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We investigate the effect of atomic interactions on �-kicked cold atoms. We show that the clearest

signature of the nonlinear dynamics is a surprisingly abrupt cutoff that appears on the leading resonances.

We show that this is due to an excitation path combining both Beliaev and Landau processes, with some

analogies to nonlinear self-trapping. Investigation of dynamical instability reveals further symptoms of

nonlinearity such as a regime of exponential oscillations.
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Cold atoms subjected to time-periodic driving from
standing waves of light provide a rich arena for the inves-
tigation of nonlinear dynamics and the quantum regime,
including, for example, quantum chaos [1] and quantum
ratchets or directed motion [2]. In both of these, one can
highlight the role of the quantum resonance (QR) regime of
cold atoms subjected to short pulses (�-kicks) applied at
regularly spaced kick period T: if T is a rational fraction of
T ¼ 4� (the so-called Talbot time), absorption of energy
by the atomic cloud peaks at a complex series of narrow
resonances. These were analyzed theoretically in [3] in
terms of a novel ‘‘image’’ classical dynamics. The inter-
esting dynamics of the QR regime stimulated a large
number of delicate experiments [4]. Further theory [5]
includes proposed applications such as the realization of
a quantum random walk algorithm [6].

Most recent QR experiments employed atomic Bose-
Einstein condensates (BECs), albeit in a weakly interacting
limit. But this suggests a new and quite different possibil-
ity: the largely unexplored regime where nonlinear dynam-
ics, arising from the many-body nature of the BEC,
combine with the �-kicked quantum dynamics. To date,
the deep understanding acquired from other areas of BEC
physics on collective excitations has not been applied to
the unique dynamical features of the �-kicked atoms. In
addition, the conditions for the onset of dynamical insta-
bility and exponential behavior remain poorly understood.

A few theoretical studies have considered the role of
interactions at the Talbot time (or a rational multiple): in
[7] dephasing and loss of resonant behavior as a function of
nonlinearity parameter g was found; in [8] exponential
growth of noncondensate atoms was predicted for certain
parameters at half the Talbot time; in [9] significant differ-
ences were reported for resonant dynamics between attrac-
tive and repulsive interactions. Only recently, though, was
it demonstrated [10] that an approach based on Bogoliubov
phonon modes is essential and that certain instability bor-
ders found in [8] corresponded to parametric resonances.
Parametric instabilities through periodic driving of collec-
tive modes have been investigated in several BEC studies
[11]. Higher-order effects, resulting from phonon-phonon

interactions, have been experimentally studied, e.g., in the
context of excitation lifetimes [12] and in a nonlinear
coupling between two phonon modes [13]. Beliaev and
Landau (BL) couplings provide the dominant contribution
to such nonlinear mode conversions; their importance was
demonstrated in a series of recent experiments with BECs
excited by optical Bragg pulses [14].
Here we have, for the first time, mapped the position and

stability parameters of the resonances of a �-kicked BEC
with strong interactions. We show that the Talbot time no
longer plays a significant role: the resonances shift away
from multiples of T ¼ �. Our key finding is that the
leading resonances acquire an extraordinarily sharp cutoff
at their maximum; this behavior is due to a nonlinear
feedback process, originating from a combination of both
Beliaev and Landau coupling. In other nonlinear reso-
nances, we find novel features not previously seen, such
as exponential oscillations and Fano-like profiles. We cal-
culate the local Lyapunov exponents and model the Fano
profiles quantitatively. The kicked BEC experiments to
date correspond to effective values of the nonlinearity (g &
0:5) only slightly smaller than those (g� 1) needed for the
effects we find.
For noninteracting single-particle dynamics, an attrac-

tive feature of the �-kicked system, for quantum chaolo-
gists, is the extensively investigated simple quantum map
which stroboscobically evolves the system from kick n to
kick nþ 1. For example, expressing our quantum state in a
momentum basis, c ðx; tÞ ¼ P1

l¼0 alðtÞjli, we write
a ½ðnþ 1ÞT� ¼ Ug¼0ðTÞaðt ¼ nTÞ; (1)

where aðt ¼ nTÞ is a vector with the amplitudes al. The
atoms experience a kicking potential Vkickðx; tÞ ¼
K cosx

P
n�ðt� nTÞ. The corresponding unitary time evo-

lution operator factors (exactly) into a free-evolution part
Ufree and a kick part Ukick, i.e.,

U g¼0ðTÞ ¼ UfreeUkick ¼ e�iðL̂2T=2Þe�iK cosx: (2)

The first exponential term represents the free evolution
under the kinetic energy operator in some units where the
atom mass M ¼ 1 and @ ¼ 1. Clearly, since the atomic
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momentum l ¼ 0,�1,�2; . . . , is quantized in units of the
recoil momentum, T ¼ 4� implies Ufree ¼ 1 for all mo-
mentum states, so consecutive kicks add in phase. The
result is a phase-matched absorption of energy from the
field yielding ballistic transport. In contrast, the nonreso-
nantly kicked atoms experience diffusive growth in energy.

We consider a uniform, tightly confined, effectively 1D
BEC with periodic boundary conditions. The correspond-
ing field-free, many-body Hamiltonian, in a momentum
representation, is

H ¼ X

l

�lâ
y
l âl þ

g1D
2L

X

l;j;m

âyl â
y
j âmâjþl�m; (3)

where �k ¼ @
2k2=ð2MÞ and L is the BEC size. The 1D

interaction constant g1D ’ 2@as!? depends on the atomic
scattering length as and the transverse trap frequency !?.
In the presence of linearized perturbations around the
macroscopically occupied k ¼ 0 ground state, H may be
diagonalized up to quadratic order by the Bogoliubov

transformation âk ¼ ukb̂k � vkb̂
y
�k, for k � 0, with uk �

vk ¼ 1=ðuk þ vkÞ ¼
ffiffiffiffiffiffiffiffiffi
@!k

p
, where @!k ¼ ½�kð�k þ

2g1DnÞ�1=2 and n ¼ N=L is the atom density. Then we

can expand H in the orders of
ffiffiffiffi
N

p
: H ¼ constþHð2Þ þ

Hð3Þ þHð4Þ, where Hð2Þ ¼ P
k�0@!kb̂

y
k b̂k and the cubic

part Hð3Þ describes the leading order contribution to the
interactions between phonons:

Hð3Þ ¼�
X

q;p

ð�qpb̂
y
q b̂

y
pb̂

y�q�pþ�qpb̂
y
pb̂

y
q b̂qþpþH:c:Þ; (4)

where q, p, ðqþ pÞ � 0 and � ¼ ffiffiffiffi
N

p
g1D=L. The coeffi-

cient �qp represents a process in which three phonons are

created or annihilated and �qp is a process in which one

phonon with momentum qþ p decays into two phonons
with momenta q and p (Beliaev term) or its inverse in
which two merge to produce a third phonon (Landau term).
Since the energy of the excitations around the ground state
is positive, the processes described by �qp are suppressed

by energy conservation. In terms of the Bogoliubov am-
plitudes, we obtain

�qp ¼ upuquqþp þ 2upvqðvqþp � uqþpÞ � vpvqvqþp;

�qp ¼ uqvpvqþp � upuqvqþp: (5)

We assume macroscopic occupancy for the low-lying
modes of interest and that phase fluctuations of the 1D
condensate may be neglected. Hence we will treat the
Bogoliubov mode amplitudes classically. The �-kicked
map (2), in the presence of the quadratic Hamiltonian

Hð2Þ alone, requires only a straightforward modification
to its free-evolution part:

U gðTÞ ¼ B�1e�i!TIBUkick; (6)

where B denotes the Bogoliubov transform for each l. In
terms of momentum amplitudes, the classical mode ampli-
tudes are simply given by bl ¼ ulal þ vla

�
�l. The term

expð�i!TÞ is a row vector with the mode frequencies,
and I is the identity. The eigenvalues of the nonunitary
matrix UgðTÞ indicate dynamical stability. It is easy to

prove that they generally come in quartets �, 1=�, ��,
1=��. Then j�maxj> 1 (where �max is the largest eigen-
value and the local Lyapunov exponent) imply dynamical
instability and exponential growth in the relevant modes (at
least for short times).
We compare Eq. (6) to the numerical solutions of the 1D

Gross-Pitaevski equation (GPE) (here rescaled to dimen-
sionless units [15]) for an initially uniform BEC:

i@tc ðx;tÞ¼ ð�1
2@

2
xþgjc ðx;tÞj2þKcosxFtÞc ðx;tÞ; (7)

where Ft ¼ P
n�ðt� nTÞ. We study g ’ 0–10, realistic

with the current experiments [14,16], for K < 1, which
allows only the creation of discrete low-lying phonon
excitations.
Figure 1(a) shows GPE numerics; it maps the average

BEC response, h1� ja0ðtÞj2it ¼ 1
t

P
t
n¼1 1� ja0ðnTÞj2

averaged over the first t kicks, for K ¼ 0:5. At g ’ 0, the
Talbot-time resonance at T ¼ 4� is perfectly symmetrical
(as are the fractional resonances on either side). For g ’
0–1 an asymmetry develops, due here to the lifting of the
degeneracy between the lowest modes: the main resonance
splits into mode 1 resonance !1T ’ 2� and mode 2 reso-
nance !2T ’ 8�. Mode 2 resonance rapidly decays away
as the gap !2 �!1 increases: direct coupling
h0jUkickj2i � J2ðKÞ with the condensate is small. A slight
asymmetry was noted in the GPE numerics in Ref. [7] for
the Talbot-time resonance at g ’ 0:1, which we now attrib-
ute to this regime.
The most striking feature is the very sharp ‘‘cutoff’’

appearing at g * 1 (and still exists even at g ¼ 20). It is
also evident in the second harmonic of the resonance
(upper half of the graph). Figure 1(b) shows that even a
grid of 100 points per unit of T (each star representing a
GPE simulation for 30 kicks and g ¼ 5) is too coarse to
resolve the cutoff: there are no stars on the order-of-
magnitude drop seen at T ’ 6:65. In comparison, such a
grid could resolve the famously narrow g ¼ 0 Talbot-time
resonance. The dotted line shows the Bogoliubov map (6)
here incorrectly produces a symmetric resonance and fails
to shift the resonance away from !1T ¼ 2�. Hence we
need to include the neglected phonon-phonon interaction

terms between the kicks from Hð3Þ.
The free-ringing expð�i!TÞ part of the map [Eq. (6)]

must be replaced by a set coupled equations following

from the Heisenberg equations db̂k=dt ¼ �i!kb̂k �
i½b̂k; Hð3Þ=@�, for k � 0, where we replace b̂k by the re-

scaled classical amplitudes bk ! hb̂ki=
ffiffiffiffi
N

p
. Figure 1(b)

shows that by including only the lowest four excitations
(k ¼ �2, �1) one obtains excellent agreement with the
GPE : even the cutoff is accurately reproduced (for regimes
where depletion of the ground state is small (&10%).
We simplify further by transforming (by symmetry bk ¼

b�k) to the basis jli ! 1ffiffi
2

p ðjli þ j � liÞ, for l � 0, so that
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hljUkickjni ¼ Unl ¼ il�nJn�lðKÞ þ i�ðlþnÞJlþnðKÞ if n,

l > 0, but U0l ¼
ffiffiffi
2

p
i�lJlðKÞ and U00 ¼ J0ðKÞ. We then

need only two coupled equations to accurately reproduce
the cutoff. Moreover, neglecting the small �qp terms, we

obtain (from the free-ringing plus BL terms), for the dy-
namics between the kicks,

_b1 ¼ �i½!1 þ 2C1Reðb2Þ�b1 þ 2C2b
�
1b2;

_b2 ¼ �i!2b2 � i½C1jb1j2 þ C2b
2
1�;

(8)

where C1 ¼ ��ð��1;2 þ�2;�1Þ, C2 ¼ ���1;1, and �� ¼
g=ð2 ffiffiffi

2
p

�Þ (note ��1;2 ¼ �1;�2, etc.). We can even obtain

a reasonable cutoff if we set the smaller term C2 ¼ 0.
Hence, the main effect of mode 2 is simply to provide a
phase shift on !1. If we integrate b2 for b2ð0Þ ¼ 0 while
keeping jb1j constant, b2ðtÞ ’ ðei!2t � 1ÞC1jb1j2=!2, we

can approximate the full map by

_b 1 ’ �i!1b1 þ iAsin2ð!2t=2Þjb1j2b1 � iRðtÞ; (9)

where A ¼ 4C2
1=!2, RðtÞ ¼ ffiffiffi

2
p

J1ðKÞðu1 � v1ÞFðtÞ.
Figure 1(b) (inset) shows that we still get reasonable
agreement with the full model for weak K ¼ 0:1. In this
regime, jb0ðtÞj2 ’ 1� jb1ðtÞj2. Writing b1 ¼ �ei�, a phase
space analysis in the �; � plane reveals a separatrix curve
which appears at the cutoff parameters and bounds the
value of �. We may thus also describe the mechanism: if
the 0 ! 1 transition is initially only slightly off resonant,
the kicking starts populating mode 1 effectively; with
population in mode 1, BL processes begin to populate
the empty modes l ¼ �2. This mode 2 population pro-
vides a phase shift bringing mode 1 closer into resonance;
the nonlinear feedback accelerates the growth in b1 which
in turns brings mode 1 further into resonance. However, if
the 0 ! 1 transition is initially too far off resonant (beyond
the cutoff), the nonlinear feedback cycle cannot start. An
analogous model of two-mode dynamics with continuous
driving rather than � kicks is reminiscent of a macroscopic
self-trapping effect in a BEC in a double-well potential
[17], but in the present work the cutoff is considerably
sharper.
Figure 2 maps the average probability of mode 2 (aver-

aged over 100 kicks) for K ¼ 0:5. The right-hand side
maps regions of dynamical instability j�maxj> 1. We ana-
lyze dynamical stability by mapping the eigenvalues of
UgðTÞ for all the resonances of the lowest three excited

modes. We divide the resonances into (i) the ‘‘linear’’
family Lðn; lÞ (i.e., those which evolve from the linear
case and converge at g ¼ 0 to a rational fraction of the
Talbot time. The resonance in Fig. 1(a) is the Lð1; 1Þ (first
resonance of mode l ¼ 1). (ii) The ‘‘nonlinear’’ resonances
Nn and �n which vanish in the absence of interactions, at
g ¼ 0; the Nn correspond to ð!1 þ!2ÞT ’ 2�n, while �n

are somewhat analogous to ‘‘counterpropagating mode’’
resonances found in modulated traps [11] and imply
2!nT ’ 2�. Contrary to the suggestion of [10] where no
Liapunov exponents were calculated, we find that none of
the Lðn; lÞ resonances have any j�j> 1. They are all stable,
including Lð1; 1Þ, and are by far the strongest of all, but
counterintuitively, they are associated with a much
stronger BEC response, even after a very long time (100
kicks), than the nonlinear resonances Nn and �n that are
unstable.
The reason for this is clear from Fig. 2(b). The mode

2 populations from the GPE (for both N1 and N3) grow
exponentially for a finite time, then decay exponentially;
the inset shows this behavior on a log scale. The map with
BL corrections here is quantitative for only the first 10–20

kicks, so we cannot model this behavior from Hð3Þ alone.
But it is tempting to attribute it to regimes where either the
�, �� or the 1=�, 1=�� eigenvalues are predominant. The
cluster of interacting resonances N2, �1, and �2 lies in a
region of very low ground state depletion (it lies in the
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FIG. 1 (color online). (a) Losses from the unperturbed con-
densate h1� ja0ðtÞj2it averaged over time, calculated from the
GPE, for kick strength K ¼ 0:5. The BEC resonance evolves
from the well-known Talbot-time QR (at T ¼ 4�M, M ¼
1; 2; . . . , for g ¼ 0) and develops an abrupt cutoff for any g *
1. (b) Comparison between GPE numerics (points shown as
black stars) and the model. The grid of black stars at intervals
�T ¼ 10�2 strikingly demonstrates the sharpness of the cutoff at
T ’ 6:65: the drop occurs over an interval �T � 10�2, so
contains no stars at all. The quantum map excluding BL pro-
cesses, incorrectly gives a symmetric, unshifted resonance
(dashed line). The model including BL coupling reproduces
perfectly not only the shift but also the sharp cutoff. The simple
Eq. (9) also provides reasonable agreement (inset) with the GPE.
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minimum of the dominant Lð1; 1Þ tail). The map (6),

corrected by BL terms Hð3Þ in Eq. (4) (with the lowest
seven modes), reproduces very well the characteristic
Fano-like profiles seen in all three peaks, while the un-
corrected map produces only symmetric resonance pro-
files. To our knowledge neither the exponential oscilla-
tions nor the Fano profiles are seen in comparable non-
equilibrium BEC dynamics. While not fully understood,
they indicate that the �-kicked systems offer new and
experimentally accessible BEC dynamics.

While the Talbot-time g ¼ 0 resonances have been pro-
posed for metrological applications (e.g., for measurement
of gravity), the similarly sharp BEC cutoff suggests analo-

gous possibilities as it provides a sharp excitation thresh-
old. A rotating BEC in a large ring at threshold kicking
frequencies, e.g., could provide a sensitive probe of rota-
tion for small changes in the resonance frequency between
different angular momentum (vortex) states.
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FIG. 2 (color online). Panel (a): (left) Probability for mode 2
averaged over 100 kicks for K ¼ 0:5; (right) j�maxj, largest
eigenvalue of Ug. Bright regions denote j�j> 1 and hence

exponential behavior (dynamical instability). The unstable N1,
N2; . . . ; Nn series of nonlinear resonances (which only appear for
g * 1) correspond to ð!1 þ!2ÞT ’ 2n�. The asterisk denotes
the position of the ‘‘instability border’’ found by [8], which we
thus show is due to N3. The L series are resonances which
evolved from partial or full resonances of the Talbot-time at g ¼
0. They are stable, yet in spite of this they are much stronger than
the exponential resonances. Panel (b): (Left) Mode 2 probability
of N3, near the asterisk on the left-hand side of panel (a). T ¼
6:12, g ¼ 2:5. The exponential growth persists for only a finite
time; it is then replaced by exponential decay, leading to ex-
ponential oscillations (log scale shown in inset). (Right) Mode 2
near N2. The cluster of three overlapping resonances have
‘‘Fano-like’’ profiles. These are well reproduced by Eq. (6)
corrected with Hð3Þ in Eq. (4), including only the seven lowest
modes.
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