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Abstract. Algorithms are introduced that produce optimal Markovian
couplings for large finite-state-space discrete-time Markov chains with sparse
transition matrices; these algorithms are applied to some toy models motivated
by fluid-dynamical mixing problems at high Peclét number. An alternative
definition of the time-scale of a mixing process is suggested. Finally, these
algorithms are applied to the problem of coupling diffusion processes in an
acute-angled triangle, and some of the simplifications that occur in continuum
coupling problems are discussed.

§1. Introduction. The mixing by flow of a passive scalar in the limit of weak
molecular diffusion is a well-established problem with much relevance to appli-
cations in the real world. Estimates of the time-scales of such processes are
essential in geophysical fluid dynamics and in chemical engineering. A
common approach to mixing processes is to study the Lagrangian dynamics
of the system (see, for instance, the review by [6]), and in many cases this
reduces to the problem of studying the separation of two infinitesimally close
particles. These fluid-dynamical problems provide the motivation for this
work. This motivation is taken a step closer to the fluid mechanical applications
in [7], where we consider the optimal coupling of the Kolmogorov diffusion and
some related optimal control problems.

Mixing problems also appear in probability theory, where they govern the
convergence to stationarity of a stochastic process. By running two copies of
the process at the same time, but imposing a dependence between the two
copies to make them collide quickly, it is possible to obtain rigorous bounds on
the convergence to stationarity of probability distributions (in the L1 norm).
This technique – the coupling method [5] – is often used to prove convergence
to stationarity by proving that collision is guaranteed in finite time. However,
we can improve this rigorous coupling bound by choosing the dependence
between our two copies of the underlying stochastic process optimally.

When our underlying stochastic process models physical particle motion, we
can view these two copies of the process as a two-particle system. The motion
of each particle, viewed separately, is governed by the one-particle law, and we
choose the remaining freedom in the two-particle problem so as to drive the two
particles together quickly. After the particles collide, they do not contribute to
the L1 norm of the difference of the probability distributions of the two particles.

In this study, we are particularly interested in finding very efficient numeri-
cal methods to investigate such systems, which we hope will be useful in
applications and improve our understanding of optimal couplings in general.
We display some of our results in pictorial forms, which highlight the spatial
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structures of the optimal coupling strategies. Where possible, we have tried to
make the text understandable to readers from probability theory, numerical
analysis and applied mathematics, but it is impossible to keep everyone
completely happy all of the time. Our hope is that coupling methods will be
used more widely and, in particular, will be increasingly used in applied
mathematics to study mixing.

We work largely in the context of a finite-state-space discrete-time Markov
chain X , with state-space D, and transition probabilities

Pip ¼ P½Xnþ 1 ¼ pjXn ¼ i �: ð1Þ

Subject to technical conditions [5], satisfied in all problems discussed here, it is
found that PN ! P1 as N ! 1 and, further, that all the rows of the limit P1
are constant. This constant row is the stationary probability distribution of the
Markov chain, and gives the probability of finding the system in a given state
in the well-mixed limit. Our aim is to derive bounds on this convergence to
stationarity. We study the long-time behaviour of such processes, and calculate
asymptotic decay rates. Furthermore, we derive bounds that govern the whole
history of convergence, as these are more likely to be useful in fluid-dynamical
applications.

We consider that the main contributions of this study are (i) the efficient
numerical algorithms themselves (see §3), which are easily generalized to solve
many related problems, and (ii) the structure of the optimal coupling strategies
for our toy problems of §4. We also comment in §5 on what our numerical experi-
ments reveal about how good coupling bounds actually are. In §6, we apply our
method to analyse diffusion in an acute-angled triangle with reflecting boundaries.
Finally, in §7, we discuss the application of these ideas to continuum problems, in
which several simplifications are possible (see, for example, [7]).

§2. Optimal Markovian coupling. The coupling inequality is a standard
tool in probability theory [5], allowing the derivation of bounds on the conver-
gence to stationarity of a Markov process. (For reference, aMarkov process is a
process for which the past and the future, given the present, are independent.)
We rederive it here for the benefit of those who have not seen it before.

We construct a Markov process – a Markovian coupling – ðXn;YnÞn5 0, so
that X and Y are individually Markov processes with identical transition laws,
and require Xn ¼ Yn for n > T , where T ¼ inffn : Xn ¼ Yng (i.e., the first time
that X and Y collide). Then

P½Xn 2 A� � P½Yn 2 A� ¼ P½Xn 2 A; n < T � þ P½Xn 2 A; n5T �ð Þ

� P½Yn 2 A; n < T � þ P½Yn 2 A; n5T �ð Þ

¼ P½Xn 2 A j n < T � � P½Yn 2 A j n < T �ð ÞP½n < T �: ð2Þ

Now X
i

��P½Xn ¼ i � � P½Yn ¼ i �
��

¼ P½n < T �
X
i

��P½Xn ¼ i j n < T � � P½Yn ¼ i j n < T �
�� ð3Þ
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and, since ��P½Xn ¼ i j n < T � � P½Yn ¼ i j n < T �
��

4P½Xn ¼ i j n < T � þ P½Yn ¼ i j n < T �; ð4Þ
we find that X

i

��P½Xn ¼ i � � P½Yn ¼ i �
��4 2P½T > n�: ð5Þ

This inequality is often used in probability theory to bound the convergence to
stationarity of a Markov chain. It is often relatively simple to find some
coupling scheme for which the right side of (5) decays to zero as n ! 1, and
this then gives a bound on the ‘1 distance from stationarity of the probability
distribution. In this work we consider optimal couplings, highlighting
fundamental limitations of the coupling method.

For reference, the coupling inequality (5) becomesð��P½Xt 2 dx� � P½Yt 2 dx�
��4 2P½T > t�: ð6Þ

for processes in continuous space and time.
There is no a priori reason to restrict ourselves to Markovian coupling

processes, but non-Markovian coupling processes are less physically relevant,
and we restrict ourselves to Markovian coupling processes throughout.

We still have a great deal of freedom in the choice of this Markovian
coupling. In essence, we are free to impose any dependence we choose
between the processes X and Y , provided that we preserve the laws of X and
Y . We can therefore choose the transition law of the coupling process to mini-
mize functionals such as the probability P½T > n�, or the expected coupling time
E½T �. We will refer to consistent transition laws for the coupling process ðX ;YÞ
as coupling strategies; it is these objects over which we optimize.

Note that the coupling bound may not be achievable, and that, if estimates
of the convergence of two distributions are needed, then one must also carry out
an optimization over the distribution of ðX0;Y0Þ. This optimization over the
starting law is a postprocessing step of no essential interest, and we will restrict
ourselves to deterministic starting laws throughout, for which this optimization
over the distribution of ðX0;Y0Þ is trivial.

As the underlying system is symmetrical in X and Y , we can, without loss of
generality, restrict our coupling process ðX ;YÞ to Dð2Þ � D�D=�, where �
denotes the particle-particle symmetry, which all optimal fields have (where
by the term ‘field’ we just mean a function of state or position). If the optimal
strategy is not unique, then there exist optimal strategies that do not have the
particle-particle symmetry (see [2]). However, from such strategies we can
always construct an optimal strategy with the particle-particle symmetry and,
given all optimal strategies in Dð2Þ, we can construct all optimal strategies in
D�D; there is no loss in generality in restricting ourselves to Dð2Þ. Note that
all two-particle sums of field variables are taken over Dð2Þ.

2.1. Operator version. From the Chapman–Kolmogorov equations,

P½Xn ¼ j jX0 ¼ i � ¼ ðPnÞij; ð7Þ
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so that

P
i½Xn ¼ k� � P

j½Yn ¼ k� ¼ ðPnÞik � ðPnÞjk; ð8Þ
and hence X

k

��ðPnÞik � ðPnÞjk
��4 2Pij½T > n�; ð9Þ

where superscripts on the probability law P½�� and the expectation E½�� always
denote the initial condition.

The expected coupling time E½T � also gives a bound on the convergence of
the system; summing (9) over n we find that

2Eij ½T �5
X
n5 0

X
k

��ðPnÞik � ðPnÞjk
��: ð10Þ

We will refer to the right side of (10) as an operator sum.
This equation shows how the expected coupling time E

ij ½T � provides a
bound on the time-scale of convergence that takes into account the whole
history of convergence. Typically, ð� log j�jÞ�1, where � is the leading non-
trivial eigenvalue of P, is used to characterize the time-scale of convergence
to stationarity. However, there may be a significant lag time before the response
of the system is well approximated by an eigenmode with this decay rate. The
expected coupling time is a more reliable bound on the time-scale of mixing
that takes this lag time into account.

Although probability densities (whenmeasured in the ‘1 norm) cannot exhibit
the large transient growth that may be found in some linear stability problems
(see [12] for much discussion, and for further references into a large literature),
there are many probabilistic systems in which there are long waiting times
before the asymptotic behaviour of the system may be observed [4].

Finally, the comparison between coupling methods and operator bounds in
continuum problems works analogously, but such problems are not the focus of
this paper, and are not discussed here. We do make brief mention of some
continuum problems in §7.

§3. Algorithm. Recall that we aim to generate a Markov process ðX ;YÞ,
such that P½Xnþ 1 ¼ pjXn ¼ i � and P½Ynþ 1 ¼ pjYn ¼ i � are fixed, and are both
equal to Pip, with the property that some functional of the process is
minimal. The systems that we consider will have sparse transition matrices,
and here we introduce algorithms for the computation of optimal couplings
for Markov chains with sparse transition matrices. We seek a sequence of
transition probabilities

Q
ðnÞ
ijpq ¼ P½ðXnþ 1;Ynþ 1Þ ¼ ð pÞ; qÞ j ðXn;YnÞ ¼ ði; jÞ�: ð11Þ

To obtain the transition probabilities for one particle, we sum over all possible
destinations of the other particle, and hence the constraints on the one-particle
dynamics require thatX

q

Q
ðnÞ
ijpq ¼ Pip;

X
p

Q
ðnÞ
ijpq ¼ Pjq ð12Þ

in D�D, which are folded onto Dð2Þ. We also need Q
ðnÞ
ijpq 5 0.
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The optimal expected coupling time ~EEij½T � (we denote optimal fields with a
tilde) satisfies a time-homogeneous problem, with only one coupling strategy.
By conditioning on the first step of the process, we see that

~EEij ½T � ¼ inf
Q

�
ð1� �ijÞ

�
1þ

X
pq

Qijpq
~EEpq½T �

��
: ð13Þ

We can also study the convergence to stationarity in more detail by computing
~PPij ½T > n�. This will give us a set of time-dependent transition probabilities for
the coupled problem, and we note that

~PPij ½T > n� ¼ inf
QðnÞ

�
ð1� �ijÞ

X
pq

Q
ðnÞ
ijpq

~PPpq½T > n� 1�
�
: ð14Þ

The optimal tail-probability field ~PPij½T > n� takes the asymptotic form

~PPij ½T > n� � �n ~VVij as n ! 1: ð15Þ
That is, we aim to pick out the slowest decaying mode in the system, and � is the
corresponding eigenvalue, and so does not depend on i and j.

We impose this Ansatz on the probability problem (14) to obtain a time-
homogeneous tail problem

~VVij ¼ ��1 inf
Q

�
ð1� �ijÞ

X
pq

Qijpq
~VVpq

�
; ð16Þ

where

� ¼
X
ijpq

ð1� �ijÞQijpq
~VVpq: ð17Þ

This allows us to pass directly to the asymptotic tail without computing
intermediate steps – and gives a great saving in both computational time
and storage. These are, however, numerical observations, and we have not
performed a rigorous analysis of this method.

3.1. The structure of the numerical methods. The structure of the numerical
method for the expected-time problem, without improved convergence is as
follows.

Algorithm 1. The expected-time algorithm.
1. Initialize objective function.
2. Solve the linear programming to get the new objective function.
3. If converged, STOP.
4. Go to 2.

However, this sort of successive relaxation method tends to be very slow. Thus,
we normally add an improved convergence step to speed up the code massively,
which leads to the follow structure.

Algorithm 2. The accelerated expected-time algorithm.
1. Initialize objective function.
2. Solve the linear programming to obtain the new objective function.
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3. If converged, STOP.
4. If it is time to accelerate

EITHER solve the GMRES linear system (see [11])
OR do RRE (see [10])

5. Go to 2.

The two options for improved convergence both gave very similar results, but
the results presented in this study were computed using GMRES.

Similarly, the tail-probability problem can be solved as follows.

Algorithm 3. The tail-probability algorithm.
1. Initialize objective function.
2. Solve the linear programming to obtain the new objective function.
3. Normalize objective function to find �.
4. If converged, STOP.
5. Go to 2.

The improved-convergence version has the following structure.

Algorithm 4. The accelerated tail-probability algorithm.
1. Initialize objective function.
2. Solve the linear programming to obtain the new objective function.
3. Normalize objective function to find �.
4. If converged, STOP.
5. If it is time to accelerate

EITHER solve the eigenvalue problem
OR do RRE

6. Go to 2.

In the following subsection, we consider these algorithms in more detail.

3.2. Optimizing coupling probabilities. We note that ~PPij½T > 0� ¼ 1� �ij,
and that, given ~PPij½T > n� 1�, it is simple to calculate the strategy Q

ðnÞ
ijpq and

thence ~PPij½T > n�. For each point ði; jÞ we must minimizeX
pq

Q
ðnÞ
ijpq

~PPpq½T > n� 1� ð18Þ

subject to the constraints (12). This is just a linear programming problem which
can easily be solved by standard algorithms (see, for example, [3]). Note that, if
the transition matrix Pip is sparse, then most entries of Q

ðnÞ
ijpq are known to be

zero. This reduces the size of the linear programming problems that must be
considered and gives a considerable saving in computational time.

3.3. Minimizing expected time Minimizing the expected coupling time is a
little more subtle. At first sight we are faced with a large – and costly – non-
linear constrained optimization problem. However, on noting that

~EEij ½T ^ n� ¼ ð1� �ijÞ
�
1þ

X
pq

Q
ðnÞ
ijpq

~EEpq½T ^ ðn� 1Þ�
�
; ð19Þ
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where a ^ b � minfa; bg, an algorithm becomes clear. Once given
~EEij ½T ^ ðn� 1Þ�, it is easy to construct ~EEij ½T ^ n� using linear programming;
we then proceed inductively (see Algorithm 1). The limit as n ! 1 of this
sequence gives ~EEij½T �, and from this we can construct an optimal expected-
time strategy Qijpq by linear programming. Even in the case of a finite-state-
space Markov chain with a unique stationary density there may be no unique
optimal strategy (note that the solution of a linear programming problem is
not necessarily unique), although the optimal expected time field ~EEij½T � is
unique. We found that the numerical method, outlined in Algorithm 2, never
produced multiple fixed points, despite varying the parameters of the
convergence acceleration methods, and using bizarre initial conditions. Note
that the linear programming problems at each iteration need not be solved
consecutively; they may be solved concurrently on a parallel computer.

The sequence ~EEij ½T ^ n� converges as n ! 1, but this convergence is
frequently very slow. The rate-limiting step is the ability of the basic iteration
(19) to propagate information over large distances, and the convergence
may be accelerated using a number of standard methods to enhance the
propagation of information over large distances. The easiest acceleration
method is to note that (19) is analogous to the Jacobi iterative scheme for
solving linear systems. Replacing (19) by the analogous Gauss-Seidel scheme
doubles the convergence rate, as might be expected. It is, however, possible
to do much better (see Algorithm 2); the easiest effective method of conver-
gence acceleration is occasionally to apply the Incomplete Reduced Rank
Extrapolation (IRRE) method of [10] to the generated sequences, but the
most convenient method that we have found is occasionally to solve the
linear system

E
ij½T � ¼ ð1� �ijÞ

�
1þ

X
pq

Q
ðnÞ
ijpqE

pq½T �
�
; ð20Þ

using a linear system solver; the preconditioned GMRES method of [11] was
found to be very effective. An optimally tuned (and carefully coded, using the
DGELSD routine from LAPACK) IRRE was found to be as effective as a more
conventional linear system solver, and did not need the extra matrix
multiplications required by GMRES. However, the optimal tuning parameters
for IRRE may vary throughout the convergence of the system, and a poor
choice of fixed tuning parameters could generate instability or limit cycles.
See [8] for details of the IRRE method.

Both of these methods produce an expected-time field E
ij½T � that is closer to

the limit, and which can be fed into (19) as an initial condition. The basic
iteration is then able to find an improved strategy from this accelerated field,
and adjusts the field with a small-scale relaxation. The field must be iterated
through the basic iteration (19) until these transients have died away, after
which time this process may be repeated to accelerate the convergence to the
limit greatly. Unfortunately, this destroys the probabilistic interpretation of
the iterants, but if ~EEij ½T � is all that is required, this loss is more than compen-
sated by the rapid convergence to the limit produced by these methods. This
convergence acceleration may be seen in Figure 1, and in particular a slight
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increase in the error may be seen after the convergence acceleration step, as the
basic iteration locally adjusts the expected-time field.

3.4. The tail-probability problem. To find the solution of the tail-
probability problem (see Algorithm 3), we start with Vij ¼ 1� �ij and iterate

Vij :¼ ��1 inf
Q

�
ð1� �ijÞ

X
pq

QijpqV
pq

�
; ð21Þ

where � is chosen to set the normalization
P

ij V
ij ¼ 1.

The convergence of the iteration (21) can be greatly accelerated by using the
occasional exact solution of the eigenvalue problem

�Vij ¼ ð1� �ijÞ
X
pq

QijpqV
pq ð22Þ

to find the eigenvector corresponding to the eigenvalue with greatest real part.
This eigenvector is then normalized to set

P
ij V

ij ¼ 1, and passed through the
basic iteration (21) to allow transients to die away. After these transients have
died away, this acceleration process can be repeated if necessary, and is
summarized in Algorithm 4.

This eigenproblem (22) may be solved using a sparse solver such as
ARPACK [9]. The efficacy of this convergence acceleration may be clearly

Figure 1: Expectation convergence histories for the integer-logistic problem with
N ¼ 111, k ¼ 2, and � ¼ 3:9. This is a typical convergence history – see §4 for the defini-
tion of the problem. The relative difference between successive iterants is plotted against

the iteration number.
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seen in Figure 2. Again, optimal tail-probability fields ~VVij are unique, and we
found that the numerical algorithm never produced multiple fixed points.

§4. Integer-logistic and other maps. We consider N-state systems, with the
states labelled by i, where 04 i < N, and consider Markov chains of the form

Xnþ 1 ¼ RðFðXnÞ þUnÞ; ð23Þ
where Un is a random variable on ½�k; k�, and R imposes boundary conditions,
for example, reflection at 0 and N � 1. This may be thought of as a crude
discretization of a continuum problem in which particles jump and then
undergo diffusive motion. When k � N, our Markov chain loosely models a
strongly mixing flow with some weak diffusion at molecular scales. This
means that the transition matrix Pip ¼ P½X1 ¼ p jX0 ¼ i � is sparse, which
leads to considerable numerical savings.

The detailed behaviour of such Markov chains depends on the numerical
rounding of floating-point numbers to integers; the qualitative behaviour of
these systems may be largely unchanged by different roundings, but quantitative
results may vary greatly between different computers and different implementa-
tions of rounding. The precise details of the implementation of ‘‘reflecting
boundary conditions’’ may also affect the results, and in systems with small k
and N may prevent the existence of a unique stationary distribution. In suffi-
ciently large problems, the details of the boundary condition are less important
and, in general, affect only quantitative results.

Figure 2: Tail-probability convergence histories for the integer-logistic problem with
N ¼ 111, k ¼ 2, and � ¼ 3:9. Again, this is a typical convergence history – see §4 for
the definition of the problem. The relative difference between successive iterants is

plotted against the iteration number.
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In this section, we work largely with integer versions of the logistic map,
given by

FðiÞ ¼ �

N � 1
iðN � 1� iÞ þ 1

2
� "

� �
; ð24Þ

where i 2 ½0;N � 1�, bxc is the integer part of x, and " is a small floating-point
number that is used to ensure that the map F takes the interval into itself.
We will work with � in the range ½3:7; 4�, which we found to give irreducible
transition matrices; when � was smaller, this was not so. We impose reflecting
boundary conditions on the system by setting

RðiÞ ¼
i; i 2 ½0;N � 1�;
Rð�iÞ; i < 0;

Rð2ðN � 1Þ � iÞÞ; i > N � 1:

8><
>: ð25Þ

Finally, we use uniform random variablesUn in the ‘‘diffusive’’ step in (23). This
is not necessary for our optimization scheme, but it does not reduce the con-
nectivity of the underlying network or the qualitative results, and it does
significantly reduce the number of parameters in the system.

Owing to the integer nature of the map (24), we obtain the same transition
matrix over a small interval in �. The values of � at which the transition matrix
changes are approximately uniformly distributed, as may be seen in Figure 3.
We see that this class of models provides a range of problems that may be

Figure 3: The proportion of distinct transition matrices in ½3; �� for the integer-logistic
map is plotted against �; plots are shown for N ¼ 111 (973 transition matrices in
total) and N ¼ 333 (8720 transition matrices in total).
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expected to have some degree of similarity for neighbouring values of �.
Usually, functionals of transition matrices with close � values are similar,
although large jumps do exist.

A range of expectation and tail-probability fields may be seen in Figure 4,
which shows the complexity of the fields that result from this optimization.
The expectation and tail-probability fields are clearly similar – correlations
between the two fields are typically around 95% – but are not identical.
Similarly, the optimization selects essentially different strategies for the two

(a) � ¼ 3:70 (b) � ¼ 3:75

(c) � ¼ 3:80 (d) � ¼ 3:85

(e) � ¼ 3:90 (f ) � ¼ 3:95

Figure 4: Expectation fields Eij ½T � and tail-probability fields ~VV ij for integer-logistic maps
with N ¼ 111 and k ¼ 2 (recall that k is the maximal ‘diffusive’ step). In each of the

subfigures, the expectation field is in the bottom right corner, the tail-probability field
is in the top left corner. Light colours correspond to small values, dark to large values.
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different problems. Usually, the optimal tail-probability strategy generates a
suboptimal expectation field, and the optimal expectation strategy generates a
suboptimal tail-probability field with a slower long-time decay rate. The only
counterexamples that we have to this are in very small systems, in which the
strategies are heavily constrained by (12).

It is possible to understand much of the behaviour shown in Figure 4 by
plotting the pre-images of exit points (i.e., the points in D�D where the two
particles can collide) in D�D. We define

Pi"ðnÞ �
n
ðx; yÞ 2 D�D : min

04 i4 n
j f iðxÞ � f iðyÞj < "

o
; ð26Þ

for a continuum map f . A plot of Pi0:05 (5) for the continuum logistic map
f ðxÞ ¼ �xð1� xÞ is shown in Figure 5. It may be clearly seen that the pre-
images of exit points in D�D provide the framework around which the
optimal expected-time and tail-probability fields are formed.

As may be seen in Figure 6, when n is small the fields ~EEij ½T ^ n� and
~PPij ½T > n� are non-trivial. Only regions of D�D near low-order pre-images
of the exit line have any possibility of coupling in a few steps. These are the
only regions of D�D in which the coupling can alter the fields ~EEij½T ^ n� and
~PPij ½T > n� at small n. However, as n increases, the pre-images of the exit line
form a fine web over D�D; all points of D�D have a route to the exit line,
and the coupling can exert control everywhere.

Figure 5: Pi"ð�Þ chart for the logistic map with � ¼ 3:9. Points ðx; yÞ in Pi0:05 (5) are
plotted in black.
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Figure 7 shows that this pre-image structure persists over all scales until the
‘‘diffusive’’ cutoff. At points of conflict between different orders of pre-image
there are marked differences between couplings that optimize the expectation
field and couplings that optimize the probability field. Subtle trade-offs occur
between potentially fast but risky strategies and slow but safer strategies, and
these trade-offs mean that it is hard to construct optimum strategies analytically
for all but small problems.

In Figure 8, we see the decay of the distribution difference and the
coupling bound ~PPij ½T > n� in a typical case. Both exhibit a cutoff phenomenon,

(a) n ¼ 1 (b) n ¼ 2

(c) n ¼ 3 (d) n ¼ 4

(e) n ¼ 5 (f ) n ¼ 6

Figure 6: Buildup of expectation fields E ij ½T ^ n� and probability fields Pij ½T > n� for the
integer-logistic map withN ¼ 111, k ¼ 2 and � ¼ 3:9. In each of the subfigures, the expec-

tation field is in the bottom right corner, the probability field is in the top left corner.
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Figure 7: Expectation and tail-probability fields for the integer-logistic map, with

� ¼ 3:90, N ¼ 1000, and k ¼ 3. The expectation field is in the bottom right corner; the
tail-probability field is in the top left corner. The correlation between the expectation
field and the tail-probability field is 0:987.

Figure 8: A plot of supij ~PP
ij ½T > n� against n for the integer-logistic map with N ¼ 111,

k ¼ 2, and � ¼ 3:9. Also shown is supij
P

k jPiðXn ¼ kÞ � P
jðYn ¼ kÞj=2, and a line

decaying with the modulus of the leading eigenvalue of the one-particle transition matrix.
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in which there is a delay during which no decay occurs, before switching to their
long-time asymptotic decay. We also see that the decay rate of the coupling
bound is significantly less than the decay rate of the distribution difference.

We also investigated continuous logistic maps using genetic algorithm opti-
mization. As with all Monte Carlo methods, convergence was poor and, as far
as could be seen, the behaviour of the continuous problems is qualitatively
similar to that of these discrete problems for large N. In particular, the sets
Pi"ð�Þ could be clearly seen, and subtle trade-offs were also necessary at points
of conflict between different generations of the pre-image sets.

4.1. Other maps. We considered a large number of different maps; all
behaved analogously to the integer-logistic map, except that the fields ~EEij ½T �,
~PPij ½T > n� and ~VVij were based on the relevant pre-image sets. A plot of the
expectation and tail-probability fields for the map f ðxÞ ¼ b�xc, with periodic
boundary conditions, is shown in Figure 9. The integer version of this map is

FðiÞ ¼ � i for i 2 ½0;N � 1�; ð27Þ
and we use RðiÞ ¼ ði jNÞ. Here, the pre-image sets are approximately parallel
lines, and are clearly visible in the figure.

§5. How good is coupling? In these mixing problems, coupling schemes are
rarely able to reproduce either the one-particle decay rate, or the operator sum
bounded by the expected coupling time, although we find that the tail-
probability decay rate is rarely less than a third of the one-particle decay rate,
and the expected coupling time is rarely more than twice the operator sum.
As may be seen in Figures 10 and 11, in these mixing problems, the expected
coupling time is more sensitive than the tail-probability decay rate to changes
in the underlying one-particle problem.

The coupling bound (5) deviates from equality only if there exists a point i
for which both P½Xn ¼ i j n < T � and P½Yn ¼ i j n < T � are non-zero. It is clear
that preventing the overlap of the support of these two sequences of distribu-
tions is very difficult with just a single strategy – such as in the expectation or

(a) fields (b) Pi0:05 (5)

Figure 9: Expectation and tail-probability fields for the periodic times-� map (27) with
� ¼ 1:9, N ¼ 111 and k ¼ 2. The expectation field is in the bottom right corner; the
tail-probability field is in the top left corner. The correlation between the two fields is

0:969. The sets Pi0:05 (5) are also shown.
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Figure 10: Long-time decay rates for integer-logistic maps with N ¼ 111 and k ¼ 2, for

all � between 3:7 and 4. We plot � log j�j for both the tail-probability decay and the
leading non-trivial eigenvalue of the one-particle transition matrix P.

Figure 11: Comparison of �
P

ij

P
kn jðPnÞik � ðPnÞjkj=2 with �

P
ij E

ij ½T �, where

� � ðNðN þ 1Þ=2Þ�1, for integer-logistic maps with N ¼ 111 and k ¼ 2, for all �
between 3:7 and 4.
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tail-probability problems – but even in the full probability problem, for which
the strategy is time-dependent, allowing much more freedom, it is a difficult
requirement, and rarely achieved except in small problems. The bound was
found to be exact only for some small Markov chains, with fewer than 15
states and little complexity.

Coupling methods are more able to match the one-particle decay rate (a
property that [2] call ‘‘efficiency’’) – i.e., the leading non-trivial eigenvalue of
the one-particle transition matrix – than to match the full operator sum, but
the ability to match the one-particle decay rate rarely survives much longer
than the ability to match the full operator sum as the parameters of the
system are varied.

It is possible for problems with the same one-particle decay rate to have
different two-particle decay rates. A variant of our times-� map (27), with
reflecting rather than periodic boundary conditions, with N ¼ 111 and k ¼ 2,
exhibits this curious behaviour when � 2 f1:7; 1:8; 1:9g. Network problems
exist with tunable parameters, in which the error in the decay rate may be
made arbitrarily small.

Although a coupling strategy may not reproduce the decay rate of the one-
particle problem, most of the spectrum of the one-particle transition matrix Pip

does appear in the two-particle problem. If the one-particle Markov chain is
irreducible and aperiodic, its transition matrix Pip has a complete set of right
eigenvectors ðxðkÞÞ14 k4N with corresponding eigenvalues ð�kÞ [5]. Under
these conditions, only one of the eigenvalues, �1, is equal to 1 in modulus,
and all of the other eigenvalues have modulus less than 1. Note that the first
eigenvector, xð1Þ, is constant.

Using our constraints on the two-particle dynamics (12), we can show that
�2; �3; . . . ; �N appear in the spectrum of the tail decay of any coupling strategy.
Consider the tail-probability matrix

~QQijpq � ð1� �ijÞQijpq; ð28Þ

where Qijpq is a coupling strategy. Since xð1Þq is independent of q, the coupling
constraints (12) imply thatX

pq

~QQijpqðxð1Þp xðkÞq � xðkÞp xð1Þq Þ ¼ �kðxð1Þp xðkÞq � xðkÞp xð1Þq Þ: ð29Þ

For k > 1, we have produced an eigenvector of the tail-probability matrix with
eigenvalue �k.

We also note that the largest eigenvalue of the tail-probability matrix is real
and positive, as Pij ½T > n� � �nV ij for large n. If the one-particle problem has a
negative leading eigenvalue, or a complex-conjugate pair, then the coupling
method must create a leading eigenvalue of the tail-probability matrix that is
real and positive, but it is only occasionally able to create a leading eigenvalue
with the correct modulus.

Finally, if we suppose that the coupling is trivial, namely, that the Markov
chains X and Y are independent, we may generate many more eigenvalues of
the tail-probability matrix, since then the field xðkÞp xðlÞq � xðlÞp xðkÞq , for p > q, is an
eigenvector of the tail-probability matrix with eigenvalue �k�l. This construction
generates NðN � 1Þ=2 of the eigenvalues of the ðNðN þ 1Þ=2Þ � ðNðN þ 1Þ=2Þ
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tail-probability matrix; the remaining N eigenvalues are not simply fixed by the
one-particle problems.

§6. Coupling diffusion processes in an acute-angled triangle with reflecting
boundaries. To be effective, our algorithms of §3 require only sparsity of the
underlying one-particle transition matrix, and may be applied to a variety of
problems which satisfy this condition. The coupling of two-dimensional
Brownian motion in various domains is such a problem, and is actively
studied in probability theory [1, 2]. In particular, [2] study the coupling of
two-dimensional Brownian motions in triangular domains. They used the
particular (suboptimal) strategy of mirror coupling,

dXt ¼ dBt þ dLt; dYt ¼ �dBt þ dMt; ð30Þ

where B is a standard Brownian motion, and L and M are local-time processes
that enforce reflecting boundary conditions. They proved that mirror coupling
obtains the correct one-particle decay rate in obtuse-angled triangles, but is
unable to obtain the one-particle decay rate in triangles with distinct acute angles.

A natural question to ask is whether an optimal coupling is able to obtain
the correct one-particle decay rate in triangles in which mirror coupling
cannot. We are unable to study directly the continuum problem using the
algorithms of §3, but we are able to consider a sequence of triangular lattice
approximations where the Brownian motion is replaced by a random walk.
At each interior point of the lattice, a particle can move to any of the 6
nearest neighbours, or remain in its current position. We select the probabilities
of these transitions to reproduce the first two moments of standard Brownian
motion. The natural modifications of this scheme are made at boundary
points to approximate reflection. For simplicity, our triangular lattices had
equal numbers of points on each side, which limited these models to near-
equilateral triangles.

In lattice models of an equilateral triangle T0, we found that optimal
coupling strategies were able to reproduce the one-particle decay rates in the
continuum limit, even in the presence of simple flow fields such as straining
motion, source flow and shear flow. We found no flow fields that prevented
the coupling method from obtaining the one-particle decay rate in the conti-
nuum limit. However, the coupling method was unable to obtain the correct
one-particle decay rate if the diffusivity was inhomogeneous but isotropic.

We also studied a slightly sheared equilateral triangle, with a 55� angle. The
relative rate error for these triangles is plotted in Figure 12 as a function of M,
the number of lattice points on each side of the triangle. Note that the number of
states in the underlying one-particle Markov chain is MðM þ 1Þ=2. For the
largest triangles we considered, we had 1540 states in the one-particle
Markov chain and had 1186570 states in the two-particle problem.

We see that, in this sequence of models, as M increases the relative error in
the decay rate seems to tend to a non-zero constant. This suggests that there
may be no coupling strategies that obtain the one-particle decay rate in this
55� triangle T1. This begs the question of whether optimized coupling can
ever obtain the one-particle decay rate in a triangle where mirror coupling
fails to do so, and remains an open question.
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§7. Continuum problems. Our discretization of the triangle in the previous
section was constrained by computer resources. We were unable to increase the
number of points beyondN ¼ 1540, and were unable to obtain clear convergence
of the relative error in the decay rate. It is preferable not to discretize continuum
problems as a finite-state-space discrete-time Markov chain, but rather to dis-
cretize directly the underlying partial differential equations. Some simplifications
occur here which remove the need for a numerical optimization step.

We consider in detail the optimal coupling of the Kolmogorov diffusion, and
some related optimal control problems in [7], but we briefly consider some of the
corresponding continuum problems here.

We consider Itô stochastic differential equations

dXt ¼ uðXtÞ dtþ �ðXtÞ � dBt þ dLt;

dYt ¼ uðYtÞ dtþ �ðYtÞ � dWt þ dMt;
ð31Þ

where B and W are standard Brownian motions, and L and M are local-time
processes that enforce boundary conditions. In this continuum problem, we
control the system by the choice of a field of orthogonal matrices cðt; x; yÞ, so
that

dWt ¼ cðt; x; yÞ � dBt: ð32Þ
For �ðt; x; yÞ � E

xy½T ^ t�, we obtain the PDE

@�

@t
¼ 1þ uðxÞ � rx�þ uðyÞ � ry�þ 1

2 �ðxÞ � �TðxÞ
� 	

: rxrx�
� 	

þ 1
2 �ðyÞ � �TðyÞ
� 	

: ryry�
� 	

þ �ðxÞ � cðt; x; yÞ � �TðyÞ
� 	

: ryrx�; ð33Þ

Figure 12: Relative rate error for triangle T1, plotted against M.
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we have used dyadic notation in which ‘‘�’’ denotes contraction on nearest free
indices. We have the initial condition �ð0; x; yÞ ¼ 0, and the boundary condition
�ðt; x; xÞ ¼ 0 (which comes from successful coupling when the two particles
collide), and other boundary conditions that come from the underlying
single-particle problem.

At each time, and at each spatial position, we must choose an orthogonal
matrix cðt; x; yÞ that minimizes

c : ð�T ðyÞ � ðrxry�Þ � �ðxÞÞ; ð34Þ

the counterpart to (19) for continuous systems. This can most easily be done
using the singular value decomposition

�TðyÞ � ðrxry�Þ � �ðxÞ ¼ u � s � vT ; ð35Þ

in which u and v are orthogonal matrices, and s is a diagonal matrix with
positive elements. The minimizing c is then �vuT , and the value of (35) at
this optimum is then �

P
i sii. For these continuum problems, the optimization

step can therefore be done in closed form, and we obtain a non-linear PDE that
must be solved for �ðt; x; yÞ. We note that we recover mirror coupling if the
diffusivity is homogeneous and isotropic, if we can neglect the flows uðxÞ and
uðyÞ, and if �ðt; x; yÞ ¼  ðt; kx� yk2Þ.

With this optimization step done, the steady-state version of (33) is only
weakly elliptic, and its solutions are not as smooth as solutions to the Poisson
equation. This may be clearly seen in the expected coupling time for standard
Brownian motion in the unit interval with reflecting boundary conditions at
the endpoints. We find that

E
xy½T � ¼

�� 1
4 �

2 þ 1
2 ��ð1� log �Þ; if �4 1;

� 1
4 �

2 þ 1
2 �ð2� �Þð1� logð2� �ÞÞ; if � > 1;

ð36Þ

where � ¼ x� y and � ¼ xþ y, and we represent Dð2Þ with y4 x. This is a
steady solution of (33) with the optimization step built in, and the strategy
used is mirror coupling. Note that the third derivative of the solution is
discontinuous across the line � ¼ 1.

§8. Conclusion. Optimal coupling schemes can be calculated for a variety
of Markov chains with sparse transition matrices. We see that the bounds on
convergence derived from these coupling schemes are rarely tight for problems
with no obvious simplifying features, but in problems of physical interest these
bounds are rarely worse than a factor of 2 from the one-particle values. (One
particularly simple problem is that of advection-diffusion on the interval,
with reflecting boundary conditions. Under mild regularity conditions, all
coupling strategies are able to recover the one-particle decay rate, a result
that is a simple application of corollary 2.7(ii) of [2].)

Continuum problems have some simplifying features that reduce the deriva-
tion of optimal coupling strategies to the solution of a non-linear parabolic
equation, although the shapes of the domain Dð2Þ on which these equations
hold are typically numerically challenging. Two and three dimensional fluid
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problems turn into four and six dimensional coupling problems. These will be
studied elsewhere.
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