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Complexity Theory 

R. Alexander Bentley and Herbert D. G. Maschner 
 
Perhaps the one theoretical position available to archaeologists today that has the potential to 
integrate culture history, processualism, and post-processualism is the study of complexity and 
complex systems. Not to be confused with political complexity and the rise of social hierarchies, 
complexity theory is the study of how new complex properties emerge from the interactions of 
many agents interacting in often quite simple ways. But the properties that emerge from those 
simple interactions are nonlinear, complex, and not predictable from the study of the individual 
agents themselves. This chapter follows the recent publication of our book Complex Systems and 

Archaeology (Bentley and Maschner 2003a), and necessarily recapitulates much of its first three 
chapters. However, in the few years since that book was published, there was much for us to 
update, as complexity theory has grown at an accelerated rate (figure 15.1). 
 
<Figure 15.1> 
 

Background: The Need for Complexity Theory 
As a theme of archaeological theory, sorting out the causes and effects of interacting agents 
might be the most challenging. In fact, a major theme of post-processualism in the 1980s was 
that there are  too many possible explanations for the archaeological record to consider any one 
right, or scientific, and the others wrong (Wylie 1982; Patrik 1985; Shanks and Tilley 1987; 
Tilley 1989). Others, however, while recognizing the futility of strict, hypothetico-deductive 
laws such as, “If object A is found in context C, then behavior B took place” (Fritz and Plog 
1970; Schiffer 1972; Watson et al. 1974), still saw more promise for archaeology as a scientific 
method for interpreting the history of events (Hawkes 1968; Wylie 1982; Flannery 1986; 
Dunnell 1992; Morgan 1973, 1974; Hodder 1982:11–27; Salmon 1982; Binford 1986; Sabloff et 
al. 1987; Mithen 1989; Bell 1994).  
 In fact, the early proponents of systems theory in archaeology (see Watson, chapter 3) 
rightly pointed out that there are no simple one-to-one mathematical relations to explain 
prehistoric events; in other words, their causes were multivariate (Clarke 1972: 29–44; Flannery 
1967, 1968, 1986). Because computers were not powerful enough at that time to explore (one by 
one) all the different possibilities for a given multivariate problem, systems theory was 
necessarily grounded in the much simpler belief that equilibrium is the natural, resting state of 
social and economic systems. It was supposed that a human system was not in equilibrium, then 
it was trending toward it, such that it went from one steady state to another. The origin of 
agriculture was explained by Flannery (1967) as the result of a cultural system in one state 
(hunting and gathering) that drifted gradually through positive feedback into a succession of new 
steady states, each one slightly more agricultural than the next. Positive feedback is the 
phenomenon whereby a change in one direction makes the system even more prone to keep 
changing in that direction, whereas with negative feedback change tends to be counterbalanced, 
continually guiding the system back toward its current equilibrium, or steady state. Social 
dynamics often show negative feedback when someone does something abnormal, and other 
people contest the novel behavior in some way (Henrich and Boyd 2001).  
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 One might see the oxymoron here: how can change occur through equilibrium states, 
when equilibrium is by definition a stable state maintained by negative feedback? Equilibrium 
implies that the system is closed; if an artist hosts a private party, people with their drinks may 
drift over now and then to look her new painting, while the guests generally remain in the 
“equilibrium” state of being relatively evenly distributed around the room. On the other hand, 
nonequilibrium requires openness; put a famous painting in an open museum and there will be a 
small crowd around the painting all day, with people continually entering and leaving the cluster, 
even while the rest of the room remains empty. Because public systems are usually open, 
nonequilibrium is the basis for models of pedestrian behavior (Batty 2003), and even the 
formation of trail systems (Batty 1997; Helbing et al. 1997).  
 Similarly, on a larger scale, societies are always in flux: people come and go, new crops 
are raised and harvested, and new artifacts are continually created and then discarded. 
Archaeologists and social scientists often use the word “habitus” to refer to the culturally 
constrained way of doing things (Bordieu 1977; Dietler and Herbich 1998). Perhaps if people 
lived forever, they might get so set in their ways that the habitus would crystallize as a closed 
system, never to change. Thanks to the cycle of life, however, each new generation learns the 
culture and brings a limited amount of change to it.  
 
Emergence 

Complex open systems, not at equilibrium, are said to exhibit emergent properties, which are 
overall patterns greater than the sum of the parts, such that the system may act coherently 
without domination by a central source (Holland 1998). This is a special interest to physicists, 
who study the transitions of behavior from one scale to another scale: 

The ability to reduce everything to simple fundamental laws does not imply the ability to start 
from those laws and reconstruct the universe . . . Instead, at each level of complexity entirely 
new properties appear, and the understanding of new behaviors requires research which I think 
is as fundamental in its nature as any other. (Anderson 1972:393) 

Thus the quantum mechanics that applies to the behavior of atoms is not useful at the 
macroscopic scale of solid matter. As we move outward in scale, quantitative aspects become 
qualitative, and new quantitative aspects emerge from the collective whole. Although the use of 
the term emergent property is relatively new, the same idea in other guises has been discussed in 
archaeological theory for decades (Clarke 1973; Renfrew 1978; Dunnell 1980; Johnson 1982; 
Binford 1981, 1986). Robert Carneiro (2000) argued, for instance, that the quantitative increase 
in population beyond a certain threshold brings about a qualitative change in the structure of a 
society. Leo Klejn argued in 1973 that once we abandoned our preconceived notions about 
systems theory, we might be able to investigate the emergent properties that seem to arise out of 
behavioral interactions (Klejn 1973). Even earlier, ideas like Adam Smith’s invisible hand 
suggest an emergent property of society (McGlade and van der Leeuw 1997:9; Read 2002). The 
anthropologist Herbert Spencer (1860) found that societies were emergent (like organic 
organisms) in three respects:  

(1) That commencing as small aggregations they insensibly augment in mass; some of them 
reaching eventually perhaps a hundred thousand times what they originally were; (2) That while at 
first so simple in structure as to be almost considered structureless, they assume, in the course of 
their growth, a continually increasing complexity of structure; (3) That through their early 
undeveloped state there exists in them scarcely any mutual dependence of parts, these parts 
gradually acquire a mutual dependence, which becomes at last so great, that the activity and life of 
each part is made possible only by the activity and life of the rest. (Spencer 2004:27) 
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This resembles Anderson’s (1972) physics, in that Spencer (1860) saw human society as 
something that grew from small, independent groups to complex aggregations of components 
that were interdependent on several scales. Similarly ahead of his time, Durkheim (2004:89) 
proposed that a “social fact” (i.e., cultural norm) is greater than the collective sum of the 
individuals, and is “found in each part because it exists in the whole, rather than the whole 
because it exists in the parts.” In other words, it is an emergent property.  
 What Spencer, Durkheim, Anderson, and others were getting at has now become the 
subject of complexity theory—the study of emergent properties of systems of interacting 
components. In any society, where people are simultaneously adapting to each other and the 
future is unpredictable, how does coherent organization of interdependence emerge? Emergent 
organization can be as superficial as sports fans doing the “Mexican wave” (Farkas et al. 2002) 
in a stadium or the self-synchronizing applause at a classical concert (Néda et al. 2000), or it can 
be as profound as the remarkable, undirected ability for a group of individuals to generate a 
collective intelligence greater than any one of its members (Surowiecki 2004).  
 We must be careful not to let the language of complexity theory become our latest source 
for important-sounding metaphors for things we do not understand (McGlade 2003). The term 
“emergent property” is a prime candidate for misuse, but when explored properly it can provide 
compelling insight. For example, by demonstrating that collective wisdom can only emerge 
when a group possess four specific qualities—diversity, independence, decentralization, and 
aggregation—Surowiecki (2004) provides useful means for improving group behavior or 
possibly, for the archaeologist, identifying reasons why certain societies succeeded better than 
others in the past. 
 
A Ubiquitous Emergent Property: The Power-Law Distribution  

One particular emergent property is quantitative, widely discussed, and widespread among 
complex systems. Having had a special, almost mystical appeal to researchers in physics, 
biology, ecology, economics, and human society, this property is a mathematical distribution of 
quantities that follows a power law—a function of some quantity, P, that is proportional to some 
exponent of another quantity, r: 
 
 P(r) = C/ra ,         eq. (1) 
 
where C is a constant and a is the exponent. When plotted as a function of r, the function P is a 
highly skewed, constantly decreasing distribution, in contrast to the symmetric bell shape of the 
normal curve, for example (figure 15.2). A special quality of a power law is that it looks the 
same no matter what scale it is plotted on. If both axes on the plot are made logarithmic (e.g., 
powers of 10 such as 1, 10, 100, 1000, and so on), a power law appears as a straight line. For this 
reason, power-law distributions are often referred to as “scale-free” because as one zooms in or 
out in perspective, the relationship between the scales is the same. Thus a power-law distribution 
of individual wealth could mean that millionaires are seventy times more numerous than 
billionaires, billionaires are seventy times more numerous than trillionaires, “thousandaires” 
seventy times more numerous than millionaires, and so on. The power-law distribution differs 
from the distributions most often expected for natural phenomena, such as the normal 
distribution, which implies an average or “normal” behavior, or the Poisson distribution, which 
has an outer limit and applies if previous outcomes have no effect on the future, as with flipping 
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a coin repeatedly. Unlike these distributions, a genuine power-law distribution does not have a 
characteristic average value, nor is it limited, meaning that any size phenomenon is possible. 
 
<Figure 15.2 a, b> 
 
The reason they have attracted so much attention is that power laws (or closely related functions) 
characterize a wide range of phenomena. Many see this as profound (Kauffman 1995; Bak 1996; 
Barabási 2002), while others caution that it could be mathematical coincidence (West and 
Deering 1995; Newman 2000). In any case, power laws are ubiquitous (Buchanan 2001), 
occurring among such diverse phenomena as economic market fluctuations (Lux and Marchesi 
1999; Ormerod 2005), the growth of modern companies (Axtell 2001), the World Wide Web 
(Huberman et al. 1998; Huberman and Adamic 1999; Albert et al. 1999), Hollywood actor 
networks (Barabási and Albert 1999), university research funding (Plerou et al. 1999), the 
Billboard music charts (Bentley and Maschner 1999), the size of wars in history (Roberts and 
Turcotte 1998), and even words in the English language (Ferrer I Cancho 2001; Solé et al. 2005; 
Zipf 1949:26).  
 There are many ways in which a power-law or similar “fat-tailed” distribution can come 
about (West and Deering 1995; Laherrère and Sornette 1998; Newman 2000); they generally 
have one thing in common—they are multiplicative processes, that is, the result of one rule being 
repeatedly enacted, as in the example above of the iterated equation. One of the most common 
multiplicative processes among human societies is the rich-get-richer phenomenon. In addition to 
material wealth, much of what we possess is bestowed on us by others such that the more we 
have, the more we continue to acquire. A rich person gains more wealth by using that wealth, 
popular people meet more friends through the friends they already have, people who have 
attracted sexual partners in the past are the most likely to attract others in the future. High-status 
leaders are the most likely people to attract additional followers and thus achieve higher status 
(Henrich and Gil-White 2001). In the social sciences, new power-law distributions are being 
discovered all the time, such as for the number of sexual partners that people have had in their 
lifetime (Figure 15.3), the connectedness of Hollywood actors (Barabási and Albert 1999), or 
even the popularity of baby names (Hahn and Bentley 2003) and dog breeds (Herzog et al. 
2004). The sizes of modern cities is also power law distributed (Zipf 1949; Pumain 1997), partly 
because the bigger a city is, the more people it attracts. Surprisingly, few archaeologists refer to 
the latter when discussing the primate distribution in the rank-size analysis of archaeological 
sites (Drennan and Peterson 2004), but this is changing as Brown and Witschey (2003) 
demonstrate that Maya settlement patterns and hierarchies can be modeled with fractal geometry 
and that there are power laws of settlement size that at various scales of analysis. 
 
<Figure 15.3> 
 

A widespread and well-studied power-law distribution in the social sciences is that of 
material wealth, which is ubiquitous for a wide range of economic scales in Western capitalist 
societies (Pareto 1907; Mandelbrot 1960; Atkinson and Harrison 1978; Bodley 1999). Even in 
ancient Egypt, wealth appears to have been power-law distributed (Abdul-Magd 2002). If we 
roughly assume in a Marxist sense (see McGuire, chapter 6) that one person’s wealth or power is 
accumulated through the efforts of others, then that wealth or power ought to be roughly 
proportional to the number of people within that person’s (direct or indirect) influence. If so, a 
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power-law distribution of wealth would imply that the distribution of beneficial connections is 
also a power law.  
 Bouchard and Mézard (2000; Ball 2004:281–310) created an abstract model that allowed 
for the exchange between agents and produced a power-law distribution of wealth. The model 
included a measure of the proportion of each agent’s wealth that it spends on other agent’s goods 
or services (Bouchard and Mézard 2000:eq. 7). Interestingly, Bouchard and Mézard (2000) 
found that the power law of the wealth distribution became steeper—less inequality—as the 
degree of exchange was increased. The same result was found by a model of agents within a 
small, clustered social network, whose members competitively exchange two types of products 
with each other (Bentley et al. 2005). Compared to no exchange at all, allowing a small amount 
of exchange produced a high degree of wealth inequality, with a power-law distribution, but 
increasing exchange beyond that caused the wealth inequality to decrease (Bentley et al. 2005). 
In other words, while exchange is required to produce wealth inequality, wealth becomes more 
evenly distributed as exchange becomes widespread.  
 The same rich-get-richer phenomenon occurs in non-Western societies, such as among 
pastoralists, whose principal form of wealth is livestock (Mace 1998; Salzman 1999; Hayden 
2001). Several ethnographic studies show ownership differing by as much as two orders of 
magnitude among some groups (figure 15.4). The exponential (Poisson) distributions (figures 
15.4a–b) indicate that for those groups, the owners of many livestock are no more likely to 
acquire more in the future than anyone else. On the other hand, the distributions with power-law 
“tails” (figures 15.4d–e) suggest that those with many livestock are the most likely to acquire 
more in the future. These characterizations are supported by the observed natures of these 
different groups. The political organization of the Karomojong (figure 15.4a) is characterized by 
basic equality between members of each age set (Dyson-Hudson 1966; Salzman 1999:34). For 
the Ariaal, family wealth and community authority are positively correlated (Fratkin 1999), and 
consequently the wealth distribution has a longer tail (figure 15.4c). The Somali (figure 15.4d), 
among which “life is intensely competitive” (Lewis 1963:110), have the wealth distribution that 
is closest to a power law (figure 15.4d). 
 
<Figure 15.4 > 
 
 In this way, more egalitarian groups have exponential distributions while competitive 
groups tend toward the power law. On the cooperative end, pro-social traits often promote the 
well-being of others (Bowles and Gintis 2000:1418; Henrich and Boyd 2001). Any degree of 
charity or sharing between families to support poor families will flatten out the low end of the 
distribution. On the competitive end, wealth inheritance and agglomeration of power contribute 
to the rich getting richer. Among some pastoralists, owners of large herds form alliances such 
that they expand at the expense of smaller groups (Sahlins 1961; Salzman 1999:40).  
 In principle, power laws may emerge not just with material wealth but with prestige as 
well, through the same rich-get-richer process. Henrich and Gil-White (2001) describe the 
prestige of a model (i.e., object for others to emulate) as being equivalent to “the size and 
lavishness of a given model’s clientele.” Because this size and lavishness is the main cue that 
others use in deciding whom to copy (Henrich and Gil-White 2001:174–178), those who have 
prestige tend to become more prestigious (Bentley and Shennan 2003). Among hunter-gatherer 
groups that share food, prestige is gained by sharing the meat from a kill (Altman and Peterson 
1987). This is how prestige is accumulated by a single hunter, because the prestige he gained 
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with his last kill means he will be assisted on future hunts, and that much more likely to continue 
his success (Barnard and Woodburn 1987:21). So while sharing prevents wealth inequality 
among hunter-gatherers, it can actually promote the inequality of prestige.  
 Discovering whether this prestige follows a power-law distribution is theoretically 
possible; it just requires some (albeit indirect) means of quantifying it. In archaeology, there are 
ways of attempting this (see Ames, chapter 28). For example, through use of a similar technique 
to that developed to investigate corporate household size and inequalities on the north Pacific 
(Maschner and Bentley 2003), the lengths of earthen long barrows in southern England (Ashbee 
1970), correlated with the labor expended on burying the person, may be a proxy for prestige; 
figure 15.5 shows that the distribution of barrow lengths is clearly that of a power-law tail. 
Hence this distribution elegantly includes, as part of a single process, even the largest barrow, 
which other analyses (Hodder 1979:142) would see as an outlier, needing an exceptional 
explanation. 
 
<Figure 15.5> 
 
 Closely related to prestige, power laws also characterize the growth and power of human 
corporations. Numerous mathematical models of other growth processes show good agreement 
with the empirical growth dynamics of corporations (Gibrat 1933; Stanley et al. 1996; Amaral et 
al. 1998). It has been shown that the sizes of firms in the United States are power-law distributed 
(Axtell 2001). Other emergent properties have been observed; Stanley et al. (1996) found that, 
for companies of similar size scales, growth rates actually follow a tent-shaped distribution, 
which is a bit like the normal distribution, except that the tent distribution decays faster 
(exponentially) away from the mean on both sides. Stanley et al. (1996) found that the width of 
this tent distribution was related to the size of the firm as a power law. Remarkably, this applied 
to all firms, whether they made cars, paper, or pills. An important implication is that the largest 
organizations have the smallest deviations in growth rates. In other words, in addition to being 
the most rich and powerful, the largest organizations are also the most stable. In this way, the 
model could be tested regarding the growth of prehistoric organizations such as chiefdoms, 
particularly with regard to the stability of their hierarchical organization (see Barker, chapter 29).  
 The potential applicability of these studies to prehistoric corporate organization (sensu 
Blanton et al. 1996) can be seen in a model of corporate growth by Amaral et al. (1998), which 
only required three principal suppositions: (1) firms are hierarchical and composed of relatively 
independent subunits, (2) the minimum required sizes of firms are broadly distributed but also 
dependent on the industry (Automobile companies must be larger than software consultants), and 
(3) the growth rates of divisions within the same firm are independent of one another. Amaral et 
al. (1998) proposed that the subdivisions within a firm grow in a random multiplicative manner, 
such that the future change in the size of a company division is proportional to its current size. 
An important additional feature was that a division could be absorbed by, or break away 
independently from, its parent firm, depending on how small or large (respectively) it became. In 
this way large divisions could grow by absorbing smaller ones. The model of Amaral et al. 
(1998) fit the data that Stanley et al. (1996) had discovered on real companies in the modern 
economy. What the Amaral et al. (1998) model showed was that simple multiplicative growth 
was not enough, and that a model of corporate growth needed to account for (1) the subdivided 
nature of firms and (2) the broad range of minimum size requirements for firms (De Fabritiis et 
al. 2003). These general models are waiting to be analogously explored by archaeological 



 Bentley & Maschner  15-7 
 

theorists on prehistoric organizations, with the “firms” becoming prehistoric groups of sizes from 
bands to chiefdoms to states, and the “splitting off of subdivisions” representing instead the 
fissioning of groups (Carneiro 1970).  
 In sum, power-law distributions often characterize the competitive acquisition of 
properties, such as wealth or number of people under a leader’s influence, which arise in human 
society. A power-law distribution can simply be the result of a growth process in which the most 
likely agents to acquire more of something are those that already possess a lot of it. For 
archaeologists, recognition of this potentially quantifiable rich-get-richer process could provide 
insight into the transition to new forms of society, especially through contact with other groups.  
 
Networks 

Archaeologists often discuss networks—social networks, trade networks, political networks—
and network structure is often seen as a primary determiner of change in prehistoric society 
(Johnson 1982; Renfrew 1974; Blanton et al. 1996). Networks have other archaeological 
applications as well. In chapter 17 of this volume Liane Gabora discusses the evolution of the 
modern mind in terms of a neutral network. Hence it is quite useful that complexity theory has 
involved an explosion of interest in networks, which cover anything that can be represented 
abstractly by dots and lines. Network theorists have attempted to model an astonishingly wide 
range of phenomena, from atomic reactions, gene interaction, bioichemical reactions, 
ecosystems, human relationships and even language—all have been recently studied as network 
phenomena (see Barabási 2002 for a review). Two of the most studied models in network theory, 
and common to most these specific applications, have been (1) small-world networks (Watts and 
Strogatz 1998; Watts 2003) and (2) scale-free networks (Barabási and Albert 1999; Barabási 
2002).  
 
Small-World Networks 

The small-world phenomenon is one that many of us know intuitively and is studied keenly by 
social scientists (Kochen 1989; Granoveter 2003). It refers to the fact that people can experience 
familiar, close-knit communities and yet still be only a few steps (connections) apart from almost 
anyone else within a much larger network. In a classic sociological experiment, Milgram (1967) 
asked different people living in the American Midwest to try to convey a letter to a stranger in 
Boston, about whom Milgram provided some information, simply by mailing the letter to an 
acquaintance who might help forward the letter to its target. That friend or acquaintance would 
be asked to do the same, and so on until the letter reached its destination. Milgram (1967) found 
that the median number of intermediaries in the letter chains was about five or six, indicating that 
most everyone in the United States is surrounded by “six degrees of separation.”  
 In a now famous article in Nature, Duncan Watts and Steven Strogatz (1998) used a 
simple model from graph theory to explain the small-world phenomenon. In order to make their 
analysis, Watts and Strogatz (1998) quantified two essential variables to describe a given 
network: (1) clustering, which is the degree to which the connections of a typical node are also 
connected to one another, and (2) characteristic path length, which is the typical number of 
network links between one agent and another. Then, on a highly simplified ring network of 
nodes and connections, Watts and Strogatz (1998) explored the changes that occur as the 
connectivity of the networks is transformed (figure 15.6). At one extreme is the regular network 
(figure 15.6, left), in which each agent is connected to its four immediate neighbors. A regular 
network is highly clustered because all connections are local, and it also has a large characteristic 
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path length because crossing the network requires many small jumps between neighboring 
agents. At the other extreme was their random network (figure 15.6, right), in which each node 
was randomly connected to four others anywhere within the network. Since connections are 
made without preference for those closest to the agent, the random network is not clustered, and 
because there are so many shortcutting links across it, its characteristic path length is short. 
 
<Figure 15.6> 
 
 The breakthrough for Watts and Strogatz (1998) was their discovery of a realm between 
these two extremes, the small-world network (figure 15.6, middle), which is almost as clustered 
as a regular network, but its characteristic path length is almost as short as for a random network 
(Watts and Strogatz 1998). In the small world, an agent perceives itself to be in a clustered 
neighborhood, and yet the communication distance to any other agents is much shorter than if all 
agents were equally well connected (Watts and Strogatz 1998).  
 The advantage of this definition is that the small world is quantifiable, as it has a high 
clustering coefficient and a short characteristic path length. Watts (1999:142–145) showed that 
Hollywood is in fact a small-world network, in which a connection between actors is defined as 
having acted in the same movie. Another small-world network is that of scientists who 
collaborate with each other (Newman 2001; Guimerà et al. 2005), with authors being the nodes 
and coauthorship being the connections.  
 Although prehistoric network connections are naturally harder to quantify, the small-
world model is no less relevant for archaeology. For instance, the nodes of a prehistoric network 
might be Neolithic households, linked by kinship bonds, as part of a small-world network in 
Neolithic Europe (Bogucki 2003). It may only have taken the traffic of a few individuals 
journeying between distant trade centers to change a “down-the-line” trading system (Renfrew 
1975) into a prehistoric small-world network across a large area. From an ego-centered point of 
view, the small world means that one has about the same number of contacts at each spatial 
scale, that is, a Neolithic woman might have a dozen people in her family, know a dozen people 
in her village outsider her family, have met a dozen people from other villages in the area, and 
have run across (in her lifetime) a dozen or so tradesmen who passed through from distant 
regions. Because the woman knows a handful of people on each spatial scale, and assuming a 
similar situation for most of the people in this hypothetical Neolithic world, then she can 
exchange something (ideas, pottery, trade items) with virtually anyone in the network in just a 
few steps, by making use of connections at the appropriate spatial scale. In a small world, a 
Neolithic woman in the Rhine valley might obtain a piece of Spondylus shell from the Black Sea 
coast, having passed only between a half dozen hands (including the crucial long-distance trader 
in a canoe), whereas down-the-line trade would have required it to pass through hundreds of 
people’s hands—and probably never make it that far. The way to identify prehistoric small-world 
networks of trade will require artifact sourcing, though chemical sourcing methods or 
identification of manufacturer’s seals or stamps on traded items. However, certain prehistoric 
exchange networks have already been represented explicitly enough (Wright and Johnson 
1975:fig. 5) to determine whether they fit the small-world criteria of short path length and high 
clustering coefficient. 
 Small-world networks may even apply to the rise of early state societies. In the Indus 
valley local trade networks developed around each polity during the Regionalization era (5500–
2600 B.C.), but by the Kot Diji phase (2800–2600 B.C.), weights and measures, seals, pottery 
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styles, and other technologies appear in the same forms over an area larger than half a million 
square kilometers, and by the Integration era (2600–1900 B.C.) these items were fully 
standardized (Kenoyer 1995, 1998). This state formation apparently involved the emergence of a 
small-world network, brought about initially by the long-distance trade of prestige items and raw 
materials. Because the largest centers were connected to a high number of smaller towns in this 
trade network, it was vulnerable to the decline of any one of its major sites. After 1900 B.C., the 
Indus valley experienced a de-urbanization back into more regionalized polities (Possehl 1997). 
Interregional trade suddenly collapsed at many different centers, such as Harappa, Lothal, 
Kuntasi, and Dholavira (Possehl 1997; Kenoyer 1998). In this way we might see the decline of 
the Indus civilization as the dissolution of a small-world network, through the severing of cross-
network ties, into a regular, clustered network. Again, like the corporate models discussed above, 
the topic of small-world networks and early state emergence is waiting to be explored in detail.  
 
Scale-Free Networks 

One of the hypotheses for what underlies the ubiquitous power-law distributions discussed above 
is a special, orderly class network called the scale-free network (Barabási and Albert 1999; 
Newman and Watts 1999; Albert et al. 2000; Albert and Barabási 2002; Barabási 2002). These 
networks have a power-law distribution of the number of connections to each node (Adamic and 
Huberman 1999; Barabási and Albert 1999; Amaral et al. 2000). The best-studied scale-free 
network is the network of Internet web pages, which is scale-free because the number of links to 
each site is power-law distributed (Huberman et al. 1998; Huberman and Adamic 1999; Albert et 
al. 1999, 2000; Broder et al. 2000). Perhaps easier to visualize, a scale-free network is like the 
hub system run by a major airline (figure 15.7), such that the number of connections from each 
airport is a power law (Bentley 2003:fig. 2.2). Through the ingenious technique of tracing 
modern human travel through the flow of marked bank notes (cash), Brockmann et al. (2006) 
recently demonstrated that modern human travel distances are characterized by a power law, 
with most trips being short, but the occasional long-distance leap contribution to a scale-free 
(and also small-world) human travel network. 
 
<Figure15.7 a–b> 
 
 A simple mathematical model of their scale-free growth of a network of indivisible 
agents follows the description of Barabási and Albert (1999), in that (1) the population of agents 
grows and (2) new connections continually made within the network are preferentially attached 
to already well-connected agents. As the network grows, each agent acquires more attributes at a 
rate proportional to what it already has, which is again the rich-get-richer phenomenon. For 
example, when an airline creates a new flight, it is much more likely to involve a stop at O’Hare 
(Chicago) than in Boise, Idaho. Similarly, the larger the size of a corporation, income of an 
individual, or number of links to a website, the faster that quantity tends to grow. In the case of 
the Internet, several studies have confirmed that both growth and preferential attachment are 
necessary for a realistic model (Jeong et al. 2003; Yook et al. 2001; Albert and Barabási 2002).  
 Despite its success in replicating the power-law distribution of connections among 
network nodes, the original scale-free growth model of Barabási and Albert (1999) is inadequate 
in several ways to explain real networks. Perhaps the most obvious problem with strict 
preferential attachment is that only the oldest agents dominate, while new agents entering the 
network without connections have no chance to succeed. Clearly, this is inadequate to account 
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for the overnight success of a new website, the rise of an entrepreneur, or a highly influential 
theory by a previously unknown scientist. One potential solution to this problem is to assign 
fitness values such that each node acquires new connections in proportion to its fitness as well as 
the number of connections it has (Bianconi and Barabási 2001), which allows newcomers with 
some outstanding quality to become highly connected (successful) over time.  
 Another problem with the Barabási and Albert (1999) model is that the network becomes 
less and less clustered as it grows (Albert and Barabási 2002:fig. 24), and is thus not a good 
model for networks that exhibit both small-world and scale-free qualities. The Internet as a 
small-world is a case in point, because any two web pages within this network of hundreds of 
millions of sites are connected by a limited number of steps, averaging about sixteen clicks 
between any two web pages (Albert et al. 1999; Broder et al. 2000). Airplane travel is also a 
small world in that rarely are any two airports in the world more than three stops apart, thanks to 
major hubs like O’Hare or Amsterdam. To tackle this problem, Barabási et al. (2002) built on the 
fitness model by allowing the network to grow almost like a fractal tree. Picture a branching 
river network with both a scale-free structure (big branches lead to many smaller branches, 
which lead to many smaller branches, and so on) as well as a clustering among nearby branches. 
Fractal geometry may underlie many complex systems (Strogatz 2005), as discussed below.  
  Although network theory has offered many new insights, including phenomena that are 
unique to networks as compared to other dynamical systems (Stewart 2004; Barabási 2005), it 
can also add unnecessary complication when a simpler explanation is available. For example, the 
preferential attachment rule for scale-free networks is really no different from the multiplicative 
growth models discussed above, or even simply the two preconditions that the anthropologist 
John Bodley (1999:609) has posited for wealth inequality in Washington State, one being “high 
rates of growth in population, property transactions, and new construction,” and the other being 
that this growth “generate public costs that must be shared by all taxpayers.” For this reason, the 
application of the scale-free network model on such quantities as urban land values (Andersson 
et al. 2003) appear to be forcing the model where it is not necessary. In fact, many of the subjects 
of recent network analysis—such as web links, Hollywood actors, and scientific collaborators—
could just as easily be thought of as ideas that are copied among individuals (Bentley and 
Shennan 2005). The neutral or random copying model (see Collard et al., chapter 13; Neiman 
1995; Bentley et al. 2004), in which ideas are copied—with occasional innovation—from one 
individual to another, produces a power-law distribution without requiring any imposed rules 
such as preferential attachment. In the random copying model, the rich-get-richer effect emerges 
naturally because the more popular a variant is, the more likely it will be copied again, becoming 
even more popular. Also, overnight success, which requires add-on rules for the scale-free 
network model, causes no difficulty in the random copying model, whereby any new variant 
might become highly popular by chance alone (Bentley and Shennan 2005). While we should 
recognize the exciting potential of network theory, we should also try not to overlook more 
traditional solutions to similar questions.  
 
Punctuated Change 

As open, nonequilibrium systems, human societies are also prone to instances of abrupt change, 
often triggered by seemingly inconsequential events, similar to a phase change in physics 
(Castellano et al. 2000; Ball 2004: 99–120). The idea of abrupt change in prehistory goes in and 
out of fashion in archaeology, and recently abrupt change and catastrophes have been 
reconsidered as shapers of prehistory (Maschner 2000; Rosenberg 1994; Rowley-Conway 2002; 
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Weiss 1993; Diamond 2005). At the same time, the idea of equilibrium (though criticized above) 
can make sense, as societies often do remain essentially the same, at least for a while. To 
accommodate these opposing tendencies, we might hypothesize that human societies undergo a 
punctuated equilibrium mode of change (Eldredge and Gould 1972; Bronk-Ramsey 2003), that 
is, from stasis to rapid change or collapse, stasis again, and so on. Large effects need not be 
perpetuated by overwhelming causes—one shot can start a war, one invention may transform a 
society, and one bad crop yield might collapse it. This is why the archaeology of specific events, 
a long-running topic of debate (Binford 1985; Gould 1985), can have great relevance when it is 
possible to do it (Gould 2005). As an example, the Thule migration across the Arctic about A.D. 
1100 was facilitated by their adoption of the Asian recurve bow, armor, and other related 
technologies, technologies whose rapid spread between A.D. 1000 and A.D. 1200 changed the 
social and political worlds of most Native American peoples from the Bering Strait down the 
west coast of North America, the Great Basin and Southwest, and eventually the Mississippi 
basin (Maschner 2000).  
 A popular book on the way things change quickly is The Tipping Point, by Malcolm 
Gladwell (2000), but punctuated change was the interest of archaeologists who adopted 
catastrophe theory (Thom 1975) over twenty years ago (Tainter 1996). One proponent was 
Renfrew (1978; Renfrew and Cooke 1979), who showed how abrupt transitions could take place 
in systems with several possible equilibrium (metastable) states in which multiple variables 
affect benefits in contradictory, nonlinear ways. Renfrew (1978) demonstrated how slow changes 
in external parameters (such as climate), by causing people to adapt by small modifications of 
behavior, could lead them to a bifurcation point, where it is suddenly necessary to make a drastic 
change in order to maintain the optimal behavior (Ormerod 1998). Something may function less 
and less well for a while, until suddenly one day it is abandoned for something else. This may 
have occurred in prehistoric Europe where during the generations that Mesolithic hunter-
gatherers traded with nearby Neolithic farmers, the environment or the social relationship 
changed such that at some point, hunting and gathering lost its original benefits, and an abrupt 
shift to farming finally occurs (Renfrew 1978; Zvelebil and Lillie 2000).  
 
Chaos Theory 

Like systems theory, catastrophe theory is based on the idea of transitions between equilibrium 
states; the transitions occur gradually in systems theory, and abruptly in catastrophe theory. 
However, what if there is no equilibrium state for the system to find? It is possible for us to 
define a system in a perfectly deterministic way, by defining all the rules, and yet when the 
system is set in motion, it is totally unpredictable. This is the phenomenon of chaos. A 
deterministic system is chaotic if an infinitesimal change in initial conditions leads to an entirely 
different series of events.  
 As engagingly described by Gleick (1987), chaos was discovered with the realization that 
deterministic equations, when repeatedly applied, can lead to results that are so sensitive to the 
initial values of the parameters as to be unpredictable. To show how this can happen, consider 
the logistic map, which is described in detail by most textbooks on differential equations. 
Suppose that we wish to model the population of algae in a pond. There are two tendencies 
acting on the population level, one for the existing algae to multiply, and the other for some 
algae to die off as the population reaches the carrying capacity of the pond. A reasonable, simple 
equation for the population of the pond Pt is then 
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Pt = APt-1(1- Pt-1),         eq. (2) 
 

where A is a constant greater than one, Pt-1 is the population of the pond in previous year, and the 
population varies from 0 (no algae) to 1 (pond at capacity). To arrive at the population in 
successive years, eq. (1) must be iterated, that is, this year’s population is plugged into the 
equation to get next year’s population, and the result plugged in for the year after that, and so on. 
This is simple enough to be done on a spreadsheet.  
 This equation, which can be represented as a simple box model (figure 15.8a), has 
become a classic example of how iterating a simple equation can lead to chaos. To be specific: it 
turns out that if A in eq. (1) is between 1.0 and 3.0, the pond converges upon a stable population, 
called an “attractor,” which could be seen as the result of an equilibrium process.  
 However, attractors are only one aspect of the logistic map, if we raise A in eq. (1) to just 
above 3.0 and the population of the pond begins to oscillate from year to year. At first the cycle 
is between two values, but as A is increased the cycles include more and more values until 
finally the cycle never repeats itself and the population is chaotic. In this chaotic regime, it is 
impossible to detect a pattern from year to year, and long-term prediction is impossible: this is 
what is meant by “sensitivity to initial conditions.” Figure 15.8b shows, for A = 3.8, what 
happens when the model is run for the two slightly different starting values of P0. After about 
twelve model years, the populations diverge and soon become totally different, not just in value 
but in their patterns of variation over time. This is the essence of chaos; two nearly identical 
stating points lead to two completely different trajectories in time, such that the dynamics are 
fundamentally unpredictable. 
 
<Figures 15.8a–b> 
 
 The relevance of chaos and the stability of prehistoric societies have been noticed by 
archaeologists before (see Bintliff, chapter 10; Bintliff 1999, 2003; McGlade 1995, 2003; 
McGlade and van der Leew 1997). Chaos theory demonstrates why the debate between post-
processualists and processual archaeologists—between uncertainty and positivism—is based on 
a false dichotomy. This is because for any given state system, there is only one possible history, 
but even when the dynamical rules of that system are exactly defined, it can be impossible to 
predict its future. No matter how well we may know the state of a society at present, we cannot 
predict very far into the future because whatever tiny uncertainty we have about the present 
grows geometrically with how far into the future we want to predict. Reversing this, by trying to 
reconstruct the past from evidence available in the present, there can be an infinite number of 
possible histories because we do not perfectly understand the present state. This has real 
implications for archaeological interpretation. Given the chaos that can be created with the 
simple box model in figure 15.8a, we should be skeptical of box model representations for 
prehistoric socioeconomic systems with dozens of boxes and arrows, since implementing such a 
model could not in any sense be predictive, or even explanatory. The dynamics of such box 
models are highly variable and dependent on the number of boxes, number and configuration of 
inputs and outputs, and so on (Hannon and Ruth 1997).  
 
The Edge of Chaos: NK Landscapes and Self-Organized Criticality 

Catastrophe and chaos theory demonstrated how even deterministic equations for keeping track 
of one variable, such as population, can lead to abrupt and/or unpredictable changes. So what 
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happens if there are many variables to keep track of all at once? This is the case with the 
behavior of individuals, as opposed to the average behavior of a group. The problem of 
predicting a system of interacting agents, in which each agent’s actions depend on those of other 
agents, is what Stuart Kauffman (1993, 1995) was considering when he developed his NK 
landscape. The NK landscape is a simple model of N agents, interconnected in a simple grid 
network such that each agent is randomly connected to K other agents. A tiny bit of 
“personality” is added to the agents, in that the interactions between each agent and its K 
neighbors can be made to be cooperative, competitive, or a mixture of both. Each agent, 
therefore, has a unique set of conditions governing its behavior, because its actions not only 
depend on the interaction rules assigned to it but also on its reactions to the K other agents in its 
communication network. Since the actions of the neighbors change continually, optimal 
strategies in the present moment may not be what they were in the previous moment because 
they depend on the previous actions of other agents. This has been named the Red Queen effect 
(Van Valen 1973), after the Lewis Carroll character, because the agent must run faster just to 
stay where it is—keep changing just to stay competitive.  
 Kauffman (1995, 2000) showed that the outcomes of these networks depend on agent 
strategies and also on N and K. If the agents are only moderately connected (lower values of K), 
then by adjusting their strategies accordingly, agents can all adapt fairly easily. However, as 
things become more interconnected (higher values of K), agents must choose either to make 
small adjustments to optimize their current strategy, or undertake major, risky changes in order 
to seek a better long-term strategy. When the network is completely interconnected (K = N - 1), 
each agent has about as many favorable as unfavorable interactions, highly favorable strategies 
may simply not exist, and a directed search for improvement is no better than random guessing 
(Kauffman 2000:201–202). In the years since the NK model was introduced, one of the major 
questions has been how agents can search for better strategies, especially when stuck on a 
localized fitness peak—picture a mountainous landscape where the height of each peak 
represents the benefits or fitness of a strategy (Dennett 1995; Axelrod and Cohen 1999; Erwin 
and Krakauer 2004). Schultes (2000) provides an excellent example when he compared politics 
to a highly connected NK landscape, in that all the competing interests that the U.S. presidential 
candidates are compelled to satisfy (i.e., high K) was to blame for their mediocre compromises 
on policy issues.  
 In archaeology, Kohler et al. (2000) used the NK model to explore what may have been 
the prehistoric effect of increasing the number of households, clans, or communities (i.e., 
increasing N), along with changes in the number of exchange connections (K) between these 
units. Analogy with the NK model suggests that Prehispanic societies that became too 
interconnected (high K) performed poorly in terms of exchange and decision making due to the 
interconnectivity of these systems. Kohler and colleagues argued that when plaza pueblos 
appeared at Pajarito plateau in New Mexico about A.D. 1275, the number of households (N) 
increased but the interconnections changed such that the connections of each household, K, was 
kept fairly constant. Through plaza pueblo site organization, “the residents tried to maintain the 
older pattern of high connectivity within their modules (kin groups, roomblocks) and sparser 
connectivity between” (Kohler et al. 2000:381). In this way they avoided what Kohler et al. 
(2000:376) call the “high K complexity catastrophe.” 
 One of the promising results of Kauffman’s NK model was that it produced avalanches of 
change whose sizes were distributed by a power law. Similar power-law distributions had been 
observed for the sizes of natural, cascade-style events, such as forest fires, landslides, and 
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earthquakes (Turcotte 1997). In Kauffman’s NK landscapes there existed a regime for certain 
values of N and K, in which the system hovered between an ordered regime of stasis and a 
chaotic regime of unpredictable change. By analogy, Kauffman reasoned that natural complex 
systems of many interacting components evolve on their own to a state “poised at the edge of 
chaos” (Kauffman 1994). In physics, Per Bak and his colleagues (Bak et al. 1987) called this 
state “self-organized criticality.” Whereas in the chaotic state, a small perturbation to the system 
triggers a cascading sequence of interconnected events, in a self-organized critical state, some 
perturbations only trigger small changes, while others can cause an avalanche of consequent 
events (Bak and Chen 1991; Bak 1996; Turcotte 1999). It was as if self-organized critical 
systems were tuned by an invisible hand to the point where chain reactions occur at all size 
scales, from insignificant perturbations to avalanches that sweep through the entire system. 
 The reason they are called avalanches is that self-organized systems are exemplified by a 
sand pile (Bak 1996; Jensen 1998:14–16, 92–99). If dry sand is poured onto one spot, a pile will 
soon form that eventually reaches a critical slope, such that sand slides occur on its sides. In this 
critical state, one or two grains can trigger a sand slide. The pile hovers between two regimes—
sand slides that reduce the slope of the pile keep it out of the chaotic regime of runaway 
avalanches, while the continual pouring of sand (open system) keeps it from stasis. It turns out 
that in this self-organized critical state, the distribution of sizes of avalanches on the sides of the 
sand pile is a power law, meaning that change occurs at all size scales and frequencies, from 
infinitesimal and often, to massive but rare, and everything in between, all as part of the same 
elegant power-law distribution function.  
 The analogy between sand piles and real-world complex systems is appealing. Remove a 
grain in a sand pile and others will fall, or as one commodity fails in the market so do products 
related to it (Lux and Marchsesi 1999). Many inspired by the theory have suggested that self-
organized criticality may govern changes in society and culture (Gell-Mann 1994; Kauffman 
1995; Bak 1996; Buchanan 2001), technological evolution (Arenas et al. 2000; Kauffman 2000; 
Bentley and Maschner 2003b), and has been applied successfully to understanding the stages of 
lithic reduction (Brown 2001). The only trouble with the self-organized criticality theory is that it 
is mainly a description of a dynamic state rather than a truly causal explanation. So, while the 
model of self-organized criticality might be favorably compared to records of historic pottery 
styles as evidence of interconnected avalanches of change (Bentley and Maschner 2001), this is 
not truly an explanation for how and why those changes occurred. Until this happens, 
archaeologists may remain reserved about the theory of self-organized criticality (Pruecel and 
Hodder 1996:28; Renfrew and Bahn 1996:473). 
 
Information Cascades 

Despite the lack of clear explanation in the theory of self-organized criticality, the observed 
phenomenon is real—natural and social systems do self-organize into states characterized by a 
power-law distribution of event sizes. Strogatz (2005) asks: 

Why do so many of nature’s networks live on a razor’s edge? Have they self-organized to reach 
this critical state (Bak et al. 1987), perhaps to optimize some aspect of their performance, or have 
they merely followed one of the manifold paths to power-law scaling (Newman 2000), full of 
sound and fury, signifying nothing? (Strogatz 2005:366, citations in original) 

Fittingly, since it was introduced by Bak et al. (1987), the concept of self-organized criticality 
has spread through the journal literature like an interconnected avalanche (Bentley and Maschner 
2000). By the end of 1999, the distribution of the number of citations these papers had acquired a 
power-law form (Bentley and Maschner 2000). In other words, the seminal paper by Bak et al. 
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(1987) was cited the most, followed by the papers that it cited, followed by the spin-offs of those 
papers, until finally the most recent papers on comparatively minor aspects of the theory, which 
still cite Bak et al. (1987) yet they themselves are hardly cited at all. Similar power-law 
distributions are found for prehistoric ideas, namely, decorative motifs on prehistoric pottery 
(Bentley and Shennan 2003; Bentley et al. 2004; Shennan and Bentley 2006). Schiffer (2005) 
recently proposed a similar model for the invention of complex technological systems, such as 
the telegraph in the nineteenth century, which involves a punctuated series of invention cascades, 
as people compete to develop various interrelated aspects of the invention. Bentley and 
Maschner (2000, 2003b) argued that such cascades or avalanches could be envisioned as a 
growing tree: at the base is the seminal idea (trunk), which gives rise to several spin-off ideas 
(large branches), which in turn give rise to other, less significant (or more specialized) spin-off 
ideas (smaller branches), and so on, until another new seminal idea starts a new avalanche (new 
tree). This tree of ideas could be seen growing in time and spreading into more and more remote 
corners of contemporary culture. If the lengths of the branches were drawn in proportion to how 
influential (i.e., how often copied) each idea was, the depiction might take on a fractal form 
(figure 15.9). Like a braided river, which looks the same on the massive scale of the Mississippi 
and all its tributaries to the small-scale braided rivulets of water draining through the sand on a 
beach (Turcotte 1997), a fractal is said to be self similar (or more technically, self-affine if not 
exactly identical at all scales). Comparing the evolution of ideas to a piece of broccoli (another 
fractal shape) may seem crazy, but it isn’t. It was recently demonstrated that the Internet has 
quantifiably fractal properties (Song et al. 2005), which has led to the consideration that fractals 
may underlie a new architectural law for complex systems (Strogatz 2005). 
 
<Figure 15.9> 
 
 The concepts of fractal properties of information spread and network interactions are 
quite closely related (Vandewalle and Ausloos 1996, 1997; Barabasi et al. 2001), and this can be 
demonstrated through modeling of information cascades. Watts (2002) explored how network 
structure affected the size of the information cascades that swept across it, through the 
interconnected agents. With each agent being a zero at the start, one agent was given an idea by 
switching it to a one. At the next time step, another randomly selected agent would be switched 
from zero to one. These randomly selected agents were the innovators. To represent the behavior 
of the adopters, agents were assigned threshold values between 0 and 1 such that if the fraction 
of connected neighbors with the idea was greater than its threshold, it would switch too. If an 
agent’s threshold was 0.85, for example, then at least 85 percent of its direct neighbors would 
have to adopt the new idea before it would adopt the idea as well. Each time an agent switched, it 
increased the fraction of idea holders for all its surrounding agents, and hence may cause one of 
them to switch, and so on, leading to a cascade of a size defined as the number of agents that 
switch. As expected, cascades occurred more readily through a network of agents with low 
thresholds than high thresholds. In fact, Watts (2002) found that as the average threshold is 
increased, a point is reached where system-sweeping avalanches become practically impossible, 
with each avalanche ultimately being curtailed by particularly stubborn agents.  
 Watts (2002) also found that a sparsely connected, scale-free network was subject to 
cascades of all sizes (through a power-law distribution), at least up to the limit of the largest 
interconnected cluster within the network. However, as random connections were added to the 
network until it was highly interconnected, the size of the cascades became limited (via an 
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exponential distribution), such that small changes built up until suddenly a massive cascade 
occurred among all the yet unchanged agents at once. The reason for this was that most agents in 
a sparsely connected network have only a few direct neighbors, and are therefore more 
susceptible to being influenced by a single neighbor. By contrast, each agent in the highly 
connected network was connected to many others and is thus less likely to be swayed by a 
change in a single neighboring agent (Watts 2002:5770). There is a similarity here to the NK 
landscapes discussed above; as agents are made more highly interconnected, they become 
overwhelmed with information and less likely to make a bold decision, so to speak.  
 This leads to a natural question: What happens when agents have a variety of different 
reactions to their information? The models discussed so far treat agents as identical. Watts, 
however, recognized that variation among agents not only makes the model interesting, but it is 
essential for the model to represent certain realistic aspects of the real world. Instead of modeling 
all agents with the same threshold, Watts (2002) in his second experiment randomly assigned a 
range of different thresholds to the agents, such that some were now innovators, others early 
adopters, and others late majority and so on, meaning that different agents had different amounts 
of peer pressure. Watts (2002) found that as these agents were made more heterogeneous—with 
a wider variety of thresholds—system-sweeping avalanches became more likely. Watts (2002) 
reasoned that among heterogeneous agents, there exists a better mix of early adopters (low 
threshold) to get an avalanche started and early and late majority agents to keep it going.  
 
Agent-Based Modeling 

Watts’s (2002) discovery that heterogeneity among his agents led to qualitative differences in his 
model results is profound. Moving from simple models of generic agents—such as sand grains, 
NK landscapes, or nodes and lines in a network—to simulation models in which the agents 
themselves are varied and complex, enters the realm of agent-based modeling. As Costopoulos 
describes in chapter 16 of this volume, agent-based modeling allows an archaeologist to describe 
a prehistoric human society with an open, nonequilibrium model, which can be run again and 
again, to see whether any general states tend to result from certain combinations of agents, agent 
rules, environments, and initial conditions (Axtell et al. 2002; Bankes 2002a; Bonabeau 2002). 
Agent-based approaches provide the opportunity to combine many formerly-competing bodies of 
archaeological theory described in this volume, including the multiple narratives of post-
processualism (see Shanks, chapter 9), the hypothesis testing of processualism (Watson, chapter 
3), ecology (Yesner, chapter 4), and agency (Gardner, chapter 7). Agent-based modeling even 
has heavy philosophical implications (see Koerner and Price, chapter 21), as physicists now are 
seriously considering the possibility that our own world could be a simulation (Barrow 2003)!  
 Agent-based modeling (ABM) of complex adaptive systems involves computer 
simulation of the actions of heterogeneous agents that populate a landscape of simulated 
resources. Made possible by recent accelerations in computer processing, agent-based modeling 
allows the testing of hypotheses for complex systems in the social sciences (Gilbert and Doran 
1994; Gilbert and Conte 1995; Conte et al. 1997; Gilbert and Troitzsch 1999), including 
archaeological studies of hunter-gatherer subsistence (Lake 1999) and late prehistoric settlement 
(Kohler et al. 1999; Axtell et al. 2002). An agent is something with the ability to interact 
purposefully with its environment that, importantly, includes other agents. Agents can be defined 
at any scales such as individual potters, households, villages, or any other unit. These agents 
possess attributes such as life span, vision, movement capabilities, and consumption and storage 
capabilities and can represent such real-world entities as households, clans, or villages (Dean et 
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al. 1999). The basis of ABM is that each agent acts based on its own local information, with at 
least some dependence on what other nearby agents are doing, and what they have learned about 
their world over a series of “time steps.” In early models, the rules by which agents acted were 
often based on ethnography and optimal foraging theory (Kohler and van West 1996; Read 
2002).  
 In successive time steps, the general sequence of an agent-based computer model is (1) 
each agent acts according to its rules and local environment, (2) the world is changed according 
to the sum of all agent actions, (3) agents react to their new environment, and so on. Importantly, 
the network in ABM is not predetermined, as agents are allowed to create the network 
themselves through their collective interactions. Thus, while the network models discussed 
above are more predictive, ABM is potentially more realistic, contingent, and surprising. In this 
context, game theorists have traditionally examined games such as the Prisoners Dilemma 
(Axelrod 1984, 1997) and looked for “evolutionary stable strategies” (much like equilibrium) 
among the agents who play different strategies. With ABM, it is possible to discover 
nonequilibrium dynamics that would be impossible to predict through differential equations, 
including chaotic outcomes from a simple two-person game (Sato et al. 2002), the transformative 
effects of adding memory to the agents (Andersen and Sornette 2003), or the results when the 
agents compete for limited resources on a small-world network (Anghel et al. 2004; Bentley et 
al. 2005). 
 A typical application is exemplified by Lake (1999), who used agent-based modeling to 
address the question of whether the first foragers on the island of Islay (Southern Hebrides) were 
driven to explore the island by their search for hazelnuts. Using available data such as pollen 
records and modern soil maps, a GIS model was constructed for the climate, vegetation, and soil 
distribution of the island around 7000 B.P. (Lake 1999). This includes a model distribution of 
hazelnut trees. Each agent in Lake’s model represents a family of four foragers. Although Lake 
(1999) includes many other variables in their decisions such as risk taking, foragers in the model 
basically seek nearby GIS cells with more hazelnuts than the one they currently occupy. These 
agents remember what they have seen and periodically share information with each other. The 
agents drop artifacts as they use them. Because the model results did not match the 
archaeological distribution of Mesolithic sites on Islay, Lake (1999) concluded that hazelnuts 
were not the primary motivation for foragers in occupying the island.  
 Many of the leaders in the application of ABM in archaeology have used it to model 
Anasazi village formation in the American Southwest (Kohler et al. 1999; Dean et al. 1999; 
Axtell et al 2002). The paleoenvironmental landscape for these Anasazi models makes use of 
particularly detailed records of dendochronology, geomorphology, palynology, and archaeology 
from the region. By populating this landscape with artificial agents (representing households), 
the output of the ABM compares quite well to the actual history of the Anasazi from about A.D. 
800 to 1300 (Axtell et al. 2002). As for future applications, Bogucki (2000, 2003) has argued that 
the Neolithic spread of agriculture across north central Europe can be seen as the evolution of a 
complex adaptive system, soliciting an ABM approach.  
 Agent-based modeling appears to be revolutionary in the social sciences for three reasons 
(Bankes 2002a; Bonabeau 2002): (1) ABM does not require the old assumptions of equilibrium, 
normality, and linearity, the problems with which have been discussed above; (2) ABM 
demonstrates emergent phenomena; and (3) compared to generalizing mathematical approaches, 
ABM is a more natural way to describe a social system because it replicates the actions of 
agents. Since this is the same level that we observe the real world, ABM allows the incorporation 
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of a much broader array of sociological and anthropological data. Axtell et al. (2002) were able 
to bring their Anasazi ABM even closer to the actual history by adding more heterogeneity to 
their agents by varying such parameters as age at death, age range of fertility, and group fission 
probability among the individual agents. Agent-based models can be wonderfully detailed and 
complex, and as such can be realistic in the general way that events play out. However, there is 
always the danger of adding too much detail, which not only may fail to bring the model any 
closer to reality, but may also make the modeler’s desired results inevitable (Inchiosa and Parker 
2002). Furthermore, ABM should never be mistaken for a reproduction of reality, and a 
correspondence between model results and observed data always suffers from a lack of 
equifinality; that is, it provides many possible explanations rather than a single, definite one 
(McGlade 2003). It is commonly remarked that there are more possible games of chess than 
there are atoms in the universe, so surely one game or even hundreds of games do not tell us how 
the next one will go. The same can be said for agent-based models. We must be careful to regard 
a good ABM as explanatory through its analogy with reality, but not predictive. Since any 
system we seek to model by computer is itself a symbolic representation of a real process, 
merely comparing the model to the simplified data as a scientific “test” is self-referential (Baker 
1999).  
 
Conclusion 

While the postmodernists acknowledge the success of natural sciences such as physics, they see 
much greater, even hopeless difficulty in explaining complex open systems like brains, 
evolution, and ecology (Hesse 1995). Yet these difficult phenomena are just what complexity 
theory attempts to tackle. As Bintliff (1997; also chapter 10 of this volume) argues, complexity 
science brings past and present studies together by integrating the culture-historical approach, 
which stresses irreversible histories, with the natural history approach, which stresses cyclic 
processes. Recent advances in computer simulation are the reason reversible and historical 
processes can be observed together, as the number of calculations needed for agent-based models 
was simply not possible before modern computing (Low 2000). Without seeking to predict the 
exact trajectories of complex systems, the goal of complexity science is to understand their 
emergent properties and the effects of changes in features of the system. Agent-based models can 
be tinkered with and rerun many times. Kohler and Van West (1996) borrow from 
ethnoarchaeology to evaluate some of their model assumptions, such as the assumption that the 
household is an appropriate unit of analysis and that households share with neighbors when 
productivity is high. Comparison of emergent properties of an agent-based model to these 
ethnoarchaeological assessments in the real world indicates whether or not the operating model 
rules are on the right track. 
 One of the major lessons of complexity theory is that interactions between people are at 
least as important as objective constants defined with respect to an external environment. In 
economic theory, complexity theory (econophysics) challenges whether such sacred concepts as 
rationality, utility maximization and optimal behavior are even valid assumptions (Keen 2003; 
Ormerod 1998, 2005). Cultural evolution is not restricted to parent-child transmission. As Neff 
(2000:427) recently pointed out, one of the weaknesses in evolutionary archaeology is that 
“major changes in material culture, many of which would leave an obvious signal in the 
archaeological record, very often take place in less than one human generation . . . Since cultural 
transmission does not require biological reproduction, the latter need not enter the picture at all.” 
For this reason, the complexity approach invites us to modify approaches that focus almost 
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exclusively on vertical (parent-child) cultural transmission and hierarchy, to those that allow 
horizontal (between unrelated contemporaries) and heterarchy (Crumley 1995).  
 Finally, complexity approaches are useful in the real world. Among many examples, 
Bonabeau (2002) and Axelrod and Cohen (1999) use the insights of complexity theory to guide 
business management for the modern economy. Agent-based modeling has lead to an insight in 
crowd control—modeling the herding instinct from the individual agent’s perspective has lead to 
a better exit design for a smoke-filled building (Helbing et al. 2000). Other examples include the 
application of ABM to such social science topics as public policy (Carley 2002; Bankes 2002b; 
Lempert 2002), social domination by a central authority (Cederman 2002; Epstein 2002), crowd 
control (Helbing et al. 2000), marketing and the diffusion of new technology (Arenas et al. 2001; 
Guardiola et al. 2002; Bonabeau 2002), and game-theoretical approaches to human organization 
(Macy and Flache 2002; Danielson 2002).  
 The influences of complex systems approaches on large, multidisciplinary research 
projects have been substantial and are now integrated into modern archaeological research. The 
Biocomplexity in the Environment research program at the U.S. National Science Foundation 
was set up in order to investigate the complexities of ecosystem dynamics. “Biocomplexity refers 
to the dynamic web of often surprising interrelationships that arise when components of the 
global ecosystem—biological, physical, chemical, and the human dimension—interact. 
Investigations of Biocomplexity in the Environment are intended to provide a more complete 
understanding of natural processes and cycles, of human behaviors and decisions in the natural 
world, and of ways to use new technology effectively to observe the environment and sustain the 
diversity of life on Earth” (NSF 03-597). The program specifically required that researchers take 
into account (from NSF 01-34): 
 

• Thresholds and nonlinearities in ecological and social systems, emphasizing theoretical 
and empirical research linking human and biogeophysical processes to ecosystem 
services and other forms of natural capital 

• The influence of future patterns and events on the demand for and provision of natural 
resources, ecological and geophysical services, including interdisciplinary work to 
improve forecasts across spatial and temporal scales 

• Patterns and legacies of human settlement, migrations, urban development, ecological 
succession, and climate on land use and land cover  

• Model development and testing for a variety of disturbance scenarios, including 
alternative treatments of uncertainty 

• The role that access to scientific information, or the lack thereof, plays in environmental 
justice, and the most effective methods for disseminating scientific information to 
traditionally disenfranchised groups.” 

 
Under the subheading of dynamics of coupled natural and human systems, a number of multiyear 
research projects were awarded including several led by archaeologists. These include Tim 
Kohler’s project in the American Southwest, Patrick Kirch’s project in Hawaii, and more 
recently Ben Fitzhugh’s project in the Kuril Islands and Herbert Maschner’s project in the 
eastern Aleutian Islands, among others. Providing support ranging between $1 million and $2 
million, these projects allowed archaeologists to integrate intensive complex systems modeling 
with data from archaeology, anthropology, ecology, history, geology, climatology, 
oceanography, and other disciplines in ways not envisioned in the past. Further, because these 
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data are generated at multiple spatial and temporal scales with varying degrees of fuzziness or 
accuracy, only complex systems approaches have the methods to handle such disparate 
problems. 
 Archaeologists are increasingly interested in complexity science because it is explicitly 
for the study of systems of interacting agents, which is what all human societies are (Kohler 
1993; McGlade 1995; Kohler and Van West 1996; Haas 1998; Bintliff 1999; Kohler et al. 1999; 
Bogucki, 2000; Bentley and Maschner 2001; Axtell et al. 2002). In the United States, questions 
in archaeology are regularly being addressed at the Santa Fe Institute, and in Britain there is the 
Centre for the Evolutionary Analysis of Cultural Behaviour (UCL), where one focus is on 
complexity science applications for archaeology. Reviews of this field are growing in 
archaeology and include Bentley and Maschner’s Complex Systems and Archaeology (2003). 
Outside of archaeology, an exhaustive, accessible tome on how complexity theory applies to 
human societies is Phillip Ball’s (2004) Critical Mass, which should fascinate anyone who finds 
this less detailed chapter interesting. In addition, those interested more specifically in complex 
networks might try Six Degrees, by Duncan Watts (2003), or a recent review on networks and 
social theory by Evans (2004). Those interested in how complexity theory has transformed 
economic theory might try Why Most Things Fail, by Paul Ormerod (2005).  
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