpeed

to minimise energy consumption by determining the optimum speed required for

applications to complete tasks within deadlines [LS03]. This required that processors

have the ability to alter their speed and voltage. Simulation results revealed that using

RightSpeed can lead to an energy reduction in the processor unit of approximately

10% when compared with other commonly employed DVS algorithms. Despite these

advantages, the high volume of data which a sensor node may have to transmit means

that, although DPM techniques reduce energy consumption in the processing unit,

these reductions are comparatively small when compared with the amount of energy

consumed in the sensing and communication units.

2.3.2.2 Load Shedding

A more aggressive form of DVS where tasks are either dropped, or where components

of a sensor are switched off in order to minimise energy consumption is called load

shedding. Load shedding is a subset of DPM which involves decreasing the workload

of a sensor component by shutting the system down when performance is below

a predefined threshold. Recently, Load Shedding techniques and its variants have
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appeared in several publications because of their ability to conserve energy in multiple

components of a sensor simultaneously [SR06, SBF+07, SCB96]. As an illustration of

the aggressive nature of DVS, Srivastava et al., the authors of [SCB96] developed a

prediction shut down algorithm. The prediction shut down algorithm minimised energy

consumption by switching off portable devices using prediction based on various

heuristics, such as the computational history of a device.

Jain et al. viewed DVS fundamentally as a filter where as much useless data as

possible is filtered or suppressed from transmission in order to minimise energy

consumption in the communication unit. This was done using an approach where

a DKF model (Dual Kalman Filter) was used to predict readings at sensor nodes and

a base station [JCW04]. Energy is conserved because DKF predictions, which satisfy

an accuracy constraint, negate the need for some transmissions from a sensor node.

This is because the base station-side DKF could be used to accurately approximate

the actual reading. Similarly, Santini et al. used a Least Mean Square (LMS) based

load shedding technique to minimise energy consumption in the communication unit

by predicting readings at both sensor nodes and base stations [SR06]. Energy is saved

because whenever predictions from the sensor node are within an accuracy constraint,

the sensor node moves into a stand-alone mode (a lower energy consuming sensor

state) which suppresses data from transmission. When contrasted with a Continuous

Monitoring system, results showed that in the communication unit, a 92% saving in

energy was realised using the LMS load shedding technique.

None of the algorithms listed so far exclusively focus on minimising energy

consumption in the sensing unit. This is because the traditional view within the

research community was that energy consumption within the sensing unit is negligible.

This is not however the case when specialised sensing units are used. As an example,

XBow’s heading sensor, which measures azimuth angles, consumes 375mW of power

for sensing compared with the 60mW used for transmitting in MICA2 nodes [LCS05].
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To address this problem, eSENSE, an energy efficient sensing framework for wireless

sensor networks was developed by Haiyang Liu, Abhishek Chandra and Jaideep

Srivastava [LCS06].

eSENSE achieves energy savings by trading off energy consumption in the sensing

unit with an application’s data quality requirements. Essentially eSENSE adapts the

sensing frequency in proportion to the chance that an event occurs. Hence the sensing

frequency is relatively high when an event is likely to occur and relatively low when an

event is unlikely. Between taking measurements, the sensing unit can be switched off

thereby conserving energy.

eSENSE also includes a thresholding algorithm; this means that only certain events,

which occur when the value of data exceeds an event threshold, are detected. eSENSE

maximises the detection of event data by adjusting the sampling rate so that as the

value of measurements increase towards the event threshold, the sampling rate is also

increased. As the sampling rate increases, so does energy consumption in the sensing

unit. Conversely, when the value of collected data is relatively far below the event

threshold the sampling rate is low and therefore energy is conserved.

Although this method conserves energy, adjusting the sampling rate of the sensing

unit inevitably causes some relevant events to be unseen or missed when the sensing

unit is off. Therefore improvements in eSENSE are needed in order to facilitate a more

efficient data collection process. This is the motivation behind the Dual Prediction

and Probabilistic Scheduler (DPPS) proposed in Chapter 4. DPPS incorporates a Dual

Prediction Scheme as discussed later in Chapter 3. This scheme ensures that energy

is conserved while, at the same time, the number of unseen events is minimised by

guaranteeing the precision of the collection process.
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2.3.3 Scheduling

Efficient sensing is not the only essential requirement in data collection protocols. It

is also important that sensor networks in monitoring applications reliably deal with

delay-critical messages. In such applications an event message is triggered when the

value of a reading exceeds an event threshold. This can occur in natural disasters such

as flooding or before a fire outbreak. The ability to detect such events and report event

messages quickly to a base station is critical so that early remedial action may be taken

by emergency services. Such a rapid response to the occurrence of an event can be

achieved using a Fully Active network.

In a Fully Active (FA) network, sensing and communication units of all sensor

nodes are always active and therefore events that occur are detected without delay.

Additionally, data between a source and a destination can be transmitted immediately

because communication units are always on. Despite these advantages, a Fully

Active network consumes the most amount of energy because all of a sensor node’s

components are switched on. A popular variant to a Fully Active network is Continuous

Monitoring (CM). In CM, only the sensing unit of a sensor node are fully activated

in order to detect any events that occur; the communication unit is switched off to

conserve energy unless data needs transmission or reception. Although CM uses less

energy than FA, a substantial amount of energy can still be consumed, especially when

specialised sensing units are used, as previously mentioned.

A more energy efficient alternative is Scheduling techniques. Scheduling techniques

elongate the lifetime of a network by putting a sensor node’s components to sleep

intermittently, thus reducing the energy consumed by those components. There are two

main types of scheduling; Periodic Scheduling and Adaptive Scheduling.
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2.3.3.1 Periodic Scheduling

Periodic Scheduling techniques offer an effective, yet simple means of minimising

energy consumption in a node. This is done by causing a sensor node to sleep at

regular intervals throughout the life of a network. Energy is conserved because sensor

nodes only become active sporadically and can remain asleep for longer periods of time.

The most popular type of periodic scheduling protocol for a sensor network is SMAC

(Sleep MAC) [YHE02]. The inventors of SMAC achieved energy savings by making

nodes in a network sleep periodically. SMAC also produced further reductions in

energy consumption by avoiding message overhearing. Message overhearing occurs

when nodes wrongly receive data intended for neighbouring transmitting or receiving

nodes. By ensuring that overhearing sensor nodes are asleep during communication,

energy is saved. Periodic protocols however suffer from the inherent trade-off between

energy consumption and delay. SMAC, as an example, increases energy savings by

increasing the duration for which a sensor node is asleep. This increased sleep duration

however also increases the end-to-end delay during the dissemination of data.

The end-to-end delay in periodic protocols is worsened by the effects of Data

Forwarding Interruption which occurs during the dissemination of data from a source

to a base station. Figure 2.5 shows an example which contrasts the effects of a system

with and without Data Forwarding Interruption.

In both examples event data generated at a source is propagated to a destination via

a relay sensor node. In the example without Data Forwarding Interruption, the event

data is transmitted from the source to the destination within one second. Conversely, in

the example with Data Forwarding Interruption, data arrives at the destination after a

delay of two seconds. This occurs because the relay node is off at time t = 1, thus data

cannot be passed by the source immediately. Instead, a source must wait until time

t = 3 when the source and the relay nodes are awake simultaneously.
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Figure 2.5: Data Forwarding Interruption Problem

Another problem which increases delay in Periodic Scheduling techniques is the

Broadcast Storm problem [SYTCS99]. The Broadcast Storm problem occurs when

an event is detected by several nodes at the same time in the same geographical region

as shown in Figure 2.6. As their radio signals overlap, the sensor nodes experience

high contention for a share of the wireless medium. This congestion leads to increased

collisions as shown in Figure 2.6, thus necessitating retransmissions of data. As a

result of the need for retransmissions, further delay is experienced before data can be

successfully disseminated from a source to a destination. As will be discussed in the

next section, the effects of increased delay caused by the Data Forwarding Interruption

problem and the Broadcast Storm problem can be alleviated to a certain degree using

Adaptive Scheduling protocols.
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Figure 2.6: Broadcast Storm Problem

2.3.3.2 Adaptive Scheduling

Adaptive Scheduling protocols adjust the communication frequency of a network

in order to match the energy and delay requirements of an application during

data collection [MSG05, CPR03, vDL03]. For example in [MSG05] by Miller et

al., the energy-delay trade-offs are explored using PBBF, a probabilistic Adaptive

Scheduling protocol for medium access control. PBBF follows the idea that for a

given reliability requirement during data collection, the energy consumed in a WSN is

inversely proportional to delay incurred. Based on the reliability requirement, PBBF

probabilistically adapts a sensor’s wakeup schedule so that its communication unit is

activated less often, thus reducing energy consumption.

PBBF would be more suitable for event detection in monitoring application if sensor

nodes were spatially co-ordinated. The implementation of such an idea was shown in

[ZLN07] where the authors designed CAS. CAS worked by collaboratively adapting

the wakeup schedule of a group of sensor nodes around an event in order to minimise

monitoring before an event is detected. CAS therefore relies strongly on an application
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having a high density of nodes around an event area so that redundant nodes may be

used for adaptive scheduling. In monitoring applications, such a high density of nodes

around an event is not always possible. Moreover CAS does not address the problem

of minimising end-to-end delay between a source and a remote base station.

Another method of achieving energy savings is when sensor nodes adjust their

scheduling rates using any correlation found in collected data. This was exemplified

in [GLY07] where Gedik et al. proposed ASAP - an adaptive sampling approach

to energy efficient data collection in sensor networks. ASAP increased a WSN’s

lifetime while maintaining the quality of collected data by adaptively varying a subset

of active nodes in a network. These active nodes are the ones which collect sensor

readings. Other sensor nodes can remain asleep thus conserving energy. The value of

readings from these sleeping sensor nodes can be predicted using a probabilistic model

of the environment where data is collected. ASAP relies on a high level of spatial

and temporal correlation in the monitoring environment so that data can be predicted

in order to decrease energy consumption in a sensor network. In some monitoring

applications with a high level of noise, such correlations between data may be difficult

to detect or may be altogether absent.

Jain et al.’s Kalman Filter-based estimation model described in [JC04] is an Adaptive

Scheduling technique which works well in noisy environments. The authors used

a Kalman Filter (KF) to adjust the sampling rate during data collection in a

noisy environment. This was carried out while optimising usage of energy and

communication bandwidth throughout the WSN. Results demonstrated that the KF

Adaptive Scheduling technique produced better performance with regard to resource

utilisation in comparison with a periodic scheduling method while also minimising the

error produced during prediction over all active sensor nodes. However, the KF model

assumes all nodes can always communicate with the base station and that the base

station manages the allocation of resources centrally. As will be discussed in section
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3.3 of Chapter 3, such a centralised system differs from the system required for data

collection in a sensor-based monitoring application.

An approach which does not use a centralised system for data collection is AMS

(Adaptive Model Selection) presented by Yann-Ael Le Borgne et al. in [BSB07].

AMS works by exploring the trade-off between the fitness of a model for predicting

environmental data and the resulting overhead caused by the need to update a model.

AMS autonomously selected the best model for a data collecting sensor network from

a set of candidate models. This was done using a racing algorithm whose task was

to discard poorly performing models. The framework used in AMS is similar to that

used in TiNA [SBLC03] in which a sensor node and a base station employ a prediction

model. This framework allows energy to be conserved because the communication unit

of a sensor node can be switched off more often. Although AMS achieves reductions

in energy consumption while restricting inaccuracies incurred during the prediction of

data, AMS cannot detect events.

In contrast to AMS, a Near Optimal Sleep Scheduling (NOSS) protocol is shown in

[CAHS05] by Cao et al. for event detection in environmental monitoring applications.

NOSS minimised detection delay by first selecting a subset of nodes that rotate

periodically to give full coverage over an event area. Then end-to-end delay was

reduced by applying a streamlined wakeup sequencing algorithm that transports data

efficiently by constructing data routes between a source node and a base station. These

data routes allow intermediate relay sensors to wakeup in time for the arrival of any

data.

This idea of having a streamlined wakeup sequence of nodes was also employed in

another Adaptive Scheduling protocol called DMAC [LKR07]. DMAC was designed

by Lu et al. to solve the Data Forwarding Interruption problem in a one way tree

topology. This was done by giving the active-sleep schedule of a sensor node an offset
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that varied according to a sensor node’s location in relation to a base station. This offset

allowed a staggered wakeup schedule to be created in which all nodes in a chain from

a source to a base station can be notified of the impending arrival of data and wakeup

just in time to receive and forward data. DMAC also addressed the Broadcast Storm

problem by adaptively varying the number of active slots in a sensor node’s schedule

according to the traffic load in the network. Although DMAC provides energy savings

and reductions in delay during the dissemination of data, DMAC is limited to one-way

data gathering trees and thus is unlikely to be useful for a wide variety of monitoring

applications where topologies can be highly variable.

An alternative to DMAC and NOSS is Alert, an adaptive low-latency event-driven

MAC protocol for WSNs constructed by Namboodiri et al. [NK08]. Alert was

primarily designed to address the Broadcast Storm problem in sensor nodes without

requiring the type of prescheduled offset used in both DMAC and NOSS. This was done

by minimising the contention among sensor nodes for a share of the wireless medium

using a combination of time and frequency multiplexing techniques. By controlling

the selection probability of each channel, this multiplexing technique allowed multiple

frequency channels to be used so that contention for a share of the wireless medium is

reduced.

Another adaptive scheduling protocol which addresses the Broadcast Storm problem

during event detection is Best Effort Synchronisation (BES) presented by Olston et

al. in [OW02]. Unlike Alert, BES is used to ensure that data collected and stored

at a base station is accurate and up-to-date. This is done by optimally allocating

bandwidth resources through scheduling. BES is therefore especially relevant to the

Broadcast Storm problem because this bandwidth allocation improves communication

among sensor nodes and therefore also improves the data collection rate. A divergence

property was used to measure the accuracy of data at sensor nodes compared with

data stored at a base station. Results carried out using real world data indicated
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that BES improves synchronisation between data stored at sensor nodes and a base

station. Olston’s divergence property, however, is geared towards the problem of cache

assignment and does not consider energy efficiency in the data collection environment.

An energy efficient protocol that considers both Data Forwarding Interruption and

Broadcast Storm problems is SSMTT [JRC08], an energy aware sleep scheduling

algorithm for concurrent tracking of multiple targets. Designed by Jiang et al., the

main idea behind SSMTT was to use a proactive transmission mechanism which

negated the need for nodes to send multiple messages to targets in a shared subarea.

This proactive transmission mechanism improves energy savings by using sensor nodes

already awakened for tracking so that unused nodes not within the surveillance area can

be asleep. SSMTT however is unsuitable for environmental monitoring because this

type of adaptive sleep scheduler allows a large number of events to remain undetected.

Additionally, the number of undetected events increases as the speed of the target

increases.

Despite offering many advantages, the protocols mentioned above are unsuitable

for event detection in many monitoring applications because they do not efficiently

detect events while limiting energy consumption and end-to-end delay. For example

the aforementioned SMAC reduces energy consumption but incurs high delay during

data collection because of the effects of the Data Forwarding Interruption problem.

Therefore an adaptive scheduling protocol, called ADAMAC (Adaptive Detection-

driven Ad hoc Medium Access Control), was developed in Chapter 5. Not only

does ADAMAC reduce end-to-delay and alleviate the effects of the Data Forwarding

Interruption problem, but it is also compatible with other energy efficient algorithms

such as DPPS which enables energy consumption to be minimised.

A summary of the survey conducted in this section is shown in Table 2.2.
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Table 2.2: Summary of Model-based techniques. Notice that the combination of

DPPS and ADAMAC has the potential for reducing energy consumption in both the

communication and sensing units. The DPPS/ADAMAC combination also would

potentially have the capability for event detection in an application where limiting end-

to-end delay is critical



Chapter 2 Data Collection Systems and Energy Efficiency 59

2.4 Summary of Benefits and Limitations in Data

Collection Protocols

This section summarises the main features of data collection protocols discussed

in section 2.3 along with their key merits and limitations. Table 2.3 outlines the

advantages and disadvantages of the major techniques reviewed in the last section.

Table 2.3: Summary of model-based data collection techniques in WSN



Chapter 2 Data Collection Systems and Energy Efficiency 60

There are three main classes of model-based data collection techniques; Compression,

Load Balancing and Scheduling. The Compression class includes techniques such as

Aggregation, Time Series Modelling and Approximate Caching. Generally the family

of compression methods save energy by using some form of redundancy among nodes.

In Aggregation, (examples of such methods include LEACH [HCB00] and PEGASIS

[LR02]) cluster-based techniques are used to save energy consumption by compressing

communication between source nodes and a destination.

Compression is shown to be useful when carried out on time series data using Time

Series Modelling techniques. Such techniques rely on some form of correlation

existing in historical datasets so that future data can be forecasted using an appropriate

prediction model. Lazaridis’ Piece-wise Constant Approximation (PCA) [LM03] and

Deligiannakis’s Self Based Regression (SBR) [DKR04] algorithms are good examples.

When there are strong data correlations, further compression can be achieved using

spatio-temporal correlation functions. For example in CC-MAC [VA06] such a spatio-

temporal correlation function was used to compress data at a node’s communication

unit. A similar approach is exemplified in Liu et al.’s EEDC framework where an

ARIMA model was incorporated into the data collection protocol in order to reduce

energy consumption. Further compression can be carried out using probabilistic models

which seek to approximate future values thus eliminating the need to collect them as

shown in Desphande’s Barbie Q (BBQ) [DGM+04] and Tulone’s probabilistic adaptive

query (PAQ) [TM06] algorithms. None of these algorithms detect events efficiently and

therefore would be unsuitable for environmental monitoring applications. Time Series

Modelling techniques may also be disadvantageous because too much adaptation of

the prediction model causes increased energy consumption.

An alternative solution to Time Series Modelling which does not use a prediction

model is Approximate Caching. Here, a caching width is set up which limits the

communication from a sensor node to a base station; only measurements with values
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that exceed the caching width are transmitted. Examples include Christian Olston’s

APS [OLW01] and Qi Han’s QUASAR [HMV07]. Approximate caching protocols

save energy in the communication unit but are heavily parameterised and require

assumptions on unknowns, such as the interarrival time between events, in order to be

effective.

The second class of model based techniques, Load Balancing techniques, are useful

when little is known about the characteristics of the data being collected. Load

Balancing techniques limit the workload done by a sensor node’s components by

shedding or scaling down excesses. There are two main types of Load Balancing

techniques; Load Shedding and Dynamic Power Management (DPM). Santini et al.,

using an LMS Load Shedding method, reduced the amount of data collected by 90%

when compared with Continuous Monitoring [SR06]. Load Shedding was also shown

to be effective in TiNA (Temporal in-Network Aggregation) where it eliminated 50%

of the required communications while preserving data collection quality [SBLC03].

DPM is also a Load Balancing technique because, like Load Shedding, it scales

down processing power in order to decrease the amount of work needed during data

collection. This was exemplified by TSPM (Time Series based Power Management)

which scaled down voltage settings during idle processor periods [LSG04]. In spite of

the advantages of reduced energy consumption in the processing unit of a sensor node,

traditional Load Balancing techniques require the sensing unit to be active all the time.

Such an approach is ineffective when the power consumption of a sensing unit is high.

Compression and Load balancing techniques also have limitations which affect their

ability to collect data efficiently, especially when event sampling and sensor usage

are important metrics. eSENSE [LCS06] was developed in order to limit energy

consumption in sensing units by using a stochastic scheduler during data collection.

However, improvements in eSENSE are needed to reduce the number of missed events

and false alarms during data collection. Therefore a Dual Prediction and Probabilistic
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Scheduler (DPPS) is developed in Chapter 4; DPPS reduces energy consumption

while simultaneously minimising missed events and false alarms by guaranteeing the

precision of the data collection process.

The final class of model-based techniques is that which utilises scheduling to achieve

improved data collection efficiency. In environmental monitoring applications where

delay-critical event detection is carried out in multi-hop sensor networks, scheduling

techniques are a useful alternative to using a Fully Active network. There are two

main categories of scheduling: Periodic Scheduling and Adaptive Scheduling. The

most popular periodic scheduling protocol for sensor networks is SMAC [YHE02].

However SMAC suffers from the effects of the Data Forwarding Interruption problem.

Using Adaptive Scheduling techniques such as DMAC [LKR07] or NOSS [NK08],

a prescheduled offset can be introduced so that sensors become awake just in time

for the arrival of data thus limiting the effect of the Data Forwarding Interruption

problem. However, protocols such as DMAC and NOSS can only be used in specific

network topologies which are unsuitable in many monitoring applications. In Chapter

5, the thesis develops an Adaptive Detection-driven Ad hoc Medium Access Control

(ADAMAC) protocol. ADAMAC, an adaptive scheduling protocol which alleviates

the effects of the Data Forwarding Interruption problem, was constructed to be flexible

in a wide variety of delay-critical data collection environments. ADAMAC was also

designed to be fully compatible with other algorithms, such as eSENSE and DPPS in

order to further enhance energy savings.

What should also be considered, while developing protocols such as DPPS or

ADAMAC, is the cumulative effect of improvements to energy efficiency in the long

term. According to what has come to be known as Jevons paradox, technological

innovations which produce energy efficiency gains tend to increase rather than decrease

overall energy consumption because any improvement leads to greater demand for that

technology [Alc06]. This type of effect is well understood in economic terms where
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efficiency yields lower costs and prices. The decrease in price can serve to drive up

sales and thus increase total energy consumption needed to produce such higher sales.

Jevon’s argument means that efficiency gains in data collection protocols are likely to

be followed by new rounds of pursuit of efficiency because each success story will

ultimately necessitate the development of new energy-saving technologies. The pursuit

of energy efficient techniques and technologies is therefore likely to remain a subject

of continuing research interest.

2.5 Chapter Summary

This chapter reviewed literature on hardware and model-based techniques for opti-

mising energy efficiency in wireless sensor networks. This covered discussions of

Compression, Load Balancing and Scheduling techniques for enhancing data collection

efficiency. The combining of these techniques, though potentially beneficial for data

collection applications, is still uncommon among protocols developed so far. The

amalgamation of several model-based techniques could lead to the development of

new protocols which address both the issue of energy efficiency and end-to-end delay.

This will allow the deployment of wireless sensor networks across a wider variety of

applications than had been hitherto readily possible.



Chapter 3

Self-Organised Network

Architecture

3.1 Introduction

The first fruits of self-organisation were born shortly after the second world war

when researchers were actively seeking to understand the workings of the human

brain and to mathematically describe the complex logic underpinning the process of

thought [Ric94, Ash62, For65]. Decades later, Eigen and Schuster’s seminal work on

self-organisation led to the currently held theory that complex systems consisting of

smaller subsystems require a controlled autonomy for reliable performance [ES79]. At

the heart of their discovery were the principles of self-organisation, that is, the idea of

having ‘creation’ control itself without influence from a ‘creator’ [Bre94].

This chapter begins with a review of the characteristics of self-organised systems and

goes on to outline the benefits and limitations of such systems. A framework is then

presented which can be used to facilitate self-organised data collection in a wireless

sensor network. Such a framework is necessary in order to improve the reliability of

data collection within self-organised systems.
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3.2 Self-Organisation: Concept and Characteris-

tics

In [Dre06], Dressler defined self-organisation as a concept, used in systems, that

enables a large number of autonomously operating subsystems to perform a collective

task. Self-organising architectures are necessary in monitoring applications because

in complex environments, where conditions are highly variable, centralised systems of

control are inadequate [GS97].

Self-organisation can be clearly observed in a colony of ants: each ant acts

autonomously in order to perform the global task of foraging food [KE01]. Self-

organisation is also prevalent in organisms during mitosis; cellular signalling occurs

during replication without any one cell taking overall responsibility. Inter-cell

communication is also self-organising in nature because there is no overall global

signalling plan existing among cells [ABL+94]. Self-organised signalling behaviour

is also used to co-ordinate the immune system in mammals; when infection occurs,

antibodies are deployed by the body in a self-organised fashion without any global

control [JWT01]. Similarly, the authors in [McG04] argue that societal systems, such

as geographical patterns in the arrangement of a population over a landscape, are self-

organised.

Dressler also notes that self-organising systems show an overall behaviour that cannot

be easily predicted or pre-progammed. Resulting complexity occurs because individual

components in the system behave randomly and independently. The autonomous

behaviour of components in self-organised systems results in the scalability of

the system; components can be added or removed without drastically affecting

overall performance. The fundamental characteristics in self-organising systems are

summarised in Table 3.1.
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Table 3.1: Properties of self-organisation

Property Description

• No central control • Global state information is unavailable

or unused as each component of the

system operates autonomously

• Emerging structure • Autonomous subsystems perform a

collective task

• Resulting complexity • Individual components behave ran-

domly

• Scalability • Components may be added or re-

moved without affecting the perfor-

mance of a system

3.3 Standard Architecture in Data Collection Sys-

tems

As computing systems develop and progress, architectures have necessarily become

more complex and the demand for methods of managing and controlling resources

in such systems has substantially increased. Ideas for management and control have

evolved from monolithic and centralised systems to distributed and self-organised

systems. Figure 3.1 shows the movement from a traditional centralised control

management architecture to a decentralised fully distributed system.

A monolithic system is a centralised system in which a single computer is used to

control a subsystem. Generally, poor data transparency and limited scalability in

centralised systems mean that the number of subsystems which can be managed under

the supervision of a central computer is constrained. These inherent weaknesses led
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Figure 3.1: The evolution from traditional centralised control to self-organised

decentralised systems

to the development of distributed systems in which one computer is used to control

a group of subsystems. Within a distributed system, control is administered over

multiple systems using a middleware architecture1 [Tv02]. Although distributed

systems have many advantages over centralised systems in terms of adaptability,

improved fault tolerance and scalability, these benefits are limited when compared

with the robustness and scalability of self-organised systems. Distributed systems also

rely on synchronisation between subsystems in order to operate; this can be impractical

and, unlike self-organised systems may require human intervention.

Self-organisation allows complex systems to become both manageable and controllable

while increasing scalability. Self-organised systems permit global order through local

interactions without the need for any central control making the system’s architecture

flexible and therefore desirable for use in monitoring applications. Also, whereas

distributed systems require a control centre to operate, self-organised systems use a

completely decentralised system which not only provides increased robustness and

1Middleware resides between the application layer and the physical layer of the protocol stack in

order to support heterogeneous subsystems
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fault tolerance properties, but also limits any overheads arising from the need for

central control.

3.4 Self-Organisation and Wireless Sensor Net-

works

The integration of the concept of self-organisation into communication systems

originated from research done to create control mechanisms for managing Internet

traffic [ZG04]. It was however recognised that these control mechanisms would require

modification in order to handle data collection and dissemination efficiently in variable

environments. The integration of self-organisation into wireless sensor networks

requires the development of models, whose features reflect the general characteristics

of self-organised systems; these models can then be installed into devices, such as

sensor nodes in data collection and dissemination applications, to complement and

control complex networks while enhancing functionality and energy efficiency.

Four general characteristics inherent in self-organised communication systems, as

summarised in [PB05], are outlined below:

i Emergent behaviour: Local behaviour rules in the network lead to the achieve-

ment of global goals. This is exemplified in the way shoals of fish use co-

ordinated individual behaviour to protect the group against predators. Agglom-

eration behaviour of individual fish at microscopic levels results in an overall

system behaviour at macroscopic levels. This emergent behaviour protects the

group.

ii Implicit co-ordination: When using self-organisation in communication systems,

information is not only communicated explicitly through signalling messages

but nodes also detect and analyse transmitted information from neighbouring
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nodes. An example of this kind of implicit co-ordination is illustrated in Figure

3.2 along with an example of explicit co-ordination. As shown in the diagram,

node A sends a message to node B at time t1 which in turn sends it to node C at

time t2. Since node A is in the vicinity of node C it overhears node B’s message

to node C (at time t2) and this acts as an implicit acknowledgement that node

B received the initial message from node A. This differs from communication

in a centralised system where communication is solely based on the explicit

exchanging of signalling messages.

Figure 3.2: Communication exchanged among nodes are acknowledged either

explicitly using dedicated message acknowledgments or indirectly through overhearing

neighbouring transmissions.

iii Limited longevity of state information: A third characteristic is the limited

amount of time that information on the network state lives in the system; localised

interaction between nodes means less co-ordination is needed and therefore

minimal state information regarding the condition of a network is maintained.

iv Adaptability of nodes: The fourth characteristic of self-organising WSNs is the

capacity of nodes to adapt individually to changes in a network and its local

environment. There are three distinct types of changes to which nodes can react

adaptively. Firstly nodes are designed to be able to cope with changes in a
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network such as the failure or movement of a neighbouring node. Secondly,

nodes are able to adapt to changes in parameters, such as cluster size, in order

to avoid unnecessary monitoring and communication and thus optimise system

performance. Thirdly, nodes are designed to recognise when changes in an

environment are too frequent; too much adaptation of nodes would ultimately

compromise the energy efficiency of a network.

For a WSN to self-organise, a control model based on these four characteristics

should be integrated into its hardware. Firstly, the control model brings about

emergent behaviour in the network by grouping nodes together into clusters based

on a particular parameter. Secondly, the control model minimises energy overheads

during communication by taking advantage of implicit co-ordination among sensor

nodes. Thirdly, the control model encourages local interactions between nodes, rather

than global control, leading to minimal storage of state information. Finally, the model

controls adaptation of nodes to optimise performance by avoiding too frequent changes.

These principles of self-organisation guided the development of the models in this

thesis.

3.5 Limitations of Self-Organised Systems in

Monitoring Applications

It has already been noted that the advantages of self-organised systems include

their scalability, robustness and ability to make complex systems more manageable.

However, self-organised systems have certain disadvantages which must be recognised

as they could affect the usability of such systems in a monitoring environment.

Firstly, moving from a centralised system of control to one that is decentralised

decreases the level of determinism and predictability as summarised in Figure 3.3. This

unpredictability is a problem when the need for strict quality guarantees on collected

data is important. To address this problem, researchers are actively seeking ways of
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implementing statistical models into self-organised systems in order to limit the effects

of unpredictability [LK00].

Figure 3.3: Illustration of the inherent unpredictability within self-organising systems

Another drawback of self-organised systems arises because of the lack of global

state control. This means that only a local view of an environment is available

from any given subsystem and therefore only suboptimal results are obtainable. In

some application scenarios where the environment is highly variable, suboptimality

is less of a disadvantage because optimum settings are subject to constant variation.

Nevertheless, in general, rapid convergence to a satisfactory suboptimal operational

point is critical in order to satisfy application requirements.
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A third disadvantage of self-organising systems is that it is difficult to replicate the

exact behaviour of a network while testing components in a laboratory environment

because such systems are inherently random and unpredictable. The natural world is

intrinsically non-linear and therefore much flexibility is needed within self-organised

systems in order for them to adapt to the properties of the deployment environment.

The aforementioned limitations of self-organising systems can be largely alleviated

using the framework proposed in the next section.

3.6 Framework for Self-Organised Data Collection

and Dissemination

Given the decentralised nature of self-organising systems, statistical and time series

protocols are required to alleviate some of the problems mentioned in Section 3.5.

To support such protocols, frameworks are needed to deal with unpredictability and

provide statistical quality guarantees on data collected. Section 3.6.1 describes a

Dual Prediction Scheme (DPS) which can be used as a framework for supporting

the efficiency requirements in self-organised systems. The DPS is incorporated into

a management and control plane in order to facilitate the interoperability of adaptation,

sensing and prediction operations for more efficient data collection. Simulations were

carried out in order to demonstrate the effectiveness of DPSs in a self-organised WSN.

Section 3.6.2 outlines the specifications used in simulations throughout this thesis.

3.6.1 Dual Prediction Scheme

Previous work [BSB07, JC04, SR06] has shown that an effective framework for

providing quality guarantees is one which predicts approximate values of a reading

at a base station while guaranteeing bounds on any divergence from the true value of
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a sensor reading. One such framework that incorporates this idea is a Dual Prediction

Scheme (DPS) [BSB07]. DPSs compare a prediction X̂t against real values Xt, so

that any deviations are bound by a maximum error threshold emax, at the base station.

This is possible because each sensor node both measures and forecasts readings. For

example, at time t, a forecast function f(Xt) predicts reading X̂t at both the sensor

and base station ends. The sensor then takes an actual reading Xt. If the deviation

êt =
∣

∣

∣
Xt − X̂t

∣

∣

∣
is within the predetermined error threshold emax, the forecast X̂t

is accepted as satisfactory. At the base station, X̂t is used as a reading in which

X̂t ≈ Xt, and no transmission is made from the sensor node. Energy is saved because

transmission to the base station only occurs when the deviation êt at the sensor node

exceeds emax.

Figure 3.4: Management and control of data collection is facilitated by interoperability

of three modules for adaptation, sensing and prediction

To further conserve energy, DPS can be combined with a management and control

plane as shown in Figure 3.4. Figure 3.4 comprises of four layers: Application, MAC,

DPS and Physical layers. Excluding the physical layer, each layer is supported by
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functions in an adjacent lower layer; as an illustration the MAC layer is supported

by the DPS layer. This layered architecture in the management and control plane

addresses two of the aforementioned limitations in self-organised systems: the lack

of global state control leading to suboptimality of results; and the need for flexibility

because of the difficulty in recreating the properties in a deployment environment.

The framework addresses suboptimality by introducing an application requirement into

the application layer so that as the quality of data collection is traded off against energy

savings at the physical layer, the overall application requirements are not compromised.

The application layer must be connected to the physical layer via the sensing module

in order to adjust the sleep-wake cycle of the sensing unit. Flexibility, required within

self-organising systems as they adapt to the properties of a deployment environment,

is achieved using an adaptation module. Readings collected from a sensing unit are

delivered to the prediction module which uses the data to determine forecasts. Any

deviations between forecasts and true readings are registered and processed by the

adaptation module. The adaptation module also uses the event occurrence rate to tune

a system’s responses according to the monitoring environment in order to minimise the

number of adjustments made by a sensor node.

The adaptation module is half of the interface between the MAC layer and the DPS

layer. The other half is comprised of the communication module which schedules

transmission/reception in the communication unit. The interoperability of the modules

for prediction, adaptation and sensing are described in further detail in Chapter 4 while

Chapter 5 presents more details on the communication module.
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3.6.2 Self-Organised Wireless Sensor Network: System Specifications

Owing to the large variety of applications in which wireless sensor networks are used,

the specifications in self-organised systems can vary widely. This means that testing

and evaluating DPSs in self-organised WSNs may be difficult because of the variety

between systems. For the purposes of this study, particular characteristics of self-

organised WSNs are assumed. This allows for the development of simulations which

evaluate the parameters most relevant to this thesis. It is important to note that after

small alterations these specifications could be easily adapted to serve a wider variety

of sensor-based applications.

In order to develop simulations that demonstrate the effectiveness of DPSs in a self-

organised WSN, the following specifications are used:

• Short range communication units: Sensor nodes use a common short range com-

munication frequency to communicate with each other using an omnidirectional

antenna. All sensor node communication units have identical communication

ranges and require a limited bandwidth for either transmission or reception.

• First order radio model: A first order radio model of the type in [HCB00,

YWZ06] is used to determine the energy required to both transmit and receive

data packets. More specifically, εelec = 50nJ/bit and ǫamp = 100pJ/bit/m2

denote the energy consumption requirements for the electronic and amplification

components of the communication unit respectively in a sensor node. Each

sensor node uses ERx(k) = εelec · k Joules of energy for reception and

ETx(k, d) = εelec · k + ǫamp · k · d2 for transmission of a k bit packet over a

distance of d metres.

• Restricted inter-node communications: In order to alleviate the effects of the

Broadcast Storm problem, previously mentioned in Section 2.3.3.1 of Chapter 2,

the communication range is restricted so that data can only be broadcast to nodes
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that are within one hop from the transmitting node. This limits the inter-node

communication distance to a maximum of one hop in each sleep-wake cycle of

a sensor node. Although this restriction increases the delay in event reporting,

because nodes can only communicate with their immediate neighbours, Wang et

al. illustrated that such an approach was an effective solution to the Broadcast

Storm problem [Wan03].

• Active sensor state: When a node is active, its processor and RF components are

also active. It is assumed that in each active period, a node’s receiver is always

operational to receive data. It is also assumed that data is stored in a transport

buffer with a large capacity. At the end of an active period, data from a node’s

transport buffer is transmitted in a first-in-first-out (FIFO) schedule and then

deleted from the transmitting node. Furthermore, within an active period, a node

may add its own data packets to the transport buffer for transmission. It should

be emphasised that while transmission and reception only occur in active states,

these functions are decoupled and thus do not have to occur simultaneously. For

example a node’s receiver can be active while its transmitter is asleep. This may

occur when a node’s transport buffer is empty.

• Sleep sensor state: In a sleep state, it is assumed that all components of the sensor

including the processor, radio and measurement sensor are switched off except

for a wake-up timer which consumes a negligible amount of energy [GM04].

• Multiple sensors: Sensor nodes have multiple sensor units and each sensor unit

can be turned on or off independently from other sensor units.

• Random node placement: Unless otherwise stated, sensor nodes are deployed

randomly and each deployment forms a connected network.

• Limited or no node mobility: nodes either have limited movement or are

immobile. Therefore the location of each node either remains constant or does

not change to the extent of impairing connectivity between nodes.
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• No obstacles: An outdoor deployment area with no obstacles in the event

detection area is assumed.

These specifications allow a sensor network to be simulated using a 2-dimensional

Unit Disk Graph (UDG) [LWF03]. A UDG is a special form of a geometric random

graph which is useful for simulating the random nature of sensor node’s deployment.

In UDGs two nodes are said to be connected when they are located within a specified

communication range from each other.

In comparison with real-life sensor network deployments, UDG models would appear

simple but they are effective nonetheless [LWF03]. Furthermore, UDG models can be

reinforced with path loss models of the type proposed in [Rap02] in order to incorporate

real-life characteristics of an environment into a simulation.

3.7 Chapter Summary

In this chapter the fundamental principles of self-organised systems were discussed

and the advantages of such systems, including robustness, scalability, flexibility of

deployment and the absence of central control, were outlined. These advantages make

self-organising systems desirable for use in environmental monitoring, as well as in

other application areas, because they can be deployed in a wide variety of deployment

environments and they allow systems to function autonomously while reducing

communication overheads when compared with centrally controlled or distributed

systems.

The limitations in self-organising systems were also discussed including the

unpredictability of such systems and the lack of global state. Because self-organising

systems are inherently unpredictable, the quality of the data collection process cannot

be guaranteed; it also means that it is difficult to replicate the exact behaviour of a
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network while testing components. Furthermore, the lack of global state means that

only suboptimal results can be obtained. A Dual Prediction Scheme was then outlined

which can provide guarantees on the quality of the data collection process. It was noted

that a DPS could be incorporated into a management and control framework in order

to address the aforementioned disadvantages and thus make self-organising WSNs a

more reliable and effective tool for data collection and dissemination. This framework

serves as a basis for the models proposed in Chapter 4 and Chapter 5 of this study.



Chapter 4

Dual Prediction and Probabilistic

Scheduler

4.1 Introduction

Energy efficient data collection protocols are required in order to improve the energy

efficiency and processing capabilities of sensor networks. Efficient management of

a sensor node’s communication unit has traditionally assumed critical significance

because communication is energy intensive. However, specialised sensors exist which,

over time, can consume more energy than the communication unit. This chapter

proposes a Dual Prediction and Probabilistic Scheduler (DPPS) to be used for event

detection, with improvement of energy efficiency as a central purpose. By combining

Compression and Load Balancing techniques in a Dual Prediction Scheme, DPPS

monitors event data more efficiently in comparison to previous protocols; energy is

conserved in the sensing unit while stronger quality guarantees of the data monitoring

and collection process are provided.
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4.2 Motivation

Data collection frameworks used in wireless sensor networks can be applied to a

plethora of different environments including habitat monitoring [SCV+06], target

tracking [AKP08], and monitoring buildings [DGM05]. In these diverse deployments,

energy consumption is highlighted as a critical drawback because when a sensor

node’s limited battery supply has been completely discharged, replacements in such

environments is expensive or impossible.

The most common view expressed within the research community is that it is most

advantageous to limit energy consumption in the communication unit of a sensor

node as it is thought that the communication unit accounts for the highest proportion

of energy consumption [PK00]. Although this is the case in some types of sensor

nodes, specialised sensing units exist, such as airflow sensors, pressure sensors and

accelerometers which, over time consume equal or more energy than a communication

unit [hon08]. For example XBow’s Heading Sensor which measures azimuth angles

consumes 375mW of power during sensing compared with the 60mW used for

transmitting in MICA2 nodes [LCS05]. Effective management of the sensing unit

is therefore essential because it can decrease the energy consumption of a sensor node

and thus increase the lifetime of a network.

The most popular method of managing a sensing unit is through the use of Scheduling

techniques. Scheduling involves switching off the sensing unit between measurements,

thus saving energy. However switching off the sensing unit also potentially increases

the number of missed events and false alarms thus compromising the quality of event

detection.

eSENSE, a classic sensor unit scheduler, trades off energy consumption in the sensing

unit with an application’s underlying data quality requirements. eSENSE used an
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average wake-up rate to save energy while simultaneously satisfying an application’s

quality constraint. The disadvantage, however, of using a system with an average wake-

up rate is that this type of constraint introduces some ambiguity into the collection

process; two or more sampled signals could satisfy the same data quality constraint

but have significantly varied mean square errors in comparison to the actual data.

In applications where high precision in monitoring is essential, the wake-up rate of

sensors may have to be increased to the extent that any energy savings are negligible.

The problem of ensuring the quality of results while minimising energy consumption

can be addressed using the Dual Prediction and Probabilistic Scheduler (DPPS)

developed in this chapter [EY09]. Rather than using an average wake-up rate, DPPS

combines a Dual Prediction Scheme (DPS), previously presented in Chapter 3, with

a combination of Compression and Load Balancing techniques. This synthesis of

techniques facilitates the collection of event data in an energy efficient manner while

providing bounded guarantees on the mean square error of the reconstructed sample

data thus providing stronger guarantees on the quality of collected data and reducing

the number of false alarms and missed events.

DPPS was developed using the eSENSE framework as a foundation. The fundamental

framework of eSENSE was adapted to incorporate a Dual Prediction Scheme and a

mean square error constraint. The mathematical formulation of the sensing efficiency

problem is outlined below in Section 4.3.
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4.3 Problem Formulation

Table 4.1: Notation of parameters used in DPPS

Parameter Definition (Value)

Generic Parameters

Xt Real time series data

X̂t Predicted time series data

N Total number of data samples

δN Baseline sampling interval

epred Prediction error: epred is the difference between real and

predicted time series data

DPPS Parameters

emax Event threshold: emax is the prediction error threshold that

leads to a state change

E2
max Mean square error requirement

pi (Adjusted) probability of sensing a state change: pi is the

probability of sensing an event at time i
p∗i Unadjusted probability of sensing a state change

qi Probability of a state change occurring: qi is probability of

sensing an event at time i
fp Calculated false positive

fn Calculated false negative

Fp False positive requirement

Fn False negative requirement

Si Event sample at time i
k Sampling interval of a sensing unit

θk IMA prediction co-efficient at sampling interval k
Dmax Maximum sampling interval of a sensing unit

4.3.1 System Model

Consider a system of sensor nodes which measure and collect data using a total number

of samples N at a particular temporal resolution δN . The temporal resolution defines

the granularity of changes that can be detected. Indicated in Figure 4.1, δN is the

baseline sampling interval which represents the smallest resolution for event detection.

Detection at δN corresponds to the highest sampling frequency and hence the most

accurate digitised approximation of the data being sampled, Xt. Sensor nodes are

assumed to be in one of two states: active or sleeping. When a sensor node is active,

the sensing unit, processing unit and radio are active. This allows the sensor node
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to measure samples and compute predictions. Active sensor nodes also calculate

prediction error, epred, which is the difference between an actual measurement and the

predicted measurement. Although a sensor node may be active and ready to receive

an incoming packet, the transmitter may be idle. This is because the transmitter only

becomes active when there is data to send. This occurs in two different cases: send-

on-requirement and send-on-sample. In the case of send-on-requirement, collected

data is discarded if its equivalent estimate at the base station is accurate. This saves

energy because it means the transmitter in the communication unit can be off for longer.

Conversely, in a send-on-sample policy, sensing and transmission are combined so that

nodes transmit all collected data without recourse to suppression. When the sensor

node is sleeping, the sensing, processing and communication units are all off.

Figure 4.1: Prediction, false negatives and false positives

As illustrated in Figure 4.1, a state change occurs when the prediction error exceeds

the event threshold, emax, signifying an event of interest to an application. Because

they occur randomly, state changes may be missed when a sensor node’s sensing

unit is switched off. Such missed state changes are referred to as missed events or

false negatives as shown at T3 and T8 in Figure 4.1. Conversely any unnecessary
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measurement by a sensor when no state change has occurred is defined as a false alarm

or false positive because a sample was measured in the false expectation that an event

would be detected as illustrated at T2 and T7 in Figure 4.1.

The false negative ratio, fn, is defined as the number of false negatives, nf , divided

by the length of the baseline sequence,
∑

δN : fn =
nf
∑

δN
. Similarly, the false

positive ratio, fp, refers to the number of false positives, np, divided by the length of a

baseline sequence: fp = np
∑

δN
. An increase in the false negative ratio is symptomatic

of an increase in the number of missed events and therefore a loss in data quality.

Conversely an increase in the false positive ratio indicates that data is being sampled at

a rate beyond the requirements of the application and therefore energy is being wasted

unnecessarily.

4.3.2 Objectives

The objective of DPPS is to minimise the total energy required to measure events

whilst providing statistical guarantees on the quality of data collected. This is done

by minimising the chance of a sensor being active when no relevant event occurs. At

each detection point over time N , let vectors p̄ = [p1, . . . , pN ] represent the probability

of the sensor being active and q̄ = [q1, . . . , qN ], the probability that a state change

occurs. Thus pi represents the probability of sensing an event at a sampling instant i

and qi represents the probability of an event occurring at a sampling instant i. Where ν

is a positive constant that determines the total average energy Ē used, the optimisation

problem of DPPS becomes:
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Min
pi

Ē = ν
N
∑

i=1

pi : (4.1)

∑N
i=1(1− pi)qi

N
≤ FN (4.2)

∑N
i=1(Xi(pi)− X̂i(pi))

2

N
≤ E2

max (4.3)

Although it is impossible that all events are captured, the inequality in Equation 4.2

provides a statistical guarantee on the quality of data collected by limiting the expected

miss ratio to within a tolerance level FN . Similarly the inequality in Equation 4.3 limits

inaccuracy in terms of the mean square error constraint to within E2
max.

4.4 Event Detection

4.4.1 Sensing Probability

In order to adequately measure events it is necessary to set a minimum bound on the

sensing probability. If p∗i defines the unadjusted sensing probability at time i, the

calculation of p∗i is achieved by considering what value is required for optimality. For

example, p∗i = 1 is the maximum sensing probability which minimises the number of

missed events. However using this value would require that the sensing unit is active

all the time thus consuming high amounts of energy. p∗i would therefore need to be

continually adjusted in order to enhance energy savings. Given that the miss ratio is

defined by the number of missed events divided by the size of the baseline sequence,

and assuming that events occur randomly, it follows that p̄ and q̄ are independent and

that the missed ratio at i is defined by (1−p∗i )qi. If however p̄ and q̄ were correlated as in

[LCS06], then it follows that the miss ratio, fni
, at detection point i, should be smaller
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in comparison to when p̄ and q̄ were independent and uncorrelated i.e. fni
≤ (1−p∗i )qi.

This prevents any individual miss ratio deviating above the upper bound FN . Stronger

quality guarantees are provided because fni
is required at each sampling point thus

satisfying the tolerance constraint. As inspired by [LCS06], the L∞ miss ratio bound

on p∗i becomes:

p∗i =











0 0 <qi <FN

1− FN

qi
FN <qi ≤ 1

The adjusted sensing probability at point i, pi, is calculated by considering the false

positive rate fp. fp is approximated from a FIFO (first-in-first-out) queue of length W

where fp = np
∑

δN
≈ np

W
. As dfp/dW increases, it indicates that the sampling rate is

high in relation to the data quality requirements of the application. Hence p∗i should

be decreased so that the sensor spends more time asleep. Alternatively as events occur

more often, dfp/dW decreases and p∗i should be increased so that a sensor node is active

more often in order to catch potential events. Thus it follows that pi can be determined

from p∗i using:

pi =











p∗i − ζ if
np

W
≥ Fp

η p∗i if
np

W
< Fp

where |η| > 1 and |ζ| < 1 are positive values with Fp being a constant denoting

the false positive threshold. By decreasing p∗i linearly and increasing p∗i non-linearly,

events are captured more aggressively. During simulations, the results of which are

shown later in this chapter, the parameters η = 1.1, ζ = 0.1,W = 50 and Fp = 0.8,

were used because of the superior energy savings at these settings. The next subsection

discusses how to estimate the probability of detecting an event using historical data.
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4.4.2 Event Detection Probability

At both sensor nodes and the base station, a data stream prediction model uses historical

data to forecast sensor readings. While other models can be used for prediction

purposes, a first order Integrated Moving Average (IMA) model was selected for DPPS;

diagnostic checks were carried out using autocorrelation and partial autocorrelation

functions from a set of training data (see Appendix A for details). IMA models

are widely used for modelling non-stationary time series data because they offer

low computational and memory overhead which allows easy practical implementation

[BK92]. Asumming {X1, X2, X3...} represent the real data stream sequence of sensor

node and {X̂1, X̂2, X̂3...} represent the predicted data stream sequence of a sensor

node, the IMA prediction model used in DPPS is as follows:

X̂i = Xi−k + θkei−k (4.4)

In Equation 4.4, θk is the IMA coefficient used for a k step ahead predictor. By

definition the k-step ahead predictor is the same as the sampling interval and thus

henceforth both are used synonymously. Equation 4.4 may be represented more

generally by:

X̂i+k = Xi + noise (4.5)

Let the noise term be described by Qk; Qk is a distribution that represents the

probability of changes in prediction error. For clarity we introduce subscript k which

indicates that each sampling interval has an associated error distribution. Qk is formed

from the differences between the actual and predicted samples in a datastream sequence

and hence may be expressed as:

Qk = {Xi+k − X̂i+k ∀i|k ≤ Dmax} (4.6)
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If the length of the sequence of differences forming Qk is large (typically greater than

50), then it is expected that Qk becomes normally distributed in accordance with the

central limit theorem. Thus qi ∈ Qk and qi ∼ N(µk, σ
2
k). Take Figure 4.2 as an example

where the prediction error at an interval k = 10 is outlined. At this sampling interval,

the errors follow normal distributions as seen in Figure 4.2(a) and is further confirmed

by the Q-Q plot in Figure 4.2(b).
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Figure 4.2: Error distribution and the Q-Q plot at k = 10

If epred is a random variable which denotes the size of the prediction error, then it

follows that the probability of state change in the prediction error is given by:

P[epred(i) > emax] = qi ∼ N(µk, σ
2
k) =

1√
2π σ

∫

∞

emax

e
−(epred−µk)2

2σ2
k depred (4.7)

Equation 4.7 shows the probability of the prediction error at a particular sampling

interval k; the state change probability, q, can be calculated using a combination of µ

and σ2. In addition, for a particular lead time the normal distribution can be transformed

into a standard normal distribution using z = {x−µ
σ
}, as shown in Figure 4.3.
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Figure 4.3: The Gaussian distribution for mean µ and standard deviation σ; the shaded

area is the probability of observing a state change greater than emax

4.4.3 Mean Square Error Accuracy Constraint

In order for DPPS to satisfy an accuracy constraint, the requirement of Equation 4.3

is that the mean square error is bounded below emax. Furthermore, satisfying an L∞

bound on the constraint as shown in Equation 4.8 would constitute an even stricter

condition. The goal of this section is to answer the following: What maximum

sampling interval, Dmax, is required in order to satisfy an application’s mean square

error constraint? Let us begin the analysis by assuming the following to be strictly true:

∣

∣

∣
Xi − X̂i

∣

∣

∣
< Emax∀i ∈ N (4.8)

Squaring both sides of Equation 4.8 and substituting for the forecasting function gives:

(

Xi − X̂i

)2

< E2
max

(Xi −Xi−k + θkei−k)
2 < E2

max

(

Xi − X̂i−k

)2

+ 2 (Xi −Xi−k) (θkei−k) +
(

θ2
ke

2
i−k

)

< E2
max
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Taking the expectation of both sides gives:

E
[

(Xi − X̂i−k)
2
]

+ 2θkE [(Xi −Xi−k)] E [ei−k] +

θ2
kE
[

e2
i−k

]

< E2
max

It can be assumed that E(ei−k) = 0 (see Figure 4.2(a)) ∴

E
[

(Xi − X̂i−k)
2
]

+ θ2
kE
[

e2
i−k

]

< E2
max

In [BJ70], it is shown that E[(Xi −Xi−k)
2] = γ0 + γ1 where:

γ0 =
(

(1 + θ1)
2 + (k − 1)(1− θ1)

2
)

σ2
1

γ1 = −θ1σ
2
1 (4.9)

Substituting γ0 and γ1 into E[(Xi −Xi−k)
2] above gives:

γ0 + γ1 + θ2
kσ

2
k < E2

max

(

(1 + θ1)
2 + (k − 1)(1− θ1)

2
)

σ2
1 − (θ1σ

2
1) + θ2

kσ
2
k < E2

max
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The above may be rewritten as:

σ2
1 k − 2θ1σ

2
1 k + 2θ1σ

2
1 − θ2

1σ
2
1 k − θ1σ

2
1 + θ2

kσ
2
k < E2

max

k
(

σ2
1 − 2θ1σ

2
1 − θ2

1σ
2
1

)

< E2
max − θ1σ

2
1 − θ2

kσ
2
k

Rearranging for k gives:

⌊k⌋ <
E2

max − θ1σ
2
1 − θ2

kσ
2
k

(σ2
1 − 2θ1σ2

1 − θ2
1σ

2
1)

(4.10)

Therefore Dmax = ⌊k⌋ should be the maximum sleep interval if the precision constraint

in Equation 4.3 is to be satisfied.

4.5 Overview of DPPS

The operation of DPPS can be divided into three stages: initialisation, sensing-

adaptation and prediction. During initialisation the parameters required in sensor

nodes are initialised. Next, nodes enter a sensing-adaptation stage in which data

collected by a sensing unit is used for the adaptation of the sensing unit’s sleep wake

cycle. When a sensor node is asleep, the value of readings that would have been

measured are predicted; this occurs in the prediction stage. A structural overview of

the initialisation, sensing-adaptation and prediction stages are shown in Figure 4.4.
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Figure 4.4: DPPS structural overview
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The pseudo-code for the initialisation, sensing-adaptation and prediction stages are

presented in three separate algorithms. Algorithm 1, outlines details of the initialisation

stage where the real time series X and the application’s maximum delay Dmax are used

as inputs; Dmax was calculated using Equation 4.10. X was sampled at an interval k

then the first-order difference of this series was used to calculate the moving average co-

efficient required in the prediction model of Equation 4.4 (see lines 2-4 of Algorithm 1).

Using the prediction model, the predicted time series, X̂ , was generated and compared

with the real time series, X . The difference between X and X̂ gives the prediction

error. Over time, prediction errors form a time series from which a mean, µk, and

standard deviation, σk, can be obtained (see lines 9-10 of Algorithm 1).

input : time series X = {X1, X2, . . . , XM}
Maximum delay Dmax

output: Model Parameter Sequence(MPS)

MPS=(θ1, µ1, σ1), . . . , (θDmax
, µDmax

, σDmax
)

for k ← 1 to Dmax do1

X ←seq(from=1,to=M,by=k);2

X ←diff(X,lag=k);3

θk ←MovingAvg(X);4

for j ← 1 to M do5

X̂j ←Forecast(θ,interval = k);6

end7

êpred ←diff(X ,X̂);8

µk ←meanCalc(êpred);9

σk ←stdCalc(êpred);10

end11

Algorithm 1: Initialisation Stage
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Algorithm 2 describes the adaptation of the sampling rate in the sensing unit during

the sensing-adaptation stage. This adaptation begins when the sensing unit measures

a reading. Following a measurement, the value of the reading is examined for false

positivity by calculating fp using the method discussed in Section 4.4.1. Lines 5-12

of Algorithm 2 are used to determine the sampling interval k; assuming pi is less than

a generated random number between 0-1, k is incremented after every cycle in the If

loop. In each cycle, qi and pi are calculated using the methods outlined in Sections

4.4.1-4.4.2. The maximum sampling interval used is Dmax in order to maintain the

inequality constraint shown in Equation 4.3. Therefore the maximum value of k is

limited to Dmax as shown in lines 10-11.

input : initialise i, k, samplepred, epred, emax, FN ,fp

θ = {θ1, . . . , θDmax
}

µ = {µ1, . . . , µDmax
}

output: k, pi, qi

k = 0;1

pi = 0;2

sampleactual ←take sensor reading;3

fp ←adaptSchedule(sampleactual,FN);4

if pi <randUniform then5

k ← k + 1;6

qi ←senseEventStreamProbability(µk,σk);7

pi ← stateEventDetectionPrediction(fp, FN , qi);8

i← i + 1;9

if k > Dmax then10

k ← Dmax;11

return k12

Algorithm 2: Sensing-Adaptation Stage
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At the prediction stage, illustrated in Algorithm 3, the prediction model determined

during intialisation is used for forecasting as well as determining which real sensor

readings should be transmitted in order to enhance data quality. Data quality is

preserved while energy is saved because readings are transmitted only when the

prediction error epred is above the error threshold emax (see lines 2-3 Algorithm

3). Transmission of readings below the error threshold are suppressed. At line 4

of Algorithm 3, the false alarm rate is updated. This false alarm rate accelerates

or decelerates adaptation so that the efficiency of data collection is improved. The

combination of Algorithms 1-3 creates the Dual Prediction and Probabilistic Scheduler.

input : i, k, emax, samplepred, sampleactual,fp

output: transmit(false) or transmit(true)

samplepred ←Forecast(θ,interval = k);1

epred ←diff(sampleactual,samplepred);

if epred > emax then2

transmit(true);3

updateFalsePositive(fp);4

else5

transmit(false);6

Algorithm 3: Prediction Stage



Chapter 4 Dual Prediction and Probabilistic Scheduler 96

4.6 DPPS Simulation Setup

The simulations in this chapter were carried out using real world soil moisture datasets;

these datasets corresponded to several weeks worth of soil moisture data each sampled

at 30 second intervals. Data were collected at the Ecole Polytechnique Fédérale

de Lausanne campus during March 2007 as part of the Sensorscope project, an

environmental monitoring project in Switzerland [sen07].

For model construction purposes, the first 10,000 data points of a dataset were used as a

training sequence and the remaining data were used for verification of the performance

of the model. During the initialisation stage the coefficients required in the IMA

prediction model described in Equation 4.4 were calculated offline using the training

sequence. At a sampling interval k, the corresponding IMA co-efficient θk, was

calculated. Table 4.2 shows θk, µk and σk for various sampling intervals ranging from

1 to 10.

Table 4.2: Parameters for DPPS as calculated from the training data sequence

k θ µ σ
1 -0.8661 -0.00029257 0.38787

2 -0.7963 -0.00058245 0.37261

3 -0.7483 -0.004035 0.36936

4 -0.7185 -0.014145 0.35915

5 -0.6568 -0.014436 0.35389

6 -0.6413 -0.0041954 0.34782

7 -0.5963 -0.019497 0.34596

8 -0.5863 -0.035925 0.34226

9 -0.5253 -0.013804 0.33866

10 -0.4850 -0.011083 0.33728

Section 4.7 evaluates the performance of DPPS against eSENSE using the quality met-

rics of miss ratio, usage percentage, transmission percentage and sampling efficiency.

The results of these simulations, evaluated using the data analysis package MATLAB,
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were obtained by varying emax at a constant miss ratio threshold FN . Each simulation

run was repeated 50 times to reduce any effects of pseudo randomness [BJ84] and the

mean along with associated error bars were plotted in all results that follow.

4.7 DPPS Results and Analysis

In this section the performance of DPPS is compared with eSENSE and CM (see

Chapter 2 for more details on eSENSE and CM protocols).
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Figure 4.5: Number of measurements using DPPS, eSENSE and CM (FN = 5%)

A simulation was done to establish the relationship between emax and the sampling

rate for each of the three protocols. Figure 4.5 illustrates that DPPS collects a smaller

number of samples than eSENSE over the same duration. This means that more energy

is saved in the sensing unit using DPPS thus enabling increased battery life for sensor

nodes in a network.
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The next simulations were conducted to determine the usage percentages of the sensing

units. As discussed previously in Section 4.3, a send-on-sample policy transmits all

collected data without recourse to suppression and therefore is synonymous with usage

percentage. The usage percentage is thus an indicator of the level of sensor sampling.

The results of these simulations, shown in Figure 4.6, reveal that high usage percentages

are connected with high sampling rates.
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Figure 4.6: Usage percentage of DPPS, eSENSE and CM (FN = 5%)

In order to guarantee a miss ratio of 5%, CM must send 95% of all sampled data.

Therefore CM collects the highest number of samples and consequently has the highest

sensor usage percentage in comparison to DPPS and eSENSE. Figure 4.6 reveals that

DPPS reduces the usage percentage by up to 85% compared with CM, and by up to

35% compared with eSENSE.
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The send-on-requirement policy is synonymous with the transmission percentage. Fig-

ure 4.7 shows the results of simulations done to examine the transmission percentage of

the three protocols. Figure 4.7 shows that DPPS has a higher transmission percentage

than eSENSE indicating that a higher proportion of collected measurements contain

relevant data. On the other hand, CM has the highest transmission percentage because,

unlike DPPS and eSENSE, all samples in CM are transmitted regardless of their

relevance, with no distinction between event and non-event sampling.

0.2 0.4 0.6 0.8 1 1.2
0

10

20

30

40

50

60

70

80

90

100

e
max

T
ra

n
s
m

is
s
io

n
 P

e
rc

e
n
ta

g
e
 /
%

eSENSE

DPPS

CM

Figure 4.7: Transmission percentage of DPPS, eSENSE and CM (FN = 5%)

As expected, the usage and transmission percentages decrease in DPPS and eSENSE as

emax increases because increasing emax also reduces the likelihood that all events will

be measured. Another explanation of the decreased usage and transmission percentages

is that as emax increases and thus the error threshold increases, the conditions required

for event capture are less strict. Therefore it is less likely that measurements will be

taken which exceed the error threshold and thus transmissions are reduced.
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The next set of simulations carried out examine the sampling efficiencies of the

protocols in two different cases; firstly where the total time N is constant, and secondly

where the total number of samples
∑N

i=1 Si is constant. In both cases emax was varied

and the sampling efficiency was calculated. Since CM does not distinguish between

event and non-event sampling, the sampling efficiency using CM is trivially 0% and is

therefore not considered.
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(a) Sampling efficiency calculated over time
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Figure 4.8: Sampling efficiency of DPPS and eSENSE (FN = 5%)

Results shown in Figure 4.8 reveal that using DPPS increases the sampling efficiency by

up to 30% compared with eSENSE. Given that the sampling efficiency is the event-to-

measurement ratio, the improvement offered by DPPS over eSENSE can be explained

by further examining the usage and transmission percentage plots in Figures 4.6-4.7.

For example in Figure 4.6, the lower usage percentage in DPPS in comparison to

eSENSE suggests that, on average, DPPS collects less samples and therefore has a

larger sampling interval. A large sampling interval allows the sensor to spend more

time asleep thereby saving more energy. Also examining the transmission percentages

in Figure 4.7 reveals that a higher proportion of measurements taken using DPPS are

events. This means DPPS offers improved efficiency in event detection in a sensor unit.
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Figure 4.9: Expected miss ratio of DPPS compared to eSENSE and CM (FN = 5%)

Increased sampling efficiency and lower sensor usage are not the only advantages

offered by DPPS over eSENSE. Figure 4.9 shows that DPPS has a lower miss ratio

compared with eSENSE when emax is between 0.6 and 1. It is also clear from Figure

4.9 that the miss ratio decreases as emax increases. This is because as emax increases it

is less likely that an event will occur, thus it is less likely that an event will be missed.

Most importantly the graph reveals that a lower number of missed events occur when

using DPPS (compared to eSENSE or CM) and therefore DPPS offers stronger missed

ratio guarantees.

The next simulations were done to evaluate the mean square error of DPPS, eSENSE

and CM. As Figure 4.10 reveals, DPPS has, on average, a similar mean square error

compared to eSENSE at the same emax. More specifically, at an emax value of 0.7 and

0.8, DPPS and eSENSE have the same mean square error. However, at emax values of

0.5 and 0.6, DPPS had a slightly higher mean square error than eSENSE. Owing to the

plethora of data collected and transmitted, CM has the lowest mean square error.
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Figure 4.10: Mean square error of DPPS compared to eSENSE and CM (FN = 5%)

Results corresponding to another time series dataset are shown in Figures 4.11-4.16

when FN = 10%. These results confirm earlier findings about the improvements

offered by DPPS. For example, from analysing Figure 4.11 it can be concluded that

DPPS reduces the number of measured samples in comparison with eSENSE and CM.
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Figure 4.11: Number of measurements using DPPS, eSENSE and CM (FN = 10%)
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As well as confirming earlier findings, these results provide further insights. For

example it is interesting to note that the results in Figures 4.11-4.16 are, for the most

part, lower than those in Figures 4.5-4.10. This is exemplified in Figure 4.12 where both

DPPS and eSENSE have a maximum usage percentage of around 80% at emax = 0.3,

compared with 90% at the same error threshold in Figure 4.6. This can be explained by

the fact that data in Figure 4.12 is collected at FN = 10% in contrast with Figure 4.6

where data is collected at FN = 5%. As FN increases, a sensor network application

becomes more tolerant to missed events and allows sensor units in a network to be

asleep for longer thus minimising usage percentages. Therefore it can be concluded

that increasing FN from 5% to 10%, increases energy savings.
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Figure 4.12: Usage percentage of DPPS, eSENSE and CM (FN = 10%)

Figure 4.12 also shows that DPPS converges more quickly to an optimal operational

point than eSENSE or CM thus further enhancing energy savings. As FN increases,

the rate of this convergence also increases and therefore so does DPPS’s advantage

over eSENSE and CM in terms of energy savings.
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Figure 4.13 demonstrates again that DPPS has a higher transmission ratio compared

with eSENSE and consequently is more suitable for detecting events efficiently

especially when emax is small. As emax increases however, fewer events are detected

because the application becomes more tolerant of missed events. Above emax = 0.70,

both DPPS and eSENSE become so tolerant that events are undetected and therefore

the transmission ratio is 0%. This contrasts with the results shown for CM where the

transmission ratio is at a constant level of 90%, because as previously mentioned, CM

does not distinguish between event and non-event data.
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Figure 4.13: Transmission percentage of DPPS, eSENSE and CM (FN = 10%)

As revealed in Figure 4.8, Figure 4.14 demonstrates that DPPS offers an improvement

of up to 35% in terms of sampling efficiency in comparison with eSENSE. This is

the case both when the total time is constant and when the total number of samples is

constant.
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eSENSE calculated over time
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Figure 4.14: Sampling efficiency of DPPS and eSENSE (FN = 10%)

Figure 4.15 shows that when FN = 10% DPPS again offers the lowest miss ratio when

compared with eSENSE and CM. This confirms that DPPS reduces the amount of

missed events and therefore provides stronger quality guarantees than eSENSE or CM.
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Figure 4.15: Expected miss ratio of DPPS compared to eSENSE and CM (FN = 10%)

Figure 4.16 shows that both DPPS and eSENSE have comparable mean square errors.

Critically, Figure 4.16 also shows that DPPS, despite having a higher mean square error

than CM, satisfies the mean square error requirement outlined in Equation 4.3. The

results of further simulations using additional datasets are provided in Appendix B.

The next section contains preliminary results from empirical experiments which were
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conducted to demonstrate DPPS’s potential as an effective protocol for data collection

applications.

0.2 0.4 0.6 0.8 1 1.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

e
max

M
S

E

eSENSE

DPPS

CM

Figure 4.16: Mean square error of DPPS compared to eSENSE and CM (FN = 10%)

4.8 DPPS Initial Experimental Demonstration

This section looks at the empirical implementation of the algorithms for data collection

within an indoor laboratory environment.

4.8.1 Hardware

The time series in this regard were collected using Microchip PICDEMZ boards as

shown in Figure 4.17. The PICDEMZ demonstration kit is a user friendly platform for

ZigBee application design and development. The demonstration board is fitted with an

RJ11 connector which provides an interface to Microchip’s MPLAB ICD 2 Debugger.

The ICD 2 Debugger allows developers to reprogram or modify code on board the

PIC 18F4620 microcontroller unit flash memory. Also part of the demonstration kit is
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Microchip’s MPLAB IDE which provides the platform for writing and debugging code

for application development. Every PICDEMZ board was powered by 9V-170mAh

rechargeable batteries. The MCU contained 1.5K RAM, 32K programme memory and

1024 bytes EEPROM. The EEPROM memory was the most critical storage component

because it was used for programming the scheduling algorithms as well as storing 360

bytes worth of parameters.

Figure 4.17: The main components in a PICDEM Z board include microcontroller,

radio and a measurement sensor

Other important peripheries located on the board are:

• Temperature sensor - A TC77 thermal sensor was used for temperature data

collection.

• LED - The LED was also used to check the integrity of the data collection

algorithms. This was done by setting the LED to blink when measurements were

being taken.

• Radio - A CC2420 radio was used to send and receive packets at 2.4 GHz.

The radio consumed 18.8 mA and 17.4mA for receiving and transmitting data

respectively.
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4.8.2 Firmware

A simplified version of Senceive Ltd.’s FlatMesh firmware was used for implementing

the various algorithms onboard the PIC18F4620 microchip. Senceive Ltd is a

company which manufactures wireless sensor networks typically for industrial and

environmental monitoring. Having developed their own proprietary mesh networking

protocol, the people at Senceive Ltd. were interested in developing intelligence into

their networks by using algorithms that could adapt data collection in order to limit

network traffic and also further extend battery life.

Senceive Ltd. assisted with this study by providing both the hardware and a simplified

version of their FlatMesh firmware for testing of our algorithm. The stripped down

FlatMesh firmware was geared for point to point communications in a star topology

(see Figure 4.18).

The firmware was used because its modular architecture abstracted the physical layer

processes and networking features from the functions in upper layers. In particular the

top level application layer allowed the development and customisation of application

based algorithms without knowledge of the underlying framework in lower layers.

The firmware was written in C using Micropchip’s MPLAB integrated development

environment with a C18 compiler [Goi08].

The core module customised for this study was an application layer module used

as an interface for data sampling. The module was augmented to include DPPS for

adaptive data sampling and transmission. This was done for both a send-on-sample

and a send-on-requirement policy.
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4.8.3 Experimental Setup

In experiments, six PICDEMZ boards including one gateway node were deployed in an

indoor laboratory environment. One node collected data using Continuous Monitoring

(CM) at a baseline granularity of one second and the other two pairs of nodes collected

data using eSENSE and our proposed algorithm DPPS respectively. The sampling

interval on each node varied between 1 and Dmax. Because the interval between

sampling is small (i.e. in seconds) compared to the rate of temperature variation in

the room being monitored, a small miss ratio of FN = 10% was used in conjunction

with emax = 0.1, 0.2, 0.3. In both cases the algorithms were implemented to test the

usage percentage and data transmission ratio at the selected error thresholds. Figure

4.18 shows the experimental setup. Two hours of data collected first at the baseline

sequence was used to build up the model. Next, the newly created model was applied

to the next two hours of data in order to evaluate the performance. This procedure was

done on all sensor nodes on which the proposed algorithm was implemented for both

eSENSE and DPPS.

Figure 4.18: Experimental Hardware: the main setup components included a 9V power

supply, Microchip PICDEMZ boards fitted with Chipcon CC2420 transceivers, ICD 2

debugger and a laptop computer
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All parameters θk, µk and σk, were calculated using the method described in Section

4.5. A send-on-sample policy where all measured samples are transmitted was used to

collect the usage percentage. Conversely a send-on-requirement policy, involving only

measurements determined to be significant events, were used to determine transmission

percentage. All the data collected were grouped into the fields as shown in table 4.3.

Table 4.3: Data fields reported to the sink from sensors

Data Field

node ID

date
time

report number

temperature

The report number is the total number of samples measured. It is incremented after

every sensor measurement and therefore was used to determine the sampling efficiency

which is the ratio of the total number of samples transmitted to the total number of

samples observed.

4.8.4 Experimental Results and Analysis

The empirical evaluation of performance compared DPPS to eSENSE using the usage

percentage, transmission ratio and the sampling efficiency metrics.

Figure 4.19 shows the time series data as collected using a send-on-sample policy

for both the probabilistic algorithm DPPS and eSENSE. Figure 4.20 shows that DPPS

has a lower usage percentage than eSENSE between emax = 0.1 and emax = 0.2. For

example at emax = 0.15, DPPS has an average usage percentage of 6.1% compared to

11% for eSENSE. This means that the sensor is used less and hence more energy is

conserved. When emax > 0.2, the error threshold is too large and the sampling interval

remains constant using both algorithms.
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Figure 4.19: Temperature time series as collected using DPPS, in comparison with

eSENSE as acquired empirically for a send-on-sample policy at various emax values
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Figure 4.20: The usage percentage and the average usage percentage of DPPS in

comparison with eSENSE as acquired empirically

Figure 4.21 shows the transmission percentage recorded using our proposed algorithm

DPPS in comparison to eSENSE and CM between emax = 0.1 and emax = 0.3.

Figures 4.22(a)-4.22(b) show the corresponding transmission percentage and the

sampling efficiency as derived empirically. At an error threshold of emax = 0.1,

Figure 4.22(a) shows that using a send-on-requirement policy significantly reduces the

transmission percentage of DPPS to 8% from the average usage percentage of 31%

shown in Figure 4.20. This is because the send-on-requirement policy only sends data

recorded as events rather than all measurements taken. Figure 4.22(b) shows that DPPS

has a higher sampling efficiency than eSENSE because less false positives are measured

using DPPS. This indicates that, although more samples are sent to the base station

using DPPS than eSENSE, a higher proportion of the samples taken are events. The
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Figure 4.21: Temperature time series as collected using DPPS in comparison with

eSENSE and CM

results in Figure 4.22 also indicate that a sensor running DPPS is used less often for

event measurement compared with a sensor running eSENSE.
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Figure 4.22: Experimental transmission percentage and sampling efficiency

This is exemplified when emax = 0.15; both the transmission percentage (0.015%) and

the sampling efficiency (0.25%) of DPPS provides a marginally improved performance

over eSENSE. Figure 4.22 also demonstrates that the transmission percentage and the

sampling efficiency decreases with increasing emax. This occurs because an increase in

emax, decreases the chance of event capture and leads to a decrease in the sampling rate

thus causing a sensor’s communication unit to be less active over time. Measurements

acquired with emax ≥ 0.2 produced identical transmission and sampling efficiencies
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using both algorithms because the error threshold is too large to distinguish their event

capture performance.

4.9 Chapter Summary

This chapter presented and reviewed DPPS, a Dual Prediction and Probabilistic

Scheduler for sensor network applications. DPPS extends the eSENSE framework

by combining both Compression and Load Balancing techniques in a Dual Prediction

Scheme. Simulation results were presented which revealed that DPPS provides im-

proved sensor usage, higher sampling efficiency and a higher transmission percentage

of events in comparison with eSENSE and CM. More specifically simulation results

showed that DPPS offered reductions of up to 35% in sensor usage and an increase

of up to 35% in the efficiency of sampling events in comparison with eSENSE. In

essense this means DPPS offers improved efficiency in event detection in a sensor unit.

Additionally DPPS has, on average, a lower miss ratio than eSENSE or CM while

simultaneously satisfying the mean square error constraint required in an application.



Chapter 5

Adaptive Detection-driven Ad hoc

Medium Access Control

5.1 Introduction

In sensor networks, medium access control protocols, such as SMAC, minimise

energy consumption by scheduling sensor nodes to sleep periodically. However,

the effectiveness of periodic scheduling protocols in large multi-hop networks is

affected by the Data Forwarding Interruption problem which increases end-to-end

delay. In this chapter, the Data Forwarding Interruption problem is addressed using

an Adaptive Detection-driven Ad hoc Medium Access Control (ADAMAC) algorithm.

ADAMAC limits end-to-end delay in a multi-hop sensor network while reducing

energy consumption by combining the probability of an event occurring with an early

warning framework in order to adapt the duty cycle of a network.

5.2 Motivation

Periodic scheduling algorithms such as SMAC [YHE02] offer a simple means of

controlling the energy consumption in a sensor network. Such protocols cause sensor
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nodes to become active at fixed intervals throughout the lifetime of a network. Energy

is thus conserved because components in a sensor node are intermittently active and

can be asleep for long periods of time.

Although periodic scheduling protocols increase energy savings, their effectiveness

is affected by the Data Forwarding Interruption problem. This makes such protocols

inadequate for some monitoring applications because the Data Forwarding Interruption

problem leads to increased delay as data is reported across a network. In some

environmental monitoring applications increased delay is a problem because following

the occurrence of a natural disaster such as a landslide, data may need to be forwarded

quickly and efficiently so that emergency services can undertake remedial actions

faster.

In order to address the Data Forwarding Interruption problem and thus facilitate the

expanded applicability of sensor networks into wider areas, an Adaptive Detection-

driven Ad hoc Medium Access Control algorithm (ADAMAC) has been designed in

this chapter. ADAMAC adapts the communication frequency of a network both before

and after the occurrence of an event using early warning event indicators. These event

indicators are provided by probabilistic algorithms such as DPPS in Chapter 4. By

adjusting the communication frequency of a network ahead of time, the effects of the

Data Forwarding Interruption problem are minimised. ADAMAC can therefore limit

both energy consumption and end-to-end delay during the detection and reporting of

events. In order for ADAMAC to successfully adjust the communication frequency of

a network, the challenge of efficiently adapting the duty cycle of a network must be

addressed.
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5.3 Adaptive Duty Cycling: A Challenge

The challenge of adaptive duty cycling concerns the optimal adjustment of the sleep-

wake cycle of a network in order to detect events while limiting both energy and delay.

Although it is impossible to know exactly when an event will occur, estimates of an

event occurrence time can be calculated ahead of time using trends in historical data.

Though such estimates are impossible with regards to unexpected events, such as a

sudden bridge collapse, other events such as forest fires, landslides or embankment

failures do follow trends from which accurate estimates may be obtained.

Figure 5.1: A rail-side embankment failure. Prior to the embankment failure, the tilt

angle from the sensors trigger early warning signals. The nodes used in this picture are

courtesy of Senceive Ltd.

Figure 5.1 shows the collapse of a rail-side embankment being monitored by a sensor

network. The sensor nodes along the embankment rotate in proportion to the severity

of the embankment’s collapse. Event data is reported to emergency services when a

sensor node’s rotation exceeds a certain threshold. This is illustrated in Figure 5.1
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where, following the collapse, event data from node 1 is reported to node 2; node 2

forwards the data to node 3 and node 3 similarly reports the data to node 4, the base

station (BS). The base station, which has long-range communication capabilities, can

then alert emergency services.

Figure 5.2: The effect of differing sleep-wake cycles on end-to-end delay and energy

consumption. An event occurs at time t = 3 seconds and is reported to the base station

with an end-to-end delay of 10 seconds

In order to illustrate the adaptive duty cycling problem, a 1 dimensional outline of the

embankment collapse is shown in Figure 5.2. Assume that node 1 has a 50% sleep-

wake cycle, nodes 2 and 3 use a 25 % sleep-cycle and node 4, the base station, is always

awake. If an event were to occur at time t = 3 seconds as shown, the end-to-end delay

from node 1 to node 4 would be 10 seconds. This is because when node 1 detects the

event at time t = 3 seconds, it cannot immediately report the event to node 2 because

of the Data Forwarding Interruption problem. Node 1 can only pass on data when node

2 is awake at time t = 5 seconds. Upon receipt of event data from node 1 at time t = 5

seconds, node 2 cannot immediately send the data onto node 3, even though node 3

is awake, because of the communication restriction imposed to prevent the Broadcast

Storm problem (see Section 3.6.2 in Chapter 3). Node 2 must wait until its next wake

cycle at time t = 9 seconds before the message is reported to node 3. Again the effects
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of the Data Forwarding Interruption problem mean that node 3 must wait until time

t = 13 seconds before the event data can finally be reported to the base station thus

incurring a total end-to-end delay of 10 seconds.

Figure 5.3 shows the effect of adjusting the sleep-wake cycle of nodes 2 and 3 to

50% prior to the event occurrence at time t = 3 seconds. Figure 5.3 reveals that the

end-to-end delay is reduced by four seconds when compared with Figure 5.2. However,

more energy is consumed because sensor nodes are active more often.

Figure 5.3: Adjusting the sleep-wake cycle to reduce end-to-end delay

In order to address the challenges of adaptive duty cycling while minimising energy

consumption, an algorithm is needed which allows all nodes to sleep for as long as

possible before an event occurs. Just before an event is likely to occur, the algorithm

must adjust the communication frequency of a network in order to reduce end-to-

end delay. The algorithm must also re-adjust the communication frequency after the

event has been reported. In the next section, the problem of adaptive duty cycling is

formulated mathematically in order to develop ADAMAC, an algorithm that facilitates

the reduction of both end-to-end delay and energy consumption.
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5.4 Adaptive Duty Cycling: Problem Formulation

Table 5.1: Notation of parameters used in ADAMAC

Parameter Definition (Value)

Generic Parameters

h Number of hops from a source node to a base station

TPmax Maximum toggling period in an application

ADAMAC Parameters

Xwarning Event warning threshold

Xevent Event occurrence threshold

α Event coefficient

φ Adaptation policy

φb Adaptation policy at breakdown

θ Event occurrence rate

θb Critical breakdown rate

q Event probability

β(q, φ) Toggling period adaptation function

M Maximum number of warning levels. M is also the

maximum number of toggling frequencies

WLi ith event warning level

TPi Toggling period at the ith warning level

fi Toggling frequency at the ith warning level

Ω Total number of active cycles in a network

ρ Ramp down constant

tr Transition time

Figure 5.4 illustrates the conceptual relationship between a Toggling period (TP) and

a Duty Cycle (DC). In each TP, nodes adopt either an active or sleep state. The duty

cycle is adapted by changing the length of time a node remains in a sleep state between

two consecutive active states.

Figure 5.4: The relationship between toggling period and duty cycle
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As an example, in Figure 5.5 the duty cycle is doubled in comparison to Figure 5.4,

by re-activating the sensor after an interval TP
2

. The maximum toggling period is

TPmax and re-activation can take place at M toggling periods {TPi = 2i−1|i ∈ [1,M ]}

corresponding to M communication frequencies {fi = 2i−1

TPmax
|i ∈ [1,M ]}.

Figure 5.5: Adapted toggling period

Toggling period adaptation is triggered when measurements Xt exceed predetermined

event warning levels {WLi|i ∈ [1,M ]} where WLi ≤ Xevent∀i ∈ [1,M ]. These event

warnings occur within an input measurement range defined by:

Xt =











Xinit 0 <t ≤ tinit

θt t > tinit

As time tinit elapses, Xt increases from an initial reading level Xinit at the event

occurrence rate θ. At the event occurrence time, tevent, Xt reaches the event occurrence

level Xevent. In algorithms such as eSENSE [LCS06] and DPPS [EY09], the occurrence

of an event is indicated by the probability of an event occurring, q, which maps a

reading to an event probability. In ADAMAC, after q has been obtained, it is correlated

to a toggling period using a toggling period adaptation function, β(q, φ), which allows

the duty cycle of a network to be adjusted. The problems of adaptive duty cycling in a

sensor network with limited energy supply may be expressed as:
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Given an event with an occurrence rate of θ, how can the duty cycle of a sensor

network be adapted using the toggling period adaptation function β(q, φ) in order to

limit both energy consumption and delay during event detection and dissemination?

Providing a solution to this question is challenging because it requires:

• The development of an adaptation function - A toggling period adaptation

function, β(q, φ), must be developed so that the toggling period can be adjusted

using an adaptation mechanism.

• The development of an adaptation mechanism - Shortly before the onset of an

event, the duty cycle of a sensor network must be high in order to minimise end-

to-end delay. When the event has passed, the sensor network must decrease its

duty cycle so that energy consumption is reduced.

• The determination of the event occurrence time - When using applications

in certain environments, event occurrence times are unknown and therefore

estimates must be calculated using trends from historical data.

5.5 Development of ADAMAC

In this section, the development of ADAMAC is discussed. Firstly in Section 5.5.1

a toggling period adaptation function is developed. Secondly in Section 5.5.2 the

toggling period adaptation function is examined for breakdown; breakdown leads to

increased inefficiencies in event detection applications because end-to-end delay and

energy savings can no longer be traded off effectively. The conditions that cause

breakdown are therefore discussed in detail. Thirdly in Section 5.5.3 the parameters

required to avoid breakdown of the toggling period adaptation function are outlined

and then used to propose an adaptation policy which would increase energy savings

while minimising end-to-end delay and avoiding breakdown. Details of a prediction
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model for estimating the event occurrence rate, θ, are also provided in order that

ADAMAC could be used in applications where the event occurrence time is unknown.

Finally in Section 5.5.4, an overview of ADAMAC is illustrated using the example of

an embankment collapse. This overview also includes the pseudo-code for ADAMAC.

5.5.1 Toggling Period Adaptation Function

As previously outlined in section 5.3, an energy efficient solution to the challenges

of adaptive duty cycling necessitates that all nodes in a network sleep for as long as

possible before an event occurs. This means that when the event probability q is close to

0, the toggling period of a network should be high so that the communication frequency

is low. Using a low communication frequency increases energy savings in a network.

Alternatively, just before the onset of an event when q is close to 1, the toggling period

of a network should be low so that the communication frequency is high. This high

communication frequency minimises delay when data is reported across a network.

These characteristics are precisely matched by the power function shown below:

1− qφ (5.1)

In the expression of 5.1 the adaptation policy, φ, is a non-negative real number.

The expression was inspired from [MS90] where such power functions are shown

to be effective methods of adapting the communication frequency of a self-organised

system. When q is close to 0, 5.1 places more priority on increasing energy savings by

decreasing communication frequency. Conversely when q is close to 1, 5.1 decreases

end-to-end delay by increasing communication frequency. In order for 5.1 to adapt

the toggling period of a sensor network with M warning levels, the toggling period

adaptation function below can be used:

2(M−1)(1−qφ) (5.2)
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The toggling period adaptation function of 5.2 ensures that the toggling frequency is

in the required range {fi = 2i−1

TPmax
|i ∈ [1,M ]} as discussed previously in Section 5.4.

Increasing or decreasing the toggling frequency of a network is controlled by adjusting

the adaptation policy, φ. Adjustment of the toggling period using four different toggling

period adaptation functions is illustrated in Figure 5.6.

Figure 5.6: Relationship between φ and the toggling period

φ = 0 corresponds to a Fully Active network with a toggling frequency of f0 = 1
20 = 1.

Using φ = 0 the end-to-end delay is minimised but energy consumption is maximised.

As φ increases to values of 0.25 and 1, the energy savings increase but so too does the

end-to-end delay. Toggling period adaptation when φ = 4 saves the most energy but

using this adaptation policy produces the highest end-to-end delay. Adjustment of φ is

therefore critical because it controls the sleep-wake cycle of a sensor node, managing

the trade-off between energy savings and delay across a sensor network.

5.5.2 Breakdown

As φ increases there is a higher likelihood of experiencing breakdown, an effect in

which end-to-end delay sharply increases during the adaptation of a network’s toggling

period. Breakdown makes it more difficult to efficiently trade-off energy and delay. To
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further explain breakdown, consider a network that uses an adaptation policy of φ = 4.

As illustrated in Figure 5.6, such a network has a toggling period of 64 seconds when

q ≤ 0.65. Thereafter the toggling period rapidly decreases to 0 as q increases towards

1. When q = 1 a toggling frequency of f0 is immediately deployed by the event node

for event reporting. However, a minimum transition time is required for this toggling

frequency to reach all nodes in the sensor network. The length of this transition time

varies depending on the average toggling frequency of all nodes between the source

and the base station. When this transition time is too long in comparison to the event

occurrence rate, the forwarded event data is delayed in some parts of a network because

of the Data Forwarding Interruption problem. The agglomeration of such delays causes

the toggling period adaptation function to breakdown.

Figure 5.7: Breakdown in a fully active network at different hop counts, h.

In ADAMAC, breakdown is especially noticeable after a particular point known as the

Critical Breakdown Rate, θb, when the end-to-end delay sharply increases. In order

to further evaluate the effects of breakdown, Figure 5.7 shows the end-to-end delay

at various event occurrence rates. For example when hop count h = 2 in Figure 5.7,

breakdown occurs at θb = 0.3. Each h hop network was simulated with MATLAB in

order to form a connected linear network of h + 1 nodes in a 100 m2 plane. Although

nodes use a fully active schedule in order to report data, the network is assumed to
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have an initial sampling period of 64 seconds. End-to-end delay is the time taken for

an event packet from a source to reach its destination h hops away.

Figure 5.7 clearly shows that increasing the hop count, in a network substantially

increases the end-to-end delay after the Critical Breakdown Rate (CBR). The increased

end-to-end delay occurs because as the network size increases, more sensor nodes

suffer from the effects of the Data Forwarding Interruption problem. As a result

breakdown is more apparent in sensor networks where the distance between a source

and a base station is large. More formally, breakdown occurs when a network’s

transition time, tr, and the event occurrence rate, θ, violates the following inequality:

dX

tr
≥ θ (5.3)

dX = Xevent − Xt is the increase necessary for a reading at time t to reach the event

occurrence level. The transition time, tr, in a h hop network where all the nodes have

the same toggling frequency, fi, is given by:

tr =
h− 1

fi

(5.4)

In order to further explore the toggling period adaptation function and demonstrate

the importance of avoiding breakdown, preliminary simulations were done using the

expression of 5.2 at various event occurrence rates ranging from 0.0280 < θ ≤ 0.28.

Figure 5.8 shows the results of these preliminary simulations and confirms previous

assertions that increasing φ decreases the energy consumption. This is explained by

the fact that as φ increases the average toggling period and therefore the proportion of

sleeping nodes in a network increases. Most importantly Figure 5.8 also shows that,

while increasing φ decreases energy consumption, end-to-end delay is limited when

breakdown is avoided. For example in Figure 5.8(b) end-to-end delay using φ = 1 is

similar to end-to-end delay using φ = 0.
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Figure 5.8: Energy and delay plots against θ. Simulations were obtained using a

randomly deployed sensor network. Results shown are the mean from 100 random

simulation runs of a 10 node network at various values of φ

The toggling period adaptation function of 5.2 makes it possible to limit both energy

consumption and end-to-end delay when the highest adaptation policy that avoids

breakdown, φb, is used. Figure 5.8(b) shows that as the event occurrence rate increases,

the value of φb decreases. For example φb = 4 when θ = 0.028 and φb = 1 when

θ = 0.28. A summary of these and other relevant findings revealed by Figure 5.8 are

outlined below:

• Increasing φ decreases energy consumption

• As φ increases, energy consumption decreases and the rate of change of this

decrease in energy consumption converges

• Increasing φ does not alter end-to-end delay if breakdown has not occurred

• Increasing φ increases end-to-end delay if breakdown has occurred

• Beyond a Critical Breakdown Rate, θb, the end-to-end delay increases

• Increasing φ for any given event occurrence rate, θ, will eventually lead to

breakdown when φ > φb
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Another preliminary simulation was done in order to determine the critical breakdown

rate, θb, after which events cannot be detected or reported efficiently. This was done by

evaluating the value of θb at various adaptation policies as shown in Figure 5.9.
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Figure 5.9: Energy and delay plots against φ at various event occurrence rates. Results

were obtained using the mean of 100 random simulation runs of a 10 node network at

various values of θ

Figure 5.9 shows that before θb, increasing θ also increases the energy consumption but

the end-to-end delay remains largely unaffected. Above the θb, increasing θ increases

the energy consumption and also increases end-to-end delay. Essentially as φ increases,

the value of θb decreases, making it more difficult to detect events efficiently. These

characteristics along with other findings revealed from Figure 5.9 are outlined below:

• Increasing θ increases energy consumption

• As θ increases, energy consumption increases and the rate of change of this

increase in energy consumption converges

• Increasing θ at any given φ, does not alter end-to-end delay if breakdown has not

occurred

• Increasing θ at any given φ, increases the end-to-end delay if breakdown has

occurred

• Increasing θ at any given φ will eventually lead to breakdown when θ > θb
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From findings in both Figure 5.8 and 5.9, it can be deduced that φ should be large

before breakdown in order to maximise energy savings. Conversely φ should be

relatively small after breakdown in order to minimise end-to-end delay. This can be

explained intuitively: a sensor network should sleep as much as possible when the

event occurrence rate is low so that more energy is conserved before the occurrence

of an event. Alternatively after the occurrence of an event, the sensor network should

become more active in order to reduce end-to-end delay.

Management of the trade-off between conserving energy and minimising end-to-

end delay is paramount, not only for elongating the lifetime of a network, but also

for improving the efficiency of data collection. Such management can be enhanced

by avoiding breakdown whenever possible in order to reduce the effects of the Data

Forwarding Interruption problem.

5.5.3 Breakdown Avoidance

In order to avoid breakdown while maximising energy savings, Equation 5.3 must

firstly be adjusted so that:

dX

tr
= θ (5.5)

Then, substituting dX = Xevent −Xt and tr = h−1
fi

from Equation 5.4 gives:

(Xevent −Xt)fi

h− 1
= θ

Xevent −Xt

2i(h− 1)
= θ
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where 2i = 2(M−1)(1−qφ) as seen in the expression of 5.2. Therefore:

Xevent −Xt

2(M−1)(1−qφ) × (h− 1)
= θ

Rearranging the above gives:

φb =

log

(

1− log(Xevent−Xt
θ(h−1) )

(M−1) log 2

)

log (q)
(5.6)

Although adapting φ using the above equation maximises energy savings before event

occurrence, after event occurrence energy savings may be adversely affected. This

can happen when a high communication frequency is used for extended periods after

an event has been reported. This energy consumption can be represented by the total

number of active sensor wake-up cycles, Ω, used when monitoring over a period of

time T as shown below:

Ω = γ +

(

i=h−1
∑

i=1

(h− i)
fi

fj

+ i

)

+ (h + 1) ⌊(T − τ + t0) fi⌋ (5.7)

Note that γ = (h − 1) fi

fj
+ 1 and τ = (h−1)

fj
. From Equation 5.7, when T ≫ τ , Ω

can be very large thus increasing energy consumption (see Appendix C for details). In

order to minimise Ω and therefore reduce energy consumption, the toggling period of

a network should be increased to TPmax as soon as the event data has been reported to

the base station.

In order for Equation 5.6 to be useful in applications in which the event occurrence

time is unknown, θ can be estimated using historical data. This estimation should

place more value on newer measurements in comparison with older measurements

so that the toggling period can be adjusted more efficiently when an event occurs.
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These requirements are satisfied by an Exponentially Weighted Moving Average

(EWMA). EWMA applies exponentially increasing weight factors to more recent

parts of historical data while simultaneously decreasing weight factors on older data

points. An EWMA model with a weight factor, α, can be applied to the toggling period

adaptation function using the equation illustrated below:

θ̄t = (α)θt + (1− α)θ̄t−1 (5.8)

Where 0 ≤ α ≤ 1, θ̄t is the estimated value of θ at time t and θt is the most recent value

of the event occurrence rate at time t.

5.5.4 Overview of ADAMAC

Figure 5.10 illustrates the operation of ADAMAC during an embankment failure.

Figure 5.10: Minimising end-to-end delay during an embankment failure requires the

use of warning levels which inject duty-cycle policies into the network before an event

occurs. The nodes used in this picture are courtesy of Senceive Ltd.
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As the embankment collapses at a particular rate θ between time t1 to t5, ADAMAC

adapts the communication frequency in order to minimise end-to-end delay and

limit energy consumption. At t1, the collected reading is unchanged because the

embankment has yet to start moving. Between t2 and t4, the embankment steadily

collapses as revealed through rising readings and thus causes higher event probabilities.

Therefore at times t2, t3 and t4 corresponding to three different warning levels,

ADAMAC calculates a toggling period which increases the communication frequency

of the network as an event becomes more likely. At t5 when an event occurs, q = 1

and an event notification packet is reported with minimal delay towards the base station.

More details on the operation of ADAMAC are presented in the pseudo-code of

ADAMAC shown in Algorithm 4 below. After measuring a reading Xt, Algorithm

4 changes a node’s toggling frequency to a new toggling frequency,fi.

To determine fi, the values of Xevent, Xt, M , h, θ, TPmax and ρ must first be obtained

during initialisation. When the event occurrence rate, θ, is unknown, an estimated

event occurrence rate can be calculated using Equation 5.8. Next the event occurrence

probability, q, corresponding to Xt is calculated using algorithms such as DPPS or

eSENSE (see Line 2 of Algorithm 4). This event occurrence probability is then applied

to an adaptDutyCycle Function as shown in Line 3. If q = 1, an event is

imminent therefore the adaptDutyCycle Function applies an adaptation policy

of φ = 0 corresponding to a Fully Active toggling frequency in order to limit end-

to-end delay (see Lines 7 - 9). Conversely if q < 1, the toggling frequency, fi,

corresponding to φ = φb is obtained using Equation 5.6 (see Lines 10 - 11). The value

of this toggling frequency is optimal in the sense that it maximises energy savings while

avoiding breakdown. In order to minimise energy savings, after a sensor node has spent

ρ seconds using the same toggling frequency, a rampDownStatus Function as

shown in Line 5 is used to increase the toggling period of a network towards TPmax

(see Lines 13 - 27 for more details). After the rampDownStatus Function has
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been implemented, the new toggling frequency is updated as shown in Line 5 and then

broadcast to neighbouring nodes. Nodes that receive differing values of fi compare

these and adopt the one with the highest toggling frequency.

input : Xt

output: fi

Initialise Xevent, M , h, θ,TPmax,ρ1

qt← DPPS (Xt,Xevent);2

fi← adaptDutyCycle (Xt,Xevent,M ,h,θ,qt);3

farray(t)← fi ;4

fi← rampDownStatus (farray, fi, ρ);5

adaptDutyCycle ()6

if q==1 then7

φ← 0;8

else9

φ←
log

(

1−
log(Xevent−Xt

θ(h−1) )
(M−1) log 2

)

log(q)10

fi← 1
β(qt,φ)11

end12

rampDownStatus ()13

rampDown← 0 ;14

for time← t-ρ to t do15

if fi==farray(time) then16

rampDown← rampDown + 1;17

else18

rampDown← 0 ;19

end20

end21

if rampDown==ρ then22

if 1
fi

== TPmax then23

else24

fi← fi

2
;25

end26

end27

Algorithm 4: Adaptive Detection-driven Ad hoc Medium Access Control

(ADAMAC)
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5.6 ADAMAC Simulation Setup, Results and Anal-

ysis

This section presents a comparison and evaluation of the performance of ADAMAC

compared with SMAC and a Fully Active (FA) network. Relevant parameters were

obtained from a Chipcon CC2420 radio and simulations were carried out using

MATLAB v7.0.1. A 2-dimensional unit-disk graph model in a 100 square meter

area was used in all experiments. As outlined in Section 3.6.2 of Chapter 3, it is

assumed that nodes operate in an open lossless space with no physical obstructions and

that each node knows the location of neighbouring nodes.

To facilitate event reporting, a unique message is broadcast from an event source

node which, when received by a base station, alerts users of the occurrence of an event.

An event occurs when a reading is greater than or equal to Xevent = 31. The EWMA

equation, 0.85θ̄ + 0.15θt, with M = 7 were used because experimental tests showed

that they produced the best results in regard to limiting energy consumption and end-

to-end delay.

The performance metrics used to evaluate ADAMAC, SMAC and FA not only include

energy consumption and end-to-end delay, but also include event detection time:

• End-to-end delay (seconds): The amount of time between an event occurring and

the event being reported at a destination base station

• Event detection time (seconds): The amount of time between an event occurring

and the event being detected. Figure 5.11 further illustrates the distinction

between event detection time and end-to-end delay.

• Energy consumption (Joules): Energy consumed by a sensor node during sensor

operation, calculated using a first order radio model
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Figure 5.11: The distinction between end-to-end delay and event detection time

5.6.1 The effects of breakdown on delay and energy consumption

This section explores the effect of breakdown on end-to-end delay. The simulations

were carried out using a linear chain of nodes; the source and destination nodes were

located at the beginning and end of the chain.
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Figure 5.12: The effect of hop count on end-to-end delay
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Simulations were carried out to show the effects of increasing the number of hops

between an event node and a base station on end-to-end delay and energy consumption.

At a fixed event occurrence rate of θ = 0.084, Figure 5.12 demonstrates that as

the network size increases, breakdown occurs immediately using SMAC, and after

five hops using ADAMAC and FA. Figure 5.12 illustrates that using ADAMAC, the

CBR occurs after five hops, four hops more than is possible with SMAC. This means

that delay is substantially reduced when using ADAMAC. Furthermore, even after

breakdown, ADAMAC reduces end-to-end delay by over 200 seconds in comparison

to SMAC for the same network.
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Figure 5.13: The effect of hop count on energy consumption

Figure 5.13 demonstrates that before five hops, the energy consumption using

ADAMAC is almost as low as levels obtained using SMAC. Because breakdown

has not occurred when the number of hops is less than five, ADAMAC can limit

both end-to-end delay and energy consumption efficiently. After five hops, breakdown

causes both energy consumption and delay to increase. Inspite of the increase in energy

consumption, ADAMAC uses significantly less energy in comparison with FA.
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Figure 5.14: End-to-end delay variation with network size

Figure 5.14 also demonstrates the advantages of using ADAMAC; as the event

occurrence rate increases beyond the CBR, using ADAMAC leads to a smaller delay

than using SMAC when networks with four or five hops are used. It can also be

observed that the increase in delay caused by increasing the number of hops from

four to five hops affects ADAMAC less than SMAC. Thus Figure 5.14 shows that

delay incurred by ADAMAC for a network with five hops still offers an improvement

over SMAC for a network with four hops. This means that ADAMAC is less prone

to the effects of the Data Forwarding Interruption problem and can therefore reduce

end-to-end delay substantially in comparison to SMAC. It should also be noted that for

networks with either four or five hops, ADAMAC’s end-to-end delay is minimised to

levels comparable to FA when θ < 0.4 because breakdown has yet to occur.

5.6.2 The effect of event occurrence rate in a large network

More simulations were carried out to discover the effect of event occurrence rate on

both event detection time and end-to-end delay in large networks; networks with over

50 nodes. The simulation results obtained in this section used networks of random
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topology containing 60 and 80 nodes deployed in a 100 m2 plane. Results shown

correspond to a mean of all simulations in which nodes use a fixed communication

range of 30 m to form a connected network.
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Figure 5.15: The effects of the event occurrence rate on event detection time in a

network containing 60 nodes

Figure 5.15 shows that ADAMAC has a shorter event detection time in comparison

to SMAC; after an event occurs, the event is detected earlier using ADAMAC in

comparison with SMAC. As θ increases to between θ = 0.2625 and θ = 0.7, the

event detection time decreases. This is because the event occurs shortly before the

sensor becomes active and is therefore detected sooner. Although ADAMAC has a

shorter event detection time than SMAC, the event detection time starts to increase

after θ = 0.7. This increase happens because the event occurs just after a node has

gone to sleep and the event is therefore not detected until the next active cycle of the

node.

Simulations were also done to examine the effects of the event occurrence rate on

end-to-end delay and energy consumption. Figure 5.16 reveals that using ADAMAC

reduces end-to-end delay in comparison with SMAC. Although ADAMAC and SMAC
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Figure 5.16: The effects of event occurrence rate on end-to-end delay in networks

containing 60 and 80 nodes

have the same event detection time at θ = 0.2625, as can be seen in Figure 5.15,

Figure 5.16 reveals that ADAMAC, at θ = 0.2625, has a shorter end-to-end delay.

This is because the adaptive duty cycling technique employed in ADAMAC uses more

warning levels in comparison to FA and SMAC as shown in Figure 5.17. In order for

relevant events to be reported to a base station with limited end-to-end delay, these

warning levels increase the duty cycle of a network before an event occurs.

Another advantage of ADAMAC’s adaptive duty cycling technique is that as the event

occurrence rate increases, ADAMAC offers progressive performance improvement

with regard to end-to-end delay. As an example, in Figure 5.16 when θ = 0.2625,

the difference in end-to-end delay between ADAMAC and SMAC is 1% in a 60 node

network but by θ = 1.05 this difference increases to over 40%. It is also evident

from Figure 5.16 that as the density of nodes increases from 60 to 80, end-to-end

delay decreases. This is because as the number of nodes increases, more connections

are formed between nodes which offer shorter pathways to the base station thereby

reducing the delay.
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Figure 5.17: Average number of warning levels used in a network with 80 nodes

Figure 5.18 shows the energy consumption at various event occurrence rates in

networks with 60 and 80 nodes. Although ADAMAC consumes more energy than

SMAC, ADAMAC limits energy consumption in comparison to FA by over 90% in all

event occurrence rates. This is possible because after the event has been reported to the

base station, the network’s duty cycle is increased to TPmax leading to increased energy

savings. Figure 5.18 also shows that a network with 80 nodes consumes more energy in

comparison with a network with 60 nodes. Nevertheless increased energy consumption

between ADAMAC and SMAC is not substantial when compared with the increase

observed between FA and SMAC. It can be concluded therefore that ADAMAC limits

the effects the Data Forwarding Interruption problem while simultaneously limiting

energy consumption. To further outline the benefits of ADAMAC, the next section

examines the effects of node density on a sensor network in more detail.
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Figure 5.18: The effects of event occurrence rate on energy consumption in networks

containing 60 and 80 nodes

5.6.3 The effect of network density on delay and energy consumption

This section examines the effect of an increase in the number of nodes on the

performance of a network. Simulations were carried out using two different topologies.

The first used a source and base station pair at random locations; the second used a

source and base station pair at fixed locations diagonally across opposite ends of a

square deployment area.

Figure 5.19 shows the results for the first case where the source and destination base

station locations were random. Using a random source and destination has the effect

of averaging the number of hops between a source and destination. End-to-end delay

noticeably increases between 40 and 50 nodes when θ = 0.2625 because the effects of

the Data Forwarding Interruption problem are more prevalent in larger networks where

convergence to a duty cycle can take longer in comparison with smaller networks.

While it can be observed that SMAC only reduces the delay by less than 10% as the
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Figure 5.19: The effect of node density on end-to-end delay using a random source and

destination pair

event occurrence rate decreases from θ = 0.2625 to θ = 0.0280, within this same event

occurrence range ADAMAC decreases end-to-end delay by 200%.
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Figure 5.20: The effect of node density on energy consumption using a random source

and destination pair
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The effect of node density on energy consumption where the source and base station

locations were random is shown in Figure 5.20. Energy consumption using ADAMAC

is marginally higher than SMAC, but significantly lower than FA. Furthermore as the

number of nodes increases in ADAMAC, the rate of increase in energy consumed is

substantially lower than FA and only fractionally higher than SMAC. The fact that this

result is obtained across varying network sizes and event occurrence rates demonstrates

that ADAMAC is a scalable data collection tool.
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Figure 5.21: The effect of node density on end-to-end delay using a source and

destination pair at a fixed located at θ = 0.0280

Figure 5.21 presents end-to-end delay for an event occurrence rate of θ = 0.0280 when

the location of the source and base station are fixed at opposite ends of the diagonal of a

square deployment area in order to elongate the network’s diameter. As the number of

nodes increases, the end-to-end delay decreases because an increased number of nodes

make more connections forming shorter paths between the source node and the base

station, thus allowing messages to be transmitted more quickly. It may also be noticed

that values of end-to-end delay in Figure 5.21 are higher than values in Figure 5.19.
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This is because the average distance between the source and base station of the fixed

network is higher than the average distance of the random network.
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Figure 5.22: The effect of node density on energy consumption using a source and

destination pair at a fixed located at θ = 0.0280

The effect of node density on energy consumption where the locations of source and

base station are fixed is shown in Figure 5.22. As the number of nodes increases,

energy consumption using all protocols increases. Figure 5.22 also shows that energy

consumption using ADAMAC in a fixed network is higher than energy consumed in

a random network (see Figure 5.20). This increase in energy consumption is due to

the increased end-to-end delay in a fixed network caused by the elongated distance

between the source and destination. This leads to a network spending more time and

energy for event reporting. In spite of this increased energy consumption, ADAMAC

still has significantly higher energy savings in comparison to FA.
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5.6.4 The effect of packet loss on delay performance

This section investigates the effect of packet loss on end-to-end delay and energy

consumption. The packet loss ratio is indicative of the efficiency of packet transmission

from an event node to a base station and is an indicator of the extent of the inefficiencies

caused by the Broadcast Storm problem in a data collection protocol. In order to

demonstrate ADAMAC’s robustness to packet loss, simulations were first done using

a 50 node network at an event occurrence rate of θ = 0.0280. These simulations

illustrated the effect of packet loss on ADAMAC’s performance in terms of energy and

end-to-end delay. Secondly, simulations were also carried out to compare the energy

consumption and end-to-end delay of ADAMAC, SMAC and FA using different packet

loss percentages at various event occurrence rates.
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Figure 5.23: Variation of successful broadcasts with packet loss percentages

Figure 5.23 shows the effect of packet loss percentages on proportion of total packets

which are successfully received in a network using ADAMAC. As expected, the

percentage of total packets successfully broadcast to a destination using ADAMAC

decreases as the packet loss percentage increases. Therefore a 10% packet loss means

that around 90% of all packets are successfully received at a destination whereas a 60%
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packet loss means that about 40% of all packets are successfully received. This means

that the effect of the Broadcast Storm problem becomes more detrimental as packet

loss percentages increase.

Simulations results shown in Figure 5.24 reveal that the effect of packet loss on

end-to-end delay and energy consumption using ADAMAC worsens with increasing

packet loss percentage. For example Figure 5.24(a) shows that over the same packet

loss percentage range, end-to-end delay is increased from below 200 seconds at a

packet loss percentage of 10% to over 500 seconds at a packet loss percentage of

70%. Similarly Figure 5.24(b) reveals that energy consumption is more than doubled

between 10% and 70% packet loss percentages. The increase in both end-to-end delay

and energy consumption is caused by the increased number of rebroadcasts required to

report event data successfully to a base station.
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Figure 5.24: The effect of packet loss on delay and energy consumption
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Figure 5.25 shows the number of packets lost using ADAMAC, SMAC and FA in

networks with packet loss percentages of 10% and 30% respectively. As expected,

increasing the packet loss percentage from 10% to 30% increases the number of packets

lost in all three protocols. However, because ADAMAC adjusts the toggling period of

a network in order to receive and transmit more data when an event occurs, less data

packets are lost in comparison to FA.
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Figure 5.25: Number of packets lost using 10% and 30% packet loss percentages at

varying event occurrence rates

Although more packets are lost using ADAMAC than using SMAC, Figure 5.26 shows

that end-to-end delay minimisation with ADAMAC is still superior to that of SMAC

and only marginally higher than end-to-end delay with FA. Figure 5.26 also shows

that as the event occurrence rate increases, end-to-end delay in ADAMAC increases

at a slower rate than in SMAC. End-to-end delay between θ = 0.2625 and θ = 1.05

increases by 100 seconds using ADAMAC. This is significantly lower than the increase

of 900 seconds obtained with SMAC over the same event occurrence range. Further

examination of Figure 5.26 reveals that at packet loss percentages of both 10% and

30%, ADAMAC reduces end-to-end delay by up to 50% in comparison to SMAC.
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Indeed this is still the case when end-to-end delay at a packet loss percentage of 30%

in ADAMAC is compared with the end-to-end at a packet loss percentage of 10% in

SMAC; ADAMAC with 20% more packet loss consistently provides significantly lower

end-to-end delay when compared with SMAC. These results confirm that ADAMAC is

a more robust data collection tool not only in terms of alleviating the Data Forwarding

Interruption problem, but also in terms of minimising the Broadcast Storm problem.
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Figure 5.26: End-to-end delay using 10% and 30% packet loss percentages at varying

event occurrence rates

As expected, Figure 5.27 reveals that energy consumption increases in all protocols

as packet loss increases from 10% to 30% because more energy is used for retransmis-

sions. Figure 5.27 also reveals that ADAMAC reduces energy consumed in comparison

to FA.



Chapter 5 Adaptive Detection-driven Ad hoc Medium Access Control 148

0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Event occurrence rate θ

E
n

e
rg

y
  
/ 
J
o

u
le

s

ADAMAC (packet loss ratio = 0.10)

Fully Active (packet loss ratio = 0.10)

SMAC (packet loss ratio = 0.10)

ADAMAC (packet loss ratio = 0.30)

Fully Active (packet loss ratio = 0.30)

SMAC (packet loss ratio = 0.30)
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5.7 Chapter Summary

This chapter proposed an Adaptive Detection-driven Ad hoc Medium Access Control

algorithm (ADAMAC) as a solution to the Data Forwarding Interruption problem, a

problem affecting periodic scheduling protocols such as SMAC. Using early warning

event signalling produced from historical data, ADAMAC adapts the duty cycle

of a network prior to the onset of an event. By increasing the communication

frequency using a toggling period adaptation function, ADAMAC reduces end-to-end

delay. Simulation results revealed that end-to-end delay is limited using the proposed

ADAMAC in comparison with the SMAC protocol. Furthermore, results also revealed

that ADAMAC limits this end-to-end delay to levels obtained in a Fully Active network,

a network with optimum end-to-end delay characteristics, while simultaneously using

only a small fraction of the energy consumed in a Fully Active network. Reduced

delay was obtained under of a variety of network conditions including packet loss and

node density. This demonstrates that ADAMAC is not only a scalable solution to the

Data Forwarding interruption problem, but is also a robust monitoring tool which can

facilitate data collection in wide array of environmental applications.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis addresses the problem of energy limitations affecting sensor-based

networks. Protocols were developed to increase the lifetime of a network by decreasing

energy consumption; techniques were also developed to decrease delay during the

dissemination of data without substantially increasing energy consumption. It was

argued that by applying these techniques in monitoring programmes requiring data

collection and dissemination, the deployment of Wireless Sensor Networks could be

extended into wider application areas than had hitherto been possible.

After reviewing model-based techniques for improving energy efficiency, a new

data collection protocol was designed: a Dual Prediction and Probabilistic Scheduler

(DPPS). DPPS amalgamates ideas from probability theory and time series prediction

using a stochastic scheduler in order to conserve energy whilst maintaining accuracy

of results.

Simulations were carried out comparing DPPS with eSENSE, another stochastic

scheduler that reduces energy consumption. Simulation results indicated that DPPS
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offered improved performance over eSENSE in terms of reducing the expected miss

ratio (an estimate of the number of undetected events). Whilst offering these tighter

missed ratio guarantees, DPPS also offered reductions of up to 35% in sensor usage

compared with eSENSE, saving more energy and thus increasing the lifetime of the

network. Results also revealed that the mean square error could be explicitly controlled

so that it satisfied a user’s quality requirements. Preliminary experimentation of DPPS

was carried out on a real system using several Microchip PICDEMZ prototype boards

in order to demonstrate the feasibility of DPPS as a data collection tool.

Neither DPPS nor eSENSE however consider improving data collection efficiency

in a multi-hop sensor network by reducing delay between a source and a base station.

Thus in Chapter 5 an Adaptive Detection-driven Ad hoc Medium Access Control

(ADAMAC) algorithm was developed. ADAMAC increased data collection efficiency

by using event probability, as obtained from algorithms such as DPPS and eSENSE in

Chapter 4, to trigger early event warnings. When received, these warnings adapt the

duty cycle of a sensor so events are reported faster across a network. Despite these

advantages, Chapter 5 also demonstrates that as the event occurrence rate increases,

duty cycling protocols such as ADAMAC may breakdown causing end-to-end delay

to increase rapidly because a message can only be relayed through a finite number of

hops before it encounters a node that will fall asleep.

Thus, an analysis of the conditions leading to ADAMAC breakdown was also carried

out in Chapter 5. Results showed that although breakdown cannot always be avoided

as the event occurrence rate increases, ADAMAC extends the critical breakdown rate

(CBR) beyond that which is obtained in SMAC, an alternative data collection protocol

which uses periodic sampling. Furthermore ADAMAC counteracted the effects of the

Data Forwarding Interruption problem better than SMAC, approaching the optimal

performance obtained using a Fully Active sensor schedule in terms of end-to-end

delay.
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ADAMAC also improved the Event Detection Time, the duration between an event’s

occurrence and the event’s detection by a source node, by up to 30% compared with

SMAC. Additionally, end-to-end delay is reduced by a third in comparison with SMAC

because at the onset of an event, the network has a higher duty cycle and consequently

a higher communication frequency for transmitting reports.

Simulations in Chapter 5 also demonstrated that the effect of packet loss was to increase

both end-to-end delay and energy consumption as a result of necessary retransmissions

in ADAMAC and SMAC. However when both systems suffer a 30% packet loss,

ADAMAC reduced the end-to-end delay by 80% in comparison to SMAC. Indeed,

even when ADAMAC had 20% more packet loss than SMAC, a 70% improvement in

the end-to-end delay could be observed over SMAC.

ADAMAC was demonstrated to be scalable when used in dense networks of up to

80 nodes. In such networks, the increased number of nodes can adversely affect the

energy consumption. Although an increase of node density led to an increase in energy

consumption in all algorithms, this increase was less marked in ADAMAC because a

ramp down mechanism was used to adaptively decrease the duty cycle of a node once

an event has been successfully reported.

The development of these more energy efficient monitoring protocols will allow

WSNs to be deployed in wider application areas especially in networks where energy

constraints currently limit the effectiveness of data collection.
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6.2 Future Work

Owing to time restrictions it was not possible to implement and deploy sensors

programmed with DPPS or ADAMAC in a real life environmental monitoring context.

It was only possible to evaluate their efficiency using simulations. Future work would

therefore involve the deployment of DPPS and ADAMAC in real life monitoring

programmes. During the preliminary experiments conducted with Microchip prototype

boards the following practical challenges were highlighted and therefore could be

addressed in future work:

1. Packet collision - A robust collision avoidance mechanism could be developed in

order to further improve the efficiency of the data collection process by dealing

with the problem of packet collision. During experiments, as a means of reducing

packet loss, a random time was added to the scheduling interval so that no two

nodes transmitted data simultaneously. However, some packet collisions still

occurred leading to a partial loss of data.

2. Synchronisation - During the preliminary experiment it was discovered that the

clocks onboard each node were not synchronised as a consequence of the fact that

prototypes were being used which contained hand-soldered components. This

caused varying degrees of inaccuracy in the onboard watch crystals, thus leading

to small inconsistencies in results. Future work could be done to eliminate these

inaccuracies by assuring the synchronisation of all nodes.

3. Outliers and data corruption - Approximately 1 % of packets received contained

corrupted data such that temperature and timing information contained erroneous

values. While this problem is not critical, it could be addressed in future work in

order to further improve the efficiency of the protocol.

Another area of research which could be investigated in the future is the area of false

alarms. False alarms can occur when a faulty node produces a false reading, and



153

therefore a false alert. Such false alerts could perhaps be minimised by co-ordinating

nodes with each other in order to detect faulty nodes or by issuing trust levels to each

node based on the number of correctly reported alarms.

Owing to a lack of spatio-temporal datasets, it was not possible to explore the

correlation between readings from neighbouring sensors fully. More datasets, such

as those pertaining to tilt angle during an embankment failure or a landslide, if

obtained, would therefore be useful. For example, as event occurrence becomes more

likely, neighbouring sensors are likely to exhibit similar trends which allow the event

occurrence time to be determined more accurately. This in turn allows early warning

signals to be issued more accurately thus enhancing ADAMAC’s performance. An

analysis of spatial data could also significantly improve the miss ratio of DPPS.

Currently one of the assumptions during simulations is that sensors have infinite

transport buffers for packet storage. A more realistic scenario would be to assume

a finite buffer size for the transport queue. This would mean that some packets are

dropped and never relayed to the destination. It could also introduce more complexity

in the MAC layer, for example if a packet acknowledgement is needed. Investigating

how adapting the transport buffer size affects ADAMAC and DPPS could further

enhance their effectiveness during deployment in real life scenarios.



Appendix A

Integrated Moving Average Model

In time series analysis, determination of the order of a Moving Average (MA) process is

achieved by the evaluation of the Auto-Correlation Function (ACF) for a given dataset.

Theoretically, an MA(q) process is identifiable from its ACF because it cuts off after lag

q. In order words after q lags, the values of autocorrelation function, rk, should become

negligibly close to 0. An Integrated Moving Average (IMA(q)) process of order q is

akin to an MA(q) process where the data is differenced. Figures A.2-A.3 show the

autocorrelation function of various differenced datasets.
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Figure A.1: Autocorrelation function of soil moisture (dataset 1)
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Figure A.2: Autocorrelation function of soil moisture (dataset 2)
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Supplementary Datasets
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Figure B.1: Data collection using DPPS and eSENSE protocols (FN = 5%)
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Figure B.3: Sampling efficiency of DPPS and eSENSE when FN = 5%
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Appendix C

Transition time and the Number of

Active Cycles in ADAMAC

The transition time for a h hop network where all the nodes have the same toggling

frequency fi in ADAMAC is given by:

tr =
h− 1

fi

Figure C.1: Number of sensor wake-up cycles in a network with periodic duty cycle

This is demonstrated using Figure C.1 where all nodes have the same toggling

frequency of f2 = 1
22 . In a broadcast medium access control protocol, when an

event is detected say at t = 1, it is immediately reported to neighbouring nodes in
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order to minimise the delay. In this case at time t = 1 when an event occurs at node

1, it is forwarded to node 2. Recall that owing to the broadcast storm problem, all

intermediate relay nodes between the event source and the destination must wait until

the next active cycle before any received messages can be forwarded. Therefore node

2 forwards the reported event occurrence onto node 3 at time t = 5 seconds and node

3 repeats the forwarding process at t = 9. Hence the total delay required to propagate

the occurrence of the event after it is detected is
(

h−1
f2

= 2
1/22

)

8 seconds.

When a new policy φ is introduced at time t0 to replace a default toggling frequency

fj with a new toggling frequency fi, the total number of sensor wake-up cycles, Ω, in

time T is given by:

Ω = γ +

(

i=h−1
∑

i=1

(h− i)
fi

fj

+ i

)

+ (h + 1) ⌊(T − τ + t0) fi⌋

γ = (h− 1) fi

fj
+ 1 and τ = (h−1)

fj
.

Figure C.2: Sensor wake-up cycles with a new duty cycle policy

To demonstrate this, consider again the 3 hop network in Figure C.2 where each node

has a default toggling frequency of f2 = 1
22 . When a new toggling frequency of f0 =

1/20 is introduced at time t = 1, the network has a total of 47 active wake-up cycles

in 14 seconds. Referring to Figure C.2, this new duty cycle disseminates across the

network by time t = 9 seconds. During this time, there are a total of 25 sensor wake-up
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cycles throughout the network: (γ = 2 × 22/20 + 1) 9 wake-up cycles for node 1,

(2 × 22/20 + 1) 9 wake-up cycles for node 2, (1 × 22/20 + 2) 6 wake-up cycles for

node 3 and (0× 22/20 +3) 3 wake-up cycle for node 4. Between 9 and 14 seconds, the

network has a total of
(

4× ⌊(14− 9)× 1
20 ⌋
)

20 wake-up cycles. Putting this together

gives a total of (9 + 9 + 6 + 3 + 20) 47 wake-up cycles in 14 seconds as confirmed in

Figure C.2
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