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INTRODUCTION

The well known Hopfield net (1) has recently
been extended to a three layer architecture
(2) by means of a matched filter modelling
formalism (3). This enables an auto- or
hetero-associative memory to be constructed
optically from three holograms, one of which
is formed from bipolar orthogonal patterns and
fixed prior to training. However, the Hopfield
net is prone to converge onto incorrect or
spurious states. This tendency can be reduced
by reducing the gain of the threshold on
repeated iterations but no definite upper
limit on the gain has yet been specified to
ensure correct convergence. Moreover, a
threshold with variable gain is not easy to
implement optically (4,5). In this paper we
examine how the less well known Hamming net
(6) can be similarly extended to a three layer
architecture by means of the matched filter
formalism. When the convergence parameters are
set below a defined upper limit the net always
converges to the correct pattern (6) and so
offers a definite advantage over the Hopfield
net. Moreover, the Hamming convergence
parameters can be made to affect the threshold
offset rather than its slope and this is
easier to implement optically.

THE HAMMING NET

The Hamming net is well described by Lippmann
(6). It essentially consists of two cascaded
subnets. The first is an interconnection net
which performs the inner product of the N-bit
input code with each of the M memorised N-bit
vectors and outputs these inner product
magnitudes in each of M corresponding
channels. The M analogue magnitudes pass
through an asymmetric threshold, T, (Fig.1l
with 6=N/2) which allows the input magnitude
through unchanged if it is greater than some
threshold, 6§, otherwise it is set to zero.
This asymmetric threshold avoids the
possibility of converging onto the inverse of
a memorised code (such as can happen in the
Hopfield net due to the symmetric thresholds).
The second subnet (or MAXNET) has to select
which of the inner product magnitudes greater
than N/2 is the largest, and to indicate this
by only giving a non-zero output in the
corresponding channel. It does this by passing
each magnitude to a corresponding threshold,
Tp, (with 6=0) in a second layer via a weight
of 1 and to all of the other thresholds in
this second layer via a weight of -¢ (where ¢
is a small quanity, e<1/M). The M outputs of
the MAXNET are fed directly back to its M
inputs and the process continues until only
one output is non-zero. This will always be
the closest memorised code to the input, in
the Hamming sense, provided e<l/M.

The first subnet is acting as a bank of
matched filters (Fig.2), each storing one of
the memorised codes, s, followed by gates which
select the correlation peak and thresholds

set to exclude signals which are obviously too
low to indicate any similarity with their

memorised codes. The second net is recursive
and and so can be unfolded as shown in Fig.2
to give a multilayer configuration with

sufficient to only give one non-zero output.

THE MATCHED FILTER MODEL OF THE HAMMING NET

In the matched filter model spatial distri-
butions within the net are generally
represented by temporal distributions for
convenience of diagrammatic illustration. So,
in Fig.2, the spatial distributions of
correlation peak magnitudes emerging from the
final set of (8=N/2) thresholds is represent-
ed as a time sequential code consisting of
bits each of which has an analogue amplitude
corresponding to one of the thresholded
correlation peaks.

Each of the interconnection layers within the
MAXNET can be represented as the multi- )
plication of the first analogue amplitude bit

by the code el=(l,-e, =-¢, ..., =€) to give a
new code plus the multiplication of the
second bit by the code e;=(-¢, 1, =, ...,-¢}

plus all of the similar multiplications of
each of the bits. This can be represented in
matched filter terminology by the correlation
of the input code with a monopolar code
0;=(1,0,0, ..., 0) with gating to select the
first bit magnitude followed by the
convolution with the code e,= (1, -¢, -,

..., —¢) and so on summed over all of the
channels. Fig.3 therefore shows the full
matched filter representation of the Hamming
net. Each correlation peak magnitude in the
first subnet is labelled with a monopolar
orthogonal code, o, given by

o._ . o._ =20 i#j (1)

o, o, =1 i=j (2)

where the 1 subscript is the bit index and the
i and j subscripts are the code indices. The
MAXNET then iterates to select the strongest
correlation peak which is output. In this
model the bit positions in the codes are
represented in the time domain but they could
equally well be in the spatial domain by
replacing time by space as the independent
variable which would be done in an optical
implementation.

THREE LAYER NEURAL NET BASED ON THE HAMMING
NET

A multilayer architecture can be realised by
following the MAXNET by a pattern association
net (2) which remaps the monopolar

orthogonal code set labels back to either the
original set for pattern recognition purposes
or to a new set of codes, p; for pattern
association (Fig.4).

A suitable optical element for performing



weighted interconnections is a hologram
formed from an input pattern and a reference
pattern. These are associated in the holo-
graphic medium and correspond to a single
channel of the net consisting of a
correlation with the first image, and a
convolution with the second. Optically, the
feedforward association net following the
Hamming net can be implemented by forming
superimposed or space multiplexed holograms
between the pairs of codes in all of the
channels. The representation of a neural
network in terms of matched filters is
therefore a direct description of how one
might form the holograms for an optical
implementation.

The three layer Hamming based net can, there-
fore, be constructed using three holograms,
the middle one being recorded and fixed
before training, while the first and last are
recorded during training using the orthogonal
code set as the reference patterns.

HAMMING NET IMPLEMENTATION USING OPTICAL
INTENSITY ENCODING

So far we have assumed that it is possible to
form holograms using patterns having both
positive and negative bits. This is so,
provided we use phase patterns giving 0°
phase for +1 bits and 180° phase for -1 bits.
However, phase errors can easily occur due to
misalignment and errors in holograms and
other components of as little as one guarter
of a wavelength~0.2um. A better method is to
use intensity encoding where the tolerances
are not so tight, however, intensities can
only be positive. The Hamming net has an
advantage over the ilopfield net in this
respect since the Hamming net uses monopolar
orthogonal codes, whereas the Hopfield net
uses bipolar orthogonal codes. Nevertheless,
the e codes contain negative bits in the
Hamming net and so would entail the use of
phase patterns. One way around this has been
suggested by White (7) for the Hopfield net,
where the algorithm is rewritten in such a
way that each hologram described above is
replaced by two parallel holograms, one
dealing with the positive bits and one with
the negative bits. Both use positive
intensity for the presence of the bit and
zero intensity elsewhere. An alternative
method described below for the Hamming net
involves reformulating the net with the help
of the matched filter formalism into a purely
monopolar format.

We neglect losses due to subdivision of the
signal and we assume ideal lossless
components. If the quanity + ¢ is added to
each bit of the e codes in Fig.4, they become
the same as the monopolar orthogonal codes in
the same channel but scaled by (1+¢). So the
central interconnection net can be simply
replaced by an amplifier with a gain of
(1+).

This addition means that each bit of the

code reaching the threshold is

larger by the addition of e. (A;+A f#Az+...+Ay)
where the Aj are the intermediate amplitudes
in each channel after the monopolar matched

filters. If the MAXNET threshold is set to
M
6 = e. I Aj
i=1
8 = €. M. Apean
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where Apean is the average amplitude, then

the output from the threshold is just as it
was before the extra addition since we are
effectively subtracting ¢ from each of the
codes by doing this. This gives a great
simplification since now the transformed
intermediate or MAXNET (Fig.5) consists of
only two elements: an amplifier with a gain of
(1+¢) and a threshold whose offset, 6,
decreases on successive iterations since

Apean decreases as some of the Aj are set to
zero. Not only does this avoid the need for a
multiplexed hologram which would introduce
loss due to subdivision of the input signal,
but the threshold response with variable
offset is easier to realise optically than the
variable slope of the Hopfield threshold (2).
The resultant net consists of two layers of
interconnections surrounding the central
iterative loop. If the training data is chosen
to be monopolar, then the first and last
pattern association nets can be holograms
implemented using intensity encoding.

Other equivalent forms are possible for the
transformed MAXNET which offer further
possibilities for implementation. If Apeagn is
normalised to unity on each iteration, the
threshold offset can be fixed at § =e.M. The
amplifier can conveniently be combined with
the offset threshold to give two elements: a
fixed threshold with an offset of 6 =¢ .M and

a slope of (l+¢) and an automatic gain
control for normalisation. The AGC must sum
the amplitudes of all of the bits in the code,
that is, it must integrate across the code
(spatially for optics, e.g, using a lens to
focus the pattern), and then adjust the gain
to maintain a mean amplitude of unity. The
gain will incrcase non- uniformly on successive
iterations as more and more of the bits are
set to zero by the threshold. A further
equivalent form involves combining these
elements into a single threshold with variable
gain, which increases non-uniformly as the net
iterates.

CONCLUSIONS

A matched filter model of the Hamming net has
been developed and this has enabled a three
layer pattern association net to be designed.
The matched filter technique has also enabled
a new two layer Hamming Associative Net to be
designed, which is more suited to optical
implementation. Novel equivalent forms for the
MAXNET have also been derived.
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Fig. 1. Hamming Threshold Response
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Fig. 2. Hamming Neural Net with the First Subnet Represented as a
Matched Filter Bank and the Second Subnet as a Multilayer Net
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Fig. 5. Two Layer Hamming Net

Fig. 3. Matched Filter Model of
Hamming Neural Net
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Fig. 4. Three Layer Hamming Net



