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Abstract

Following a review of some traditional methods of clustering, we review

the Bayesian nonparametric framework for modelling object attribute

differences. We focus on Dirichlet Process (DP) mixture models, in

which the observed clusters in any particular data set are not viewed

as belonging to a fixed set of clusters but rather as representatives of a

latent structure in which clusters belong to one of a potentially infinite

number of clusters. As more information about attribute differences is

revealed, the number of inferred clusters is allowed to grow. We begin by

studying DP mixture models for normal data and show how to adapt one

of the most widely used conditional methods for computation to improve

sampling efficiency. This scheme is then generalized, followed by an ap-

plication to discrete data. The DP’s dispersion parameter is a critical

parameter controlling the number of clusters. We propose a framework

for the specification of the hyperparameters for this parameter, using a

percentile based method. This research was motivated by the analysis

of product trials at the magazine Which?, where brand attributes are

usually assessed on a 5-point preference scale by experts or by a random

selection of Which? subscribers. We conclude with a simulation study,

where we replicate some of the standard trials at Which? and compare

the performance of our DP mixture models against various other pop-

ular frequentist and Bayesian multiple comparison routines adapted for

clustering.
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Chapter 1

Introduction

1.1 Motivation

The initial motivation for this thesis was driven by some of the problems I faced

whilst working as a Statistician at Which? analysing and drawing conclusions from

experimental results for publication. Data analysis there often involves the compar-

ison of observed outcomes from two or more brands trials. For example, suppose we

have an experiment that compares two brands from the same type of product being

assessed on a specific question of interest. Assessors are asked to rate the brands on

a preference scale of 1-5, where 1 is poor and 5 good. Usually, in a user trial, the

assessors are a random selection of Which? subscribers. Using the data a conven-

tional t-test can be used to test for a difference between the population means of the

two brands at the conventional 5% level of significance. However, these responses

are discrete so assuming normality under the t-test is questionable. However, this

is common practice currently at Which?.

Although the initial motivation for this thesis was driven by some of the problems

faced at Which? we also seek to develop a more general framework for model based

clustering that can also be exploited in other areas such as modelling individual

differences, in which subjects are assumed to belong to one of a potentially infinite

number of clusters, see Navarro et al. (2006).

We present an example of a user trial in the next section followed by the technical

details of the Which?’s clustering method and its shortcomings.

1



1.1 Motivation

Figure 1.1: Blob scale symbols: (top) General set (bottom) Specific to gardening
Which?

1.1.1 Example Which? user trial: Garden Kneelers

Six brands of garden kneelers were tested by 120 gardening enthusiasts. Each gar-

dener was assigned randomly and anonymously to one of the six kneelers. Each

kneeler was rated on a 1-5 preference scale, where 1 is low and 5 is high preference,

on various kneeler attributes, e.g. level of comfort, durability etc. Since for each

brand the responses are on a discrete 1-5 preference scale, or ordinal, it is common

practice at Which? to transform them into a weighted sample mean. For exam-

ple, if for a particular brand ten gardeners selected preference 4, and the other ten

selected preference 5 for level of comfort then the mean would be 4.5. Following

this transformation, we cluster the six brand means on level of comfort. Which?

currently cluster these brands using the method of Normal scores, which we outline

in the next section.

Once the brands have been clustered the researchers are often interested in un-

derstanding how the brands can be graded into a class of product on a 1-5 blob scale,

where 1 is worst and 5 best quality. The current blob scale symbols used at Which?

are shown in Figure 1.1. Ideally the researchers are looking for brands in each of

the five blobs to allow for better separation. However, we can sometimes observe

all brand means in one cluster, e.g. all garden kneelers are of best quality on level

of comfort so we assign a 5 blob score, or a red star, for all brands. Assigning blob

scores to brands can be a subjective process, where the cluster solution provided by

the statistician is used in conjunction with the researchers’ knowledge of the brands

market picture to decide on the final scores.

2
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1.1 Motivation

1.1.2 Which? methodology

Let Xji denote a response to a question from the ith individual for the jth brand

(j = 1, . . . , m, i = 1, . . . , t), μ the overall mean across all brands, αj the brand effect.

Then a possible model for the data can be defined as

Xji = μ+ αj + εji, (1.1)

where the errors εji are iid N(0, σ2). This is the standard one-way analysis of

variance (ANOVA) with t randomly selected individuals for each brand j. Now if

we let μj = μ+αj denote the mean for brand j then we construct our test hypothesis

as
H0 : μ1 = μ2 = · · · = μm = μ
HA : At least one pair (μj, μk), j �= k, differs.

We fit model (1.1) using a statistics package1 to validate the above hypothesis at the

conventional α = 5% level of significance. Based on the output, we decide whether

there is sufficient evidence to reject H0 and conclude that at least one pair (μj, μk)

differs significantly. More precisely we reject H0 if

BSS/(m− 1)

ESS/m(t− 1)
=

{m(t− 1)}∑m
j=1(x̄j. − x̄..)

2

(m− 1)
∑m

j=1

∑t
i=1(xji − x̄j.)2

≥ Fm−1
{m(t−1)}(0.95), (1.2)

where μ̂j = x̄j. =
∑t

i=1 xji/t and μ̂ = x̄.. =
∑m

j=1

∑t
i=1 xji/mt. Here BSS is the

Between brand Sum of Squares and ESS the Error Sum of Squares. Herein we

estimate σ2 with σ̂2 = ESS/(m(t − 1)) unless otherwise stated. The focus now

turns to the harder problem of clustering the μj. Using the proposal of O’Neill and

Wetherill (1971), after a significant one-way ANOVA, discontinuities between μj are

found by first ordering their estimates μ̂(1) ≤ μ̂(2) ≤ · · · ≤ μ̂(m). Under the null

hypothesis μ̂j ∼ N(μ, σ2

t
). Indeed, if this hypothesis were true then

E[μ̂(j)] = μ+
σ√
t
r(j), (1.3)

where the normality of a sample j can be assessed by plotting its order statistic

against the order statistics that would be expected from a Normal distribution, or

the normal scores. We can approximate the jth normal score by

r(j) = Φ−1

(
8j − 3

8m+ 2

)
, (1.4)

1SPSS is used currently by the statistics team
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1.1 Motivation

where Φ−1(p) is the pth quantile of the standard normal density. Therefore, if a line

of slope σ̂√
t

and y-intercept μ̂ is drawn on a plot containing all the μ̂(j) then they

should lie close to this line. If not, there are apparent cluster boundaries in the plot.

Thus, it may be argued that the adjacent means where boundaries occur divide

into more than one cluster. More formally, define the slope between two successive

means as

qj =
μ̂(j) − μ̂(j−1)

r(j) − r(j−1)

. (1.5)

Then we test whether the observed slope qj differs from the expected slope σ√
t
. That

is, test the the hypothesis
H0 : E[qj ] = σ√

t

against
HA : E[qj ] �= σ√

t
.

(1.6)

Currently at Which? they use the rejection criterion

Tj =

√
t

3σ̂
qj ≥ 1. (1.7)

If criterion (1.7) is satisfied then the m means are divided into two clusters, where

in one cluster we have
(
μ̂(1), . . . , μ̂(j−1)

)
and

(
μ̂(j), . . . , μ̂(m)

)
in the other. Within

a defined cluster, we search for further sub clusters in an iterative manner using

criterion (1.7) until there are no Tj ≥ 1 within the sub clusters considered. However,

we note a few possible flaws in this methodology, the main one being when we have

multiple cases where Tj ≥ 1 at the first stage of the iterative process (i.e. when

we consider all μ̂j). We currently address this issue by taking the first point of

discontinuity j at max[Tj ]. Therefore, we are essentially defining a discontinuity

amongst the set of other discontinuities as the most significant result. We define this

the Method of Normal Scores for Clustering (MNSC). However, it could be argued

that a more significant result was observed by chance alone or was an experimental

error, and repeating the experiment under the same constraints may yield a less

significant result. Adopting a strategy where we take the first discontinuity at

min[Tj ] could produce marked differences in the final set of clusters, thereby leading

to difficulties in deciding whether the μ̂(j) in the assigned clusters are by chance or a

true reflection of the underlying trend in the brand population. The lack of stability

in the final cluster solution that results from this approach could potentially be very

damaging for Which? If they have, say, two competing brands in the market place

and one is assigned a higher blob score then Which? could potentially be sued by

the brand manufacturer with the lower score.
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1.2 Aims and contributions

1.2 Aims and contributions

With the main difficulty clustering brands highlighted in the previous section we

explore clustering and classification more broadly to find an alternative solution.

Since clustering and classification are two of the most fundamental data analysis

tools in use today and a very rich and broad area for statistical research, we focus

our thesis on two areas. Firstly, since Multiple Comparison Methods (MCMs) are

very popular in the the design and analysis of experiments community, we consider

popular MCMs and their adaptation to clustering. Clustering methods can be split

into model and non-model based. Here we consider recent developments in nonpara-

metric Bayesian analysis with regards to model based clustering using a Dirichlet

Process Mixture (DPM) model. Here we assume that the objects, each with some

random observations, belong to one of a potentially infinite number of clusters in

this model. In the Which? context it could be argued why a model based on an

infinite number of clusters is necessary when they ideally require five blob classes

at the end. However, since the model is based on an infinite cluster model, it is

more adaptive and can uncover new classes that have not been previously observed.

In addition, as we shall see later in Chapters 4-6, the DPM provides more flexi-

bility in setting the types of cluster boundaries that are commercially, as well as

statistically, meaningful. For example, a mean difference of say 0.01 between two

brands in different classes could be statistically meaningful. However they might

later be merged into the same class by the researchers, using commercial insight. In

situations where there are less than five classes in the data, the brands are allocated

into classes based on their sample mean. When more than five classes are present,

they are merged down to five. The observed clusters in a particular data set are

not viewed as belonging to a fixed set of clusters but rather as representatives of a

latent structure. As more information about attribute differences is revealed, the

number of inferred clusters is allowed to grow. The Dirichlet process enables the

model to uncover new clusters therefore learning from the data. The model allows

a priori for an infinite number of clusters. It also avoids the use of computationally

intensive Markov Chain Monte Carlo (MCMC) algorithms such as reversible jump

MCMC.

We make a number of contributions in this thesis. Firstly we extend the standard

DPM structure and then compare this with other adapted clustering methods based

on MCMs (Bayesian and frequentist) and K-means using a simulation study that

depicts some of the commonly performed trials at Which?. We also adapt one of the
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widely used stick-breaking representation of the DP to improve sampling efficiency.

Since inferences about the level of clustering can be sensitive to the choice of prior

assumed for the dispersion parameter in the DPM, an approach is developed for

computing the prior in the presence, or absence, of prior information.

The rest of this thesis is structured as follows. In Chapter 2 we review work on

the broader area of MCMs, and adapt some of these MCMs for clustering purposes.

We also briefly review frequentist and Bayesian views on multiple comparisons.

Chapter 3 presents an introduction to Bayesian nonparametrics. We then provide

an introduction to the Dirichlet Process (DP) followed by the DPM. A review of

various representations of the DP is provided next. An adaptation of the standard

DPM for normal data is made in Chapter 4, followed by a simulation study, depicting

common Which? user trials, that compares the clustering performance of DPM with

some other adapted clustering methods in Chapter 2. In Chapter 5 we generalise

our adapted DPM model to cover non-normal data. We then construct a DPM for

multinomial data and assess clustering performance with a simulation study as in

Chapter 4. In Chapter 6 we detail some of the difficulties in using conventional ways

of setting the prior for the dispersion parameter in the DPM. An approach is then

developed for computing this prior in the presence, or absence, of prior information.

We repeat the simulation study in Chapter 5 to identify any performance gains using

this approach. Finally we present some concluding remarks and directions for future

research.

1.3 Summary

We have addressed some of the clustering problems we currently face at Which?.

The existing clustering method tends to output cluster solutions that are not robust

statistically, which potentially gives rise to a brand being assigned the wrong blob

score. With this in mind, we explore alternative methods for clustering in the next

chapter, where we focus specifically on MCMs and their adaptation to clustering

along with other traditional clustering methods such as K-means.
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Chapter 2

Clustering Methods based on

Multiple Comparisons

2.1 Introduction

In this chapter we address some standard and non-standard methods for clustering.

We first give an introduction on hypothesis testing and then highlight problems with

multiple testing. We follow this with a general discussion of popular Multiple Com-

parison Methods (MCMs) to address some of these issues, then propose a framework

where MCMs can be adapted for clustering purposes. We conclude with a general

review of clustering methods outside the MCMs community, focusing on model and

non-model based clustering methods.

2.2 Multiple Comparison Methods

Often statistical analysis involves some form of hypothesis testing. This could be,

for example, the brand trials in Section 1.1. For any particular test, the question of

interest is simplified into two hypotheses between which we have a choice: the null

hypothesis, H0, against the alternative hypothesis, HA. Given George Box’s famous

statement ‘all models are wrong but some are useful’ it may be simpler, in practice,

to interpret a situation having the null hypothesis in mind than a more complex

alternative. However, this really depends on the context of the application area. We

may decide to act as if the null hypothesis is true until we have sufficient evidence

to reject it in favour of the alternative. For example in medical applications a new

drug may have potential side effects and unless there is strong evidence to suggest
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2.2 Multiple Comparison Methods

it is better than placebo it won’t be used. So here there is no reason to believe that

its true effect is really exactly equal to placebo.

We frequently encounter two situations:

1. The experiment has been carried out in an attempt to disprove or reject a

particular hypothesis, usually H0. Thus we give it more priority so it cannot

be rejected unless the evidence against it is sufficiently strong. For instance,

H0: Two brands have the same population means on a given attribute question

HA: There is a difference between the two means.

2. If one of the two hypotheses is simpler we give it priority so that more com-

plicated theory, as highlighted above, is not adopted unless there is sufficient

evidence against the simpler one. For example, it is often simpler to claim

that there is no difference between two brands on an attribute question than

concluding a difference.

For any particular test we assign a predefined probability, usually known as the

Type I error α. It can be thought of as the probability of falsely rejecting H0 in

favour of HA, sometimes referred to as the false positive. It is common practice

to use probability α = 0.05, therefore we accept that one in, say, every twenty

such independent tests will show a false positive if H0 was true. For instance, if we

consider an experiment that involves performing 100 independent tests, we would

expect five to be declared as significant if each were performed at α = 0.05 under H0.

This naturally leads to the multiple comparison problem. Our preference here is to

control the false positive rate not just for any single test, but also for entire family

of tests that makes up our experiment. Before getting deeper into this problem, we

need to appreciate the vast amount of literature on this topic including a number of

review articles. A good overview on multiple comparisons is provided in the book by

Hochberg and Tamhane (1987) and also Hsu (1996). Both are excellent contributions

to the field and essential reference manuals. Computer intensive methods to adjust

the p-values of statistical tests for multiplicity are presented in Westfall and Young

(1993).

2.2.1 Error Rates

Consider a family of n independent tests, where for each test we have H i
0 vs H i

A, i =

1, . . . , n, with the same value of α. Here we refer to α as the Per-Comparison Error

Rate (PCER), i.e. the probability of incorrectly rejecting each H i
0 that make up the
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2.2 Multiple Comparison Methods

family. Given all H i
0 are true, it is clear that the the number of false positives X

follows a Binomial distribution, B(α, n), where α denotes the probability of success

and n the number of independent tests. Thus, the probability of, say, k such false

positives is

P (X = k|all H i
0 true) =

(
n
k

)
αk(1 − α)n−k (2.1)

for all i. For large n and small α it can be shown that X ≈ Po(nα) under H i
0,

i = i, . . . , n.

A more relevant error rate is the familywise error rate (FWER) denoted by π.

Simply put, it is the probability of incorrectly rejecting at least one of the H i
0 that

make up the family. Therefore, by using (2.1) it follows that

π = P (X ≥ 1|all H i
0 true) = 1 − (1 − α)n. (2.2)

It is clear from (2.2) that, as the number of tests grows, the probability of observing

at least one false positive increases. Intuitively this makes sense; for example, toss

a biased coin 100 times, where P[Head]=0.05 and P[Tail]=0.95, then we are almost

certain to observe at least one head in those tosses. Several multiple comparison

methods that control for FWER exist in the literature, the first being the multi-

ple comparison analysis originally proposed by Fisher (1935), who looked at group

means. It is a two-step method: first test the overall null hypothesis that all k group

means are equal using ANOVA at significance level α. Then, if the null hypothesis

of equality is rejected, proceed to test all
(

k

2

)
pairwise differences between means

using separate t-tests at PCER α. Otherwise, when the overall null hypothesis is

accepted we terminate the analysis. This is often known as Fisher’s least significant

difference (LSD) test. However, the LSD does not protect for FWER. Alternatively,

if we wish to fix π and solve for the PCER α required for each test then

α = 1 − (1 − π)
1
n . (2.3)

This is often called the Dunn-S̆idák method. Since 1 − (1 − α)n ≈ nα for small α,

we obtain the commonly known Bonferroni method, by taking

α = π/n. (2.4)

The bound in (2.4) is known as the Bonferroni correction and offer protection against

FWER. The Dunn-S̆idák correction gives a stronger bound than the Bonferroni

correction, because, for n ≥ 1, π/n ≤ 1 − (1 − π)
1
n . But the S̆idák correction
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requires the additional condition of independence. In some multiple comparison

situations, see Section 2.4, using the S̆idák correction is wrong. For example, if we

knew that for sample mean differences A-B > 0 and B-C > 0, then logically we

know that A-C > 0, so A-C cannot be independent of A-B and B-C.

2.2.2 Multiple Comparison Methods

Procedures that are designed to take account of and protect FWER are called MCMs

(Multiple Comparison Methods). They can be categorized as either single-step or

stepwise. In operation they differ by the nature in which they take account of

decisions on null hypotheses of the same family when testing the actual one. For

instance, with single-step methods each null hypothesis is tested without reference

to the others in the family. However, in the case of stepwise methods the decisions

on already tested hypotheses are used to decide on the rejection or acceptance of

another hypothesis. An example of a single-step method has already been presented

in the previous section, the Bonferroni test. Other methods that protect FWER

include Tukey’s procedure for equal sample sizes and the Tukey-Kramer procedure

for unequal sample sizes, Dunnett’s procedure when population means are compared

against a control, Duncan’s procedure and procedures based on approximations like

those of Bonferroni and S̆idák. When population variances are not equal procedures

such as Cochran’s (C) and Tamhane’s (T3) are appropriate.

Contrary to single-step methods, stepwise methods make comparisons in a series

of steps, where based on the current step we decide whether to make comparisons

in the subsequent step. We can divide stepwise methods into two types: step-up or

step-down. The LSD method introduced in the previous section is an example of

a step-down procedure, as we only test a subset of means that have been rejected

in an earlier step. Other popular step-down procedures are the Newman-Keuls

and Duncan multiple range tests. The idea here is to test the observed difference

between ordered means, starting with the largest vs smallest, and comparing this to

a predefined critical value1. Next the difference of the largest and the second-smallest

is computed and compared to the critical value. These comparisons are continued

until all means have been compared with the largest mean. Then, the difference

between the second-largest mean and the smallest is computed and compared. This

sequence of comparisons is continued until the difference between all pairs of means

have been considered. To prevent contradictions, no differences between a pair of

means are considered significant if the two means involved fall between two other

1The critical value varies according to the pair of ordered means considered
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means that do not differ significantly. The implication is that the procedure could

stop early if there are no differences between means at an earlier stage. Thus far we

have made statements on whether differences between means are significant, or not,

based on a given cut-off value.

Alternatively, we could look at the set of p-values to assess the significance of

each comparison. One such method that works in this way is the Bonferroni-Holm

procedure, Holm (1979). Essentially this is a stepwise version of the Bonferroni

test, and proceeds as follows: Order the p-values from the n hypotheses, such that

p(1) ≤ p(2) · · · ≤ p(n). Then, starting with the smallest p-value, if p(1) ≤ π/n the

corresponding hypothesis is rejected and the next hypothesis can be tested with

p(2). Otherwise, the procedure stops. So in general if we have already rejected h

hypothesis then, if in step i = h+1 the p-value p(h+1) > π/(n− i+1) the procedure

stops and we accept all remaining hypothesis from i = h + 1, . . . , n. A variant of

this is the Simes-Hochberg approach, Simes (1986). As opposed to stopping when

we fail to reject a hypothesis, we start backwards working with the largest p-values

first. That is, if p(n) > π the corresponding hypothesis is accepted, then we test the

next hypothesis corresponding to p(n−1). Therefore, if we have already accepted h

hypothesis then, if at step i = h+ 1 the p-value p(n−i+1) ≤ π/i, the procedure stops

and we reject all remaining hypotheses from i = h + 1, . . . , n. Although the Simes-

Hochberg approach is more powerful than Holms, it is only strictly applicable when

the tests within a family of hypothesis are independent, whereas Holms approach

does not have this restriction.

If we had a situation where there were a large number of null hypotheses, then a

powerful result based on the distribution of p-values can be employed. One creative

use is the proposal by Schweder and Spjtvoll (1982), where the idea is to form a

QQ-plot of p-values and look for an elbow separating a linear region coming from a

true null hypothesis from that of a false null hypothesis.

We briefly mention step-up procedures, where the idea is to start by testing a

single hypothesis. Then, depending on the result, we either step-up to a hypothesis

involving more means or stop. The literature on step-up procedures is rather limited.

However Welsch (1977) addressed them in some detail. More recent proposals can

be found in Hochberg (1988) and Dunnett and Tamhane (1992).

2.2.3 False Discovery Rate

Benjamini and Hochberg (1995) have been particularly influential in multiple com-

parisons, in particular their proposal of the false discovery rate (FDR) control as an
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Declared significant Declared not significant Total

Null true F n0 − F n0

Alternative true T n1 − T n1

Total S n− S n

Table 2.1: Possible outcomes from n hypothesis tests based on a significance rule

alternative to the commonly used FWER, see Section 2.2.1. The FDR is the frac-

tion of false positives among all tests declared significant. The motivation for using

the FDR is that we may be running a very large number of tests, with those being

declared significant being subjected to further studies. Examples range from a large

scale application: differential expression over a huge set of genes on a microarray,

to a small scale application, see Section 1.1. Fewer applications have been proposed

when the data are discrete in nature. However, a recent proposal by Gilbert (2005)

looking at human immunodeficiency virus data developed a modified FDR procedure

that is more powerful under this setting.

The initial analysis takes a large number of candidates and produces a smaller

subset for further analysis. Therefore, we are more concerned with making sure all

possible true alternatives are included in this subset, and we are willing to put up

with some false positives to accomplish this. However, we also do not want too many

false positives. Therefore, we need to define the FDR rate δ, where we expect that

a proportion δ of candidates in the subset declared as significant are actually false

positives. Conversely a proportion 1− δ of those candidates declared significant will

be the correct decision. Usually δ is taken to be 0.05, which is also the usual rate

for FWER.

To formally motivate the FDR, suppose a total of n hypotheses are tested, S

of which are judged significant1. If we had complete knowledge then we would

know that n0 of the null hypotheses were true and the remaining n1 = n − n0

null hypotheses were false. We might find that a number F of the true nulls is

declared significant while a number T is declared significant when the alternative

is true. For clarity we illustrate this in Table 2.1. From Table 2.1 it follows that

FDR δ = F/S. In contrast, note that α = E [F ] /n0. In both cases notice the

denominators are considerably different. In the first case the number of hypotheses,

S, that are declared significant, whereas the number, n0, that are truly null in the

second. Another way to see the distinction between α and δ is to consider them as

1based on some criterion used for each test
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Quantity Definition

α Comparison-Wise Type I error (false positive)
β Type II error (false negative), where 1 − β=Power
π Family-wise Type I error, Pr(F >0)=π
δ False Discovery Rate
π0 Fraction of all hypotheses that are null
T Test statistic

Table 2.2: Notation for multiple comparisons

probability statements on a single hypothesis i. Then

δ = P(i is truly null|i is significant), (2.5)

whereas

α = P (i is significant|i is truly null). (2.6)

Now, let us remind ourselves as to the various parameters that arise when multiple

comparisons are considered, see Table 2.2. More importantly, we are interested in

how these parameters are related to each other. First, to understand the relationship

between α, π, and F , let us consider the situation where we set the false positive

rate at α. Then, given n tests under the null (p ≤ α is classed as significant and

a false positive) the expected number of false positives under the null is bounded

above by E[F ] = nα. We now consider the relationship between α, β, π0, and δ.

However, to do so we first need to consider the concept of the posterior error rate

(PER). The PER was first introduced in the context of linkage analysis in humans

by Morton (1955). Simply put, Morton’s PER is the probability when n = 1 that a

single significant test is a false positive

PER = P (F = 1|S = 1). (2.7)

If we base tests on PER then we encounter the screening paradox noted by Manly

et al. (2004): Type I error control may not lead to a suitably low PER. For example,

we might set α = 0.05, which may result in the PER being much higher. Therefore

the tests being significant may have a much higher false-positive rate than 5%. The

key distinction here is to observe that, rather than conditioning on the hypothesis

being null as we do with α, we condition on the test being significant. Therefore,

in the pool of significant tests, we could either have false or true positives. The

relative fraction of each is a function of α, β and π0. To see this more clearly, we
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apply Bayes’ theorem to (2.7) to give

PER = P (F = 1|S = 1) =
P (S = 1|H0 = True)P (H0 = True)

P (S = 1)
. (2.8)

If we denote the fraction of all n hypotheses that are truly null by π0 = n0/n, then

P (S = 1|H0 = True)P (H0 = True) = απ0. (2.9)

Now, considering the denominator of (2.8), we need to work out the probability that

a single randomly drawn test is declared significant. This can occur if we pick a null

hypothesis as significant, with probability α, or if we pick an alternative hypothesis

and avoid a Type II error β. Therefore

P (S = 1) = απ0 + (1 − β)(1 − π0). (2.10)

Thus (2.8) reduces to

PER = P (F = 1|S = 1) =
απ0

απ0 + (1 − β)(1 − π0)

=
1

1 + (1−β)(1−π0)
απ0

.

(2.11)

We note that when π0 is close to 1 most hypothesis are null. However, more real-

istically, as some of the hypotheses are expected not to be null (1-π0 is modest to

large).

While the FDR for any given experiment is simply F/S, there are several ways

in which we could formally define the expectation of this ratio. The original notion

of FDR was suggested by Benjamini and Hochberg (1995), defined as

FDR = E

[
F

S

∣∣∣∣S > 0

]
P (S > 0). (2.12)

Since then a number of workers have suggested modifications, the most distinct

contributions from Storey (2002): the positive false discovery rate

pFDR = E

[
F

S

∣∣∣∣S > 0

]
. (2.13)

We condition on S > 0 to allow for cases when S = 0. Another important contri-
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bution is the proportion of false positives

PFP =
E[F ]

E[S]
(2.14)

defined by Fernando et al. (2004). Others include PER as described before and the

False Positive Rate FPR=P(F ≥ 1).

Strictly speaking, these are the proportion of false positives. This is a good thing,

as Fernando et al. (2004) have shown that the PFP does not depend on either the

number of tests or the correlation structure among tests (essentially this occurs

because we are taking the ratio of two expectations, so the number of tests cancels

in each and correlation structure among tests does not enter into the individual

expectations). In essence the main operational differences between the different

false discovery rates are

1. The original method by Benjamini and Hochberg (1995) assumes n = n0 (all

hypotheses are true nulls)

2. All other estimators assume π0 is not necessarily one, thus attempt to estimate

π0 or n0 and then use these to estimate the corresponding false discovery rate.

While we can control the FDR for an entire set of experiments, we would also like

to have an indication of the FDR for any particular experiment (or test) within this

family. Intuitively, tests with smaller p-values should also have smaller associated

FDR values. Storey (2002), and Storey (2003) introduced the concept of a q-value

(as an alternative to p-value) of any particular test, where q is the expected FDR

rate for tests with p-values at least as extreme as the test of interest. The estimated

q-value is a function of the p-value for that test and the distribution of the entire

set of p-values from the family of tests being considered.

The difficulty is now in estimating π0, the proportion of true null hypotheses. We

consider the distribution of p-values under the null being uniform. If some alternative

hypotheses are true then they are mixed in with the null hypotheses. Therefore, we

expect the distribution of p-values to be a mixture, with n0/n draws from a uniform

and (1−n0)/n draws from some other distribution in which the p-values are skewed

towards zero. The main offerings can be summarised as follows: first Schweder and

Spjtvoll (1982) make use of a regression estimator to estimate π0; however this tends

to overestimate the number of nulls. Another approach was suggested by Allison

et al. (2002), who used maximum likelihood (ML) to fit a mixture model to the

p-values. Finally, a very simple estimator was offered by Storey (2003), using the

key feature that draws from hypotheses which are not null are expected to have their
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p-values skewed towards zero. Although current methods for the estimation of π0

provide adequate results in many situations, it was pointed out by Black (2004) that

when the data arise from mixtures of distributions which are difficult to separate,

the development of improved estimation techniques will allow better control of error.

Another area of research is in the development of FDR controlling techniques

for dependent hypothesis tests. There have been relatively few advances in this

area. Nonetheless, the most marked contributions have come from Storey et al.

(2004), who considered a form of weak dependence under which the distribution

function of both null and non-null p-values approach limit functions. He then went

on to show the asymptotic control of FDR in this case. An approach based on a

permutation procedure was proposed by Korn et al. (2004) where the idea was to fix

the probability of a given number of false positives below α. Further, to highlight the

inflation of variance of the false discoveries, Owen (2005) presents a variance formula

to take account of correlations between test statistics. Other recent advances include

the recent proposal by Wenguang and Tony (2009) where they tackle the dependence

using a hidden Markov model. Development of FDR controlling multiple-comparison

techniques is an active area of research, and we expected that many of the newly

developed procedures will build on the fundamentals proposed by Benjamini and

Hochberg (1995).

2.2.4 Bayesian views on Multiple Comparisons

Inconsistencies with the scientific method and the likelihood principle have been the

common complaint with the frequentist approach to hypothesis testing, see Berry

(1988), Berger and Berry (1988) and Berger and Wolpert (1984). For instance, sup-

pose we are interested in testing θ, the unknown probability of heads for a possibly

biased coin. Suppose, H0 : θ = 0.5 vs Ha : θ > 0.5. An experiment is conducted and

nine heads and three tails are observed in twelve flips of a coin. This information

is not sufficient to fully specify the p-value, since when the number of flips is fixed

at n = 12 we have the number of heads X ∼ B(n, θ), from which it follows that

P [X ≥ 9|H0 = True] = 0.073 so we accept H0 at the α = 0.05 level of signifi-

cance. However, if we decided to flip until the third time a tail is observed then

the number of heads, X, before the third tail appears is Negative Binomial (NB),

where X ∼ NB(3, 1 − θ). Here we find that P [X ≥ 9|H0 = True] = 0.033 so we

reject H0. However the likelihood function is f(x|θ) ∝ θ9(1− θ)3 in each case. This

inconsistency of p-values violates the likelihood principle.

As we have seen in Section 2.2.1, the frequentist approach to multiple compar-

16



2.2 Multiple Comparison Methods

isons rests primarily on controlling the FWER. However, these tests often tend to

be conservative, especially when we have a larger number of tests. They have been

criticised for paying too much in terms of power for achieving the desired level of

FWER control. Therefore procedures that try to overcome these difficulties within

the frequentist approach are the subject of current research within the area.

It was shown by Westfall and Johnson (1997) that Bayesians will come close to

either the PCER or FWER depending on the credibility they attach to the family of

null hypotheses under consideration when using a single-step MCM in the context

of ANOVA.

The first fully Bayesian approach to the multiple comparison problem was by

Duncan (1965). In this work he outlined the problem of pairwise comparisons in

a one-way layout, a decision-theoretic approach assuming additive losses produces

the usual comparisonwise approach. One of Duncan’s achievements was to shed new

light on the problem of multiple comparisons by using a decision-theoretic based ap-

proach. Here, following the derivation of the posterior distribution for the relevant

parameters, the next step involves some decision analysis. Therefore, considering

two or more means to be equal under the Bayesian framework, involves consider-

ing the impact of various decisions explicitly in terms of loss functions. Another

achievement by Duncan was to break the ice between frequentists who thought

that Bayesians had nothing to contribute to the multiple comparisons problem, and

Bayesians who found no reason to adjust for multiple comparisons.

An extension of the original Duncan’s procedure was proposed by Shaffer (1999),

where rather than controlling Type I error, she replaces this by controlling the

seriousness of Type I and Type II errors using linear loss functions. This is basically

a modification of the formulation provided by Waller and Duncan (1969), which is

based on the original Bayesian procedure of Duncan (1965).

One of the advantages of Bayesian MCMs is that they allow for direct proba-

bility calculations of the hypotheses of equality and inequality of means. However,

the specification of prior probabilities for the hypotheses concerned can be seen as a

possible hurdle. In recent years we have seen remarkable developments in the area of

Bayesian nonparametric inference both from a theoretical and applied perspective.

As for the latter, the celebrated Dirichlet process has been successfully exploited

within Bayesian mixture models leading to many interesting applications, such as

multiple comparisons, see Berry (1988). As for the former, some new discrete non-

parametric priors have been recently proposed in the literature: their natural use is

as alternatives to the Dirichlet process in a Bayesian hierarchical model for density

estimation, see Escobar and West (1995). When using such models for concrete ap-
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2.3 Other MCMs

plications, it could be desirable to investigation their statistical properties. Among

them a prominent role is to be assigned to consistency. Indeed, strong consistency

of Bayesian nonparametric procedures for density estimation has been the focus of a

considerable amount of research and, in particular, much attention has been devoted

to the Dirichlet process normal mixtures, see Ishwaran and James (2002).

In the next section we consider a few MCMs that we will adapt for clustering

later.

2.3 Other MCMs

We now consider a few MCMs outlined by Shaffer (1999), where part of her study

involved comparing various Bayesian and non-Bayesian procedures under frequentist

concepts, namely power and FWER. We summarise her setup. Let Xji ∼ N(μj , σ
2),

i = 1, . . . , t, j = 1, . . . , m, so that X̄j ∼ N(μj , σ
2/t), where X̄j =

∑t
i=1Xji/t and

we assume σ2 is known. Under independence, it follows that δjk = μj − μk, and

Djk = X̄j − X̄k ∼ N(δjk, 2σ
2/t) respectively, 1 ≤ j < k ≤ m, where we have

n = m(m − 1)/2 δjk pairs. In this chapter we let the observed values of Xji be

denoted by xji, X̄j by x̄j and Djk by djk. Next, the djk’s are ordered from smallest

to largest and subscripts matched with δjk. For each difference δjk, we are interested

in three hypotheses, namely

Hjk1 : δjk < 0 Hjk2 : δjk > 0 Hjk : δjk = 0.

Thus we have three possible decisions: Reject Hjk1 and decide δjk ≥ 0, reject Hjk2

and decide δjk ≤ 0, or reject Hjk and decide δjk �= 0.

We now summarise the non-Bayesian procedures that were compared with Shaf-

fer’s modification of Duncan’s procedure as follows:

1. The conventional z -test, assuming σ2 is known, is used to reject Hjk when

|djk| > σ

√
2

t
Zα

2
, (2.15)

where Zα
2

is the upper α
2

critical value of the standard normal distribution.

If Hjk is rejected we decide δjk ≥ 0 if djk > 0 else δjk ≤ 0 if djk < 0. This

procedure is designated SEP since the hypotheses are treated separately and

don’t control for FWER or the FDR. Notice here that no control for multiple

comparisons is made as each of the n hypotheses is tested separately without

regards to the increase in Type I error.
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2.3 Other MCMs

2. RANGE is a single-stage procedure based on the distribution of the range, see

Benjamini and Braun (2002). We reject Hjk if

|djk| > σ√
t
qm,π, (2.16)

where qm,π is the upper π critical value of the range of m standard normal

random variables. We make a decision based on the sign of djk as with SEP.

3. Using a FDR-controlling procedure in its simplest form, see Section 2.2.3, we

reject Hjk and decide δjk �= 0 based on pjk, which is the significance probability

of |djk|. Next, the pjk are ordered from smallest to largest, and then we reject

all Hjk for which j ≤ l, where l is the largest subscript j for which pjk ≤ jδ/n.

If no such l exists then we accept all Hjk. In a similar manner to SEP, amongst

the rejected Hjk we make a decision based on the sign of djk. This procedure

is designated FDR1 to distinguish it from other FDR-controlling procedures.

Finally we consider Shaffer’s modification of Duncan’s procedure, named DUB. Until

now, we have assumed that μj have arbitrarily fixed values. However, Duncan

assumes that μj ∼ N(0, τ 2). Then by construction of loss functions across all

possible decisions we select the one that minimises the expected loss. More formally,

if we let θ = (μ1, . . . , μm), then Duncan defines the loss functions as

ξ1: Decide Hjk1

L(θ, ξ1) =

{
(k1 + k2)δjk ; δjk ≥ 0

0 ; δjk < 0
(2.17)

ξ2: Decide Hjk2

L(θ, ξ2) =

{
−(k1 + k2)δjk ; δjk ≤ 0

0 ; δjk > 0
(2.18)

ξ3: Decide Hjk

L(θ, ξ3) =

{
k2 |δjk| ; δjk �= 0

0 ; δjk = 0
(2.19)

The ratio k∗ = k1/k2, can be thought of as the ratio of the loss due to a Type I error,

k1, to the loss due to a Type II error, k2, in testing a single directional hypothesis.

Instead of being fixed as in Duncan’s formulation, Shaffer (1999) chooses k∗ such

that the FWER is π in the complete null case. It was shown by Shaffer (1999) that
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2.4 Adaptation of MCMs for Clustering

with the DUB method we reject Hjk if

|djk| > σ

√
Ψ

t(Ψ − 1)
t∞, (2.20)

where

Ψ = E[MSB]/E[MSW]. (2.21)

Here MSB and MSW are the between-group and the within-group mean squares,

respectively, in a one-way layout analysis of variance. Also t∞ is the value of z for

which the risk ratio

k∗ =
φ(z) + zΦ(z)

φ(−z) − zΦ(−z) , (2.22)

where φ and Φ are the standard normal density and cumulative distribution func-

tions respectively. In the special case when Ψ = 1 we accept all hypotheses, also

note that the RHS of (2.20) can potentially be negative when Ψ − 1 < 0.

2.4 Adaptation of MCMs for Clustering

In this section we adapt the MCMs introduced in the last section for clustering

purposes. We first start with the adaptation of RANGE to the Tukey’s Method

for Clustering (TMC). Consider a set of population means μj, with corresponding

sample means as defined in the last section. The mechanics for the clustering follows

in a step-down fashion, but first we order x̄(1) ≤ · · · ≤ x̄(m) then we proceed as

follows:

1. If
(
x̄(l) − x̄(1)

) ≥ Cl,1(γ) ∀l ∈ {m,m− 1, . . . , 2} is satisfied, we reject Hl1 and

a cluster boundary is placed between x̄(1) and x̄(2), thus separating the means

into two clusters, one that contains x̄(1) and
{
x̄(2), . . . , x̄(m)

}
in the other. We

carry on to the next step even if we do not reject Hl1.

2. Next if
(
x̄(l) − x̄(2)

) ≥ Cl,2(γ) ∀l ∈ {m,m− 1, . . . , 3} is satisfied, we reject Hl2

and a cluster boundary is placed between x̄(2) and x̄(3), therefore if Hl1 was

rejected in the previous step, separating the relevant means further into two

clusters, one that contains x̄(2) and
{
x̄(3), . . . , x̄(m)

}
in the other.

3. We continue until we reach the inequality
(
x̄(m) − x̄(m−1)

) ≥ Cm,m−1(γ). If

satisfied we reject Hm(m−1), and assuming all (Hl1, . . . , H(m−1)(m−2)) were re-

jected previously, we put a cluster boundary between x̄(m−1) and x̄(m) therefore
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2.4 Adaptation of MCMs for Clustering

separating x̄(m−1) and x̄(m) in the final two clusters123.

Here Ck,j(γ) is the critical value that is used for rejection between the relevant pair

of means, where γ is a vector of parameters used in the proposed method.

Specifically, if we consider TMC, we see that

Ck,j(π) = qπ(m,m(t− 1))S.E.M,

where qπ(m,m(t−1)) is the upper π percentage point of the studentized range from

m means and m(t− 1) error degrees of freedom. The standard error, when we have

a fixed sample size t, is

S.E.M =

√∑m
k=1 s

2
j

mt
.

Here s2
j =
∑t

i=1(xji − x̄j)
2/(t− 1).

Next, with the False Discovery Rate for Clustering (FDRC), Ck,j is binary where

1 signifies reject and 0 accept. We determine Ck,j by first computing

pkj = 2

[
1 − Φ

{√
t(x̄k − x̄j)√

2σ2

}]
,

where σ2 is estimated by the usual pooled estimate of variance σ̂2 =
∑m

j=1 s
2
j/m

when we have a fixed sample size t. Then all m(m − 1)/2 pkj are ordered from

from the smallest to the largest. We denote the ordered pkj by p(q), where q =

1, . . . , m(m− 1)/2. Let h be the largest subscript for which p(q) ≤ 2qδ/m(m− 1). If

no such subscript exists we reject no corresponding hypothesis associated with pkj,

therefore all Ck,j = 0. Otherwise, we reject all corresponding hypotheses for q ≤ h

and accept for q > h. Then for the corresponding pkj of the rejected hypotheses

we set Ck,j = 1, otherwise Ck,j = 0 for the corresponding pk,j of the accepted

hypotheses. We then adapt for clustering as follows:

1. If Cl,1 = 1 ∀l ∈ {m,m− 1, . . . , 2} is satisfied, we reject Hl1 and a cluster

boundary is placed between x̄(1) and x̄(2), thus separating the means into two

1In total for m means we make m(m−1)
2 comparisons.

2In constructing this clustering technique we have ignored the dependence between sample
means.

3Sometimes, under this technique, clusters may contain sample means that are significantly
different. To illustrate this consider three ordered sample means from brands A, B and C respec-
tively. Brand A could be significantly different to C, but neither A nor C are significantly different
from B between them. This is not necessarily a problem in the Which? context, see Section 1.1.1,
as they ideally seek five clusters. When more than five clusters are observed they are usually
merged down to five using commercial insight.
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2.4 Adaptation of MCMs for Clustering

clusters, one that contains x̄(1) and
{
x̄(2), . . . , x̄(m)

}
in the other. We carry on

to the next step even if we do not reject Hl1.

2. Next if Cl,2 = 1 ∀l ∈ {m,m− 1, . . . , 3} is satisfied, we reject Hl2 and a cluster

boundary is placed between x̄(2) and x̄(3), therefore if Hl1 was rejected in the

previous step, separating the relevant means further into two clusters, one that

contains x̄(2) and
{
x̄(3), . . . , x̄(m)

}
in the other.

3. We continue until we reach Cm,m−1 = 1. If satisfied we reject Hm(m−1), and

assuming all (Hl1, . . . , H(m−1)(m−2)) were rejected previously, we put a cluster

boundary between x̄(m−1) and x̄(m) therefore separating x̄(m−1) and x̄(m) in the

final two clusters.

When adapting the DUB to Duncan’s Bayesian Decision Theoretic Method for

Clustering (DBDTMC), we assume μj ∼ N(0, τ 2), whereas with the other methods

we assumed them to be fixed. Then the posterior distribution of μj is

μj|x̄j ∼ N

(
tx̄j

σ2

t
σ2 + 1

τ2

,
1

t
σ2 + 1

τ2

)
.

Under a Bayesian decision rule, we choose ξ such that E[L(θ, ξ)|X] is a minimum,

where X = (X1, X2, · · · , Xm). We estimate τ 2 empirically from the data1 by

τ̂ 2 =

∑m
j=1(x̄j. − x̄..)

2

m− 1
−
∑m

j=1 s
2
j

mt
,

where x̄.. =
∑m

j=1

∑t
i=1 xji/mt. As with FDRC, Ck,j is also binary so our cluster-

ing method can be applied as before. However, unlike FDRS, the relevant cluster

boundary is placed when we decide ξ3, where we reject Hjk.

Finally, considering the K-means, see next section, for Clustering we relabel this

KMeansC. With KMeansC we simply ran the kmeans(...) function in R on the

ordered means with the number of clusters prespecified2. We also considered index

G1 for clustering (G1C), see Gordon (1999), where K-means is simulated with an

index to determine the number of clusters. The cluster boundaries resulting from

these methods are then constructed.

Note that it is implicitly assumed with MNSC, TMC, and FDRC that objects

placed in the same cluster have sample means from the same underlying distribution.

1Empirical Bayes
2This causes a few difficulties later when assessing KMeansC’s performance in relation to the

other methods. We address this issue using the third performance measure described in Section 4.4
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2.5 General Clustering

So here how well these methods detect the true number of clusters is dependent on

how well they differentiate between cases where two, or more, distributions are put

together in the same cluster unless each object’s sample size t is large enough that

significant differences can be found. With DBDTMC a cluster is defined as a set of

objects where any pair has minimum posterior expected loss under decision ξ3, see

2.19. When 2.19 is decided the corresponding pair or objects are put in the same

cluster. The truth here is determined by how well the method differentiates between

decision ξ3 and the others. Finally, the underlying truth for KMeansC and G1C is

defined in the next section. Underlying all these methods is the insight that in no

situation can it be clear what the true clusters are from the data alone, and extra

information is needed, for instance, from the researchers in our Which? example

in Section 1.1.1. Later, in the simulation studies of Chapters 4-6 we compare the

performance of these methods with two others based on the DPM.

2.5 General Clustering

Thus far we have only considered clustering based on MCMs, but clustering can be

thought of more broadly. We start by stating the basic clustering problem simply.

Given a set of n distinguishable objects, we wish to distribute the objects into clus-

ters in such a way that the objects within a cluster are similar, whereas the clusters

themselves are different. Cluster analysis is a set of statistical methods that cluster

individual observations into classes, called clusters, on the basis of similarity. Many

clustering algorithms have been proposed in various fields, see Hartigan (1975). Of

this set, the two most common non-model-based clustering methods applied in stan-

dard settings are hierarchical and K-means cluster analysis, see MacQueen (1967).

Cluster analysis techniques can be broadly separated into two approaches, hierar-

chical and nonhierarchical. The hierarchical approach builds clusters of successively

larger size using some measure of similarity or distance.

Hierarchical cluster analysis (HCA) comprises two separate methods, agglomera-

tive and divisive. When using hierarchical agglomerative clustering, each individual

observation is initially designated as a separate cluster. In a stepwise fashion, the

most similar clusters are combined into larger units, ending when there exists one

super-cluster containing all observations. In contrast, the divisive technique begins

with the single super-cluster, and proceeds stepwise by dividing the cluster into its

most dissimilar two parts. This process repeats, ending when there are n clusters,

one for each observation. Hierarchical clustering can be used in standard settings

to define a set of cluster solutions and each solution can then be evaluated for its
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respective fit of the data. Typical algorithms used in this approach include sin-

gle linkage (nearest neighbour), complete linkage (furthest neighbour), and Wards

method, which minimizes the mean square distance between the centre of a cluster

and each member.

Nonhierarchical clustering approaches also exist, including the K-means method.

K-means cluster analysis starts with the user identifying the number of clusters de-

sired, and is based on the Euclidean distance by definition. An individual observa-

tion is compared with the values of each centroid and assigned to the cluster with

which it is most similar. The value of each affected centroid is recalculated after

each new assignment. The process is complete when, after a complete pass through

the dataset, no re-assignments are made. The main advantages of this method are

its simplicity and speed which allows it to run on large datasets. However, due to

the initial random assignments of the centroids, it doesn’t always yield the same

result with each run. One of the restrictions with the standard K-means is that

the number of clusters have to be prespecified. Instead one could use index G1,

see Gordon (1999, p.61), which is a combination of K-means with an index. Here

K-Means is run for each of the [2, (n − 1)] cluster solutions. The solution that

maximizes the ratio of the between and within cluster variance is taken as a the

final. One of the drawbacks with these methods is that they can’t handle the one,

or n, cluster solution. However, we can use the Duda and Hart’s criterion L1, see

Gordon (1999, p.62), to compare the one and two cluster solutions. Since K-means

can actually be linked to a classification model based on several spherical normal

populations with the same variance, this can be seen as the underlying truth, see

Gordon (1999, pp.65-68). With G1C the true number of clusters is to be estimated

from this underlying model.

Both of the above methods of cluster analysis use similarity between observations

as the basis of categorization. Since all data can be represented as vectors (one-

dimensional arrays) similarity is defined geometrically. Although several alternatives

exist for defining this similarity, the most commonly used is Euclidian Distance. The

Euclidean distance between points P = (p1, . . . , pn) and Q = (q1, . . . , qn) is defined

as
√∑n

s=1(ps − qs)2. Another commonly used measure of Euclidean distance that

does directly incorporate a standardisation procedure is the Mahalanobis distance.

The Mahalanobis approach not only incorporates a standardisation process on the

data, but also adjusts the intercorrelations among the variables1.

Both HCA and K-means cluster analysis can produce many solutions for a given

problem. For example, HCA produces a set of cluster solutions whose number

1This distance measure is not the standard measure of distance with K-means
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equals the number of elements clustered. Therefore, some criteria must be available

to provide selective support for some cluster solutions over others.

Thus far we have considered non-model based clustering methods. Alternatively

we can also base a clustering algorithm on the assumption that the measurements

to be clustered are realizations of a random vector from some parametric statistical

model. More precisely, in model-based clustering it is assumed that the data are gen-

erated by a mixture of underlying probability distributions in which each component

represents a different cluster. The mixture proportions sum to one across the num-

ber of mixtures considered. This distribution is commonly Gaussian, a model that

has been used with considerable success in a number of applications, see Banfield

and Raftery (1993). In a classical framework we use the Expectation-maximization

(EM) algorithm for finding maximum likelihood estimates of parameters in models,

see Dempster et al. (1977). In standard nonhierarchical cluster techniques, the al-

location of objects to clusters should be optimal according to some criterion. These

criteria typically involve minimizing the within-cluster variation and/or maximizing

the between-cluster variation. An advantage of using a statistical model is that

the choice of the cluster criterion is less arbitrary. Nevertheless, the criteria that

arise from a log-likelihood analysis of model based cluster models may be similar

to the criteria used by certain nonhierarchical cluster techniques like K-means. An

advantage of the model-based clustering approach is that no decisions have to be

made about the scaling of the observed variables. For instance, when working with

Gaussian distributions with unknown variances the results are the same irrespec-

tive of whether the variables are normalized or not. This differs from the standard

non-hierarchical cluster methods, where scaling is always an issue. Another advan-

tage is that it is relatively easy to deal with variables of mixed measurement levels.

Moreover, we obtain a formal measure of uncertainty for the assignment of each

object via the probabilities of cluster membership. However, with mixture models,

an identifiability problem arises from the invariance of the likelihood under permu-

tation of the component labels unless strong prior information is used, see Stephens

(2000). Traditional approaches to this problem impose identifiability constraints

on model parameters. However, these constraints do not always solve the problem.

Other solutions can be found in Jasra et al. (2005) who categorize them as artifi-

cial identifiability constraints, Green and Richardson (1997), random permutation

sampling, Frühwirth-Schnatter. (2001), relabeling algorithms, Stephens (2000), and

label invariant loss functions methods, see Celeux et al. (2000). The identifiability

problem is not worse, in principle, with mixture models than with any other clus-

tering method. It is not a problem at all unless one wants to be fully Bayesian as
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standard MCMC involves the labeling.

One particular class of model based clustering is Latent Class (LC) clustering.

Much of the work on LC clustering is based on continuous variables. Generally,

these continuous variables are assumed to be Gaussian within latent classes, pos-

sibly after applying an appropriate non-linear transformation, see Lazarsfeld and

Henry (1968). We are sometimes confronted with other types of indicators like or-

dinal variables, see Which? example of Section 1.1.1. LC cluster models for ordinal

variables assuming (restricted) multinomial distributions for the items are equiva-

lent to standard exploratory LC models for Poisson counts, see Goodman (1974),

Böckenholt (2008) and Wedel et al. (1999). Using the general structure of the LC

model, it is straightforward to specify cluster models for sets of indicators of different

scale types, see Everitt. (1993).

Item Response Theory (IRT), commonly used in psychometrics, provides another

framework for ordinal data analysis. IRT provides a framework for evaluating how

well assessments work, and how well individual items on assessments work. The most

common application of IRT is in education, where psychometricians use it to achieve

tasks such as developing and refining exams, and accounting for the difficulties of

successive versions of exams, see Hambleton et al. (1991). IRT models are often

referred to as latent trait models, developed in the field of sociology, as the latter

are virtually identical to IRT models. The term latent is used to emphasize that

discrete item responses are taken to be observable manifestations of hypothesized

traits, constructs, or attributes, not directly observed, but which must be inferred

from the manifest responses. Using the Which? example of Section 1.1.1 we could

use IRT, for instance, to incorporate the difficulty of a brand being assigned a higher

preference, or a 5 on a 1-5 preference scale, on a given attribute question.

Thus far we have considered model based clustering using mixtures in a classical

framework, but in the next chapter we consider mixtures both finite, and infinite,

in a Bayesian nonparametric context where the underlying distribution is latent.

2.6 Summary

The amount of literature on both frequentist and Bayesian approaches to the mul-

tiple comparison problem is vast. Few statistical principles have been as controver-

sial among researchers or practitioners, see O’Neill and Wetherill (1971), O’Brien

(1983), and Rothman (1990). But neither approach completely resolves the prob-

lem. In essence, frequentist approaches condition on the null hypothesis being true.

Therefore, under the conventional α = 0.05, it is more difficult to reject the null
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hypothesis in favour of the alternative. With the Bayesian approach the prior dis-

tribution on the parameters of interest is usually dependent on the circumstances

in any particular problem. Assessing the prior distribution that adequately reflects

an experimenter’s state of knowledge is difficult, more so for a larger number of

parameters. However, even in the eyes of the frequentist, the Bayesian position is

strong when the prior is specific and reliable. Hence in real applications, researchers

should try and quantify their available information of various parameters into a

prior distribution. When the prior is not fully specified one can consider using an

empirical-Bayesian approach, see Shaffer (1999).

Ultimately, whether multiple comparisons is a problem in a given experiment is

purely in the hands of the experimenter and depends on how great the losses are in

making wrong decisions. The debate continues.

Cluster analysis techniques are potentially very useful for the exploration of

complex multivariate data. The use of this technique requires considerable care if

misleading solutions are to be avoided, and much attention needs to be given to

the evaluation and validation of results. Given the huge variety of clustering algo-

rithms it is critital we define our research objectives before proceeding in selecting

an algorithm that meets our requirements. In the next Chapter we introduce model

based clustering using Nonparametric Bayesian modelling. Here we assume that

there are an infinite number of latent clusters, some which will be observed in the

data. Extensive performance comparisons are then made with this model against

K-means, one of the most popular non-model based clustering algorithm, and other

MCMs adapted for clustering, see Section 2.4.
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Chapter 3

Bayesian Nonparametric Methods

for Clustering

3.1 Introduction

In this chapter we review the current state of nonparametric Bayesian inference. The

discussion follows a list of important statistical inference problems from regression

to hierarchical models. The discussion is not exhaustive, but the focus will remain

on the Dirichet Process (DP) models and an adaptation of the Dirichlet Process

Mixture (DPM) which we will use in subsequent chapters as a proposal for model

based clustering. We also address implementation issues using various sampling

schemes and propose some possible solutions.

3.2 Bayesian Nonparametrics

In statistical analysis, the term nonparametric usually means to be free of potentially

unrealistic and restrictive constraints that are implied by parametric models consid-

ered thus far. However, when we incorporate both parametric and nonparametric

components into a single model then we have a semiparametric model. For exam-

ple, in linear regression the distribution of the error term is allowed to be arbitrary

subject to having a median of zero. There has been an explosion in the number of

papers that have been published in this area. In general classical methods make use

of permutation and ranking, but more recently, with increasing computation power,

jackknifing and resampling methods have played a major role. Both Bayesian and

frequentist nonparametric regression modelling, density estimation and smoothing

continue to be active areas of research.
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With parametric modelling the data are modelled based on a family of probability

measures {Fθ : θ ∈ Θ}, with their corresponding probability density functions (pdf),

say p(·|θ), where Θ is finite dimensional. For Bayesian inference we construct a prior

for θ independently of the data. Combining both the likelihood and prior beliefs

on θ, we obtain the posterior pdf for θ. Then, based on this posterior, we obtain

various characteristics such as posterior means (or medians), standard deviations

and probability intervals. If needed, prediction is made for a future observation

given the data by integrating out θ from the product of the posterior and the pdf of

a future observation given the data and parameter.

With nonparametric modelling we might assume, for example, that the data

are sampled from a completely unknown distribution, F , and the goal is to make

inferences about functions, or even the pdf, of F . We could think of F as belonging

to the class of all continuous distributions on the real line for example. In hierarchical

modelling F may appear at a higher level in the hierarchy. In contrast Bayesian

nonparametric (BNP) inference traditionally refers to Bayesian methods that result

in inference comparable to classical nonparametric inference. Such flexible inference

is typically achieved by models with many parameters. In fact, a commonly used

technical definition of nonparametric Bayesian models are probability models with

infinitely many parameters, see Bernardo and Smith (1994).

It was noted by Müller and Quintana (2004) that BNP models can also be used

to robustify parametric models and to perform sensitivity analysis. For instance in

nonparametric regression we can include standard parametric linear regression as

a special case. Bayesian modelling accounts for this by constructing a prior that

is centred on a parametric regression function. In the same vein, Kleinman and

Ibrahim (1978) embedded the family of zero-mean normal models in a broader class

of models for random effects in a generalized linear mixed models framework. Also,

Berger and Gugliemi (2001) developed general BNP methodology for embedding

a family of parametric models in a broader class for determining the adequacy of

parametric models.

Our attention now turns to the problem of determining a suitable probability

measure to be defined on the class of all distributions on the real line. Possible

proposals include the the Dirichlet Process (DP), see Ferguson (1973), the Mixture

of DPs (MDP), Antoniak (1974), and the Dirichlet Process Mixture (DPM), Escobar

and West (1994). A generalization of the DP is the Pólya Tree (PT), Lavine (1994),

which can be extended to Mixtures of PTs (MPT), Lavine (1992), and the Gamma

Process, Kalbfeisch (1978), used in the area of survival analysis for modelling the

cumulative hazard function in the context of the proportional hazards model, Cox
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3.3 Infinite cluster model

(1972). The DPM model can also be thought of as a subset of the product partition

model, see Quintana and Iglesias (2003). In the next section we look at applications

of BNP to clustering. In particular we focus on how the DP can be used for clustering

using the DPM model and follow this with a general discussion on implementation

issues using MCMC schemes.

3.3 Infinite cluster model

We now show how to apply standard hierarchical Bayesian modelling, see Lindley

and Smith (1972). Suppose we denote the the data vector for object j with t random

samples as Xj = (Xj1, . . . , Xjt), and assume that the data can be characterised by

independent samples from some distribution F (·|μj). We can write this model as a

two-level hierarchical model

Xji|μj ∼ F (·|μj)

μj|G ∼ G(·),
(3.1)

where Xji, herein, is conditionally independent given μj and 1 ≤ i ≤ t, 1 ≤ j ≤ m.

In order to carry out Bayesian inference, we need to define a prior distribution

G(·) on μj so that statistical inference can be made from this model by finding the

posterior p(μ,G|X), where X = (X1, . . . , Xm). There are generally two different

ways in which we could specify the distribution G(·). One would be to specify a

tractable distribution, such as a Gaussian. The other is to specify G(·) as a weighted

collection of L point masses

G(·|w, φ) =
L∑

k=1

wkδ(·, φk), (3.2)

where φ = (φ1, . . . , φL),
∑L

k=1wk = 1 and

δ(μ, φ) =

{
1 ; μ = φ

0 ; o.w
(3.3)

denotes a point mass distribution located at φ. That is, φ refers to the location of

the L spikes that make up the distribution G(·|w, φ).

However, such a model is rather restrictive in that it assumes that there is a fixed
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3.4 The Dirichlet Process

number of clusters. No allowance is made for the idea that, should more objects

be observed, more clusters could also be observed. Alternatively, we can start with

the assumption that there are an infinite number of latent clusters, some of which

are observed in any finite sample. Therefore, to build the infinite cluster model we

assume that the objects are drawn from an infinite number of clusters and adapt

model (3.2) to

G(·|w, φ) =
∞∑

k=1

wkδ(·, φk). (3.4)

Although, the number of clusters is unbounded, any finite set of objects will contain

representatives from a finite subset of these clusters1. In order to apply Bayesian

inference in the hierarchical model defined by (3.1) and (3.4), we need to define a

prior over the infinite dimensional parameter (w, φ), where w = (w1, w2, . . .) and wk

denotes the kth point mass and φk denotes the location of that point mass.

3.4 The Dirichlet Process

The foundation for the DP was first provided by Ferguson (1973) and Antoniak

(1974). The DP has been widely used as a prior for an unknown distribution in

model specification. It takes its name from the fact that it is an infinite dimensional

Dirichlet distribution. Recent applications include volatility modelling in finance,

Griffin and Steel (2006), and survival analysis, Doss and Huffer (2003).

In Section 2.4 we considered models for clustering under the normal parametric

family. However, as we have seen, the goal is to learn from the data without mak-

ing many assumptions about the distribution that generated them. In a Bayesian

setup, this means that we need to set a prior distribution whose support is an infi-

nite dimensional space of probability distributions. The DP has this property, but

the sampled distributions are discrete with probability one. We assume that the

data are generated from some unknown distribution G, in some infinite-dimensional

function space. This requires the definition of probability measures on a collection of

distribution functions. Such measures are usually referred to as Random Probability

Measures (RPMs). One of the most common RPMs is the DP. If G is generated by

a DP, then for any partition A1, . . . , AK of the sample space, the vector of random

1This model is ideal for our brand clustering example in Section 1.1: brands can vary in a
number of ways on a given attribute question, some of which will be observed in a finite sample.
With infinitely many clusters, there is always the possibility that a new brand can display behaviour
that has never been seen before.
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3.4 The Dirichlet Process

probabilities P (Aj), follows a Dirichlet Distribution (DD)

(P (A1), . . . , P (AK)) ∼ DD(αG0(A1), . . . , αG0(AK)),

where α > 0 is a measure of dispersion and G0 is a base measure. The DD is defined

over the K − 1 dimensional probability simplex. A K-dimensional random vector p

follows a DD if it has probability density function

p(p|ξ) =
Γ(
∑K

j′=1 ξj′)∏K
j′=1 Γ(ξj′ )

K∏
j=1

p
ξj−1
j , (3.5)

where pj > 0, ξj ≥ 0 and
∑k

j=1 pj = 1. Note that the DD is the conjugate prior

for the multinomial distribution. When K = 2 we have the Beta distribution. To

visualise how random samples from a DD look like, we took samples from a DD when

K = 3 for which the region is a 2D simplex or triangle, see Figure 3.1. A Dirichlet

Process (DP) can be thought of as an ‘infinitely decimated’ DD. We denote this by

G ∼ DP (G0, α). The base measure G0 defines the expectation E(G) = G0. One

attractive property of the DP is its simplicity of posterior updating. Suppose that

μ1, . . . , μm|G ∼ G,

and G ∼ DP (G0, α). Then the posterior distribution of G takes the form

G|μ1, . . . , μm ∼ DP (G1, α +m),

where

G1(·) =
αG0(·) +

∑m
j=1 δ(·, μj)

α +m
.

The above property makes the DP an attractive proposal in Bayesian hierarchical

models too, as we shall see in the next section through the application of DPM using

MCMC schemes. A thorough treatment of the DP is given in Ghosal et al. (1999).
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3.4 The Dirichlet Process

Figure 3.1: Dirichlet Distributions when K = 3. top left: weight spread uniformly,
with E[p]=(1/3,1/3,1/3) and V[p]=(1/18,1/18,1/18) top middle: higher precision of
equal weighting across all dimensions, with E[p]=(1/3,1/3,1/3) and V[p]=(2/63,2/63,2/63)
top right: even higher precision of equal weighting across all dimensions, with
E[p]=(1/3,1/3,1/3) and V[p]=(2/279,2/279,2/279) bottom left: weight more from
the middle, with E[p]=(1/7,5/7,1/7) and V[p]=(2/245,2/147,2/245) bottom middle:
weight more from the top, with E[p]=(1/7,1/7,5/7) and V[p]=(2/245,2/245,2/147) bot-
tom right: weight mixed from top, middle and bottom, with E[p]=(1/3,1/3,1/3) and
V[p]=(20/333,20/333,20/333). Note: Darker shade implies higher weight in that region.
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3.5 Review of MCMC schemes

Applications of DP hierarchical models are now standard in semiparametric infer-

ence. Extending our initial model in (3.1) with a DP prior on G gives

Xji|μj ∼ F (·|μj)

μj|G ∼ G(·)
G ∼ DP (G0, α).

(3.6)

Model (3.6) is also known as the DPM. Again, a DP provides a means of placing a

distribution on the space of all possible distribution functions.

Inference for DPMs is feasible using MCMC algorithms, in particular using Gibbs

sampling techniques, see Ishwaran and James (2001) and Liu (1996). Suppose ini-

tially that G0 and α are known. Sampling from G(·) is rather complicated, as shown

in Ferguson (1973), which provided the foundation for the DP. There are two al-

ternative characterisations of the DP. The first characterisation is that described in

Section 3.4. The second is the stick-breaking construction, see Sethuraman (1994).

Since his formulation can be thought of as an infinite set of points, φk, with corre-

sponding weights, wk, as in (3.4), we specify two separate priors. The stick-breaking

process can be illustrated in the following way. First, imagine a stick of length 1,

then break it into two pieces and throw away one of those pieces. Continue this pro-

cess for an infinite number of breaks. We then have an infinite set of stick-lengths

that sum to 1 with probability 1. More formally, we assume that at each step of the

process the proportion, uk, of the stick broken off follows

uk|α ∼ Beta(1, α),

where the length of the kth stick fragment is

wk = uk

k−1∏
l=1

(1 − ul) k = 2, . . . ,

(3.7)

where w1 = u1. A key property of Sethuraman’s construction is that it allows us

to draw approximate samples from the DP by sampling w = (w1, w2, . . .) from the

stick-breaking process until
∑L

h=1wh > 1 − ε, where L is the number of samples

needed until the missing probability mass is less than ε. We sample the correspond-

34



3.5 Review of MCMC schemes

ing φk independently from G0 and treat (φk, wk), k = 1, . . . , L, as a realisation of

the random distribution G(·) given by (3.4). When this construction is used as a

computation scheme for the DPM it is known as the conditional method. Figure 3.2

shows distributions sampled from a DP with a standard normal for G0 under three

different values of α. It is clear from Figure 3.2 that smaller values of α tend to

concentrate G on fewer values of φ. More specifically when α is very small, G(·)
concentrates its mass at one point. Conversely, when α is large G(·) is closer to G0.

To avoid posterior computation for the infinitely-many parameters in (3.7), we

can approximate (3.4) by setting uL = 1 from (3.7) and discarding the L+1, . . . ,∞
terms. Other approaches for truncation have been proposed in Ishwaran and Zare-

pour (2000). These algorithms typically rely on a truncation approximation to the

definition of G in (3.4). For a formal justification see Ishwaran and James (2001).

Although this approximation can be shown to be highly accurate for DPM models

for L sufficiently large, we should be conservative in choosing L to avoid unneces-

sary computation. Papaspiliopoulos and Roberts (2008) use retrospective sampling

to avoid this approximation, see Chapter 7. In the next chapter we propose an

alternative scheme which partitions the ‘active’ and ‘non-active’ components in G

to help address the truncation issue.

An alternative computational scheme for the DPM is the marginal method, which

leads to the Pólya urn scheme described by Blackwell and MacQueen (1973), also

known as the Chinese Restaurant Process (CRP), see Blackwell and MacQueen

(1973). The clustering property of the DP and sample allocation (3.6) can be seen

clearly under this representation. In the CRP metaphor, there exists a Chinese

restaurant with an infinite numbers of tables. So we start with customer 1 who

enters the restaurant and sits at a new table and orders a new dish, μ1, sampled

from G0. Notice that each dish is unique to each table, so the dish can be thought

of as the table label. Then the second customer enters and sits at the table occupied

by customer 1 with probability 1/(1 + α) and has the same dish μ1 or sits at a new

table with probability α/(1 + α) and orders a new dish μ2. Therefore the sampled

value for μ2 is

μ2|μ1 ∼ α

1 + α
G0 +

1

1 + α
δ(·, μ1),

where δ(·, μ1) is as defined in (3.3). We carry this process on till the mth customer

enters, and sits at one of the previously m − 1 occupied tables with probability

1/(m+ α − 1)
∑m−1

j=1 δ(·, μj) or sits at a new table with probability α/(m+ α − 1)
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Figure 3.2: Distributions sampled from a DP with a standard normal as the base
distribution G0(·), with dispersion parameter α = 100 (left), α = 20 (middle), and
α = 5 (right).
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3.5 Review of MCMC schemes

Figure 3.3: A graphical depiction of the stick-breaking process, showing succes-
sive breaks of a stick with starting length one, and how the lengths of the pieces
correspond to sampled weights.

and orders a new dish. Putting everything together we have

μm|μ1, . . . , μm−1, α,G0 ∼ 1

m+ α− 1

m−1∑
j=1

δ(·, μj) +
α

m+ α− 1
G0(·). (3.8)

From (3.8) it is clear that customer m would have a higher probability of sitting at a

table that already has more customers seated. This clearly illustrates the clustering

property of the DP, where new objects are more likely to be placed in clusters

that have already been allocated than in a new cluster. We can arrive at (3.8) by

integrating out G from (3.6). Extending the number of clusters with the arrival

of new data is a desirable property of the CRP. It is made explicit using the CRP

metaphor where a new customer can start a new cluster by picking an unoccupied

table. This flexibility allows the DPM to achieve model selection automatically. The

CRP was generalized to the generalized Pólya urn by West et al. (1994) which is

one of the most widely used algorithms. Ishwaran and James (2001) extended this

approach to a general class of stick-breaking measures.

One of the criticisms of the conditional method is that it is an inconvenient

formulation for computational purposes, since it requires a large number of φk and
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uk values to be maintained. However it has two considerable advantages over the

marginal method. First, it does not rely on being able to integrate out analytical

components, such as G, in the hierarchical model and, therefore, it is more flexible

for current and future enhancements of the basic model. Such extensions include

more general stick-breaking random measures, and modelling dependence of the

data on covariates, see Dunson and Park (2008). Also note that, due to the sequen-

tial conditional updating of μj in the marginal method, we introduce dependencies

between the μj, which will increase the convergence time of the MCMC sampling

scheme.

The stick-breaking representation is probably the most versatile definition of the

DP. It has been exploited to generate efficient alternative samplers like the Blocked

Gibbs sampler, see Ishwaran and James (2001), which relies on a finite-sum approx-

imation, and the Retrospective sampler of Papaspiliopoulos and Roberts (2008),

which does not require truncation. It is also the starting point for the definition of

many generalizations that allow dependence across a collection of distributions, in-

cluding the Dependent Dirichlet Process (DDP), see MacEachern (2000), and πDDP,

see Griffin and Steel (2006).

3.6 Other Random Processes

There are other extensions to the standard stick-breaking construction in (3.7) which

include sampling uk|α, β ∼ Beta(α, β), the so called Beta two-parameter process in

Ishwaran and Zarepour (2000). Other extensions include the Pitman and Yor (1997)

process.

As we saw briefly in Section 3.2 there is a wide class of random processes that

can be defined as an alternative to the DP. In particular, two generalizations of

the DP are the PT and the Gamma Process (GP). The GP is a continuous time

stochastic process that starts at X0 = 0 and has independent Gamma increments.

The GP can be generalized to the generalized GP, introduced by Brix (1999), for

constructing shot noise Cox Process. A generalized GP GG(β, σ) depends on two

parameters σ ∈ (0, 1) and β > 0. For a more formal specification of σ and β see Lijoi

et al. (2007). For a given σ and β, Lijoi et al. (2007) showed that the generalized GP

induces a partition and provides the distribution of the number of distinct clusters

Km. In Korwar and Hollander (1973) it was shown that the number Km of clusters

38



3.7 Summary

that are induced by the DP is governed by

Km

log(m)
→ α,

where α > 0 is the dispersion parameter as before. The influence of β and σ on Km

was investigated by Lijoi et al. (2007). They showed that the bigger β is the larger

the expected number of clusters tends to be. In contrast, σ controls the flatness

of the distribution of Km. So the larger σ is the flatter the distribution of Km,

suggesting that large values of σ yields a non-informative prior for Km. Lijoi et al.

(2007) also propose a reasonable strategy for the prior specification of (β, σ) would

be to fix Eβ,σ[Km] equal to the prior opinion on the expected number of clusters. In

Chapter 6 we carry out a more detailed review and extension of the choice of prior

for the expected number of clusters in the DP.

3.7 Summary

In this chapter we have reviewed some important aspects of nonparametric Bayesian

inference, with the focus on understanding the DP and how it can be incorporated

into a DPM framework for clustering purposes. As we have observed, there are

some methodological challenges here. In particular we see that one of the difficul-

ties of implementing the conditional method is the truncation that is required of

the infinite dimensional vectors u and φ. Although there have been some authors

who have addressed this problem, we propose a similar approach to that used by

Papaspiliopoulos and Roberts (2008) where they consider the active and non-active

components of u and φ separately using retrospective sampling, see Chapter 7. In

the next chapter we consider how the DPM can be used when we have Normal data.
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Chapter 4

Dirichlet Process Mixture for

Normal Data

4.1 Introduction

In this chapter we focus on applying the DPM, introduced in the previous chapter,

where the distribution of the data is taken to be Normal. We implement this model

using the conditional method and extend the framework to address the problems

encountered with truncation as we saw in Section 3.5. We conclude with two sim-

ulation studies. One study compares our DPM model against an alternative GP

model used in the simulation by Lijoi et al. (2007). In the other study we make

comparisons of our DPM model against all the other proposals introduced in Sec-

tion 2.4. To allow detailed comparisons between methods we assess each method

on three different measures. Finally, we compare the performance of the two most

popular approaches for sampling from a DP, namely the conditional and marginal

schemes, as seen in Section 3.5.

4.2 Dirichlet Process for Normal Data

Assume we have objects, each with some random observations, with corresponding

means μj drawn from an infinite number of clusters, where we take a weighted

combination of an infinite number of point masses, wk, on points φk so that

P (μj = μ|w, φ) =

∞∑
k=1

wkδ(μ, φk), (4.1)
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where δ(μ, φ) is defined by (3.3). An advantage of an infinite cluster model over a

finite model is that a new object can be assigned to a new cluster, therefore allowing

the objects to vary in a number of ways, some of which will be observed from the

data. Any finite set of objects will contain representatives from a finite number of

these clusters. In this chapter we choose the weights wk corresponding to a DP prior

for G. We define the relevant priors for φk and wk.

Herein we denote G|G0, α ∼ DP (G0, α), where G0 represents our belief about

the kind of values that best represent the behaviour of μj . The full data model and

priors for all the parameters in our model are as follows:

Xji|σ2, μj ∼ N
(
μj, σ

2
)

σ2|v0, σ
2
0 ∼ InvGamma

(
v0

2
,
v0σ

2
0

2

)
μj|G ∼ G(·)

G|G0, α ∼ DP (G0, α)

α|a, b ∼ Gamma(a, b)

G0|μ0, k0 ≡ N

(
μ0,

1

k0

)

μ0|k0 ∼ N

(
μ∗

1,
σ2

2

k0

)

k0 ∼ Gamma

(
v1

2
,
v1σ

2
1

2

)
.

(4.2)

The common variance of Xji, σ
2, is assigned a prior that is conjugate to the

normal, i.e. an inverse gamma. Sampling the μj from a realization G of a DP

induces clustering, as explored in Section 3.5. The level of clustering is controlled

by the dispersion parameter α, which is also known as the smoothing parameter.

A common choice for the α prior is a Gamma distribution. Specifying a prior on

α allows us to learn the number of clusters from the data as well capturing our

prior beliefs about the number of clusters. We explore the prior specification of α

in more detail in Chapter 6. The location parameter μ0 and precision k0 of G0 are

themselves given priors that are conjugate to G0.
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4.2 Dirichlet Process for Normal Data

Figure 4.1: Dependencies in the infinite cluster normal model. Circles are random
variables, squares denote known parameter values, and plates indicate a set of inde-
pendent replicates of the random variables shown inside them. Dashed lines indicate
the child node is derived from its parent nodes.
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4.3 Gibbs Sampling

4.3.1 Conditional Method

The model in (4.2), which we refer to as the Dirichlet Process Normal Mixture

(DPNM) model, can be fitted using Gibbs sampling, which is a Markov chain Monte

Carlo method of sampling from the posterior distribution that uses the full distri-

butions, conditional on all other variables in the Bayesian model. See, for example

Neal (2000) or Gilks et al. (1995). The idea of Gibbs sampling is to fix all variables

in the posterior except one variable, or group of variables, and sample that variable,

or group of variables, from its conditional posterior distribution. Repeat this for the

other variables, each time treating one variable as random and conditioning on the

most recently updated values for the others. Then it can be shown that for a large

enough run of this chain a random sample from the joint posterior distribution is

generated.

To achieve this we use the stick-breaking representation of the DP, described in

Section 3.5. Thus, given the set of parameters
{
β, σ2, α, φ, u, g

}
, where β = (μ0, k0),

φ = (φ1, . . .) and u = (u1, . . .), see (3.7). Also let (g = gjk, j = 1, . . . , m, k =

1, 2, . . .), and gjk is the cluster indicator variable

gjk =

{
1 ; If the jth object is in the kth cluster

0 ; o.w.
(4.3)

Under model (4.2), the DP provides a prior for the distribution of μj . A graphical

model for (4.1) is illustrated in Figure 4.1. Herein, under a graphical model, the joint

probabilities of the random model parameters factor into a product of conditional

distributions. Therefore, any two nodes are conditionally independent given the

values of their parents. Since G0 ≡ G0(β) and using relationships from Figure 4.1,

the joint posterior density can be written as

p(β, σ2, α, φ, u, g|X) ∝ p(β)p(σ2)p(α)p(u|α)p(φ|β)p(g|u)p(X|g, φ, σ2).
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Then it follows that

p(β|−) ∝ p(β)p(φ|β)

p(σ2|−) ∝ p(σ2)p(X|g, φ, σ2)

p(α|−) ∝ p(α)p(u|α)

p(φ|−) ∝ p(φ|β)p(X|g, φ, σ2)

p(u|−) ∝ p(u|α)p(g|u)
p(g|−) ∝ p(g|u)p(X|g, φ, σ2), (4.4)

where − denotes the full conditionals on the other variables, otherwise we use a

block sampler as we shall see later. For notational convenience we use the same

symbols for both the random variables as well as their values from now on. We now

compute the various components in (4.4). First, the likelihood is

p(X|g, φ, σ2) ∝
m∏

j=1

(
σ2
)− t

2 exp

[
− 1

2σ2

{
t∑

i=1

(Xji − X̄j)
2 + t(X̄j − μj)

2

}]

=
(
σ2
)− tm

2 exp

[
− 1

2σ2

{
(t− 1)

m∑
j=1

s2
j + t

m∑
j=1

L∑
k=1

(X̄j − φk)
2gjk

}]
.

(4.5)

We are now in a position to find the various conditional posteriors in (4.4). First

we find distribution p(u|−). But, since uk|α ∼ Beta(1, α), we have

p(u|α) ∝
L∏

k=1

α(1 − uk)
α−1. (4.6)

Also,

p(g|u) ∝
m∏

j=1

L∏
k=1

w
gjk

k =

L∏
k=1

w
∑m

j=1 gjk

k =

L∏
k=1

wrk
k

(4.7)

where rk denotes the number of μj ’s that are in the kth cluster, with
∑L

k=1 rk = m.
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It follows from (3.7) that

p(u|−) ∝
L∏

k=1

(1 − uk)
α−1

{
uk

k−1∏
z=1

(1 − uz)

}rk

=

L∏
k=1

u
(rk+1)−1
k (1 − uk)

(α+
∑L

z=k+1 rz)−1.

(4.8)

We see that (4.8) is proportional to the density of the Beta
(
rk + 1, α+

∑L
z=k+1 rz

)
distribution.

Next, from (4.5) and (4.6), we obtain

p(g|−) ∝ p(g|u)p(X|g, φ, σ2)

=

L∏
k=1

wrk
k

⎡
⎣ m∏

j=1

L∏
k′=1

exp

{
− t

2σ2
(X̄j − φk′ )2gjk′

}⎤⎦

∝
m∏

j=1

L∏
k=1

[
wk exp

{
− t

2σ2
(X̄j − φk)

2

}]gjk

.

(4.9)

Therefore we obtain

p(g|−) =

m∏
j=1

L∏
k=1

w̃
gjk

jk ,

where

w̃jk =
wk exp

{− t
2σ2 (X̄j − φk)

2
}

∑L
k′=1wk′ exp

{− t
2σ2 (X̄j − φk′ )2

} .
Hence gjk = 1 when an object mean falls in cluster k with probability w̃jk, where∑L

k=1 w̃kj = 1.

We next obtain p(φ|−). Since φk ∼ N(μ0, k
−1
0 ), we obtain from (4.4) and (4.5)

p(φ|−) ∝
L∏

k=1

exp

[
− 1

2σ2

{
k0σ

2 (φk − μ0)
2 + t

m∑
j=1

(
X̄j − φk

)2
gjk

}]

∝
L∏

k=1

exp

⎡
⎣−k0σ

2 + trk

2σ2

⎧⎨
⎩
(
φk −

k0σ
2μ0 + t

∑m
j=1 X̄jgjk

k0σ2 + trk

)2
⎫⎬
⎭
⎤
⎦.
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4.3 Gibbs Sampling

Therefore

φk|− ∼ N

(
k0σ

2μ0 + t
∑m

j=1 X̄jgjk

k0σ2 + trk
,

σ2

k0σ2 + trk

)
. (4.10)

Next, writing p(β) = p(μ0|k0)p(k0), we update (μ0, k0) in a block. From (4.2)

and (4.4) we see that

p(β|−) ∝ k
1
2
0 e

− k0
2σ2

2
(μ0−μ∗

1)2

k
v1
2
−1

0 e−
v1σ2

1
2

k0e−
k0
2 {∑L

k=1(φk−μ0)2}k
L
2
0

= k
v1+L+1

2
−1

0 exp

[
−k0

2

{
1

σ2
2

(μ0 − μ∗
1)

2 +
L∑

k=1

(φk − μ0)
2 + v1σ

2
1

}]
.

It follows that

μ0|− ∼ N

⎛
⎝
∑L

k=1 φk +
μ∗

1

σ2
2

L+ 1
σ2
2

,
1

k0

(
L+ 1

σ2
2

)
⎞
⎠ (4.11)

and, by noting that

p(μ0|−) =
p(β|−)

p(k0|σ2, α, φ, u, g,X)
,

we see that

p(k0|σ2, α, φ, u, g,X) ∼ Gamma

⎡
⎢⎣v1 + L

2
,
1

2

⎧⎪⎨
⎪⎩

(μ∗
1)

2

σ2
2

+

L∑
k=1

φ2
k −
(∑L

k=1 φk +
μ∗

1

σ2
2

)2

L+ 1
σ2
2

+ v1σ
2
1

⎫⎪⎬
⎪⎭
⎤
⎥⎦ .

(4.12)

Here we see that p(β|−) is generated in a block where we first generate (4.12)

followed by (4.11).

Again, from (4.2), (4.4) and (4.5) it follows after some algebra that

p(σ2|−) ∝ p(σ2)p(X|g, φ, σ2)

∝ (σ2)−( v0+tm
2

+1) exp

(
− c∗

2σ2

)
,

(4.13)

where

c∗ = (t− 1)
m∑

j=1

s2
j + t

m∑
j=1

L∑
k=1

(X̄j − φk)
2gjk + v0σ

2
0 .

Therefore

σ2|− ∼ InvGamma

(
v0 + tm

2
,
c∗

2

)
. (4.14)
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Finally from (4.2), (4.4) and (4.6)

p(α|−) ∝ p(α)p(u|α)

∝ αa+L−1 exp

[
−
{
b−

L∑
k=1

log(1 − uk)

}
α

]

and it follows that

α|− ∼ Gamma(a + L, b−
L∑

k=1

log(1 − uk)). (4.15)

Having derived all the posterior conditionals in our model we now use the Gibbs

sampler, a special case of the Metropolis-Hastings algorithm, and thus an example

of a Markov Chain Monte Carlo algorithm, to sweep through
{
β, σ2, α, φ, u, g

}
in

order for a given iteration. Over time these will be a sample from the full posterior

p(β, σ2, α, φ, u, g|X).

Much of the implementation thus far is an application of the work by Ishwaran

and James (2002). Specifically, as we do, they used a block Gibbs sampling strat-

egy along with an approach to approximate L. In addition they assumed unequal

within-cluster variance by using σ2
j instead of σ2 in model (4.2). An alternatively

implementation based on the marginal method, as discussed in Section 3.5, is pre-

sented in the work by Escobar and West (1995).

We are constrained by the fact that if we are given m objects then it is impossible

to observe more than m clusters. In theory L = ∞, but very large values of L will

cause dependency problems in the posteriors (4.8)-(4.15), thus leading to slower, or

in the worst case halting, convergence to the full posterior. In particular consider

the conditional posterior for α. Then we see that

E[α|−] =
1

1
L

(
−∑L

k=1 log(1 − uk)
) → 1

M
(4.16)

as L→ ∞, where M = E[− log(1−Uk)|α′
], α

′
is the previous value of α, U ∼ B(1, α)

and

V[α|−] =
1

1
L

(
−∑L

k=1 log(1 − uk)
)2 ∼ 1

LM2
→ 0. (4.17)

Therefore we see that the chain of values for α become constant as L → ∞. This

clearly illustrates the link between the u = (u1, . . .) and α through the ergodicity
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constraint, see Papaspiliopoulos et al. (2007). In the next section we address this

issue by proposing an alternative sampler where we split the generated L components

into ‘active’ and ‘non-active’ parts.

4.3.2 A modified Gibbs Sampler

As we saw in the previous section there are dependency issues that arise in some of

the conditional posteriors (4.8)-(4.15) when L becomes large. To remedy this, we

could try performing block updates for (α, u) and
(
β, φ
)
. The full conditionals for

(α, u) and
(
β, φ
)

are

p(α, u|−) ∝ p(α)p(u|α)p(g|u)
p(β, φ|−) ∝ p(β)p(φ|β).

(4.18)

We have p(α, u|−) = p(α|φ, g, β, σ2, X)p(u|−), where from (4.2) and (4.8) we see

that

p(α|φ, g, β, σ2, X) ∝ p(α)

∫
p(u|α)p(g|u)du

= p(α)

∫ L∏
k=1

u
(rk+1)−1
k (1 − uk)

(α+Rk)−1du

= p(α)

L∏
k=1

Γ (rk + 1)Γ (α+ Rk)

Γ (α +Rk−1 + 1)
,

(4.19)

where Rk =
∑L

z=k+1 rz. Also

p(β, φ|−) = p(β|σ2, α, u, g,X)p(φ|−),

where from (4.2) we see that

p(β|σ2, α, u, g,X) ∝ p(β)

∫
p(φ|β)p(X|g, φ, σ2)dφ

∝ k
v1+1

2
−1

0 exp

{
−k0

2

(
(μ0 − μ∗

1)
2

σ2
2

+ v1σ
2
1

)} L∏
k=1

(k0σ
2 + trk)

− 1
2 .

(4.20)
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However, we see that the conditionals in (4.19)-(4.20) are non-standard distributions.

Instead, we will partition u and φ into ‘active’ and ‘non-active’ components, where

m∗ = max

{
k :

k∑
z=1

rz = m

}

are active and L −m∗ non-active. We define the active and non-active cases for u

as u(1) = (u1, . . . , um∗) and u(2) = (um∗+1, . . . , uL) respectively. In the same way, we

define φ
(1)

= (φ1, . . . , φm∗) and φ
(2)

= (φm∗+1, . . . , φL)1. We see that (4.19) yields

a standard distribution when we integrate out u(2) and similarly when we integrate

out φ
(2)

in (4.20).

From (4.8) and the definition of m∗, we see that

u(1)k|− ∼ Beta (rk + 1, α+Rk) . (4.21)

By integrating out u(2) we have

p(α|u(1), φ(1)
, φ

(2)
, g, β, σ2, X) ∝ p(α)p(u(1)|α)

∫
p(u(2)|α)du(2)

= p(α)p(u(1)|α)

∝ αa+m∗−1e−bα
m∗∏
k=1

(1 − uk)
α−1

= αa+m∗−1e
−
{

b−∑m∗
k=1 log(1−uk)

}
α
,

from (4.8), so that

α|u(1), φ(1)
, φ

(2)
, g, β, σ2, X ∼ Gamma

(
a+m∗, b−

m∗∑
k=1

log(1 − uk)

)
. (4.22)

We are therefore able to generate (α, u(2)) in a block by first generating α from (4.22)

followed by u(2) from Beta(1, α), which follows from (4.8) and the definition of m∗.

Comparing (4.15) and (4.22) we see that m∗ << L therefore avoiding the ergodicity

constraint as seen in the last section. Next we generate the m∗ components of φ
(1)

1It is possible to observe a component that is unoccupied in the active set, but the weights on
these are negligible
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from

N

(
k0σ

2μ0 + t
∑m

j=1 X̄jgjk

k0σ2 + trk
,

σ2

k0σ2 + trk

)
.

By integrating out φ
(2)

we have

p(β|σ2, φ
(1)
, α, u(1), u(2), g,X) ∝ p(β)p(φ

(1)
|β)

∫
p(φ

(2)
|β)dφ

(2)

∝ k
v1+m∗+1

2
−1

0 e
− k0

2

{
(μ0−μ∗

1)2

σ2
2

+
∑m∗

k=1(φk−μ0)2+v1σ2
1

}

from (4.20), from which it follows

μ0|− ∼ N

⎛
⎝ μ∗

1

σ2
2

+
∑m∗

k=1 φk

1
σ2
2

+m∗ ,
1

k0

(
1
σ2
2

+m∗
)
⎞
⎠ .

Also, by noting that

p(μ0|−) =
p(β|σ2, φ

(1)
, α, u(1), u(2), g,X)

p(k0|φ(1)
, α, u(1), u(2), g,X)

,

we see that

k0|φ(1)
, α, u(1), u(2), g,X ∼ Gamma

⎡
⎢⎢⎢⎣v1 +m∗

2
,
1

2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(μ∗
1)

2

σ2
2

+
m∗∑
k=1

φ2
k −

(∑m∗
k=1 φk

σ2 +
μ∗

1

σ2
2

)2

m∗ + 1
σ2
2

+ v1σ
2
1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎤
⎥⎥⎥⎦ .

We can now generate (β, φ
(2)

) as a block from

k0|φ(1)
, α, u(1), u(2), g,X ∼ Gamma

[
v1 +m∗

2
,
c∗

2

]
,

where

c∗ =
(μ∗

1)
2

σ2
2

+

m∗∑
k=1

φ2
k −

(∑m∗
k=1 φk

σ2 +
μ∗

1

σ2
2

)2

m∗ + 1
σ2
2

+ v1σ
2
1 ,

μ0|− ∼ N

⎛
⎝ μ∗

1

σ2
2

+
∑m∗

k=1 φk

1
σ2
2

+m∗ ,
1

k0

(
1
σ2
2

+m∗
)
⎞
⎠ ,
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and

φ
(2)
|− ∼ N

(
μ0,

1

k0

)
.

Next we generate σ2 from

σ2|− ∼ InvGamma

(
v0 + tm

2
,
(t− 1)

∑m
j=1 s

2
j + t

∑m
j=1

∑m∗
k=1(X̄j − φk)

2gjk + v0σ
2
0

2

)
.

Finally

p(g|−) =
m∏

j=1

L∏
k=1

w̃
gjk

jk , (4.23)

where

w̃jk =

⎡
⎣ wk exp

{
− t

2σ2

(
X̄j − φk

)2}
∑L

k′=1wk′ exp
{
− t

2σ2

(
X̄j − φk′

)2}
⎤
⎦

and we can find the values of the respective rk =
∑m

j=1 gjk from the generated g.

Having formulated all the posterior conditionals in our model, we are in a position

to start the sampler by first finding

m∗(l−1) = max

{
k :

k∑
z=1

r(l−1)
z = m

}
,

where l = 1, . . . , T is the number of after burn-in iterations of the Gibbs sampler

and L is taken large enough to satisfy
∑L

k=1 u
(l)
k

∏k−1
j=1(1−u

(l)
j ) ≤ 1− 10−3 across all

iterations l. Then we sweep through the posterior conditionals

{
u(1),

(
α, u(2)

)
, φ

(1)
,
(
β, φ

(2)

)
, σ2, g

}
.

Parameters that are block updated are enclosed in (·). The posterior conditionals

converge to a sample from the full posterior of (β, σ2, α, φ, u, g). We then choose a

partition based on p(g|−). Since we have a selection of posterior partitions with their

associated posterior probabilities p(g|−), we have more choice on the final selected

partition. This is a feature missing from the other clustering methods we discussed

in Section 2.4, where we only have one partition with no measure of uncertainty.

There are a number of ways we could select the final posterior partition based on

p(g|−). We propose a variation of the integrated likelihood ratio which incorporates

Maximum A Posteriori Probability (MAP). The idea here is to choose the lower 10th

percentile, ξ, of the set of posterior null, or one cluster, partition probabilities based
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4.3 Gibbs Sampling

on 1000 NULL datasets. We control the Type I error of this Bayesian method at

10% so that comparisons can be made with other frequentist methods in Section 4.5.

Then using a dataset output a set of C posterior partitions such that
∑C

c=1 qc =

1− 10−3, where qc is the posterior probablity for partition c and q1 > q2 > . . . > qC .

If there is a null partition in the set of C partitions with qc > ξ then we choose this

as the final, otherwise we choose a partition c based on MAP. Under this selection

criterion we relabel the DPMN model as the Dirichlet Process Normal Mixture

model for Clustering (DPNMC).

In the next two sections we address some issues with the sampler when α is small

in (4.19) and consider some useful convergence diagnostics which will help later in

our simulation study where we determining an adequate number of iterations for

the sampler.

4.3.3 Accurate simulation scheme for um∗

From the u posterior in (4.21) we observe that when α is small drawing um∗ from

Beta(rm∗ + 1, α) could potentially cause a problem. Instead, we re-write the condi-

tional posterior for α as

α|− ∼ Gamma

(
a+m∗, b−

m∗−1∑
k=1

log(1 − uk) + V

)
,

where V = − log(1 − Um∗). Then we see that p(v|−) = Q(v)r(v), where Q(v) =

(1− e−v)rm∗ and r(v) = e−vα. Since Q(v) is a c.d.f and r(v) is a p.d.f, we are able to

draw samples from p(v|−) by first drawing X from r(v) then Y from Q(v) using a

simple rejection technique, see Tocher (1975). We accept the pair if Y < X and use

X as the required sample from p(v|−). Since Y → ∞ as α→ 0, we have Q(V ) → 1.

Therefore samples from p(α|−) are drawn by using the following scheme.

1. On any given pass of the sampler, if α < ξ then go to step 2

2. Generate samples from p(v|−) using X ∼ Exp(α) then Y ∼ U [0, 1]. We then

accept X as a draw from p(v|−) if Q−1(Y ) < X, where Q−1(y) = − log(1 −
y1/rm∗

). Otherwise we repeat until the condition is satisfied.

We set ξ = 1.5 based on 10,000 random samples from Beta(1, α) such that the

number of samples where α < ξ is close to 0.
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4.3.4 Convergence diagnostics

Convergence here refers to the convergence of the Gibbs Sampler, or other MCMC

technique, to its stationary distribution. There are two general questions we can

ask with regard to convergence:

1. At what point do we know that we have (essentially) converged to the station-

ary distribution? (That is, how long should our ‘burn-in’ period be?)

2. After we have reached the stationary distribution, how many iterations will it

take to adequately summarize the posterior distribution?

The answers to both of these questions are rather ad hoc because the results are

only true asymptotically, and we cannot wait for an infinite number of draws. One

intuitive and easily implemented diagnostic tool is a traceplot (or history plot) which

plots the parameter value at time t against the iteration number. If the model has

converged, the traceplot will hover around the mode of the distribution. A clear sign

of non-convergence with a traceplot occurs when we observe some trending in the

sample space. However, the problem with traceplots is that it may appear that we

have converged, but the chain is trapped (for a finite time) in a local region rather

than exploring the full posterior. Another possibility is to look at the autocorrelation,

which refers to a pattern of serial correlation in the chain, where sequential draws

of a parameter, say α, from the conditional distribution are correlated. The reason

autocorrelation is important is that when it is high the Gibbs sampler will take a

very long time to explore the entire posterior distribution. Note that if the level of

autocorrelation is high for a parameter of interest, then a traceplot will be a poor

diagnostic for convergence. Typically, the level of autocorrelation will decline with

increasing number of lags in the chain (e.g. as we go from the 1000th to the 1010th

lags). When this dampening does not occur, then we need to re-parameterize the

model, as we did in Section 4.3.2, to remove the dependence between the α and u

using our active and non-active setup.

Other methods to speed up and detect convergence are outlined in Gilks et al.

(1995). For our purposes we make use of the Monte Carlo Standard Error (MCSE)

and batching to diagnose convergence since it is simpler than some of the other pro-

posals to implement and requires less computation. The idea is as follows: suppose

we decide to run the chain until the MCSE of the estimated posterior mean of some

function f(θ) of interest is sufficiently small. Here we want the MCSE small in

relation to the posterior standard deviation of f(θ). A rule of thumb is to run the

simulation until the MCSE associated with each parameter is less than 5% of the
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parameter’s posterior standard deviation. So in general for the parametric function

f(θ) for a given run length N and burn-in length M we use batching to estimate

MCSE(f̂ |−), where

f̂ =

∑N
t=M+1 f(θt)

N −M
.

To calculate the estimate MCSE(f̂ |−) we use the following steps:

1. Divide the sequence

θM+1, . . . , θN

into Q equal-length batches of size L.

2. Calculate

bq =
1

L

∑
t∈batchq

f(θt)

3. Check that b1, . . . , bQ are approximately independent. Using the lag-1 autocor-

relation gives an indication of whether batches are approximately independent.

If autocorrelation is high, then larger batches are needed.

4. Estimate

MCSE(f̂ |−) =

√∑Q
q=1(bq − b̄)2

Q(Q− 1)
,

where b̄ =
∑Q

q=1 bq/Q.

4.4 Comparison of DPNM with the GP

To understand the reinforcement mechanism acting with a GG as opposed to the

standard DPM, Lijoi et al. (2007) considered an extreme setup where the data is

far away from the prior. We provide a simulation study similar to that of Lijoi

et al. (2007), but add in the DPNM for comparison purposes. In Lijoi et al. (2007)

simulation they consider a uniform mixture of three normal distributions with means

-4, 0 and 8, and unit variance. They then simulate 100 values from such a mixture

and use the data to compare performance against three different mixture models:

the DPM model, the mixture of GG(β = 24, σ = 0.5), and GG(β = 2.23, σ =

0.75) processes, see Section 3.6. In addition to these three models we also consider

the DPNM in our simulation with vague priors on μ0, k0 and σ2 by setting their

hyperparameters accordingly. The difference between the DPM in Lijoi et al. (2007)

and our DPNM is that they do not place priors on the hyperparameters for G0 and
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k DPNM DPNM DPM GG GG

(a = 0.01, b = 0.01/39.13) (a = 0.001, b = 0.001/39.13) (α = 39.13) (β = 24, σ = 0.5) (β = 2.23, σ = 0.75)

3 0.28406 0.27400 0.00205 0.06660 0.42490
4 0.24756 0.25689 0.01295 0.19095 0.36055
5 0.16522 0.18878 0.04000 0.25175 0.15555
6 0.10272 0.11044 0.08210 0.22095 0.04575
7 0.06644 0.06878 0.13690 0.14305 0.01090
8 0.04228 0.04256 0.16560 0.07395 0.00195
9 0.02844 0.02294 0.16450 0.03530 0.00035
10 0.01356 0.01267 0.14395 0.01100 0.00005
11 0.01644 0.00889 0.10725 0.00455 -

≥ 12 0.03161 0.01406 0.14470 0.0190 -

Table 4.1: Posterior distribution on the number of clusters k arising from the four
mixture models centred such that the prior expected number of clusters is 50

σ2, but instead estimate them. With the DPNM we set v0 = 10−3 and σ2
0 = 1

as the hyperparameters for σ2, along with μ∗
1 = 1, v1 = 10−2, σ2

1 = 1, σ2
2 = 103

as hyperparameters for G0. In all four setups the expected number of clusters

amongst the 100 samples values is set to 50. Thus we see that the prior opinion is

far from the truth to highlight the reinforcement mechanism. Under this setup the

corresponding parameter values for α = 39.13 for the DPM, GG(β = 24, σ = 0.5)

and GG(β = 2.23, σ = 0.75) for the generalized gamma model. With DPNM since

we have a prior on α, see (4.22), we fixed (a, b) such that E[α] = 39.13 but our

prior belief is fairly vague. Under each setup we simulated results based on 20000

iterations with 2000 burn-in sweeps. Table 4.1 reports the posterior probabilities on

the number of clusters. As we see, the performance of GG(β = 2.23, σ = 0.75) is

superior to the other models in terms of recovering the implanted clusters. However,

in relation to our DPNM the improvement is only marginal, thus highlighting that

not having a prior on α with DPM is rather restrictive and clearly reduces the

reinforcement learning ability. Lijoi et al. (2007) extend their GG model by putting

a prior on σ, which causes a marked improvement in performance. However, they

focused their prior on up to 100 clusters, which is closer to the truth than having a

non-constrained prior as with DPNM.

4.5 Comparison of clustering methods

Simulated data depicting Which?’s brand trials, such as the example in Section 1.1.1,

enables us to make comparisons between DPNMC and the other clustering meth-
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ods described in Section 2.4. The data simulates two of the most common types

of product trials at Which?, namely a six or ten brand setup. For each brand we

simulate the responses from t = 20 different random individuals on a question of

interest. The responses are on a 1-5 preference scale (five categories). Since the

responses are on a discrete 1-5 scale we take the average X̄j across all 20 individuals

for brand j, and under the central limit theorem the X̄j are approximately normal

for large t. By using DPNMC to cluster brands at Which? we make a few im-

plicit assumptions. Firstly the within cluster, or response, variance across brands

is homogeneous. This is a fair assumption since a fair range of product trials at

Which? yield similar response variations by brand. In situations where they differ,

an additional respondent factor is included in the model, see Section 7.3. Secondly,

we have the same number of raters per brand. Thirdly, the expected number of

clusters increases with the number of brands in an approximate logarithmic fashion.

Some of these restrictions can be relaxed by extending the DPNM in Section 4.2.

For instance we could have a separate response variance per brand. Although the

DPMN is an infinite dimensional cluster model some critics would argue its applica-

tion to clustering at Which? as they ideally seek five classes of product to publish.

However, DPMN offers a more formal way to cluster brands using a model based

approach and is adaptive, that is it has the ability to learn new classes of products

unlike previously seen. The restriction on the ideal five classes is explored further in

Chapter 6 by setting appropriate hyperparameters for the α prior through scaling.

Later, in Chapter 5, we develop a DP model that closely fits the data using a multi-

nomial distribution. It also offers the ability to control the cluster boundaries that

are also commercially viable as opposed to just statistically meaningful through the

specification of the β parameter in model (5.2), either through simulation or using

an integrated likelihood based approach, see Section 5.3.

We simulate three scenarios that are representative of the trials at Which? for six

brands, such as the example in Section 1.1.1, and ten brands1. The scenarios were

ordered such that scenario one had cluster boundaries that were further apart, and

closer together as we move towards scenario three. More precisely under scenario

one we simulated cluster boundaries where the difference between cluster boundary

means was around one. In scenarios two and three we simulated boundary means

with differences around 0.8 and 0.5 respectively. We implanted two, three and six

clusters in the six brand case, while for the ten we implanted two, five and ten clus-

ters. For example, under six brands we implanted two boundaries, or three clusters,

1There are many different types of trials at Which? Most trials consist of less than 20 brands,
and more commonly around 6-12

56



4.5 Comparison of clustering methods

where the first cluster consisted of two brands with responses simulated with higher

weights, around 43.5%, in each of the lower two categories (1 or 2). The remaining

categories each receiving 4.3%. Similarly in cluster two we generated from the mid-

dle category (3) with higher weight, around 71.4%, with the remaining categories

taking 7.1% each. Finally in the last cluster, more weight was placed on the top two

responses (4-5), around 43.5% in each, with the remaining categories each receiving

4.3%. For convenience, in the six brand case we write (X1, X2) generated with,

W6C1 = (43.5%, 43.5%, 4.3%, 4.3%, 4.3%) for the response weights in the first clus-

ter. Here the notation WmCg signifies the category weights for m brands under the

gth implanted cluster. Similarly (X3, X4) and (X5, X6) were generated withW6C2 =

(7.1%, 7.1%, 71.4%, 7.1%, 7.1%) and W6C3 = (4.3%, 4.3%, 4.3%, 43.5%, 43.5%) for

clusters two and three respectively. More generally, we can re-write, say, (X1, X2)

generated with W6C1 = (43.5%, 43.5%, 4.3%, 4.3%, 4.3%) as W6C1 = (ψ, ψ, 1, 1, 1),

where the elements are normalised to add to one. Since the methods we compare,

apart from DPMMC in Chapter 5, use sample means as inputs some notion of the

true mean per cluster is needed. We list the generation weights across all setups

along with an estimate of their corresponding true cluster mean as follows:

Six brands - two clusters

1.
(
X1,2,3

)
generated with W6C1 = (ψ, ψ, ψ, 1, 1)

and cluster mean (6ψ + 9)/(3ψ + 2)

2.
(
X4,5,6

)
generated with W6C2 = (1, 1, ψ, ψ, ψ))

and cluster mean (12ψ + 3)/(3ψ + 2)

Six brands - three clusters

1.
(
X1,2

)
generated with W6C1 = (ψ, ψ, 1, 1, 1)

and cluster mean (3ψ + 12)/(2ψ + 3)

2.
(
X3,4

)
generated with W6C2 = (1, 1, ψ, 1, 1)

and cluster mean (3ψ + 12)/(ψ + 4)

3.
(
X5,6

)
generated with W6C3 = (1, 1, 1, ψ, ψ)

and cluster mean (9ψ + 6)/(2ψ + 3)

Six brands - six clusters

1. (X1) generated with W6C1 = (ψ, 1, 1, 1, 1)

and cluster mean (ψ + 14)/(ψ + 4)
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2. (X2) generated with W6C2 = (ψ/2, ψ/2, 1, 1, 1)

and cluster mean (3ψ/2 + 12)/(ψ + 3)

3. (X3) generated with W6C3 = (1, 1, ψ, 1, 1)

and cluster mean (3ψ + 12)/(ψ + 4)

4. (X4) generated with W6C4 = (1, 1, ψ/2, ψ/2, 1)

and cluster mean (7ψ/2 + 8)/(ψ + 3)

5. (X5) generated with W6C5 = (1, 1, 1, ψ/2, ψ/2)

and cluster mean (9ψ/2 + 6)/(ψ + 3)

6. (X6) generated with W6C6 = (1, 1, 1, 1, ψ)

and cluster mean (5ψ + 10)/(ψ + 4)

Ten brands - two clusters

1.
(
X1,2,3,4,5

)
generated with W10C1 = (ψ, ψ, ψ, 1, 1)

and cluster mean (6ψ + 9)/(3ψ + 2)

2.
(
X6,7,8,9,10

)
generated with W10C2 = (1, 1, ψ, ψ, ψ))

and cluster mean (12ψ + 3)/(3ψ + 2)

Ten brands - five clusters

1.
(
X1,2

)
generated with W10C1 = (ψ, 1, 1, 1, 1)

and cluster mean (ψ + 14)/(ψ + 4)

2.
(
X3,4

)
generated with W10C2 = (1, ψ, 1, 1, 1)

and cluster mean (2ψ + 13)/(ψ + 4)

3.
(
X5,6

)
generated with W10C3 = (1, 1, ψ, 1, 1)

and cluster mean (3ψ + 12)/(ψ + 4)

4.
(
X7,8

)
generated with W10C4 = (1, 1, 1, ψ, 1)

and cluster mean (4ψ + 11)/(ψ + 4)

5.
(
X9,10

)
generated with W10C5 = (1, 1, 1, 1, ψ)

and cluster mean (5ψ + 10)/(ψ + 4)

Ten brands - ten clusters

1. (X1) generated with W10C1 = (ψ, 1, 1, 1, 1)

and cluster mean (ψ + 14)/(ψ + 4)
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2. (X2) generated with W10C2 = (ψ/2, ψ/2, 1, 1, 1)

and cluster mean (3ψ/2 + 12)/(ψ + 3)

3. (X3) generated with W10C3 = (ψ/3, ψ/3, ψ/3, 1, 1)

and cluster mean (2ψ + 9/(ψ + 2)

4. (X4) generated with W10C4 = (1, ψ/2, ψ/2, 1, 1)

and cluster mean (5ψ/2 + 10)/(ψ + 3)

5. (X5) generated with W10C5 = (1, 1, ψ, 1, 1)

and cluster mean (3ψ + 12)/(ψ + 4)

6. (X6) generated with W10C6 = (1, ψ/3, ψ/3, ψ/3, 1)

and cluster mean (3ψ + 6)/(ψ + 2)

7. (X7) generated with W10C7 = (1, 1, ψ/2, ψ/2, 1)

and cluster mean (7ψ/2 + 8)/(ψ + 3)

8. (X8) generated with W10C8 = (1, 1, ψ/3, ψ/3, ψ/3)

and cluster mean (4ψ + 3)/(ψ + 2)

9. (X9) generated with W10C9 = (1, 1, 1, ψ/2, ψ/2)

and cluster mean (9ψ/2 + 6)/(ψ + 3)

10. (X10) generated with W10C10 = (1, 1, 1, 1, ψ)

and cluster mean (5ψ + 10)/(ψ + 4)

We took values of ψ in the range (10, 5, 3) for Scenarios 1-3 respectively. For each

scenario we constructed 100 random datasets under each setup. Performance on the

recovered number of clusters for each method was assessed under each setup. More

specifically we assessed performance on three measures:

1. p1 = % datasets with all clusters recovered

2. The average number of correctly classified clusters in (100− p1)% clusters not

completely recovered. That is when we fail to recover all clusters, we consider

the % that were correctly classified amongst the recovered.

3. % Completely recovered clusters amongst cases where we had the same number

of implanted clusters. That is, sometimes when we implant three clusters and

recover three clusters, their cluster boundaries may not match, or the number

of brands in each of the three clusters could be different to what we originally
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implanted. The purpose of this measure is to enable fair comparisons with

KMeansC, since it restricts the user to specify the number of clusters to output

prior to analysis.

With DPNMC, for each dataset, we ran the Gibbs sampler for 500 iterations with

a 100 burn-in and drew samples from the posterior distribution. Convergence di-

agnostics using the block method, see Section 4.3.4, showed an acceptable number

of iteration was around 1000. However, running for 500 iterations was acceptable

as the difference in results from 500 to 1000 was minimal. Rather than treat σ2 as

random, see model 4.2, we estimate this by the pooled sample variance
∑m

j=1 s
2
j/m

as we have nonnormal data. We set μ∗
1 = 1, v1 = 10−2, σ2

1 = 1, σ2
2 = 103 as the

hyperparameters for G0. The posterior partitions were used to obtain the most

probable partition in light of the data, see Section 4.3.2.

In principle, as we saw in Section 2.4, each clustering method has its own un-

derlying definition of truth so we may unfairly discriminate against some methods

when compare them according to another criterion. Therefore to enable a fair com-

parison across methods, we calibrated each method to 10% misclassification, or

(100 − p1)% = 10%, in the complete null (one cluster) situation where all brands

are from the same cluster. We calibrated the DPNMC as described earlier using an

integrated likelihood method. The other methods were calibrated by tuning their

relevent parameters to give 10% misclassification, or ten wrongly classified datasets

out of the 100 that were not null. The parameter that was used to tune Method of

Normal Scores for Clustering (MNSC) was α, δ for False Discovery Rate for Clus-

tering (FDRC), π for Tukey’s Method for Clustering (TMC) and k∗ for Duncan’s

Bayesian Decision Theoretic Method for Clustering (DBDTMC). With K-means for

Clustering (KMeansC) it was impossible to calibrate the misclassification rate to

10% since it required the number of clusters to be prespecified. The development

of the third peformance measure was used to address this issue for KMeansC. With

G1C we simply ran as is.

With regard to setting the hyperparameters (a, b) in DPNMC we used a similar

setup to Navarro et al. (2006), where we set a = b = 10−2 to mimic a noninformative

prior on α. We will review this choice later in Chapter 6. Figures 4.3-4.5 show the

performance measures for all methods under the six brands setup, and Figures 4.6-

4.8 for ten brands. In addition, we provide the posterior density for α, see Figure 4.2,

for the six brands (scenario 1 - three clusters) case along with the posterior mean

and standard error for the key parameters shows in Table 4.2. From Figure 4.2 it is

clear that the posterior α values can take very large, or small, values therefore giving

unpredictable behaviour in the posterior expected number of clusters. We return to
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Prior Posterior
Parameter Mean SD Mean SD

α 1.00 10.00 6.57 7.04
μ0 1.00 ∞ 3.13 0.93
k0 1.00 14.14 0.84 0.63

Table 4.2: Summary of the posterior mean and standard deviation for the key
parameters in DPNMC under the six brands (scenario 1 - three clusters) case, with

σ̂2 = 0.66.

this later in Chapter 6. Also referring to Table 4.2 we see that the posterior mean

for α is a fair bit away from what we would expect, a value close to two, when we

have three implanted clusters in the data. However, this can, in part, be explained

by our noninformative prior on α.

A number of interesting features can be observed from Figures 4.3-4.8. Firstly,

it is clear that DPNMC has improved performance towards more, or less, implanted

clusters indicating some instability in the α posterior which is close to being improper

here. We return to the issue of setting a prior on α in Chapter 6. The improvement

is more apparent under more implanted clusters where it performs better in relation

to the other methods under the first performance measure. However, it does not

work as well with the five cluster case in ten brands nor with three clusters in six

brands. MNSC seems to perform remarkably well across nearly all setups except

when we have a larger number of implanted clusters. FDRC generally performed

the worst across both the six and ten brand cases, however it does better under

more implanted clusters. KMeansC had average performance relative to the other

methods based on the third performance measure. Due to KMeansC’s restrictions,

comparisons were not possible under the maximum number of implanted clusters in

both the six and ten brand cases. G1C performs well on the first measure for six

brands, but is average under ten brands. Additionally, with Figure 4.3, we see a

sharp decline in its second performance measure from scenarios 1-2. TMC performs

well on the second performance measure, particularly for six brands. As expected

across all cases the performance measures generally decreases from scenarios 1-3.

The drop is more noticeable going from the second to the third scenario.
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Figure 4.2: Posterior density for α under the six brands (scenario 1 - three clusters)
case.
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Figure 4.3: Performance of six brands (two implanted clusters). The panel on the
left indicates the results from the first, middle second and right third performance
measure. Here, we took a = 10−2, b = 10−2.
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Figure 4.4: Performance of six brands (three implanted clusters). The panel on the
left indicates the results from the first, middle second and right third performance
measure. Here, we took a = 10−2, b = 10−2.
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Figure 4.5: Performance of six brands (six implanted clusters). The panel on the
left indicates the results from the first, middle second and right third performance
measure. Here, we took a = 10−2, b = 10−2.
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Figure 4.6: Performance of ten brands (two implanted clusters). The panel on the
left indicates the results from the first, middle second and right third performance
measure. Here, we took a = 10−2, b = 10−2.
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Figure 4.7: Performance of ten brands (five implanted clusters). The panel on the
left indicates the results from the first, middle second and right third performance
measure. Here, we took a = 10−2, b = 10−2.
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Figure 4.8: Performance of ten brands (ten implanted clusters). The panel on the
left indicates the results from the first, middle second and right third performance
measure. Here, we took a = 10−2, b = 10−2.
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4.6 Summary

We have seen that, with Bayesian nonparametrics, two alternative approaches exist

to achieve flexibility in clustering:

1. Apply the DPM with a suitable number of hierarchies on the parameters

2. Look at extensions of the DPM model by replacing the DP with a more general

prior like the GP.

We demonstrated that the performance gain with the GP was marginal against our

DPNM. DPNM was less restrictive than the DPM used by Lijoi et al. (2007) where

they showed GPs performance gain over DPM was marked.

We found that the performance of DPNMC in relation to the other clustering

method was critically dependent on the specification of the α prior hyperparam-

eters (a, b). Navarro et al. (2006) provides a standard way of setting these by

taking them very small. However, as we will see in Chapter 6, this leads to a

near-improper posterior and causes unpredictable behaviour in the performance of

both DPNMC/DPMMC.

In the next chapter we generalize the DPNMC method to other models and

propose a more accurate model for the Which? example discussed in Section 1.1.
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Chapter 5

Generalization to Non-Normal

Data

5.1 Introduction

In the previous chapter we demonstrated the implementation of the DPNM for

normal data. However, more generally the data can arise from any parametric, or

even nonparametric, distribution. Therefore we propose a general framework for the

DPM under non-normal data in the next section. We then adapt DPNM to handle

multinomial data, which will be particularly useful in proposing an alternative model

for clustering brands, see Section 1.1. We conclude with a simulation study, as in

Section 4.5.

5.2 Generalization

The DPNM (4.2) can be generalized so that the data can occur from any parametric

distribution. We now define the unknown parameter vector θ = (γ, ξ, β, α), where

γ = (γ1, . . . , γm), and γj, ξ and β can be vectors. The data pdf, or pmf, is p(Xji|γj, ξ),

where Xji is the ith replicate for the jth object. The γj are drawn from G where

G is drawn from a DP with prior parameters G0 and α. We let G0 depend on the

parameter β and place priors on both β and α. Finally we place a prior on ξ. The
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generalized model is summarized below

Xji|γ, ξ ∼ p(Xji|γj, ξ)

γj|G ∼ G(·)
ξ ∼ p(ξ)

G|G0, α ∼ DP (G0, α)

α ∼ p(α)

G0|β ≡ G0(; β)

β ∼ p(β).

(5.1)

As in model (4.4) we see that the joint posterior using the stick-breaking construc-

tion, see Section 3.5, to sample a realization G from a DP, where G consists of φ

and u components prior to sampling, can be written as

p(β, ξ, α, φ, u, g|X) ∝ p(β)p(ξ)p(α)p(u|α)p(φ|β)p(g|u)p(X|g, φ, ξ).

The full conditionals are as follows

p(u(1)|−) ∝ p(u(1)|α)p(g|u(1)),

where u = (u1, . . .) and φ = (φ1, . . .) have been split into their active and non active

parts, see Section 4.3.2. Next consider p(α, u(2)|−) by first drawing from

p(α|u(1)) ∝ p(α)p(u(1)|α)

followed by

p(u(2)|−) ∝ p(α)p(u(2)|α).

If p(φ|β) is a conjugate prior for the likelihood p(Xji|γ, ξ), then p(φ
(1)k

|−) will

have the same distributional form as the prior, with updated hyperparameters from

both the prior and likelihood.

Similarly, if the prior p(β) is conjugate to p(φ(1)|β), then p(β|−), will have the

same form as the prior, with updated hyperparameters from both p(β) and p(φ(1)|β).

As there is no contribution from p(Xji|γ, ξ) when gjk = 0, we see that p(φ(2)|−) =
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p(φ(2)|β).

Next if p(ξ) is a conjugate prior for p(Xji|γ, ξ), then p(ξ|−) will have the same

form as the prior, with updated hyperparameters from both p(ξ) and p(Xji|γ, ξ).
Finally

p(g|−) ∝
m∏

j=1

t∏
i=1

L∏
k=1

p(gjk|u) {p(Xji|φk, ξ)}gjk

=
L∏

k=1

wrk
k

{
m∏

j=1

t∏
i=1

p(Xji|φk, ξ)

}gjk

=

m∏
j=1

L∏
k=1

w̃
gjk

jk ,

where

w̃jk =
wk

∏t
i=1 p(Xji|φk, ξ)∑L

k′=1wk′
∏t

i=1 p(Xji|φk′ , ξ)
.

The sampler is now implemented as described in Section 4.3.2 (replacing σ2 by ξ).

5.3 Modelling discrete data with an infinite num-

ber of clusters

Thus far with DPNM, see Section 4.3.2, we have considered the responses, Xji, to

occur on a continuous scale. However, our example in Section 1.1, the response

for an object attribute question is on an s point ordered preference scale, where 1

is low and s is high preference. Here we can define object j’s binary response by

individual i on an s point scale by Xji = (Xji1, . . . , Xjis). By using the DPM we are

assuming that each object belongs to one of an infinite number of clusters. Then Xji

is multinomial with parameters θj = (θj1, . . . , θjs), where θjl denotes the probability

with which the jth object had rating l. More conveniently, we can represent the

θjl in terms of cluster indicator variables gjk, by writing θjl =
∏L

k=1 φ
gjk

kl . Since the

DD, see (3.5), is conjugate to the multinomial, we assign the base distribution G0 as

a DD. However, the DD is rather restrictive here. In reality, using our example in

Section 1.1, we see that it is unrealistic to assume the responses across all s categories

were skewed in one direction. In some product tests brands often concentrate either

at the top, or bottom end ‘Budget buys’ of the market, we are more likely to

observe responses that are either concentrated towards the upper, or lower, end of
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5.3 Modelling discrete data with an infinite number of clusters

the preference scale. In contrast with mixed brand trials we can assume that the

response will fall into one of the five categories with equal probability. Some of the

response variations across various DDs are shown in Figure 3.1. We accommodate

this by using a mixture of DDs (MDD) for G0, where the mixtures will represent

the R most likely profiles, with associated probabilities ρr, r = 1, . . . , R. The set of

profile weights for the rth profile is denoted by ar = (ar
1, . . . , a

r
s), where

∑s
l=1 a

r
l = 1.

We introduce a profile indicator

zkr =

{
1 ; if the kth cluster takes on the rth profile

0 ; o.w,

for r = 1, . . . , R, so that P (zkr = 1|ρ) = ρr. Under this revision model (5.1) becomes

Xji|θj ∼ Mult(1, θj)

θj |G ∼ G(·)
G|G0, α ∼ DP (G0, α)

α|a, b ∼ Gamma(a, b)

G0|β, a = DD(βa)

a|ρ ∼
R∑

r=1

ρrδ(·, ar)

ρ ∼ DD(e∗q),

(5.2)

where a is a matrix with rows ar. For simplicity we shall take the parameter β > 0

to be fixed. Here β is a precision parameter for the φ
k
. We observe some differences

between the revised model (5.2) and the previous (4.2). Firstly, φ
(1)

is now an m∗

by s matrix, where cluster kth row vector has distribution G0, and φ
(2)

an L −m∗

by s matrix. Also, rk now denotes the number of θj that are in the kth cluster,

where P [θj = φ
k
] = wk. We also introduce z(1), which is an m∗ by R matrix of

active zkr, and z(2) the L −m∗ by R matrix of non-active profiles. Also, since the

responses are now taken to be multinomial, there is no additional common level one

parameter such as σ2. Finally, q denotes the prior profile weights, while e∗ is the

precision parameter for the DD of q.

We will refer to model (5.2) as the Dirichlet Process Multinomial Mixture (DPMM)

model. Based on these revisions, we sample in order, from the following conditional
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5.3 Modelling discrete data with an infinite number of clusters

posterior distributions

p(u(1)|−) ∝ p(u(1)|α)p(g|u(1))

p(z(1)k|−) ∝ p(z(1)k|ρ)p(φ(1)k
|β, z(1)k)

p(φ
(1)k

|−) ∝ p(φ
(1)k

|β, z(1)k)p(X|g
k
, φ

(1)k
)

p(α|u(1)) ∝ p(α)p(u(1)|α)

u(2)k|− ∼ Beta(1, α)

p(ρ|z(1)) ∝ p(ρ)p(z(1)|ρ)
p(z(2)kr = 1|ρ) = ρr

φ
(2)k

|− ∼ DD

(
β

R∑
r=1

zkra
r

)

p(g|−) ∝ p(g|u)p(X|g, φ),

where z(1)k denotes the active profile indicator vector for the kth cluster, φ
(1)k

de-

notes the vector for the kth cluster of the active φ
(1)

and g
k

= (g1k, . . . , gmk). Sim-

ilarly z(2)k and φ
(2)k

denote the kth cluster of the non-active cases. Model (5.2) is

illustrated graphically in Figure 5.3.

We now compute the various components above for use in the sampler. We start,

as before in Section 4.3.2, by finding m∗, then update u(1)k as in equation (4.21).

Next, the full conditional of z(1)k is

p(z(1)kr = 1|−) ∝ ρr

∏s
l=1 φ

βar
l −1

kl∏s
l′=1 Γ(βar

l
′ )
,

where ∝ means proportional to as a function of r, depends only on for active k,

which gives

p(φ
(1)k

|−) ∝
s∏

l=1

φ
β
∑R

r=1 zkrar
l +
∑m

j=1 gjkXj.l−1

kl ,

so that

φ
(1)k

|− ∼ DD

(
β

R∑
r=1

zkra
r
l +

m∑
j=1

gjkXj.l

)
, (5.3)

where Xj.l =
∑t

i=1Xjil denote the number of times the jth object had the lth rating

across all responses. It follows that Xj.|θj ∼ Mult(t, θj). We see that the DD in
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5.3 Modelling discrete data with an infinite number of clusters

Figure 5.1: Dependencies in the infinite cluster model for discrete data. Shaded
circles denote observed variables, white circles are latent variables, squares represent
specified hyperparameters, and plates indicate sets of independent replications of the
processes shown inside them. Dashed lines indicate the child node is derived from
its parent nodes.
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5.3 Modelling discrete data with an infinite number of clusters

(5.3) is based on a weighted mixture of R different profiles along with the data for

a particular cluster k. The full conditional for α is given by equation (4.22) and

u(2)k|− ∼ Beta(1, α)

as before. Next

p(ρ|z(1)) ∝
R∏

r=1

ρe∗qr+z.r−1
r ,

so that

ρ|z(1) ∼ DD(e∗q + z.),

where z. = (z.1, . . . , z.R), and z.r denotes the number of active clusters that had the

rth profile. Next p(z(2)kr = 1|−) = ρr for non-active k and

φ
(2)k

|− ∼ DD

(
β

R∑
r=1

zkra
r

)
.

Finally

p(g|−) ∝
m∏

j=1

L∏
k=1

w̃
gjk

jk ,

where

w̃jk =
wk

∏s
l=1 φ

Xj.l

kl∑L
k′=1wk′

∏s
l′=1 φ

X
j.l

′

k′ l′

.

Notice that the non-active full conditional posteriors for u(2)k, z(2)k and φ
(2)k

do

not involve the data. In a similar way to DPNM, we sweep through the above

conditional posteriors in the sequence u(1), z(1), φ(1)
,
(
α, u(2)

)
,
(
ρ, z(2), φ(2)

)
, g. Here

we update the components in (·) as a block update, which makes the sampler more

efficient, as it avoids the ergodicity constraint described in Section 4.3.1. At the end

of each sweep of the sample we update the current state of rk prior to the starting

the next sweep. Over time these samples converge to samples from the full posterior

distribution of u(1), z(1), φ(1)
,
(
α, u(2)

)
,
(
ρ, z(2), φ(2)

)
, g. As with DPNM we see from

(4.21) that the last term u∗m ∼ Beta(rm∗ + 1, α) causes problems when α → 0. As

before we address this using the transformation proposed in Section 4.3.3. Given the

complexity in working out the conditional posterior for β, we estimate it from its

marginal likelihood ignoring the DP structure, i.e. as if α = ∞. We also ignore the
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profile structure of DPMM in this estimate given its complexity, therefore assuming

equal weights for all al. This is sensible when we have no information about the

profiles. Since this is a crude estimate for β, in the next section, we do check its

sensitivity in our comparisons. Under these assumptions we see that the integrated

likelihood for β is

p(X|β) ∝
∫
p(X|φ)p(φ|β)dφ

∝
∫ m∏

j=1

{
s∏

l=1

φ
alβ+Xj.l−1
jl

Γ(β)∏s
l=1 Γ(alβ)

}
dφ

=

m∏
j=1

{∏s
l=1 Γ(alβ +Xj.l)

Γ(β +
∑s

l=1Xj.l)

Γ(β)∏s
l=1 Γ(alβ)

}
.

Then, taking logs, the integrated log-likelihood of β is

l(β) =

m∑
j=1

[
s∑

l=1

log {Γ(alβ +Xj.l)} − log

{
Γ

(
β +

s∑
l=1

Xj.l

)}]

+m

[
log {Γ(β)} −

s∑
l=1

log {Γ(alβ)}
]
.

Maximising this function with respect to β gives the estimate β̂, with approximate

S.E
{
−l′′(β̂)

}−1/2

, which is obtained from the Hessian matrix.

5.4 Comparison of clustering methods

We revisit the simulation study in Section 4.5, but also add in the performance of

the DPMM model. As before with DPNM, we use a variation of the integrated

likelihood ratio, see Section 4.3.2, to pick the final partition in DPMM. We label

this the Dirichlet Process Multinomial Mixture model for Clustering (DPMMC).

Under each setup for DPMMC we assume five profiles that are realistic of the

main types of trials at Which? These are

1. Low budget trials where more focus is placed on cost rather than performance,

so more weighting is placed on the lower two responses (1-2). The weights we

took were a1 = (30%, 30%, 13.3%, 13.3%, 13.3%)

2. Mixed brand trials, where there is a variation of brands from the top, middle
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5.4 Comparison of clustering methods

and bottom end of the market. Here the weights were a2 = (20%, 20%, 20%, 20%,

20%)

3. We took weights a3 = (13.3%, 13.3%, 13.3%, 30%, 30%) to respresent product

trials from the top end of the market, hence the higher weighting on the top

two responses (4-5)

4. Trials consisting of brands from the middle market were represented by profile

a4 = (10%, 10%, 60%, 10%, 10%)

5. Finally, the last profile, a5 = (30%, 13.3%, 13.3%, 13.3%, 30%), consisted of

trials with more brands from the top and bottom end of the market.

Note that we take some account for the ordinal nature of the data using these pro-

files to model the types of response variation. As we have no prior knowledge about

the occurrence of these profiles at Which? we let q = (20%, 20%, 20%,

20%, 20%) and e∗ = 1 so that out prior belief on E[ρr] = 20% with V[ρr] = 8%,

therefore allowing some degree of uncertainty around our prior profile weights. With

DPMMC, for each dataset, as with DPNMC, we ran the Gibbs sampler for 500 it-

erations with a 100 burn-in and drew samples from the posterior distribution. To

make comparisons fair across methods, we calibrated each method to 10% misclas-

sification, or (100− p1)% = 10%, in the complete null (one cluster) situation where

all brands were from the same cluster. We experimented with values of β in the

range of the approximate 95% interval derived using the integrated likelihood, see

previous section, across all cases. We found β̂ = 7 was adequate both in terms of

performance as well as depicting the variation between responses similar to that

of a standard Which? trial. With regard to setting the hyperparameters (a, b),

as before with DPNMC, we use a similar setup to Navarro et al. (2006) where we

set a = b = 10−2. We will review this choice later in Chapter 6. Figures 5.3-5.5

shows the performance measures for all methods under the six brands setup, and

Figures 5.6-5.8 for ten brands. In addition, we provide the posterior density for α,

see Figure 5.2, for the six brands (scenario 1 - three clusters) case along with the

posterior means and standard deviations for key parameters shown in Table 5.1.

From Figure 5.2 it is clear, as with DPNMC, that the posterior α values can take

very large, or small, values therefore giving unpredictable behaviour in the posterior

expected number of clusters. We return to this later in Chapter 6. Also, turning

to Table 5.1, it is clear that the posterior SD for α is high as with DPNMC, see

Section 4.5, therefore casting more uncertainty around the true posterior expected

number of clusters. Notice the higher posterior weight placed on profies 1, 3 and
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5.4 Comparison of clustering methods

Prior Posterior
Parameter Mean SD Mean SD

α 1.00 10.00 3.30 4.66
ρ1 0.20 0.28 0.27 0.21
ρ2 0.20 0.28 0.10 0.17
ρ3 0.20 0.28 0.23 0.21
ρ4 0.20 0.28 0.33 0.22
ρ5 0.20 0.28 0.08 0.14

Table 5.1: Summary of the posterior mean and standard deviation for the key
parameters in DPMMC under the six brands(three clusters) case.

4, which coincides with our simulated clusters, i.e. two from bottom, two from top

and two from the middle market respectively, although the posterior SDs are still

quite large.

A number of interesting features can be observed from Figures 5.3-5.8. Firstly,

it is clear that DPMMC performs better in relation to the other methods under

more implanted clusters, particularly with ten brands. In relation to DPNMC, DP-

MMC performs better under fewer implanted clusters and about the same with

more. FDRC performed the worst across both the six and ten brand cases. When

comparisons were made with KMeansC under the third performance measure, DP-

MMC performs better across most cases. However, under such cases, it is average

on performance measure one. As before, due to KMeansCs restrictions, compar-

isons were not possible under the maximum number of implanted clusters for both

the six and ten brand cases. As before, G1C performs well on the first measure

for six brands, but is average under ten brands. DPMMC shows improvement on

the second performance measure, particularly in relation to DPNMC, as seen from

the figures. As before, across all cases the performance measures generally decrease

from scenarios 1-3. Again, the drop is more noticeable going from the second to the

third scenario.
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Figure 5.2: Posterior density for α under the six brands (scenario 1 - three clusters)
case.
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Figure 5.3: Performance of six brands (two implanted clusters). The panel on the
left indicates the results from the first, middle second and right third performance
measure. Here, we took a = 10−2, b = 10−2 and β̂ = 7.
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Figure 5.4: Performance of six brands (three implanted clusters). The panel on the
left indicates the results from the first, middle second and right third performance
measure. Here, we took a = 10−2, b = 10−2 and β̂ = 7.
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Figure 5.5: Performance of six brands (six implanted clusters). The panel on the
left indicates the results from the first, middle second and right third performance
measure. Here, we took a = 10−2, b = 10−2 and β̂ = 7.
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Figure 5.6: Performance of ten brands (two implanted clusters). The panel on the
left indicates the results from the first, middle second and right third performance
measure. Here, we took a = 10−2, b = 10−2 and β̂ = 7.
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Figure 5.7: Performance of ten brands (five implanted clusters). The panel on the
left indicates the results from the first, middle second and right third performance
measure. Here, we took a = 10−2, b = 10−2 and β̂ = 7.
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Figure 5.8: Performance of ten brands (ten implanted clusters). The panel on the
left indicates the results from the first, middle second and right third performance
measure. Here, we took a = 10−2, b = 10−2 and β̂ = 7.
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5.5 Comparison of marginal and conditional meth-

ods

Thus far we have demonstrated the implementation of a DPM using the conditional

method, see Section 4.3.1. We now consider an implementation using the marginal

method given in Navarro et al. (2006) to handle discrete data, which is essentially

DPMM but with one profile under the marginal method. In Navarro et al. (2006)

they consider the posterior of (α, g, φ). Starting with the posterior for α, as before

with DPMM, we let the prior for α ∼ Gamma(a, b). Antoniak (1974) observed that

the posterior distribution for α is influenced only by the number of distinct clusters

n, and not by the details of the allocation of observations to those clusters. The

probability that n clusters will be observed in m samples is

p(n|α,m) =
Γ(α)

Γ(α +m)
zmnα

n,

(5.4)

where zmn is an unsigned Stirling number of the first kind, see Antoniak (1974). To

compute zmn we make use of the following recursive relations for the signed Stirling

numbers of the first kind

z∗m1 = (−1)m−1Γ(m)

z∗mn = z∗(m−1)(n−1) − (n− 1)z∗(m−1)(n), 1 < n ≤ m,

where 1 < n ≤ m. We see that the posterior distribution for α given n and m is

p(α|n,m) ∝ p(n|α,m)p(α)

∝ B(α,m)αa+n−1e−bα,

(5.5)

where B(·, ·) is the standard beta function. By expanding B(·, ·) in (5.5) we see that

p(α|n,m) ∝ αa+n−1e−bα

∫ 1

0

ηα−1(1 − η)m−1dη.

Since this conditional distribution is difficult to sample from, Navarro et al. (2006)

employ a data augmentation, where p(α|n,m) is viewed as a marginalization over
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the joint density

p(α, η|n,m) ∝ αa+n−1e−bαηα−1(1 − η)m−1.

By using this joint distribution we deduce that

α|η, n,m ∼ Gamma(a + n− 1, b− log(η)) (5.6)

and

η|α, n,m ∼ Beta(α,m). (5.7)

Since the DD is conjugate to the multinomial, it is straightforward to calculate the

conditional posterior distribution over the kth cluster. Therefore the probability

we require is p(gjk = 1|g−j
, α,X), the posterior probability that the jth object is

assigned to the kth cluster, given the assignments for all other objects and a value

for α. Here g−j
denotes the cluster assignment for all other objects not including

the jth. Then using Bayes rule we see that

p(gjk = 1|g−j
, α,X) ∝ p(gjk = 1|g−j

, α)p(Xj.|gjk = 1, g−j
, X−j)

= p(gjk = 1|g−j
, α)

∫
p(Xj.|φk

)p(φ
k
|g−j

, gjk = 1, X−j)dφk

= p(gjk = 1|g−j
, α)

∫
p(Xj.|φk

)p(φ
k
)
∏

a′∈A−j
p(Xa

′ |φ
k
)dφ

k∏
a′∈A−j

p(Xa
′
.)

= p(gjk = 1|g−j
, α)

∫
p(φ

k
)
∏

a∈A p(Xa.|φk
)dφ

k∫
p(φ

k
)
∏

a′∈A−j
p(Xa

′
.|φk

)dφ
k

,

where A = {a : gak = 1} and A−j = A−{j} is the set of objects in cluster k including

and not including the jth one respectively. Notice that with the marginal method

we integrate out the φ in (5.8). Since p(gjk = 1|g−j
, α) is the prior probability that

a object j from the DP belongs to cluster k, where k may be an element of the

currently observed clusters or a new cluster. It was shown by Neal (2000) that

p(gjk = 1|g−j
, α) ∝

{
r−j,k

j+α−1
; k ≤ K−j

α
j+α−1

; o.w,
(5.8)

where r−j,k counts the number of objects (not including the jth) that are currently

assigned to cluster k, and K−j denotes the number of clusters in the observed par-
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5.5 Comparison of marginal and conditional methods

tition over all objects except the jth. Next, expanding the integral∫
p(φ

k
)
∏

a∈A p(Xa.|φk
)dφ

k∫
p(φ

k
)
∏

a
′∈A−j

p(Xa′ .|φk
)dφ

k

,

we get

∫
p(φ

k
)
∏
a∈A

p(Xa.|φk
)dφ

k
=

∫ s∏
l=1

φ
β+
∑m

j=1 Xj.lgjk−1

kl dφ
k

=

∏s
l=1 Γ(β +

∑m
j=1Xj.lgjk)

Γ(sβ +
∑m

j=1

∑s
l=1Xj.lgjk)

,

and similarly

∫
p(φ

k
)
∏

a′∈A−j

p(Xa′ .|φk
)dφ

k
=

∫ s∏
l=1

φ
β+
∑

a
′∈A−j

X
a
′
.l
g

a
′
k
−1

kl dφ
k

=

∏s
l=1 Γ(β +

∑
a′∈A−j

Xa′ .lga′k)

Γ(sβ +
∑

a′∈A−j

∑s
l=1Xa

′
.lga

′
k)
.

Taken together we see that∫
p(φ

k
)
∏

a∈A p(Xa.|φk
)dφ

k∫
p(φ

k
)
∏

a′∈A−j
p(Xa

′
.|φk

)dφ
k

=
Γ(sβ + q−j,k)

∏s
l=1 Γ(β + q.,k,l)∏s

l=1 Γ(β + q−j,k,l)Γ(sβ + q.,k)

= wjk,

where q−j,k,l =
∑

a′∈A−j
Xa′ .lga′k denotes the number of times that an object (not

including the jth) currently assigned to cluster k made response l, and q−j,k =∑
a′∈A−j

∑s
l=1Xa′ .lga′k denotes the total number of responses made by these objects.

The terms q.,k,l and q.,k are defined similarly, except that the data for the jth object

is not excluded. So, taking these results together with the p(gjk = 1|g−j
, α), we see

that the conditional posterior for gjk is

p(gjk = 1|g−j
, α,X) ∝

{
wjk

r−j,k

j+α−1
; k ≤ K−j

w
′
jk

α
(j+α−1)

; o.w,
(5.9)
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where w
′
jk is wjk with q−j,k,l = 0. Next, to find the posterior for φ

k
, we observe that

p(φ
k
|g,X) ∝ p(g,X|φ

k
)p(φ

k
|β)

∝
⎧⎨
⎩
∏

j|gjk=1

p(Xj.|φk
)

⎫⎬
⎭ p(φ

k
|β)

∝
s∏

l=1

φ
∑m

j=1 Xj.lgjk

kl

s∏
l=1

φβ−1
kl

=

s∏
l=1

φ
∑m

j=1 Xj.lgjk+β−1

kl .

Therefore

φ
k
|g,X ∼ DD

(
m∑

j=1

Xj.lgjk + β

)
. (5.10)

Equations (5.6), (5.7), (5.9) and (5.10) define the Gibbs sampler. We call this

the Dirichlet Process Multinomial Mixture using the Marginal method (DPMMM).

Over time these samples converge to the full posterior of (α, g, φ). Again as with

DPNMC/DPMMC, we can pick the most likely partition based on p(g|α, φ, β,X)

using a variation of the integrated likelihood ratio, see Section 4.3.2. We label this

the Dirichlet Process Multinomial Mixture using the Marginal method for Clustering

(DPMMMC).

We now provide a simulation to monitor the potential convergence times of the

marginal and conditional methods under various values of α. Under the conditional

method we used a simpler version where we only have one profile since it is not

easy to generalize the marginal method in this way. As before, convergence was

assessed based on the block method criteria described in Section 4.3.4. We consider

a data setup from the previous section: six brands (scenario 1 - three implanted

clusters). Both methods were run in parallel with α set in the range [0.01,100].

From Table 5.2 we see that the conditional method had faster convergence times

than the marginal. The difference in times was more marked for smaller values of

α. A possible reason is that the marginal method induces prior dependence between

the g therefore increasing convergence times.

In addition to the computation time, we also monitored the deviance D calcu-

lated as

D = −2

m∑
j=1

log

{
m∗∑
k=1

rk

m
p(Xj.|φk

)

}
,
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5.5 Comparison of marginal and conditional methods

see Papaspiliopoulos and Roberts (2008) for further details. In a similar way to

Papaspiliopoulos and Roberts (2008) we report the efficiency of both methods using

the estimated integrated autocorrelation time, τ = 1 + 2
∑∞

w=1 ρw, where ρw is

the lag-w autocorrelation of the monitored chain. Estimation of τ is a notoriously

difficult problem as highlighted by Papaspiliopoulos and Roberts (2008). We use

the suggestion by Papaspiliopoulos and Roberts (2008) where τ is estimated by

summing estimated autocorrelations up to a fixed lag L, where τ << L << N , and

N is the Monte Carlo sample size and was taken to be the size when the block method

criterion was met1, see Section 4.3.4. Approximate standard errors of the estimate

can be obtained, see equation (3.19) in Sokal (1997). The results in Table 5.3 show

that the difference in integrated autocorrelation times between the two methods is

moderate, with greater variability observed for larger values of α. However for larger

values of α we could potentially sample directly from the parametric distribution

G0 instead of using the DP2.

To specify an appropriate value of α at which point we can go parametric we

make use of a variation of the maximum Kolmogorov distance. We compare the

empirical distribution function (EDF) between the realization, G, from a DP and

G0 as follows:

1. Generate a realization G from a the DP using Sethuraman representation, see

Section 3.5. We now have a sequence of φ1, . . . , φL and w1, . . . , wL to represent

G

2. Order the φk’s from smallest to largest, and using this ordering order the wk’s

3. Compute d(l) =
∑l

k=1w(k) −G(φ(k)), for l = 1, . . . , L, where G(φ(k)) = P [X <

φ(k)] and X ∼ G

4. Find di = max d(l)

5. Repeat 1-4 N times and find the average distance d̄ =
∑N

i=1 di/N .

Figure 5.9 reports the d̄ for various values of α based on N = 100, where G0 ≡
N(0, 1). Figure 5.9 shows that past α = 40 we can directly sample from G0 rather

than use the DP, based on a d̄ ≤ 0.1.

1We found N between 500-1000 was sufficient here
2But at the cost of losing the clustering ability
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Figure 5.9: Estimated d̄ for various values of α with N = 100.

Scenario 1 Scenario 2 Scenario 3
α DPMMMC DPMMC DPMMMC DPMMC DPMMMC DPMMC

0.01 17.01 3.86 14.42 1.78 5.84 1.76
0.1 16.25 8.12 16.91 1.76 13.63 2.89
1 20.96 12.99 22.63 12.70 30.86 8.41
10 22.07 14.91 32.94 13.68 41.34 8.14
20 23.14 15.52 35.91 16.15 43.22 13.02
50 29.35 15.92 41.46 16.75 45.31 7.72
100 35.04 16.43 42.97 16.53 44.44 12.37

Table 5.2: Convergence times (secs) for DPMMMC and DPMMC. Simulation based
on the six brands (scenario 1 - three clusters) dataset where β̂ = 7
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5.6 Summary

Scenario 1 Scenario 2 Scenario 3
α DPMMMC DPMMC DPMMMC DPMMC DPMMMC DPMMC

0.01 1.99(0.29) 0.95(0.10) 2.33(0.38) 0.95(0.10) 10.67(3.52) 0.92(0.09)
0.1 1.09(0.13) 1.23(0.14) 1.34(0.17) 0.80(0.08) 1.92(0.27) 0.84(0.09)
1 1.17(0.13) 1.09(0.12) 1.02(0.12) 0.94(0.11) 1.13(0.13) 1.06(0.12)
10 0.96(0.10) 0.96(0.10) 0.93(0.10) 0.72(0.08) 2.95(0.52) 2.05(0.48)
20 1.11(0.13) 0.97(0.11) 1.03(0.12) 0.96(0.11) 1.05(0.12) 3.95(0.52)
50 1.12(0.13) 1.02(0.11) 1.45(0.18) 77.46(68.26) 1.12(0.13) 1.22(0.14)
100 0.88(0.09) 215.22(316.31) 1.03(0.12) 1.05(0.12) 0.97(0.11) 201.98(287.42)

Table 5.3: Estimated integrated autocorrelated time for the deviance D. Estimated
standard error in parentheses. Simulation based on the six brands (scenario 1 - three
clusters) clusters dataset where β̂ = 7

5.6 Summary

From the simulation study in Section 5.4 we see that DPMMC offers some per-

formance improvements over the other methods as well as DPNMC, particularly

when we have a larger number of implanted clusters. Under a lower number of im-

planted clusters its performance is average in relation to the others. Since DPMMC

models the data using its true distribution, we would expect superior performance

in relation to DPNMC. One of the reservations with MNSC was that it outputs

more erroneous clusters than needed, therefore often misleading to the researchers

at Which? With DPMMC, we not only generate clusters from an infinite mixture

model for adaptability, we also add extra information, e.g. the possible trials at

Which?, through the profiles weights. The latter is a feature that is missing from

the other methods we compared, and it seems to have been their downfall.

With regards to the two possible sampling mechanisms for the DPM, based on

our simulations in the last section, we observe that the conditional method is more

efficient than the marginal across the range of α values we explored.

Thus far focus on the specification of the α hyperparameters (a, b) has been

limited. Since α greatly influences the clustering behaviour we consider its properties

in more detail in the next chapter. We also provide a framework for setting (a, b)

under both the informative as well as noninformative cases on the expected number

of clusters.
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Chapter 6

Learning the Clustering Structure

6.1 Introduction

In this chapter we consider the standard approaches that have been proposed in the

literature for specifying a prior for the dispersion parameter α. We then consider

some theoretical properties followed by a proposed framework to capture the prior

opinion on the expected number of clusters in an informative way using a percentile

based method. In particular we focus on how we can adapt this framework in a

number of ways that take account of both informative and noninformative setups.

Under this adaptation we revisit the simulation study in Section 5.4 to observe any

performance gains.

6.2 Current approaches

In both the DPNMC and DPMMC methods, see Chapters 4 and 5, we did not focus

on the specification of the hyperparameters (a, b) in the Gamma(a, b) prior for α.

Instead, we set them to be small. This is an approach adopted by a number of

authors, see Navarro et al. (2006). Placing a prior on α addresses the concerns in

Antoniak (1974) regarding the DP model being rather restrictive if we set a value

for α a priori. Other methods such as West et al. (1994) involve eliciting (a, b) under

strong prior knowledge for α or vary them over a wide range of n values but place

low probability on values of n near one or m, where n denotes a random variable

for the number of district clusters and 1 ≤ n ≤ m. One problem with this approach

is that learning about α can be difficult, especially under a small sample size where

the specification of (a, b) will have a greater impact on the α posterior. Some other

strategies are often based on approximations of the conditional mean and conditional
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6.2 Current approaches

variance of n given α. However, when we know the prior mean and variance of n we

can use moment estimates of (a, b) by equating the mean and variance to analytic

approximations of their unconditional expectations of E[n] and V[n], see Jara et al.

(2007).

The expected number of clusters sampled from a DP is given by

E[n|α,m] =

m∑
n=1

np(n|α,m).

If we define Wj as a random variable which equals one if we have a new cluster, and

zero otherwise, then we see that E[Wj ] = α/(α + j − 1). Therefore it follows that

E[n|α,m] = α
m∑

j=1

1

α + j − 1
.

Using the fact that
∑m

j=1 1/j ∼ log(m) it follows that

E[n|α,m] ≈ α log

(
m+ α

α

)
(6.1)

for large m as noted by Antoniak (1974). We see from (6.1), as noted by Korwar

and Hollander (1973), n increases with m in an approximately logarithmic fashion.

In many applications α is unknown, so we either place a prior on α, as we have

done thus far, or estimate it based on the data using relationship (6.1). The latter

approach is favoured by some authors, see Lijoi et al. (2007), and is often used when

we have strong knowledge about E[n|α,m]. Here we can use (6.1) to find a suitable

prior value for α by specifying our prior expectation, n̄, of the number of clusters.

Let u = m/α, then (6.1) becomes

n̄ =
m

u
log(u+ 1). (6.2)

We can solve equation (6.2) for u using Newton’s method as follows. Define

f(u) =
1

u
log(u+ 1) − n̄

m
.

Then

f ′(u) =
1

u(u+ 1)
− log(u+ 1)

u2
.
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To find u, we iterate

ui+1 = ui − f(ui)

f ′(ui)
, i = 0, 1, . . .

and then set α = m/u.

Turning now to the Gamma prior on α, one of the main problems here is in choos-

ing appropriate values for (a, b). Navarro et al. (2006) reasoned that the Gamma

prior will be improper when a = b = 0, so they simply used the proper but diffuse

prior Gamma(10−10, 10−10) instead. This would appear to be a suitable noninfor-

mative prior for α but, as we will see in the next section, this prior is problematic.

To help specify (a, b) we first need to determine the problem context:

1. ‘Noninformative’, where we have limited a priori knowledge on the number of

clusters expected in the data. In the context of the Which? product trials this

could be a user trial with a mix of brands from the top, middle and bottom

end of the market. Here the researcher may have limited knowledge on the

possible cluster memberships present in the data.

2. ‘Informative’, where we have strong prior beliefs on the expected number of

clusters in the data, e.g. an annually run brand trial at Which? where the

researcher has some information on the expected number of clusters from past

trials.

In the informative case we could either specify α, by a∗ using relationship (6.1) and

our belief on the expected number of clusters, or set d in

α|a, a∗ ∼ Gamma(d, d/a∗) (6.3)

depending on the strength of our belief about a∗. In the latter, since we are placing

a prior on α, we allow for extra information from the data to update α. In the

noninformative case we could use (6.3), but with d = 10−10, which is a similar setup

to Navarro et al. (2006). Here, α will be centred around a∗ but with a huge variance

thereby mimicking the usual noninformative case. However, when α is very small,

or large, this could lead to an improper posterior. To see this consider

L(α) ∝ p(X|α) =
∑

g

p(X|g)p(g|α)

and

p(g|α) =

∫
p(g|u)p(u|α)du.
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We see that

p(g|α) =

∫ m∗∏
k=1

α(1 − uk)
α−1

[
uk

k−1∏
z=1

(1 − uz)

]rk

du

= αm∗
∫ m∗∏

k=1

u
(rk+1)−1
k (1 − uk)

(α+Rk)−1du

= αm∗ Γ(r1 + 1)Γ(α+R1)

Γ(α +R0 + 1)

Γ(r2 + 1)Γ(α +R2)

Γ(α +R1 + 1)
· · · Γ(rm∗ + 1)Γ(α)

Γ(α + rm∗ + 1)
.

(6.4)

Therefore

p(g|α) =

m∗∏
k=1

γk(g, α),

where

γk(g, α) = α
Γ(rk + 1)Γ(α +Rk)

Γ(α +Rk−1 + 1)

=
αrk!∏rk

j=0(α +Rk + j)
=

α−rkrk!∏rk

j=0

(
1 + Rk+j

α

) .
(6.5)

We now assess the behaviour of p(g|α) as α → 0. If k < m∗ then Rk > 0, so

from (6.5),

γk

α
→ rk!∏rk

j=0(Rk + j)
<∞

so that γk = O(α). Next, k = m∗ implies that Rk = 0, so

γk =
rk!∏rk

j=1(α + j)
→ 1.

Therefore

p(g|α) →
{

0 ; if m∗ > 1

1 ; if m∗ = 1,
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as α→ 0, from which it follows that

p(X|α) =

m∗∑
k=1

p(X|g
k
)p(g

k
|α) → p(X|null), (6.6)

where p(X|null) is the likelihood under one cluster.

Furthermore, as α→ ∞ p(X|α) converges to the likelihood function in the model

with no clustering, since G → G0 as α → ∞ almost surely. Thus L(α) tends to a

positive limit at both zero and infinity. When a = b = 0 we see that p(α) ∝ 1/α,

therefore it follows that

p(α|X) ∝
{

p(X|null)/α ; for small α

p(X|no clustering)/α ; for large α.
(6.7)

From (6.7) we see that the posterior p(α|X) does not integrate to a finite limit when

α→ 0 or α→ ∞, therefore leading to an improper posterior.

6.3 Alternative approaches

As we have seen from the previous section, in the noninformative setup, setting the

hyperparameters (a, b) very small causes problems in the α posterior. To address the

near-impropriety of the α posterior we first observe that in any clustering situation

we have m objects to place amongst n clusters. In the informative case, we elicit the

probability of n clusters from the experts in the domain of interest. Since experts

find it difficult to quantify exact probabilities on the number of clusters, we propose

to elicit only two pieces of information: the probability plower of observing one cluster

along with the probability pupper of observing more than qupper = �c log(m)� clusters

for some c > 0, where �x� = min {h ∈ Z|h ≥ x} is the ceiling function. Practically

this makes sense, for example in the Which? product tests the researcher would

have varied prior expectations for a larger, or smaller, number of clusters. So if

they favour a larger number of clusters then pupper would be raised accordingly, and

similarly plower raised when a lower number of clusters is favoured. For practical

purposes we set c = 2 to keep the upper bound threshold below m for all m ≥ 2

since we cannot observe more than m clusters. For example, when we have six

brands we elicit the probability of observing greater than or equal to four clusters

to set pupper, so the upper quantile is qupper = 4. Since we know from (6.1) that the

expected number of clusters from a DP increases in an approximately logarithmic

fashion with m, there is some intuition behind the qupper cluster bound.
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Having defined suitable quantiles, we can formally specify two nonlinear equa-

tions, f1(a, b) = 0 and f2(a, b) = 0, where

f1(a, b) =

∫ ∞

0

p(n = 1|α,m)p(α)dα− plower

=
ba

Γ(a)
zm1

∫ ∞

0

αa−1e−bα∏m−1
j=1 (α+m− j)

dα− plower

and

f2(a, b) =

m∑
n=�qupper�

∫ ∞

0

p(n|α,m)p(α)dα− pupper

=
ba

Γ(a)

m∑
n=�qupper�

zmn

∫ ∞

0

αn+a−2e−bα∏m−1
j=1 (α +m− j)

dα− pupper.

Then these equations can be solved for (a, b) by, for example, minimizing the ob-

jective function f3(a, b) = f 2
1 (a, b) + f 2

2 (a, b). Thus far we have shown how to solve

these equations for (a, b) when plower and pupper are elicited from experts. However,

in the noninformative setup, we can also work the other way i.e. solve for plower and

pupper when (a, b) are given. This is particularly useful when tuning the DPMMC

from Chapter 5 for improving classification performance. We refer to this setup as

SCAL from herein.

For comparison purposes we use an alternative proposal for (a, b) selection by

Dorazio (2009). He assumed that the prior information about n can be specified

using h(n). Dorazio (2009) assumed that in the absence of prior information the

distribution of n is discrete uniform h(n) = 1/m, where 1 ≤ n ≤ m. Under any

h(n) we can find a Gamma(a, b) prior for α for which the induced prior for n

π(n|m, a, b) =

∫ ∞

0

p(n|α,m)p(α)dα

=
ba

Γ(a)
zmn

∫ ∞

0

αa−1e−bα∏m−1
j=1 (α+m− j)

dα

closely matches h(n). Using the Kullback-Leibler divergence between h(n) and

π(n|m, a, b) gives

DKL =
m∑

n=1

h(n) log

{
h(n)

π(n|m, a, b)
}
.
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Then computing values for (a, b) that minimizes DKL yields a prior for α that

matches our prior opinions expressed by h(n). We call this method DORO. In the

next section we compare the performance of SCAL and DORO.

6.4 Comparison of clustering methods

We reconsider the simulation study from Section 5.4, where the setup by Navarro

et al. (2006) was used to set (a, b). This is undesirable as we saw in the last section.

Instead, in the six brand setup, we learn the ‘best’ combinations of (a, b) through

simulation under the first two performance measures1 defined in Section 4.52. We

consider a, b ∈ (0, 5]. Some of the performance figures are shown in Table 6.1.

After some careful exploration we selected a = b = 1 as, from Table 6.1, this

configuration gives good all-round performance and corresponds to plower = 0.34

and pupper = 0.15. We then treat the six brand case with a = b = 1 as the default.

Under this configuration we solve the equations under plower = 0.34, pupper = 0.15

to obtain candidate values for (a, b) under m brands, which we anticipate will give

good all-round performance. Under this setting we obtain a = 0.66 and b = 0.61 for

the ten brand case. Since the results for the six brand setup are scaled appropriately

for any m, this provides an automated way of specifying (a, b) for any m. Table 6.2

shows the two performance measures under the ten brand case with (a, b) set using

the SCAL and DORO as described in the last section. For comparison purposes we

also add in other combinations of (a, b) as in Table 6.1. From Table 6.2 we observe

a gain in performance for a larger number of clusters with DORO whereas SCAL

performs well under a medium, or smaller, number of clusters. We also see SCAL

performs, on average, better across all other combinations of (a, b). Inspecting the

(a, b) values in Table 1 of Dorazio (2009) we see that b is much smaller than a as

m grows. Therefore we expect the prior to favour a much larger number of clusters

with increasing m which could potentially lead to a data/prior clash, particularly

when the number of clusters in the data is much lower than m. From (6.1) we know

that the expected number of clusters sampled from a DP grows logarithmically in

m which is a more reasonable assumption.

Figure 6.1 presents the (a, b) values under SCAL. We observe a stabilization of

(a, b) around 0.4 − 0.5 with increasing m. Figure 6.1 also shows the fitted values

for both the (a, b) curves based on a negative exponential regression model. More

1Since comparisons are not made with K-means, the last performance measure, p3, was dropped
2Alternatively, to account for Which? ideally seeking five classes of products we could set

pupper a lot smaller for qupper ≥ 5
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Figure 6.1: (left) Scaled a (right) Scaled b values under m = 6 with plower = 0.34
and pupper = 0.15.
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precisely â = e−0.046(m−6) and b̂ = e−0.050(m−6). We can use these models to predict

appropriate values of (a, b) for m ∈ [6, 25]. To further demonstrate the effectiveness

of this approach we also consider a 16 brand case. Using the approach described

in Section 4.5 we simulate the 16 brand case with two, four and eight implanted

clusters as follows:

Sixteen brands - two clusters

1.
(
X1,2,3,4,5,6,7,8

)
generated with W16C1 = (ψ, ψ, ψ, 1, 1)

2.
(
X9,10,11,12,13,14,15,16

)
generated with W16C2 = (1, 1, ψ, ψ, ψ)

Sixteen brands - four clusters

1.
(
X1,2,3,4

)
generated with W16C1 = (ψ, ψ, 1, 1, 1)

2.
(
X5,6,7,8

)
generated with W16C2 = (1, ψ, ψ, 1, 1)

3.
(
X9,10,11,12

)
generated with W16C3 = (1, 1, ψ, ψ, 1)

4.
(
X13,14,15,16

)
generated with W16C4 = (1, 1, 1, ψ, ψ)

Sixteen brands - eight clusters

1.
(
X1,2

)
generated with W16C1 = (ψ, 1, 1, 1, 1)

2.
(
X3,4

)
generated with W16C2 = (ψ/2, ψ/2, 1, 1, 1)

3.
(
X5,6

)
generated with W16C3 = (ψ/3, ψ/3, ψ/3, 1, 1)

4.
(
X7,8

)
generated with W16C4 = (ψ, ψ/2, ψ/2, 1, 1)

5.
(
X9,10

)
generated with W16C5 = (1, 1, ψ, 1, 1)

6.
(
X11,12

)
generated with W16C6 = (1, 1, ψ/3, ψ/3, ψ/3)

7.
(
X13,14

)
generated with W16C7 = (1, 1, 1, ψ/2, ψ/2)

8.
(
X15,16

)
generated with W16C8 = (1, 1, 1, 1, ψ)

As in Section 4.5 we took values of ψ in the range (10, 5, 3) for Scenarios 1-3

respectively. Using SCAL we find that â = 0.63 and b̂ = 0.61 under the 16 brand

case. Table 6.3 presents the two performance measures under this setting. From

Table 6.3 we observe an improvement in performance using SCAL as opposed to

DORO. However, the performance figures under a = b = 1 are similar to SCAL. It

is interesting to observe that under eight implanted clusters, all configurations of
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(a, b) fail to recover any clusters. Since, from (6.1), the expected number of clusters

grows logarithmically in m provides an explanation for the poor performance in

recovering a larger number of clusters.

We now reproduced the performance graphs from Section 5.4, but using SCAL

to set (a, b). We also add in DPNMC from Chapter 4 but with the same (a, b)

values we used in DPMMC to make comparisons fair. Figures 6.3-6.5 shows the

performance measures for all methods under the six brands setup, and Figures 6.6-

6.8 for ten brands. In addition, as before, we provide the posterior density for α,

see Figure 6.2, for the six brands (scenario 1 - three clusters) case along with the

posterior means and standard deviations for the key parameters shown in Table 6.4.

From Figure 6.2 it is clear that the posterior α values are more stable than before

with a tighter SD owing partly to SCAL. Again, as in Section 5.4, notice the higher

posterior weight placed on profiles 1, 3 and 4, which coincides with our simulated

clusters, i.e. two from bottom, two from top and two from the middle market

respectively. Unlike before the posterior SDs for these weights are a bit smaller

indicating more certainty around these weights.

A number of interesting features can be observed from these figures. Firstly

across most cases it is clear that using our framework shows additional performance

gains over the standard DPNMC/DPMMC setups considered in Section 4.5 and

5.4. However, their performance is still average, under the six brands with the

two implanted clusters scenario, as seen in Figure 6.3. As with the performance

graphs in Sections 4.5 and 5.4 the performance of DPNMC/DPMMC is, at worst,

average in relation to the other methods. As before, under performance measure

two, DPMMC has better performance in relation DPNMC. In general we see that

DPMMC performs better than DPNMC under more implanted clusters, particularly

with ten brands. Notice in Figure 6.7 DPMMC has significant performance gains

in relation to the other methods on measure one. This is particularly appealing for

Which? since they seek five classes of products. Again, the drop in performance is

more noticeable going from the second to the third scenario. Notice, in Figure 6.7,

the large improvement in performance measure three with DPMMC in relation to the

other methods. The same pattern is also observed in Figure 5.7 where a = b = 10−2.

Here the large improvement in performance, particularly with performance measure

three, can in part be explained by the improper posterior for α, see Section 6.2.

Additionally, since we are unlikely to observe many outputted partitions with three

clusters, particularly when a = b = 10−2, performance measure three will naturally

be more variable.
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6.4 Comparison of clustering methods

Prior Posterior
Parameter Mean SD Mean SD

α 1.00 1.00 1.38 0.81
ρ1 0.20 0.28 0.25 0.18
ρ2 0.20 0.28 0.07 0.18
ρ3 0.20 0.28 0.31 0.23
ρ4 0.20 0.28 0.30 0.20
ρ5 0.20 0.28 0.07 0.13

Table 6.4: Summary of the posterior mean and standard deviation for the key
parameters in DPMMC for the six brands (three clusters) case.

α

F
re

qu
en

cy

0 1 2 3 4 5 6 7

0
20

40
60

80
10

0
12

0

Figure 6.2: Posterior density for α under the six brands (scenario 1 - three clusters)
case.
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Figure 6.3: Performance of six brands (two implanted clusters) - The panel on the
left indicates the results from the first, middle second and right third performance
measure. Here, we took a = 1, b = 1 and β̂ = 7.
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Figure 6.4: Performance of six brands (three implanted clusters) - The panel on the
left indicates the results from the first, middle second and right third performance
measure. Here, we took a = 1, b = 1 and β̂ = 7.
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Figure 6.5: Performance of six brands (six implanted clusters) - The panel on the
left indicates the results from the first, middle second and right third performance
measure. Here, we took a = 1, b = 1 and β̂ = 7.
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Figure 6.6: Performance of ten brands (two implanted clusters) - The panel on the
left indicates the results from the first, middle second and right third performance
measure. Here, we took a = 0.66, b = 0.61 and β̂ = 7.
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Figure 6.7: Performance of ten brands (five implanted clusters) - The panel on the
left indicates the results from the first, middle second and right third performance
measure. Here, we took a = 0.66, b = 0.61 and β̂ = 7.
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Figure 6.8: Performance of ten brands (ten implanted clusters) - The panel on the
left indicates the results from the first, middle second and right third performance
measure. Here, we took a = 0.66, b = 0.61 and β̂ = 7.

113

Chapter6/Chapter6Figs/EPS/chp6_10Brands_10Groups.eps


6.5 Summary

6.5 Summary

It is clear from the simulation study that (a, b) specification using SCAL shows some

performance gains, not only in relation to the other methods, but also in relation

to the standard DPNMC/DPMMC setup introduced in Chapters 4-5. However, the

performance of both DPNM/DPMMC is average under a lower number of implanted

clusters. Although the performance of DPMMC across Figures 6.3-6.8 is average, it

perform well under situations that will benefit Which?, particularly the setup in Fig-

ure 6.7 where good performance is observed on measure one. Considering DPMMC

has improved performance for a larger number of implanted clusters, we believe a

simulation with over ten brands will favour DPMMC more than the other methods.

As we have seen from Chapter 1, one of the reservations with MNSC was that it

was not stable in its final cluster solution, therefore often misleading researchers at

Which?. By using DPNMC/DPMMC, we not only generate clusters from an infinite

mixture model for improved adaptability and learning, but also incorporate extra

prior information on observing a higher, or lower, number of clusters through SCAL.

One of the main attractions of using SCAL is its automatic specification of (a, b) for

m in a given range. This is an appealing feature for the Statisticians at Which? as

it allows a robust way of clustering under the noninformative setup. It also allows

researchers, under the informative setup, to specify their prior beliefs about the up-

per, or lower, number of clusters to estimate (a, b). This is particularly useful for

restricting the upper number of clusters to around five to fit in with Which?’s ideal

number of blob classes.
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Chapter 7

Conclusions and further work

7.1 Introduction

If the goal is to learn about complex variations amongst objects, e.g. how brands

vary on an attribute question, then we require models that allow us to learn complex

patterns of variation. To this end, the DPNMC and DPMMC provide a powerful

method for representing the similarities and differences amongst objects on a par-

ticular attribute of interest. By adopting a DP prior, we are able to view observed

clusters, not as a fixed structure, but rather as representatives of a latent arbitrarily

rich structure. Additionally, by placing a prior over the dispersion parameter α we

are able to learn about the cluster structure.

7.2 Contributions

We demonstrated the improvements one can expect by using the DPM for clustering

over the other MCM based proposals. In particular we extended the standard DPM

setup to account for the additional variation due to profiles in an experiment using

DPMMC as illustrated in Chapter 5. This clearly gave some additional performance

gains relative to the DPNMC as seen in Chapters 5-6. We also derived some theo-

retical properties related to the dispersion parameter α in Chapter 6 and provided a

framework for selecting the hyperparameters (a, b) in the Gamma prior for α. The

selection of these hyperparameters has received limited attention in the literature

thus far. However, α is a crucial parameter since it determines the level of clus-

tering and dispersion in the system, and careful setting of (a, b) leads to improved

performance, as seen in Chapter 6. Conventionally some authors set a = b = 10−10

to signify the noninformative setup for α, see Navarro et al. (2006). However, as
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7.3 Further work

we have seen in Chapter 6, this leads to undesirable properties of the α posterior.

Another aspect we considered was the MCMC computation for the DPM, which

can be categorized into marginal and conditional methods. Both have their relative

merits as we saw in Chapter 3 and Section 5.5. The DPNM/DPMM were based on

an adapted variation of the Sethuraman’s construction to make inferences possible,

since it offers more flexibility when extending our base DPM model, see Chapter 3.

Our variation allows us to to sample more efficiently from a DPM using the active

and non-active components to address the ergodicity constraint, see Section 4.3.1.

Finally, the application of DPMMC to our Which? problem in Section 1.1 shows

promise in relation to their current MNSC method, see Sections 5.4 and 6.4.

7.3 Further work

The models presented in this thesis can be extended in several ways.

1. We briefly considered the GP as an alternative to the DP in Section 3.6. We

could also investigate the clustering performance of other classes of nonpara-

metric priors, such as the Pólya trees, see Kraft (1964), or Dirichlet diffusion

trees, see Neal (2003).

2. We could extend the DPMM model so that, rather than having a set of R

profiles, we could have infinitely many profiles so that the distribution sampled

from a DP is itself another DP. By doing so we allow for infinitely many types

of profiles to be considered. This will create a double DP structure or a subset

of the Hierarchical DP (HDP), see Teh et al. (2004).

3. One can look at various alternatives to the conditional method we used in

constructing DPNM/DPMM, such as the Retrospective MCMC method pro-

posed by Papaspiliopoulos and Roberts (2008) to address the problem of the

imputation of an infinite-dimensional process using finite approximations. Pa-

paspiliopoulos and Roberts (2008) demonstrate the retrospective sampling by

simulating a realization G from a DP. First we simulate Uj ∼ U [0, 1], then set

gjk = 1 if and only if
k−1∑
l=0

wl < Uj ≤
k∑

l=1

wl, (7.1)

where w0 = 0. Retrospective sampling simply exchanges the order of simula-

tion between Uj and pairs (wk, φk). Rather than simulating (w, φ) and then

using Uj in order to check condition (7.1), we instead simulate Uj first then
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7.3 Further work

pairs (wk, φk). If given a Uj we find that we need more wk to check condi-

tion (7.1), then we return to simulate pairs (wk, φk) retrospectively until the

condition is satisfied. The algorithm can be outlined as follows

(a) Simulate w1 and φ1 and set N = 1, j = 1 and w0 = 0.

(b) Repeat until j > m

i. Simulate Uj ∼ U [0, 1].

ii. If (7.1) is satisfied for some k ≤ N , then set gjk = 1, μj = φk,

j = j + 1 and go to step (b)

iii. Else if (7.1) is not satisfied for any k ≤ N , set N = N + 1, k = N

and simulate wk and φk. Then go to step (ii).

We see that N here keeps track of how far into the infinite sequence we have

visited during the simulation.

We carry out a simulation study to contrast the performance of the retro-

spective with the standard conditional and marginal methods for sampling a

realization G from the DP as outlined in Chapter 3. We consider three config-

urations, namely 10,000, 5000 and 1000 samples from G, where G0 ∼ N(0, 1).

Under each configuration we let α = (10−3, 10−2, 0.1, 1, 5, 10, 20, 50, 80, 100).

The sample generation times (secs) are shown in Figure 7.1. The results show

that, under practical implementation, the relative time for the conditional

method is significantly less.

4. With regard to the Which? problem, see Section 1.1, some trials at Which?

involve a panel of five or so experts, each assessing the brands on various

attributes. So rather than assuming a one-way ANOVA setup for the design

we would need to consider a two-way ANOVA model where the experts are

included as a factor in the model. One way to address this would be to use

a multinomial logistic structure, so in the case of DPMM we would revise

the model (5.2) by allowing the data Xji|θji ∼ Mult(1, θji), where θji =

(θji1, . . . , θjis) denotes the probability with which the jth brand assessed by

expert i had the lth response. Then we allow the θji to have a multinomial

logistic structure with experts and objects included as factors. It would be

interesting to see if comparisons between DPMNC/DPMMC and the other

clustering methods continue to hold under this more complex structure.
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Figure 7.1: Sampling performance times (sec) for 10000, 5000 and 1000 samples
based on a realization G from a DP
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7.4 Closing remarks

7.4 Closing remarks

With regard to our original problem with the existing clustering methodology,

MNSC, at Which?, see Section 1.1, the DPMMC offers an alternative and reliable

statistical framework for capturing brand attribute differences. From the simula-

tion studies in Sections 5.4 and 6.4 we saw the additional performance benefits of

using DPMMC in relation to Which?’s existing MNSC methodology. The challenge

now is in understanding how the new methodology DPMMC can be successfully

implemented as a substitute for MNSC within the existing processes at Which?. To

address this we plan to develop a commercialized version of DPMMC in Excel so

that it can be used with a more user friendly interface.

We envisage that DPMs will gain even more popularity in coming years. A few

possible extensions have already been mentioned in the previous sections, like the

DPMM in Section 5.3. As we have seen, an important aspect of DPMs is in their

implementation. Many approaches are driven by theoretical as well as computational

concerns and will provide challenges for future research.
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Appendix A

Appendix

R-Function Help Files - DPM models

We provide details of the R help files for our DPNMC and DPMMC methods used

in Chapters 4-6. We also include the function for estimating β and a function that

implements the framework for estimating the α hyperparameters (a, b) as described

in Chapter 6. The code was tested using R version 2.10.0 (Release 26-10-2009) and

run on a Windows XP (SP2) platform.

DPNMC

Description

This function performs the clustering of normal data based on Dirichlet Process Mixture
Model for Clustering (DPNMC), see Chapter 4.

Usage

DPNMC=function(a=1,b=1,v0=0.001,sigmasq0=1,v1=0.001,sigmasq1=1,mu1star=1,

sigmasq2=1000,NumIterations=1000,Tol=0.001,dataIn)
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Arguments

a,b hyperparameters for the α posterior
v0,sigmasq0 hyperparameters for the σ2 posterior
mu1star,sigmasq2 hyperparameters for the μ0 and k0 posterior
v1,sigmasq1 hyperparameters for the k0 posterior
NumIterations specifies the total number of iterations of the Gibbs sampler

with 20% discarded as the burn-in
Tol specifies the tolerance for the missing probability mass such

that
∑L

h=1 wh > 1 − Tol where L is the number of samples
required

dataIn specifies the input data which should be entered in a matrix
format with dimensions m rows by t columns, or m objects
with t replicates

Details

See Chapter 4 for more details.
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Values

mean.alpha posterior mean for α based on the average of the after burn-
in chain of α posterior samples

mean.sigmasq posterior mean for σ2 based on the average of the after burn-
in chain of σ2 posterior samples

mean.k0 posterior mean for k0 based on the average of the after burn-
in chain of k0 posterior samples

mean.mu0 posterior mean for μ0 based on the average of the after burn-
in chain of μ0 posterior samples

partitionList list of posterior partitions (classification of objects into var-
ious clusters) ordered with the most frequently occurring
first

clusterMeanspartition list of cluster means, or centroids, for each of the occupied
clusters

clusterSTDEVpartition list of cluster standard deviations for each of the occupied
clusters

partitionListPCTOccurance vector of outputted posterior partition probabilities for
partitionList outputted as a % with the most frequently
occuring first

partitionListHolderPCT list of posterior partition probabilities for each iteration after
burn-in

posteriorNullProbablity if a NULL partition exists (i.e all objects in the same clus-
ter) the posterior NULL partition probability is outputted,
otherwise NULL is returned

posteriorNullPosition if a NULL partition exists (i.e all objects in the same clus-
ter) the posterior NULL partition position in partitionList
is outputted
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Examples

dataSamples=NULL

##generate some normal data from a uniform mixture of three normals

##with means (-4,0,8) and unit variance

for (l in (1:200)){

dataSamples[l]=(sample(c(rnorm(1,-4,1),rnorm(1,0,1),rnorm(1,8,1)),

1,replace=T))

}

##put samples in a matrix so that we have 10 object (rows) with 20

##replicates (columns)

dat.set=matrix(dataSamples,10,20)

##run DPNMC for 500 iterations, 100 burn-in, with a=b=1 and other

##parameters at their default values

DPNMC(a=1,b=1,NumIterations=500,dataIn=dat.set)
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DPMMC

Description

This function performs clustering of multinomial data based on the Dirichlet Process
Multinomial Mixture Model for Clustering (DPMMC), see Chapter 5.

Usage

DPMMC=function(betaIn=1,a=1,b=1,NumIterations=1000,Tol=0.001,

dataIn,priorProfiles)

Arguments

betaIn hyperparameters for φ posterior
a,b hyperparameters for α posterior
NumIterations specifies the total number of iterations of the Gibbs sampler

with 20% discarded as the burn-in
Tol specifies the tolerance for the missing probability mass such

that
∑L

h=1 wh > 1 − Tol where L is the number of samples
required

dataIn specifies the input data which should be entered in a matrix
format with dimensions m rows by t columns, or m objects
with t replicates

priorProfiles specifies the prior profiles which should be entered in a ma-
trix format with dimensions R profile rows by s category
columns

Details

See Chapter 5 for more details.
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Values

mean.alpha posterior mean for α based on the average of the after burn-
in chain of α posterior samples

mean.rho posterior mean for ρ based on the average of the after burn-
in chain of ρ posterior samples

partitionList list of posterior partitions (classification of objects into var-
ious clusters) ordered with the most frequently occurring
first

clusterMeanspartition list of cluster means, or centroids, for each of the occupied
clusters

clusterSTDEVpartition list of cluster standard deviations for each of the occupied
clusters

partitionListPCTOccurance vector of outputted posterior partition probabilities for
partitionList outputted as a % with the most frequently
occuring first

partitionListHolderPCT list of posterior partition probabilities for each iteration after
burn-in

posteriorNullProbablity if a NULL partition exists (i.e all objects in the same clus-
ter) the posterior NULL partition probability is outputted,
otherwise NULL is returned

posteriorNullPosition if a NULL partition exists (i.e all objects in the same clus-
ter) the posterior NULL partition position in partitionList
is outputted
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Examples

##generate some multinomial data (Scenario 1 - 6 objects)

##with two implanted clusters and 20 counts per object

data.set=generateDataMult(m=6,t=20,categories=5,dataClusters=2,weights=c(1,10))

##set prior profile as in Section 5.4
priorProfile=matrix(,5,5)

##profile 1

priorProfile[1,]=c(0.3,0.3,0.13, 0.13, 0.13)

##profile 2

priorProfile[2,]=c(0.2,0.2,0.2, 0.2, 0.2)

##profile 3

priorProfile[3,]=c(0.13,0.13,0.13, 0.3, 0.3)

##profile 4

priorProfile[4,]=c(0.1,0.1,0.6, 0.1, 0.1)

##profile 5

priorProfile[5,]=c(0.3,0.13,0.13, 0.13, 0.3)

##run DPMMC for 500 iterations, 100 burn-in, other parameters at their

##default values

DPMMC(NumIterations=1000,Tol=0.001,dataIn=data.set,priorProfiles)

126



pctN

Description

This function gives the upper and lower percentile probabilities for the distribution of n

Usage

pctN=function(m=6,a=1,b=1,c1=1,c2=2)

Arguments

m specifies the number of objects
a,b specifies the hyperparameters for the distribution of α

c1, c2 specifies constants in deriving the upper and lower quantiles

Details

See Chapter 6 for details

Values

upper probability above the upperQuantile
lower probability below the lowerQuantile
upperQuantile the upper quantile value
lowerQuantile the lower quantile value
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Examples

##take 10 objects

m=10

##specify prior parameters for alpha based on the optimal simulation

##results for the six object case

a=1

b=1

##find the upper and lower probabilities based on these (a,b) values

PU=pctN(a,b)$upper

PL=pctN(a,b)$lower

##Here we fine PU=0.15 and PL=0.34

##construct two objective functions to minimize using PU=0.15

##and PL=0.34 as inputs, so that the appropriate (a,b) can be found for

##the 10 object case

objFunction=function(inp,PU=0.15,PL=0.34){

(pctN(exp(inp[1]),exp(inp[2]),m)$upper-PU)^2+

(pctN(exp(inp[1]),exp(inp[2]),m)$lower-PL)^2

}

##call the nlm function with initial starting values and specify 0 as the

##value of the objFunction at the minimum

exp(nlm(optimObjFunction,c(log(a),log(b)),typsize=c(0,0),fscale=0)$estimate)

##Using the output we find suitable estimates for (a,b)=(0.66, 0.61)
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getInitialBeta

Description

This function gives the values from the integrated likelihood function for β

Usage

getInitialBeta=function(beta,dataIn,weights=rep(1/5,5))

Arguments

beta specifies the value for β

dataIn specifies the data in matrix format m objects (rows) by t

replicate (columns)
weight specifies prior weights for the s catagories

Details

See Chapter 5 for details

Values

fbeta negative value of the likelihood function evaluated at β

Examples

##generate some multinomial data (Scenario 1 - 6 objects) with two implanted

##clusters and 20 counts per object

data.set=generateDataMult(m=6,t=20,categories=5,dataClusters=2,weights=c(1,10))

##minimize getInitialBeta function and find the MLE estimate for beta

output=nlm(getInitialBeta,1,hessian=TRUE)

beta=output$estimate
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R-Function Help Files - Other Clustering Methods

Here we provide the functions that implement the other clustering methods we adapted
using the standard MCM procedures considered in Chapter 2

MNSC

Description

This function performs the method of normal scores clustering algorithm

Usage

MNSC=function(dataIn,alpha=0.05,null=F)

Arguments

dataIn specifies the data in matrix format m objects (rows) by t

replicate (columns)
alpha specifies the value of the α parameter
null specifies a logical value. True if we are entering NULL data

(all objects in the same cluster) or False otherwise

Details

See Chapter 1 for details

Values

finalPartition final partition contains the allocation of the objects in their
relevant clusters

clusterMeans cluster means, or centroids, for the assigned clusters

Dependencies

No dependencies
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Examples

##put samples in a matrix 9 object (rows) with 20 replicate (columns)

dat.set=matrix(dataSamples,10,20)

##generate some normal data from a uniform mixture of three normals

##with means (-4,0,8) and unit variance

##implant first cluster based on 20 replicates from a normal(-4,1)

for (i in (1:3)){

dat.set[i,]=rnorm(20,-4,1)

}

##implant second cluster based on 20 replicates from a normal(0,1)

for (i in (4:6)){

dat.set[i,]=rnorm(20,0,1)

}

##implant third cluster based on 20 replicates from a normal(8,1)

for (i in (7:9)){

dat.set[i,]=rnorm(20,8,1)

}

##run MNSC with other parameters at their default values

MNSC(dataIn=dat.set)
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TMC

Description

This function performs the Tukey’s method for clustering algorithm

Usage

TMC=function(dataIn,alpha=0.05,null=F)

Arguments

dataIn specifies the data in matrix format m objects (rows) by t

replicate (columns)
alpha specifies the value of the α parameter
null specifies a logical value. True if we are entering NULL data

(all objects in the same cluster) or False otherwise

Details

See Chapter 2 for details

Values

finalPartition final partition contains the allocation of the objects in their
relevant clusters

clusterMeans cluster means, or centroids, for the assigned clusters

Dependencies

No dependencies
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Examples

##put samples in a matrix 9 object (rows) with 20 replicate (columns)

dat.set=matrix(dataSamples,10,20)

##generate some normal data from a uniform mixture of three normals

##with means (-4,0,8) and unit variance

##implant first cluster based on 20 replicates from a normal(-4,1)

for (i in (1:3)){

dat.set[i,]=rnorm(20,-4,1)

}

##implant second cluster based on 20 replicates from a normal(0,1)

for (i in (4:6)){

dat.set[i,]=rnorm(20,0,1)

}

##implant third cluster based on 20 replicates from a normal(8,1)

for (i in (7:9)){

dat.set[i,]=rnorm(20,8,1)

}

##run TMC with other parameters at their default values

TMC(dataIn=dat.set)
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FDRC

Description

This function performs the False discovery rate method for clustering algorithm

Usage

FDRC=function(dataIn,delta=0.05,null=F)

Arguments

dataIn specifies the data in matrix format m objects (rows) by t

replicate (columns)
delta specifies a value of the δ parameter
null specifies a logical value. True if we are entering NULL data

(all objects in the same cluster) or False otherwise

Details

See Chapter 2 for details

Values

finalPartition final partition contains the allocation of the objects in their
relevant clusters

clusterMeans cluster means, or centroids, for the assigned clusters
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Examples

##put samples in a matrix 9 object (rows) with 20 replicate (columns)

dat.set=matrix(dataSamples,10,20)

##generate some normal data from a uniform mixture of three normals

##with means (-4,0,8) and unit variance

##implant first cluster based on 20 replicates from a normal(-4,1)

for (i in (1:3)){

dat.set[i,]=rnorm(20,-4,1)

}

##implant second cluster based on 20 replicates from a normal(0,1)

for (i in (4:6)){

dat.set[i,]=rnorm(20,0,1)

}

##implant third cluster based on 20 replicates from a normal(8,1)

for (i in (7:9)){

dat.set[i,]=rnorm(20,8,1)

}

##run FDRC with other parameters at their default values

FDRC(dataIn=dat.set)
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DBDTMC

Description

This function performs the Duncan’s Bayesian decision theoretic method for clustering
algorithm

Usage

DBDTMC=function(dataIn,k1=5,k2=1,iterations=500,null=F)

Arguments

dataIn specifies the data in matrix format m objects (rows) by t

replicate (columns)
k1, k2 specifies the loss due to a Type I (k1) and the loss due to a

Type II error (k2)
iterations specifies the total number of iterations from the posterior

distribution
null specifies a logical value. True if we are entering NULL data

(all objects in the same cluster) or False otherwise

Details

See Chapter 2 for details

Values

finalPartition final partition contains the allocation of the objects in their
relevant clusters

clusterMeans cluster means, or centroids, for the assigned clusters
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Examples

##put samples in a matrix 9 object (rows) with 20 replicate (columns)

dat.set=matrix(dataSamples,10,20)

##generate some normal data from a uniform mixture of three normals

##with means (-4,0,8) and unit variance

##implant first cluster based on 20 replicates from a normal(-4,1)

for (i in (1:3)){

dat.set[i,]=rnorm(20,-4,1)

}

##implant second cluster based on 20 replicates from a normal(0,1)

for (i in (4:6)){

dat.set[i,]=rnorm(20,0,1)

}

##implant third cluster based on 20 replicates from a normal(8,1)

for (i in (7:9)){

dat.set[i,]=rnorm(20,8,1)

}

##run DBDTMC with other parameters at their default values

DBDTMC(dataIn=dat.set)
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KMeansC

Description

This function performs the K-means method for clustering

Usage

KMeansC=function(dataIn,null=F,centers=3, nstart = 1)

Arguments

dataIn specifies the data in matrix format m objects (rows) by t

replicate (columns)
centers specifies the number of clusters or a set of initial (distinct)

cluster centres
nstart specifies how many random sets should be chosen
null specifies a logical value. True if we are entering NULL data

(all objects in the same cluster) or False otherwise

Details

See Chapter 2 for details

Values

finalPartition final partition contains the allocation of the objects in their
relevant clusters

clusterMeans cluster means, or centroids, for the assigned clusters
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Examples

##put samples in a matrix 9 object (rows) with 20 replicate (columns)

dat.set=matrix(dataSamples,10,20)

##generate some normal data from a uniform mixture of three normals

##with means (-4,0,8) and unit variance

##implant first cluster based on 20 replicates from a normal(-4,1)

for (i in (1:3)){

dat.set[i,]=rnorm(20,-4,1)

}

##implant second cluster based on 20 replicates from a normal(0,1)

for (i in (4:6)){

dat.set[i,]=rnorm(20,0,1)

}

##implant third cluster based on 20 replicates from a normal(8,1)

for (i in (7:9)){

dat.set[i,]=rnorm(20,8,1)

}

##run KMeansC with other parameters at their default values

KMeansC(dataIn=dat.set)
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Böckenholt, U. (2008). A latent class regression approach for the analysis of recurrent
choices. British Journal of Mathematical and Statistical Psychology, 46:95–118. 26

Brix, A. (1999). Generalized gamma measures and shot-noise cox process. Adv. Appl.
Probab, 31:929–953. 38

Celeux, G., Hurn, M., and Robert., C. P. (2000). Computational and inferential difficulties
with mixture posterior distribution. Ameri. Statist. Assoc, 95:957–970. 25

Cox, D. (1972). Regression models and life-tables (with discussion). J. R. Statist. Soc.,
Series B, 34:187–220. 29

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the em algorithm. J. R. Statist. Soc., Series B, 1:1–38. 25

Dorazio, M. (2009). On selecting a prior for the precision parameter of Dirichlet process
mixture models. J.Statist. Planning. Inf, 10:10–16. 99, 100

Doss, D. and Huffer, F. (2003). Monte Carlo methods for Bayesian analysis of survival
data using mixtures of Dirichlet process prior. Journal of Computational and Graphical
Statistics, 12:282–307. 31

Duncan, D. B. (1965). A Bayesian approach to multiple testing. Technometrics, 7:171–222.
17

Dunnett, C. W. and Tamhane, A. C. (1992). A step-up multiple test procedure. Ann.
Statist, 87:162–170. 11

Dunson, D. and Park, J. (2008). Kernel stick-breaking processes. Biometrika, 95:307–323.
38

Escobar, M. D. and West, M. (1994). Estimating normal means with the Dirichlet process
prior. Ameri. Statist. Assoc, 89:268–277. 29

Escobar, M. D. and West, M. (1995). Bayesian density estimation and inference using
mixtures. Ameri. Statist. Assoc, 90:577–588. 17, 47

Everitt., B. S. (1993). Cluster analysis. London: Edward Arnold. 26

Ferguson, T. S. (1973). A Bayesian analysis of some non-parametric problems. Ann.
Statist, 1:209–230. 29, 31, 34

Fernando, R. L., Nettleton, D., Southey, B. R., Dekkers, J. C. M., Rothschild, M. F., and
Soller, M. (2004). Controlling the proportion of false positives in multiple dependent
tests. Genetics, 166:611–619. 15

141



REFERENCES

Fisher, R. A. (1935). The Design of Experiements. Oliver and Boyd, Edinburg. 9
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