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Abstract 

This paper proposes novel improvements in the traditional algorithms for the identification of 
ridge and channel (also called ravines) topographic features on raster digital elevation models 
(DEMs). The overall methodology consists of two main steps: (1) smoothing the DEM by 
applying a mean filter, and (2) detection of ridge and channel features as cells with positive 
and negative plan curvature respectively, along with a decline and incline in plan curvature 
away from the cell in direction orthogonal to the feature axis respectively. The paper 
demonstrates a simple approach to visualize the multi-scale structure of terrains and utilize it 
for semi-automated topographic feature identification. Despite its simplicity, the revised 
algorithm produced markedly superior outputs than a comparatively sophisticated feature 
extraction algorithm based on conic-section analysis of terrain. 

1. Introduction 

Ridge and channel are two fundamental features of terrain morphology. Owing to their unique 
significance in the shape and structure of terrains, ridge and channel features are used in 
various terrain analyses ranging from drainage basin delineation (see e.g., Band 1986) to 
intervisibility computation (see e.g., Rana 2003). In addition, as a generic abstraction of the 
surface structure, their use also extends in the analysis and visualization of surfaces in socio-
economic studies (see e.g., Okabe and Masuyama 2004), metrology (see e.g., Scott 2004), and 
computer graphics (see e.g., Belyaev and Anoshkina 2005). Naturally, an enormous amount 
of research has been done in the automated delineation of ridges and channels from various 
types of surface datasets such as triangulated meshes and raster DEMs. This paper proposes 
simple and novel improvements in the algorithms for ridge and channel extraction in raster 
DEMs, with significantly improved results. 

As a background to the following discussion on various algorithms, a brief summary of the 
relevant aspects of feature extraction in raster DEMs is essential. In most cases of cell-based 
feature extraction algorithms, a terrain is studied in patches, which are square windows of m x 
m cells (also called kernel or filter) of DEM, centered on the cell of interest. The value of m is 
an odd integer greater than 2 and no more than the lesser amongst the number of rows and 
columns. In polynomial-fitting based algorithms, kernel is considered analogous to a set of 
regularly spaced points, each one typically derived from the geometric centre of the kernel 
cells. The result of the feature classification is assigned to a cell in the output raster, which is 
located at the same place as the kernel’s central cell. Most feature extraction algorithms based 
on kernels above suffer from two fundamental limitations. As the kernel size remains fixed 
during a feature extraction, geographic features whose extents are not pronounced within the 
dimensions of the kernel (e.g., gently sloping features), could be incorrectly classified. Figure 
1 shows the example of a 3 x 3 cells kernel on two ridges with different extents. In Figure 1a 
the point of maximum curvature lies within the kernel hence the central cell will be correctly 
classified as part of a ridge. However, in Figure 1b due to its shape, the top of the ridge is not 
so well defined within the kernel hence although the central cell probably belongs to a large 
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ridge feature it will be identified as planar. This limitation is referred as the scale-dependency 
of the feature extraction algorithm. Another limitation relates to the odd number of cells in the 
square window, such that the cells on the edges of DEM remain unclassified. For further 
information on raster based spatial analysis, refer to an introductory text by DeMers (2002). 

                                          (a)                                            (b) 
Fig. 1.  Scale dependency in fixed kernel size based feature extraction. Darker color represents lower 
elevation and lighter color represents higher elevation. (a) Kernel can recognize the feature type as 

ridge and (b) Due to flattening at the ridge top, kernel recognizes it as a planar feature. 

The majority of existing ridge and channel feature extraction algorithms are primarily 
based on either the local elevation differences or the curvature (i.e., whether convex, concave 
and so on), over some terrain patch. Two popular examples of local elevation differences 
based algorithms include the Steepest Descent or D8 (Deterministic 8) algorithm (Peucker 
and Douglas 1975, O’Callaghan and Mark 1984) and, the comparatively advanced algorithm 
based on the conic section (Wood 1996). In the D8 algorithm, a cell is considered to be a 
candidate channel cell if it receives flow from an adjoining cell. A cell receives flow from 
another cell if its elevation is lower than the other cell (i.e., upslope cell). The total flow to 
each cell is then accumulated by following all the flow paths and the cells that receive flow 
from more than a certain number of upslope cells are classified as channel cells. Ridge cells 
are similarly derived but without a threshold condition. In the conic section algorithm the 
identification of ridge and channel cells is based on the sign of the quadratic determinant of a 
conic section polynomial, fitted over a kernel. A nil value for quadratic determinant indicates 
a parabolic type of conic section, which would occur at ridge and channel areas. In the D8 
algorithm, the scale i.e., the geographic area, used in the classification is typically fixed to an 
equivalent area of 3 x 3 cells kernel. Thus, features whose extent is larger than 3 x 3 cells area 
could be missed, which makes the classification scale-dependent. On the other hand, the conic 
section algorithm allows the sampling of elevations over variable kernel sizes, hence it can be 
used for multi-scale feature visualization (Wood 1996). Some other local elevation 
differences based algorithms include the bilinear surface patches algorithm (Schneider and 
Wood 2004), various D8 algorithm variants (see e.g., O’Callaghan and Mark 1984, Band 
1986, Skidmore 1990). Numerous other extensions of D8 algorithms have also been proposed 
that enforce drainage network consistency e.g., Random 8-node (Rho8) and DEMON stream 
tube algorithms. For more a detailed review of these drainage network modeling related 
extraction algorithms, refer to Gallant and Hutchinson (2000). 

Curvature based ridge and channel extraction algorithms involve a combination of first and 
second derivatives of elevation, namely slope and curvature respectively. Figure 2 shows a 
part of channel around a point p and various relevant morphometric measures. Slope (d) is the 
maximum gradient at p. Aspect is the direction of maximum gradient. A number of curvature 
measures can be derived by intersecting the terrain surface along different planes (see Wood 
1996, Gallant and Hutchinson 2000 for more details on types of curvature). Maximum (κmax) 
and minimum (κmin) curvatures are respectively the maximum and minimum curvature along 
any plane. Plan curvature (κpl) at the point p is the curvature of the line formed by the 
intersection of the terrain surface with a horizontal plane passing through p. Cross-section 
curvature (κcr) at the point p is the curvature of a line formed by the intersection of a plane 
tangential to the terrain surface (i.e., a plane that just touches the surface) with a plane passing 
through p, bounded by the normal and strike direction (direction orthogonal to aspect) of this 
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tangential plane (similar to a tilted horizontal plane). It is a general convention to convert the 
plan and cross-section curvature values to negative and positive values to indicate convergent 
and divergent flows respectively. Therefore, ridges have positive κpl and κcr values and 
channels have negative κpl and κcr values. Numerous variants of this fundamental rule have 
been published widely in Computer Graphics (see e.g., Toriwaki and Fukumura 1978, 
Haralick 1983, Belyaev and Anoshkina 2005, Yoshizawa et al. 2005) and GIScience literature 
(e.g., Smith et al. 1990, Wood 1996). For instance, a simple algorithm by Wood (1996) 
proposes that a point is part of ridge if d = 0; κmax > 0; κmin = 0 or d > 0; κcr > 0 and a point is 
part of channel if d = 0; κmax = 0; κmin < 0 or d > 0; κcr < 0. Another variant, used more 
commonly in computer graphics discipline (see e.g., Fisher 1989), involves the maximum (κ1) 
and minimum (κ2) curvatures (called principal curvatures) derived by intersecting all the 
planes that contain the surface normal with the surface. A ridge (a convex cylinder) and a 
channel (a concave cylinder) both have κ2 = 0 but κ1 > 0 and κ1 < 0 respectively. Like the 
conic section based algorithm, curvature based algorithms can be used over variable kernel 
sizes.  

 

 
Fig. 2. A point p along a channel and the various morphometric measures, namely slope (d), plan 

curvature curve, surface normal and the cross-sectional curvature plane. 

In this we paper we propose a novel semi automated iterative algorithm, which employs the 
variation in plan curvature orthogonal to the ridge and channel axes as the basis for ridge and 
channel classification. In addition, we propose a statistical approach based on variations in the 
nominal counts of feature types during iterations, as a possible quantitative approach to 
evaluate and control the feature classification. The terms “features” and “topographic 
features” will be used for ridges and channels hence forth in the text. 

2 Methodology 

The overall algorithm consists of two main steps. Firstly, smoothing of the raster DEM and 
secondly, calculation of plan curvature and identification of topographic features. These steps 
are repeated until a desired feature classification has been achieved. The details on each of the 
steps above are given in the following sections. 

2.1 Smoothing of Raster DEM 

The removal of DEM noise is generally the first step in most feature extraction algorithms. In 
the case of basic steepest descent based algorithms, noise in DEM could lead to incorrect 
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feature classification (see e.g., Wood 1996) and spurious pits (see e.g., Jenson and Domingue 
1998). In the case of curvature based algorithms, the dependence upon the surface derivatives 
necessitates a smoothing of DEM prior to feature extraction to avoid noise effects. A detailed 
discussion on the sources and removal of DEM noise is beyond the scope of this work. Refer 
to Martinoni (2002) for a recent review on DEM noise. Several smoothing techniques have 
been proposed in the literature ranging from the simple averaging to so-called feature 
preserving adaptive image averaging (Belyaev and Anoshkina 2005). This work uses a simple 
averaging technique built in the FOCALMEAN function of ArcInfo 9.0 GIS by ESRI. 

Prolonged smoothing of the DEM also affects genuine topographic features by gradual 
erosion of the feature edges. This aspect of smoothing is commonly employed in computer 
graphics and vision, to study the multi-scale structure of surfaces (see e.g. Lindeberg 1994). 
This is unlike the DEM cell size resampling and variable kernel size approaches used in the 
GIScience (Wood 1996). To our knowledge, a comparison between these different types of 
techniques to study the multi-scale structure of terrains remains to be established. See section 
3.1.1 for a hypothesis on the multi-scale structure revealed by prolonged smoothing. 

2.2 Feature classification 

2.2.1 Plan Curvature 

The computation of plan curvature is done within the ArcInfo 9.0. It is assumed that 
elevation, z = f(x,y) and the plan curvature is derived by fitting the bi-variate quadratic 
polynomial1  (Eq. 1) over a 3x3 cells window with cell spacing l, shown below (ESRI 2005): 

 
 
 
 
 
 
 
 

z = ax2y2+ bx2y+cxy2+dx2+ey2+fxy+gx+hy+i, (1)

a = [(z1 + z3 + z7 + z9) / 4 - (z2 + z4 + z6 + z8) / 2 + z5] / l4 (2)

b = [(z1 + z3 - z7 - z9) / 4 - (z2 - z8) / 2] / l3 (3)

c = [(-z1 + z3 - z7 + z9) / 4 + (z4 - z6) / 2] / l3 (4)

d = [(z4 + z6) / 2 - z5] / l2   (5)

e = [(z2 + z8) / 2 - z5] / l2   (6)

f = (-z1 + z3 + z7 - z9) / 4l2 (7)

g = (-z4 + z6) / 2l (8)

h = (z2 - z8) / 2l (9)

i = z5 (10)

κpl = -2(dh2+ eg2+ fgh) / (g2+h2) *100 (11)

                                                      
1 It is based on the formula by Zevenbergen and Thorne (1987). 

z1 z2 z3 

z4 z5 z6 

z7 z8 z9 
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2.2.2 Classification Rules 

The proposed algorithm extends the curvature based algorithms with additional conditions. It 
is proposed here that a cell belongs to a ridge if κpl > 0; e = δκpl / δt = 0; δe / δt > 0; and a cell 
belongs to a channel if κpl > 0; e = δκpl / δt = 0; δe / δt < 0, where t is the direction orthogonal 
to feature axis. In other words, a ridge cell has a positive plan curvature and is at local 
maxima of plan curvature orthogonal to feature axis. In contrast, a channel cell has a negative 
plan curvature and is at local minima of plan curvature orthogonal to feature axis. Thus, the 
proposed algorithm evaluates a feature’s entire extent, orthogonal to the feature axis. For 
simplicity in implementation and demonstration purposes, the current work assumes that 
ridge and channel feature axis is oriented along one of the four cardinal directions i.e., N-S, 
E-W, NW-SE, and NE-SW. Thus, the local maxima/minima condition merely involves a 
comparison between the plan curvatures of the diagonally opposite cells with the plan 
curvature of the cell of interest. In summary, a cell is classified as a ridge/channel cell if it has 
positive/negative plan curvature and highest/lowest plan curvature value amongst any pair of 
diagonally opposite adjacent cells. Note that this definition will also classify the peak features 
as ridges and pit features as channels. Since saddle features have both ridge and channel 
morphology, they could be classified either as ridge or channel features depending upon the 
last conditional statement in the software which happens to evaluate the cell. The above 
anomalies are actually a useful side effect as they lead to better drainage network extraction. 
In the present demonstration, the proposed algorithm effectively combines the techniques of 
D8 and curvature based algorithms.  

2.3 Experimental setup 

As mentioned earlier, the proposed algorithm has been developed in ArcInfo 9.0 using the 
Arc Macro Language (AML) script. A 3 x 3 cells size kernel has been used to classify DEM 
of three study areas, namely, Cairngorm area in Scotland (400 x 400 cells, 50 m resolution, 
Source: Ordnance Survey Landline, Figure 3), Salisbury Hills in SW England (502 x 501 
cells, 10 m resolution, Source: Ordnance Survey Landline, Figure 4), and Round Mountain 
area in Nevada (451 x 485 cells, 30 m resolution, Source: USGS NED, Figure 5). As can be 
seen from the figures, topography of these areas varies from gently rolling hills to incised 
cliffs. The robustness of the algorithm was particularly tested for the following factors: 

 
• Feature classification rule: The feature classification of the proposed algorithm is 

compared with the relatively sophisticated conic section based algorithm available in the 
FEATURE NETWORK FUNCTION of LandSerf developed by Jo Wood (URL 1). For 
consistency, a 3 x 3 cells kernel is used in the LandSerf with no threshold criteria e.g., 
curvature- and slope- tolerance and distance decay. In addition, smoothed DEMs used for 
the proposed algorithm is also used for the LandSerf to avoid data bias. The assessment of 
the feature classification quality is based on a visual comparison with the morphological 
structure of the original DEMs. This is done so as to determine that a) feature classification 
was acceptable and b) effect of smoothing on feature preservation.  

• Cell size sensitivity: It has been widely established that morphometric measures are 
dependent upon the DEM cell size (see e.g., Chang and Tsai 1991) hence three DEMS with 
different cell sizes (i.e., 10 m, 30 m, 50 m) are selected for the experiment. 

• Relief: Due to the limited orientation and small size of the feature extraction kernel, it may 
suffer from scale-dependency issues. Hence the current study areas as shown in figures 3-5 
are chosen for their varied relief. 
 
All the experiments are done on an IBM ThinkPad with 512 MB RAM and Pentium M 

1.2GHz processor. 
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3 Results 

Figures 3-5 show the feature classification derived from the proposed algorithm and 
LandSerf. The feature classifications based on original DEMs were significantly noisy. It was 
found out by trial and error that smoothing the DEMs 10 times produced the earliest most 
acceptable feature classification. As can be seen from figures the proposed algorithm 
accurately identifies most of the ridges and channels. The contrast between the outputs from 
the proposed algorithm and ones from LandSerf is self evident. The proposed algorithm is 
able to identify several features unclassified by LandSerf. In addition, the proposed algorithm 
is able to localise the extent (i.e., thickness) of the feature more precisely despite being only 
limited to 4 cardinal directions. The computation time for each of the three study areas was 
approximately 1 minute. 

3.1 Known issues and Future Directions 

Several interesting issues and aspirations arose during the experiments. 

3.1.1 Effect of smoothing on feature classification 

In the proposed algorithm, smoothing of the DEM is one of the key factors that affect the 
spatial distribution of topographic features. As can be seen in Figures 3-5, each smoothing 
operation changes, and generally improves, the feature classification. A simple quantitative 
aspatial measure of such changes in feature classification is the ratio of number of feature 
cells to non-feature cells (henceforth referred as feature content ratio). A plot of the changes 
in feature content ratio between each consecutive smoothing would reveal how the feature 
classification evolves with varying smoothing (Figure 6). This plot reveals when the effect of 
smoothing appear to introduce (or stop having) marked effects on feature classification 
globally. Most notably, 

 
• At the start of the smoothing, feature classification is noisy and feature content ratio shows 

a steep decline. However after around 5 iterations, the change in feature content ratio in all 
the curves varies gradually but fluctuates increasingly with more smoothing. 

• The most striking feature of the curves is that all of them behave as power series with 
approximately the same R2 values. This is quite intriguing and deserves further 
investigation as to whether this phenomenon is an artifact of the smoothing operator (since 
terrains themselves have dissimilar morphological structure) or whether it indirectly 
suggests something about the multi-scale structure of the terrain. 

3.1.2 Limitations in feature classification  

Admittedly, the present work leaves scope for future research which would improve the 
appearance and applicability of the feature classification. Some of these desirable 
improvements, which are fairly straightforward to incorporate, include: 

 
• Several of the spurious tiny ridges and channels seen in Figures 3-4 are partly due to the 3 

x 3 cells kernel size, limited feature axis choices, and  absence of any slope and curvature 
thresholds. 

• The current demonstration doesn’t include any post-processing to improve the presentation 
of the feature classification by thinning and smoothing the shape of the ridges and channels 
(see e.g., Yoshizawa et al. 2005) and making the classical interlocking ridge-channel 
network (Werner 1988) structure of drainage networks. 
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Fig. 3. Hill shaded relief of the original Cairngorm DEM and the feature classifications. Black colored 
cells are ridges and gray colored cells are channels. 

Hill shaded relief Feature classification without smoothing 

Feature classification after 10 smoothing 
iterations  

Feature classification using LandSerf, after 
10 smoothing iterations  
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Fig. 4. Hill shaded relief of the original Salisbury DEM and the feature classifications. Black colored 
cells are ridges and gray colored cells are channels. 

 

 

Hill shaded relief Feature classification without smoothing 

Feature classification after 10 smoothing 
iterations  

Feature classification using LandSerf, after 
10 smoothing iterations  
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Fig. 5. Hill shaded relief of the original Round Mountain DEM and the feature classifications. Black 
colored cells are ridges and gray colored cells are channels. 

 

 

Feature classification using LandSerf, after 
10 smoothing iterations  
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Fig. 6. Variation in the feature content ratio with smoothing iterations. 
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3.1.3 Using feature type persistence for classification 

As seen in Figures 3-5, a DEM cell could be classified differently during a sequence of 
smoothing operations. However, DEM cells that do not carry noise may have the same feature 
type for several smoothing operations. Therefore, a possible method to derive a final feature 
classification could be to use the most persistent feature type assigned to each cell. Wood 
(1996) proposed a similar approach for feature classifications derived by varying kernel sizes.  

4 Conclusions 

The paper presented an algorithm for detecting ridges and channels features in raster DEMs. 
It is proposed that ridge and channel features have positive and negative plan curvature 
respectively with descending plan curvature orthogonal to the feature axis from the higher to 
the lower reaches of the feature. The proposed algorithm has been demonstrated on three 
different areas with differing morphology and cell sizes. Despite its simplicity, the algorithm 
produced markedly superior outputs than a comparatively sophisticated feature extraction 
algorithm based on conic section modeling of terrain. The paper also evaluated the effect of 
smoothing on feature classification by plotting the change in the ratio of number of feature 
cells to non feature cells. This feature content ratio interestingly behaves as a power series. 
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