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The singular effects of steady large-scale external strain on the viscous wake generated
by a rigid body and the overall flow field are analysed. In an accelerating flow strained
at a positive rate, the vorticity field is annihilated owing to positive and negative
vorticity either side of the wake centreline diffusing into one another and the volume
flux in the wake decreases with downwind distance. Since the wake disappears, the
far-field flow changes from monopolar to dipolar. In this case, the force on the body
is no longer proportional to the strength of the monopole, but is proportional to the
strength of the far field dipole. These results are extended to the case of strained
turbulent wakes and this is verified against experimental wind tunnel measurements
of Keffer (1965) and Elliott & Townsend (1981) for positive and negative strains.
The analysis demonstrates why the total force acting on a body may be estimated by
adding the viscous drag and inviscid force due to the irrotational straining field.

Applying the analysis to the wake region of a rigid body or a bubble shows that the
wake volume flux decreases even in uniform flows owing to the local straining flow in
the near-wake region. While the wake volume flux decreases by a small amount for
the flow over streamline and bluff bodies, for the case of a clean bubble the decrease
is so large as to render Betz’s (1925) drag formula invalid.

To show how these results may be applied to complex flows, the effects of a sequence
of positive and negative strains on the wake are considered. The average wake width
is much larger than in the absence of a strain field and this leads to diffusion of
vorticity between wakes and the cancellation of vorticity. The latter mechanism leads
to a net reduction in the volume flux deficit downstream which explains why in
calculations of the flow through groups of moving or stationary bodies the wakes
of upstream bodies may be ignored even though their drag and lift forces have a
significant effect on the overall flow field.

1. Introduction
When a flow is forced through groups of moving or stationary bodies, such as

bubbles, spray droplets, boiler tubes, or blade-rows of turbines, measurements and
computations show that both the local acceleration and deceleration of the flow and
the vortical wakes from upwind affect the forces acting on these bodies. However,
a common assumption, based on some measurements, is that if the bodies are quite

† Also at: J. M. Burgers Centre, Delft University of Technology.



112 J. C. R. Hunt and I. Eames

closely packed these wakes partially or completely ‘disappear’ in the distorted flow
around the obstacles. The same phenomenon occurs in the velocity fields between
groups of vortices because they also shed vorticity into their wakes. Because of this
effect, in local calculations of close-packed multibody (and multivortex) flows, any
significant perturbation caused by the wakes of upwind bodies may, to the first
approximation be neglected (Hunt, Perkins & Fung 1994; Rollet-Miet, Laurence
& Ferziger 1999). Since the drag on a bluff body (or a vortex) is related to the
momentum defect of its wake (Betz 1925), how this force is related to the far-field
flow around the body when the wake ‘disappears’ needs explaining. This relates to
the convenient approximation of neglecting the wakes of bodies far upwind. If the
spacing between the bodies is much greater than their diameters, the wakes may be
slightly affected by interactions, but the vorticity they generate significantly influences
the flow produced far from each body. Although this is ignored in idealized two-phase
flow models, its effect on the bulk properties of two-phase flows is appreciable (Hunt
et al. 1994).

The physical reason for this widespread tendency of wakes to disappear is that in
accelerating flows, the opposite signed vorticity on each side of the wake, that normally
diffuses outwards, is confined and distorted by the mean flow. Then it diffuses across
the wake and is cancelled out. By contrast, in two-dimensional diverging flows,
cross-stream diffusion is reduced and the vorticity magnitude tends to a constant
value, so a different argument is needed to justify the neglect of wakes of upwind
obstacles. We show here that the interaction between wide wakes also leads to vorticity
cancellation and their net effect is eliminated downstream. Although the effect of
converging/diverging streamlines on an external turbulent wake was analysed and
measured by Keffer (1965) and Elliott & Townsend (1981), the wider implications for
computing complex flows were not explored. In particular, Keffer did not consider
how the disappearance of the wake affected the external field and how it could be
consistent with the drag force on the body causing the wake, since the drag on the
body is normally found to be proportional to the wake strength. A related question
is how a sequence of converging and diverging flows affects a wake; does it simply
diffuse, acting like an enhanced turbulent diffusivity or can the external straining flow
destroy the wake by enhanced vorticity cancellation?

The phenomenon of vorticity cancelling always occurs to some extent in the near
wake of the viscous flow around any shape of body, even without any external
straining flow. This cancellation, which is associated with a strong local acceleration
and a convergence of the mean streamlines in the near-wake region, also produces
a dipole perturbation in the external flow. This transition, which has been analyzed
in the wake of a flat plate (e.g. Talke & Berger 1970), shows how a strong coupling
between the near-field wake and the boundary-layer flow over a flat plate amplifies
the skin friction near the trailing edge of aircraft. Mathematically, this becomes an
eigenvalue problem with the flow adjusting over a characteristic length. The latter
effect influences the forces acting on the body when it is placed in a shear (Bowles &
Smith 2000) or accelerating flow. Partial vorticity cancellation is demonstrated to be
the key mechanism relating the strength of the far-field wake to the separated flow
over the body or to the vorticity flux in unseparated boundary layers, such as those
on bubbles (in clean water) (Moore 1963). In some accelerating and unsteady flows,
this phenomenon of wake disappearance may explain why, as we shall show, the
forces on the body can be calculated using inviscid theory for drag forces on bodies
in accelerating flows, but allowing for the effect of the viscous wake near the body
on the inviscid flow (Magnaudet & Eames 2000).
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The aims of this paper are (i) to derive solutions for the mean velocity in
planar and axisymmetric wakes in straining flows for both laminar and turbulent
flows, (ii) to relate these to the perturbed flow field around the whole body and to
the force acting on the bodies, and (iii) to consider wakes in complex straining flows
with positive and negative strains. Thence we draw some general conclusions.

2. Linear effects of uniform strain on a laminar wake
The effect of an irrotational straining external flow, UE , on a laminar wake is

considered. The vorticity downstream of the body is ω and its development is
described by the evolution equation (Batchelor 1967),

∂ω

∂t
+ (UE + u) · ∇ω = ω · ∇(UE + u) + ν∇2ω, (2.1)

where u is the flow perturbation due to the vorticity ω = ∇ × u in the wake and
ν is the kinematic viscosity. When the external flow is uniform, UE = U , the peak
vorticity magnitude Ω in a laminar wake decreases by a combination of diffusion
of vorticity towards the centreline, where it meets vorticity of the opposite sign,
and viscous diffusion outwards into irrotational flow. In three-dimensional laminar
flows, the local Reynolds number characterizing the wake, Rew = UwY /ν, decreases
with downstream distance from the body essentially because the maximum flow
perturbation Uw decreases (∼ x−1) much faster than the rate at which the width of
the wake, Y (∼ x1/2), increases. Thus, the flow is ultimately laminar. In planar flows,
the Reynolds number characterizing the wake does not decrease with downstream
distance. When Rew > 5, the shed vortices ultimately generate the well-observed
large alternately signed Boussinesq–Strouhal wake pattern. Many features of the
mean flow in turbulent flows can be calculated by approximating the mean shear
stress in terms of the mean velocity gradient and an eddy diffusivity νe that is
constant across the wake but may vary along the wake. Keffer (1965) and Keffer
et al. (1978) showed that this assumption is a good approximation in non-uniform
external flows. As we shall demonstrate, however, in the presence of a positive
external straining field, the local Reynolds number associated with the wake ultimately
decreases so that in three-dimensional and planar cases the downstream flow is
laminar.

Far enough downwind, the downstream flow is negligible compared to the external
flow (Uw � |UE |) and the vorticity equation (2.1) can be linearized. Vorticity is shed
from the body, advected by the mean flow, and diffuses cross-stream, and, in the
presence of an external strain parallel to vorticity components, the magnitude of the
vorticity may be increased or decreased depending on the sign of the strain. The
width of the wake Y is typically much smaller than the characteristic streamwise
distance over which the vorticity varies, so that streamwise gradients of vorticity are
negligible compared to cross-stream gradients. Thus, in laminar flow, the evolution
of the vorticity field is described by

∂ω

∂t
+UE · ∇ω = ω · ∇UE + ν∇2

Hω, (2.2)

where ∇2
H = ∂2/∂y2 +∂2/∂z2 is the two-dimensional Laplacian. The following analysis

describes initial-value similarity solutions of (2.2), for a strained wake.
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2.1. Planar converging and diverging flow

2.1.1. Velocity field in the wake

The development of a steady laminar wake in the external straining field UE =
(U(x),−αy) is considered, where α is the strain rate and U(x) = U0 +αx. Keffer (1965)
and Elliott & Townsend (1981) studied experimentally a slightly different problem,
where the external strain field is generated by compression along the y-axis, expansion
along the z-axis and a uniform flow along the x-axis; the development of solutions
applicable to straining by this field are considered later in the paper. Under the former
strain field, the vorticity equation (2.2) reduces to

U0

∂ω

∂x
+ αx

∂ω

∂x
− αy ∂ω

∂y
= ν

∂2ω

∂y2
, (2.3)

where ω is the vorticity component perpendicular to the (x, y)-plane. For planar flow,
(2.3) can be recast into the Boussinesq form (Boussinesq 1905)

∂ω

∂φ
= ν

∂2ω

∂ψ2
, (2.4)

where the velocity potential and streamfunction corresponding to the external strain-
ing flow are φ = U0x + 1

2
αx2 − 1

2
αy2 and ψ = U0y + αxy, respectively. The general

solution, in terms of initial vorticity distribution ω0(ψ) along a curve perpendicular
to the streamlines located at φ = φ0, is

ω(ψ, φ) =

∫ ∞
−∞

ω0(ψ
′)√

4πν(φ− φ0)
exp

(
− (ψ − ψ′)2

4ν(φ− φ0)

)
dψ′. (2.5)

Alternatively, a similarity method can also be used to solve (2.3). We demonstrate
how they can equivalently be calculated from the exact solution (2.5). However, the
Boussinesq transformation cannot be used for the axisymmetric case.

Recasting the vorticity equation in terms of the travel time τ from the origin
simplifies (2.3) to

∂ω

∂τ
− αy ∂ω

∂y
= ν

∂2ω

∂y2
, (2.6)

where

τ =
1

α
log

(
1 +

αx

U0

)
. (2.7)

The slowest decaying smoothest similarity solutions to (2.6) of the form ω = Ω(τ)ω̃(ỹ)
are sought, where Ω is the vorticity magnitude, Y is the wake width and ỹ = y/Y (τ).
On substituting this form for ω, (2.6) becomes(

Y 2

νΩ

dΩ

dτ

)
ω̃ −

(
Y

ν

dY

dτ

)
ỹ

dω̃

dỹ
−
(
Y 2α

ν

)
ỹ

dω̃

dỹ
=

d2ω̃

dỹ2
. (2.8)

In order that similarity solutions satisfy the above equation, we require

Y 2

νΩ

dΩ

dτ
,

Y

ν

dY

dτ
+
Y 2α

ν
, (2.9)

to be constant. Thus, the width of the wake and the peak vorticity vary with τ
according to

Y 2 =
ν

α
+
(
Y (0)2 − ν

α

)( U0

U(x)

)2

, (2.10)
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and
Ω

Ω(0)
=

(
Y (0)

Y

)β (
U0

U(x)

)β
, (2.11)

where Y (0) and Ω(0) are, respectively, the characteristic wake width and vorticity
magnitude at the origin and β is an unknown constant to be determined. Note that
the first term in (2.9) is −β; if the second term in (2.9) is different from unity, the
constant is absorbed into the wake width, but the final result is identical to that
described below.

The similarity equation reduces to

−βω̃ − ỹdω̃

dỹ
=

d2ω̃

dỹ2
. (2.12)

Writing ω̃ = f(ỹ) exp(− 1
2
ỹ2) transforms (2.12) into the Hermite equation,

d2f

dỹ2
− ỹdf

dỹ
= −(β − 1)f, (2.13)

whose general solution is
f = AHβ−1(ỹ), (2.14)

where A is a constant and Hβ−1 is the Hermite function. The choice of β is determined
by the initial vorticity field entering the flow. It is worth discussing the various solutions
obtained, and how they relate to β.

When β = 0, vorticity does not decay with distance, and

d2ω̃

dỹ2
= −ỹω̃, (2.15)

which gives

ω̃ =

∫ ỹ

0

exp(− 1
2
ỹ2)dỹ. (2.16)

The solution of β = 0 corresponds to semi-infinitely deep layers of positive and
negative vorticity being strained, whose integrated ‘strength’ does not change with
distance. Further, when β = 1, the vorticity field is

ω̃ = exp(− 1
2
ỹ2), (2.17)

and corresponds to the development of a source of vorticity. Clearly, for β = 0, 1 the
assumptions of the linearization are not applicable because the flow perturbations
are not small.

For the problem in hand, namely the large-scale straining of a line wake, the
physical requirement is that the vorticity field is an odd function of y, and that ω̃
does not change sign when ỹ > 0. The first constraint reduces to β − 1 being an odd
integer. The second constraint ensures that β − 1 = 1 or β = 2. As a consequence,
the vorticity and velocity field are

ω̃ = − 1

( 1
2
π)1/2

ỹ exp(− 1
2
ỹ2), ũ = − 1

( 1
2
π)1/2

exp(− 1
2
ỹ2), (2.18)

where ux = Uw(τ)ũ(ỹ) and Uw = Ω(τ)(τ).
The volume flux associated with the wake is

Q(x) = −
∫ ∞
−∞
udy = −2

∫ ∞
0

yωdy = −2ΩY 2

∫ ∞
0

ỹω̃dỹ = 2Ω(x)Y (x)2, (2.19)
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External straining flow

Influx due to reduction of
volume flux

RSP
Decreasing volume
flux in the wake

Source
strength Q(0)

Sink strength
Q(0)

F

F

(a) (i)

(b) (i)

F

Source flow

D λD RSP

Decreasing volume flux
due to vorticity

cancellation

Thin boundary
layer

Significant straining
region behind a clean

bubble

Constant volume
flux in the wake

(ii)

(ii)

Local straining region

Figure 1. Schematic showing flow acceleration, vorticity cancellation and the wake associated with
a rigid body in (a) a weakly strained external flow, in (i) the near-field wake flow and (ii) the
external perturbation velocity field; (b) in a uniform ambient flow for (i) the region of the rear
stagnation point with an attached wake and (ii) a bubble with an unseparated wake.

since the vorticity is an odd function of y. Thence, since β = 2, from (2.10)

Q(x)

Q(0)
=

(
U0

U(x)

)2

where Q(0) = 2Ω(0)Y 2(0). (2.20)

An important point is that the change in the volume flux in the wake is independent
of viscosity, and depends only on the strain rate and distance x. Figure 1(a) shows a
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schematic of the essential features of the near- and far-field flow in a weakly strained
external flow.

We observe two different types of wake development, depending on whether α is
positive or negative. When the flow converges (α > 0), the width of an initially narrow
wake (Ỹ (0) = Y (0)/(ν/|α|)1/2 � 1) rapidly increases with downstream distance owing
to enhanced diffusion and ultimately tends to a constant value (ν/α)1/2 and the peak
vorticity Ω decreases much more rapidly with distance from the body than in uniform
flow,

Y → (ν/α)1/2,
Ω(x)

Ω(0)
→ Ỹ 2(0)

(U(x)/U0)2
. (2.21)

When the wake is initially wide, Ỹ (0) � 1, the wake width decreases owing to the
convergence of the flow and diffusional effects are initially small, so that

Y ∼ Ỹ (0)

U(x)/U0

,
Ω(x)

Ω(0)
∼ 1, (2.22)

but the wake width ultimately tends to a constant width which is described by
(2.21). Note that the peak velocity decays as Uw ∼ Uw0/(αx/U0)

2 with downstream
distance in strained flows, much more rapidly than in unstrained flows where Uw ∼
Uw0/(2νx/U0Y (0)2)1/2.

When α < 0, the straining velocity field tends to zero at the stagnation surface
x = −U0/α, and the wake width increases downstream without limit. The asymptotic
forms of Y (x) and Ω(x) along streamlines vary considerably depending on whether
the initial width Y (0) is large or small compared to the viscous-straining asymptotic
scale (ν/|α|)1/2. When Ỹ (0)� 1, the vorticity tends to a constant value, so that

Y → (ν/|α|)1/2

U(x)/U0

,
Ω(x)

Ω(0)
→ Ỹ (0)2(� 1), (2.23)

while for Ỹ (0) � 1, the wake development is independent of ν; its width grows
rapidly with distance and the vorticity is comparable to its initial value,

Y → Y (0)

U(x)/U0

,
Ω(x)

Ω(0)
→ 1. (2.24)

Therefore, the peak velocity (Uw/Uw0 ∼ U0/U(x)) and volume flux (Q/Q(0) ∼
(U0/U(x))2) increase with distance. The linearization of the vorticity equation is
therefore only valid within a distance O(U0/|α|) from x = 0, beyond which the
nonlinear convection induced by the wake must be considered.

These similarity solutions are consistent with the exact solution to the linearized
equation (2.5), as demonstrated in Appendix A.

2.1.2. Wake effects on the external velocity field

When α > 0, the similarity solution is valid far downstream of the body and we
proceed to study the external velocity field in more detail. The flow induced by the
wake is equivalent to a distribution of line sources of strength m(x) where

m(x) =
dQ

dx
= − 2Q(0)α/U0

(1 + αx/U0)3
. (2.25)

Since α > 0, the strength of the sources tends to zero and their cumulative effect
on the external flow is finite. The external potential flow generated by the wake is
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determined by integrating the cumulative effect of the distribution of sources, i.e.

u(x, y) =

∫ ∞
0

dQ

dx′
S(x′, x, y)dx′, (2.26)

where

S(x′, x, y) =
1

2π

(x− x′, y)

(x− x′)2 + y2
(2.27)

is the flow induced at (x, y) by a unit source located at (x′, 0). Integrating by parts,
(2.26) shows that the flow consists of a far-field sink of strength Q(0) and a distribution
of dipoles of strength Q(x′) located along the x-axis:

u(x, y) = −Q(0)S(0, x, y)−
∫ ∞

0

Q(x′)
dS(x′, x, y)

dx′
dx′. (2.28)

Thus, the external flow induced by the source generated by the body and the wake is
due to a dipole of strength

2πµx = −
∫ ∞

0

Q(x′)dx′ = −Q(0)U0

α
, (2.29)

because the sink at the origin cancels with the source generated by the body.
By integrating (2.26) and (2.27), the external velocity field u = (ux, uy) is found to

be

ux =
Q(0)U2

0

πα2

[
− (3y2 + (U0/α+ x)2)(x+U0/α)

((U0/α+ x)2 + y2)3
log

(
α

U0

(x2 + y2)1/2

)
− α/U0((U0/α+ x)2 − y2)

((U0/α+ x)2 + y2)2
− α2/U2

0 (x+U0/α)

2((U0/α+ x)2 + y2)

+
−y4 + 3y2(x+U0/α)

2

((U0/α+ x)2 + y2)3

(
1
2
π− tan−1 −x

y

)]
and

uy = − Q(0)yU2
0

πα2

[
− 3(U0/α+ x)2 − y2

((U0/α+ x)2 + y2)3
log

(
α

U0

(x2 + y2)1/2

)
+

2(U/α+ x)α/U0

((U0/α+ x)2 + y2)2

+
α2/U2

0

2((U0/α+ x)2 + y2)
+

3(U0/α+ x)2 − y2

((U0/α+ x)2 + y2)3

(
1
2
π− tan−1 −x

y

)]
.

Thus, the external flow induced by the wake is equivalent to a sink of strength Q(0)
(identified as the third term on the right-hand side of the above expression) and a
dipole of strength −Q(0)U0/πα located at x = −U0/α (identified as the second term
on the right-hand side of the above expression), as well as the usual source field
located at the origin. The combination of an apparent sink located in front of the
body, and a source at the origin yields a far-field dipolar flow (see figure 1a, ii). Thus,
the external flow induced by the wake and body is equivalent to a dipole of strength
µx = −Q(0)U0/2πα, a result identical to (2.29) which was obtained without direct
calculation of the far-field flow.

2.2. Axisymmetric flow

The effect of a laminar wake is examined in an axisymmetric straining field UE =
(U(x),−αr), defined in cylindrical polar coordinates (x, r, θ), where U(x) = U0 + 2αx.
The dynamical difference between planar and axisymmetric flows is that the straining
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field compresses the vortical elements which would tend to increase the strength of
the vorticity close to the centreline. The development of an axisymmetric flow, due
to an azimuthal vorticity field, is considered. The vorticity equation describing the
development of ωθ , the azimuthal component of vorticity, is

UE · ∇ωθ =
UE · r̂ωθ

r
+ ν

(
1

r

∂

∂r

(
r
∂ωθ

∂r

)
− ωθ

r2

)
. (2.30)

The development of the flow is expressed in terms of Γ = ωθ/r which is proportional
to the circulation around a vortical element and is conserved during axisymmetric
stretching by the straining flow. The downstream development of Γ is described by

∂Γ

∂τ
− αr ∂Γ

∂r
= ν

(
∂2Γ

∂r2
+

3

r

∂Γ

∂r

)
, (2.31)

where the travel time from the origin is

τ =
1

2α
log

(
1 +

2αx

U0

)
. (2.32)

Similarity solutions of the form Γ = G(τ)Γ̃ (r̃), where r̃ = r/R(τ), are sought. The
above equation is transformed to(

R2

νG

dG

dτ

)
Γ̃ −

(
R

ν

dR

dτ

)
r̃
dΓ̃

dr̃
−
(
R2α

ν

)
r̃
dΓ̃

dr̃
=

(
d2Γ̃

dr̃2
+

3

r̃

dΓ̃

dr̃

)
. (2.33)

The dimensionless coefficients

R2

νG

dG

dτ
,

R

ν

dR

dτ
+
R2α

ν
, (2.34)

are constant, from which the width of the wake and strength of circulation are found
to vary (in a similar fashion to the planar problem) as

R2 =
ν

α
+
(
R(0)2 − ν

α

)
exp(−2ατ) (2.35)

and

G

G(0)
=

(
R(0)

R

)β
exp(−αβτ). (2.36)

The similarity solution satisfies

r̃
d2Γ̃

dr̃2
+ (3 + r̃2)

dΓ̃

dr̃
+ βΓ̃ r̃ = 0. (2.37)

Writing w = − 1
2
r̃2, transforms the above equation to

w
d2Γ̃

dw2
+ (2− w)

dΓ̃

dw
− 1

2
βΓ̃ = 0.

The above is known as Kummer’s differential equation and the general solution is
expressed as

Γ̃ = M(2, 1
2
β,− 1

2
r̃2) = exp(− 1

2
r̃2)M

(
1
2
(4− β), 1

2
β, 1

2
r̃2
)
, (2.38)

where M is the confluent hypergeometric function (see Arfken 1985 p. 753). In the
limit of r̃ → 0, the circulation tends to Γ ∼ r̃n. Substituting Γ ∼ r̃n into (2.37), shows
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that 4 + n = 0 and β + n = 0. Thus, β = 4 and the vorticity field is determined from

ω(τ, r) =
G(τ)

r̃
exp(− 1

2
r̃2)M(0, 2, 1

2
r̃2). (2.39)

The volume flux in the wake is related to the weighted integral of the vorticity as
follows:

Q(x) = −
∫ ∞

0

uxd(πr2) = −
∫ ∞

0

πr2ωdr = πR4G(τ)

∫ ∞
0

r̃3Γ̃dr̃. (2.40)

Thence, from (2.39), the flow volume flux decays as

Q(x)

Q(0)
= exp(−βατ) =

1

(1 + 2αx/U0)2
(2.41)

with distance downwind of the body. The external flow induced by the wake is
equivalent to a distribution of point sources of strength m(x) where

m(x) =
dQ

dx
= − 4Q(0)α/U0

(1 + 2αx/U0)3
. (2.42)

The external potential flow induced by the wake is determined by the cumulative
effect of sources located along the centreline and is described by (2.26), with S now
representing the flow due to a point source located at the point (x′, 0) (expressed in
cylindrical coordinates): S(x′, x, r) = (x− x′, r)/4π((x− x′)2 + r2)3/2. Here, the far-field
flow is again dipolar and has strength

4πµx = −
∫ ∞

0

Q(x′)dx′ = −Q(0)U0

2α
. (2.43)

The far-field flow could potentially be obtained by integrating (2.26), but the lengthy
expressions which result have no bearing on the physics of the problem and are not
included here.

2.3. Strained turbulent wakes

The prediction of the decay in the vorticity and the volume flux of the wake behind
a rigid body is in accordance with the experimental measurements of Keffer (1965)
who studied the spreading of a turbulent planar wake characterized by Re ' 1700 in
a converging–straining flow, and measured the turbulent and mean structure of the
downstream wake. An interesting feature of the latter experiments, confirmed by our
theory, was that Uw was effectively constant. Although the external flow has a similar
effect to that considered in this paper, it is three-dimensional, i.e.

UE = (U0,−αx, αz), (2.44)

so that the streamwise component of the mean velocity is unchanged with distance
because there is a diverging strain in the z-direction. The similarity solution proposed
by Keffer (1965) (which effectively assumed a constant eddy viscosity) differs from
that developed in this paper. His method led to the prediction that the width and
mean speed in the wake tended to zero exponentially, in conflict with experimental
observations.

Using the more systematic method applied here, similarity solutions can be con-
structed with the flow field (2.44) assuming the eddy viscosity remains approximately
constant even when the mean vorticity decays. Physically, this can be explained
partially by the amplification of the turbulent velocity caused by the mean flow
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Figure 2. Comparison between the experimental measurements of the volume flux in the planar
turbulent wake of a cylinder, in the three-dimensional straining flow (2.44), and a similarity solution
based on a constant eddy viscosity assumption. The triangles correspond to the measurements of
the wake width Y and characteristic deficit velocity Uw , taken from figure 3 of Keffer (1965) for
α > 0, while the diamonds correspond to the measurements (taken from table 1) of Elliott &
Townsend (1981) for α < 0. The strain rate is determined in Keffer’s experiments from the geometry
of the duct, whereas Elliott & Townsend (1981) made measurements of the strain rate (which varied
with streamwise distance) and a value of −2.5 m−1 is assumed for α/U0. In the present notation,
x = 0 corresponds to the start of the distorting duct. The solid curve corresponds to the theoretical
prediction UwY /Uw(0)Y (0) = exp(−αx/U0).

straining of the turbulent vorticity. The width of a turbulent shear layer in the
y-direction or a scalar plume are not very sensitive to the variation of the eddy
viscosity or eddy diffusivity (cf. Keffer et al. 1978). It is found that the width of
the wake increases according to (2.10) and the mean vorticity decreases according to
Ω(x) = Ω(0) exp(−αx/U0)(Y (0)/Y (x))2. According to this calculation, the width of
the wake tends to a constant value and the product of velocity defect Uw and width Y
varies as UwY /Uw(0)Y (0) = exp(−αx/U0), independent of the magnitude of the eddy
viscosity. This provides a means of testing the analysis without fitting or prescribing
the eddy diffusivity. Figure 2 shows a comparison between the experimental measure-
ments of Q = UwY by Keffer (1965) (for α > 0) and Elliott & Townsend (1981) (for
α < 0) and the predictions based on our similarity solutions. The agreement is good.

3. Wake vorticity, the external flow and force on bodies
The force and moment on a body, without and with an external strain field, can

always be related to the momentum flux of the external flow which is defined by the
ambient uniform and straining fields and the source and dipole perturbation to the
external field (see figure 1) (Magnaudet & Eames 2000). In a uniform flow of speed
U0, the force on the body, F , is equal to the momentum flux in the wake (2ρQ(0)U0)
less the propulsive force produced by the potential flow source field around the body
(−ρQ(0)U0) (see Batchelor 1967). For instance, the total force acting on a planar
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obstacle in a uniform flow, such as a cylinder, is

F0 = 1
2
ρCDDU

2
0 = ρQ(0)U0, (3.1)

where CD is the drag coefficient and D is the projected width of the planar body
(or diameter in the case of a cylinder). Note that this requires the Reynolds number
associated with the flow past the body and the wake to be large, i.e.

Re = U0D/ν � 1, ReW = (Q(0)/U0D)Re� 1. (3.2)

The latter constraint (which is usually omitted) ensures that the wake is turbulent
and it is important when considering the force on bubbles or fluid volumes which are
shedding vorticity (see below). In a uniform flow, the interactions in the external flow
between the uniform flow, and the dipole (and higher-order) fields do not affect the
drag. However, in a straining field these need to be considered. When the external
straining field is negligible, a bluff body, for instance a circular cylinder, induces an
external dipole field, that for an inviscid flow is

M
(I)
0 = − 1

4
U0πD

2. (3.3)

However, in high-Reynolds-number viscous flows, the dipole strength is determined
by the flow around the separated streamlines. It is larger than in inviscid flows because
the flow separation occurs at an angle θs from the upstream direction (Parkinson &
Jandali 1970), so that

M
(S)
0 ≈ − 1

4
U0πD

2 − Q(0)D cos β, (3.4)

where β is associated with the separation angle θs and is approximately 90◦±10◦. The
dipole strength was calculated from the potential flow model of Parkinson & Jandali
(1970) in which sources outside the cylinder produce the same effect as a separated
wake. These determine the magnitude of the angle β. Since Q(0) is related to the drag
coefficient,

M
(S)
0 ≈ − 1

4
U0πD

2

[
1 +

2CD
π

cos β

]
. (3.5)

Typical values are β = 80◦, CD = 1.09, so that 1 + (2CD/π) cos β ≈ 1.12, so that

M
(S)
0 /U0D

2 is in fact approximately equal to M
(I)
0 /U0D

2. The source component of
this dipole is mainly produced by the diverging flow near the front stagnation and
the sink component by the converging flow at the rear stagnation point (RSP) of the
wake (see figure 1). Note that there is a marked transition over a distance Lw (of
order of the body size D) as this flow region is dominated by the straining motion
close to the stagnation streamline, which reduces the volume flux in the wake by the
mechanism described in § 2.

For the case of flow past a slender body, the wake width is much larger than the
straining-viscous lengthscale near the RSP (i.e. Y (0)� (ν/α)1/2) so that total vorticity
cancellation is small. However, it is non-zero and can be calculated along the attached
streamline as the vorticity generated along the body surface adjusts to the shear-free
condition along the attached streamline. The volume flux in the laminar wake of a
flat plate, Qw(x), downstream of the RSP (see Appendix B) is

Qw(x) = Q(0) +
1

U0

∫ ∞
−∞

(u−U0)
2dy, (3.6)

which decreases with downstream distance and tends to the far-field value of Q(0). The
detailed calculations of the mean turbulent flow past a flat plate by Neish & Smith
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(1988) show that the displacement thickness (which is proportional to the volume
flux) decreased by 10% from the value at the RSP. Associated with the decrease in
the volume flux is a distribution of sinks which tend to increase the far-field dipole
strength associated with flow past the plate, which is dominated by the volume flux
increasing along the length of the plate and is estimated to be O(U0L

2Re−1/2). A
relatively larger decrease in the wake volume flux also occurs downwind of the RSP
of bluff bodies, although this transition region is not included in the near-field analysis
of Parkinson & Jandali (1970) or other investigations.

This vorticity cancellation is much stronger in flow around a bluff body with thin
wakes, such as high-Reynolds-number flow around a clean spherical bubble. The flow
around a bubble of radius a was shown by Moore (1963) to be characterized by a
thin boundary layer of thickness O(aRe−1/2) (where Re = 2aU0/ν), which does not
separate from the bubble surface, and the boundary-layer flow is a weak perturbation
to the primary irrotational flow. The analysis developed in this paper may be applied
to examine the significant changes in the volume flux in the wake of a bubble.
Downstream of the bubble and close to the attached streamline, to leading order,
the wake is subject to the potential straining flow U0(1− (a/x)3,− 3

2
y(a/x)4/a), which

is expressed in cylindrical coordinates, where x is the downstream distance, y is the
cross-stream distance. Similarity solutions may be developed which show that the
volume flux in the wake, Qw , at distances x0 and x from the bubble centre are related
through

Qw(x0)

Qw(x)
=

(
1− a3/x3

1− a3/x2
0

)2

. (3.7)

Moore (1963) calculated the flow field in the near wake region but not the wake flow
far downstream of the bubble. The volume flux at the start of the wake region, xB =
a+O(aRe−1/6), is calculated from Moore’s analysis to be QB = Qw(xB) = 24U0πa

2Re−1.
According to (3.7), the volume flux in the wake at a distance x decreases rapidly with
distance, ultimately tending to

Qw(x→∞) = Q(0) = 24U0πa
2Re−1O(Re−1/3), (3.8)

far downwind of the bubble. Thus, the wake volume flux associated with any clean
bubble is significantly less than the wake flux at the RSP because of the significant
straining motions induced by the leading-order potential straining flow generated in
this region. Since the ratio of the wake width Y (0) to the viscous-straining lengthscale
(ν/α)1/2(∼ O(aRe−1/2)), is Y (0)/(ν/α)1/2 ∼ O(1), the reduction of the wake vorticity
and the volume flux is much greater than for a bluff body where Y (0)/(ν/α)1/2 ∼ Re1/2.
In fact, as we have shown, the far-wake momentum deficit for a bubble is much less
(by a factor Re−1/3) than the drag force, i.e. F0 � ρQ(0)U0. This is a fundamental
limitation of Betz’s (1925) result that has not previously been pointed out. For
bubbles, the flow approximates to potential flow, except in the boundary layer, and
the drag is related to the weak viscous stresses in the potential flow (Batchelor 1967
p. 368). The same analysis can be extended to eddies or vortex rings with narrow
wakes (Turner 1973).

In the presence of weak strain, where 0 < αD/U0 � 1, the analysis of § 2 shows
that the wake structure completely changes by O(1) over a long distance O(U0/α)
from the body. Thus, the addition of weak strain is a singular perturbation to the
flow far from the body. However, near the body and in the near wake, the flow is
not affected (at least to O(αD/U0)). Although the wake downstream disappears, the
analysis of § 2.2 shows that the momentum flux in the wake near the body is equal to
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the contribution to the change of the momentum flux in the external flow. Since the
pressure distribution over the body is changed by O(αD/U0), the force on the body
is changed slightly by this amount. In addition to changing the distribution of the
momentum flux deficit, the weak strain field also changes the force on the body which
is determined by the combined action of the strain field (dU/dx) and the dipole field

M. M is a combination of the dipole in the absence of the strain field, M(S)
0 (e.g. given

for separated flow by (3.4)), and 2nπµx, the dipole associated with the disappearing
wake (see (2.29) and (2.43)) (where n = 1, 2 for planar and axisymmetric flows):

M ≈M(S)
0 + 2nπµx = M

(S)
0 − Q(0)U0/2

(n−1)α. (3.9)

Since the source and dipole field in the external flow are weak perturbations to the
imposed external flow (and the external flow is irrotational) and since, with finite
external strain, the far-field wake disappears algebraically with downwind distance,
the total force is given exactly by

F = −ρM dU

dx
. (3.10)

Equations (3.9) and (3.10) show that the total force, for quite moderate strain rates
(0 < αD/U0 < 1), is equal to the viscous force in uniform flows plus the inviscid force
due to the straining field, i.e.

F ≈ −ρM(I)
0

dU

dx
+ ρQ(0)U0, (3.11)

since, as explained below (3.4), M(S)
0 ≈M(I)

0 .
This is consistent with the results of the computations reviewed by Magnaudet

& Eames (2000) which showed that the ‘added-mass’ force and the drag force for
uniform flow can be superimposed. This approximation is now a standard assumption
in two-phase flow computations (e.g. Kowe et al. 1988) and is found to agree with
data even when the added-mass term is comparable to the drag term and when a high
(∼ 20%) proportion of the fluid is occupied by moving objects (which is consistent
with the wakes effectively disappearing) (e.g. Couet, Brown & Hunt 1991). Of course,
when αD/U0 = O(1), the strain affects the near-field flow and (3.11) is no longer valid
(Graham 1980).

4. Disappearing wakes in complex flows
4.1. Effect of piecewise uniform strain on a laminar wake

The strain rate acting on the wake of a body, as it is advected past a series of bodies,
typically varies with distance along the streamline. In order to gain insight into the
effect of non-uniform strain, we proceed to apply the similarity analysis to examine
the fundamental changes in a viscous laminar wake due to an alternately signed
straining field. Of course, wakes are often split into two when they meet a downwind
body in a similar way as a scalar ‘plume’ is split (Hunt & Mulhearn 1973).

The development of a laminar wake, of initial vorticity Ω0 and width Y0 (at x = 0),
is perturbed by alternate positive and negative uniform strain. The strain rate is
uniform within streamwise segments of the flow, within the regions [0, l1], [l1, l1 + l2],
[l1,+ l2, 2l1 + l2], . . .. The wake spreading in this idealized problem is defined by U0,
the velocity at the origin, U1, the velocity at the end of the first and odd numbered
regions, and U2, the velocity at the end of the second and even numbered straining
regions. When the strain is alternately positive and negative, and the mean speed at
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x = l1 + l2, 2(l1 + l2), . . . adjusts to the value at x = 0, U2/U0 = 1 and U1/U0 = S.
The strain rates in the odd and even numbered regions are thus α1 = (S− 1)U0/l1
and α2 = −(S − 1)U0/l2, respectively. The development of the width and vorticity
magnitude corresponding to the similarity solutions may be recast in terms of Ui

using (2.10) and (2.11).
In the first straining region, the results of § 2.1 show that the dimensionless wake

width and vorticity magnitude are

Ỹ 2
1 = 1 +

1

S2
(Ỹ 2

0 − 1),
Ω1

Ω0

=
Ỹ 2

0

Ỹ 2
1

1

S2
, (4.1)

where Ỹ = Y /(ν/|α1|)1/2. There are two limiting cases corresponding to a narrow
initial wake: Ỹ0 � 1, where diffusion controls the increase in the wake width so that
Ỹ1 → 1(� Ỹ0), and 1 � Ỹ0 � S, where the wake width decreases to Ỹ1 → 1(� Ỹ0)
owing to diffusive effects being negligible and the converging flow causes the wake
width to decrease. For a narrow initial wake, the vorticity magnitude decreases owing
to vorticity cancellation and Ω1/Ω0 = Ỹ 2

0 /S2. By contrast, for an initially wide
wake, Ỹ0 � S, the wake width decreases owing to the positively straining flow and
Ỹ1 → Ỹ0/S and the change in the vorticity magnitude is negligible because diffusion
is weak, i.e. Ω1/Ω0 → 1.

In the second negatively straining region, the wake width can be expressed exactly
in terms of its initial width,

Ỹ 2
2 − Ỹ 2

0 = (S2 − 1)
(
1 + l2/l1

)
. (4.2)

When the width of the initial wake is small (Ỹ0 � 1), the final wake width is
dominated by diffusive effects and Ỹ2 ∼ S(1 + l2/l1)

1/2, independent of the initial
wake width. An initially wide wake returns back to its value, Ỹ2 = Ỹ0. The vorticity
in this region is

Ω2

Ω0

=
Ỹ 2

0

Ỹ 2
2

. (4.3)

This indicates that while the volume flux in the wake changes rapidly in the positively
and negative strained regions, the volume flux is finally preserved after the application
of the two alternate uniform straining regions, providing that the mean flow has
recovered to its initial value (i.e. U2/U0 = 1). Thus, when the width of the wake is
initially small, the wake widens dramatically to a non-dimensional widthS(1+l2/l1)

1/2

and the vorticity falls by a factor of Ỹ 2
0 /S2(1 + l2/l1) (from (4.3)), whereas for a wide

wake, the wake width and vorticity magnitude are hardly changed, except for diffusion
which causes the width to permanently increase slightly, and the vorticity to fall.

During subsequent sequences of straining, the width of the wake at the start of
the positive strained region is much larger than the straining-viscous lengthscale,
regardless of the initial wake width (Y0). For an initially narrow wake, its subsequent
dynamics are described, to leading order (for n > 1), by

Ỹ2n+1 = (1 + n(1 + l2/l1))
1/2, Ỹ2n = (nS2(1 + l2/l1))

1/2, (4.4)

Ωn

Ω0

=
Ỹ 2

0
1
2
nS2(1 + l2/l1)

. (4.5)

Thus, the vorticity magnitude decreases substantially during the first positively
strained region, whereas the decrease in the vorticity is thereafter negligible. For
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Figure 3. Comparison between similarity solutions and asymptotic expressions (4.4), (4.5) and (4.6)
for the development of a wake subject to alternate positive and negative straining, characterized
by U1/U0 = S = 10 and l1/l2 = 1. The development of an initially wide wake, characterized by

Ỹ0 = 963 is shown in (a) and (b), while an initially thin wake, characterized by Ỹ0 = 0.3, is shown
in (c) and (d ). The full curves correspond to calculations of the wake development using similarity
solutions calculated in § 2.1, while the dashed curves correspond to asymptotic expressions (4.4),
(4.5) and (4.6).

the case of an initially wide wake, (n > 1),

Ỹ2n+1 =
Ỹ0

S , Ỹ2n = Ỹ0,
Ωn

Ω0

= 1. (4.6)

Figure 3 shows the development of a wide (Ỹ0 � S) and a narrow wake (Ỹ0 � S),
respectively. In both cases, the strain parameter is large (S = 10) and the length of the
postively and negatively straining regions are chosen to be the same (l2/l1 = 1). For
comparison, the asymptotic expressions for the wake widths and vorticity magnitude
(4.4), (4.5) and (4.6) are plotted and show good agreement with exact calculations
using the similarity solutions derived in § 2.1. Although the volume flux in the wake is
conserved after alternate positive and negative straining (Q2n/Q0 = 1), it is extremely
small in the positively strained regions where Q2n+1/Q0 = 1/S2.

These results show the net effect of alternate uniform straining on the development
of a wake. The maximum velocity deficit in the wake, averaged over a positive and
negative straining region, which we define as 〈Uw〉 = (l1Y2n+1Ω2n+1 + l2Y2nΩ2n)/(l1 + l2)
is reduced slightly for the case of a wide wake, where 〈Uw〉/Uw0 ∼ l2/(l1 + l2), whereas
for an initially narrow wake, the decrease is significant and is estimated to vary as
〈Uw〉/Uw0 ∼ l2Ỹ0/((l1 + l2)

3/2(nS/2)1/2 � 1. Moreover, although the volume flux in
the wake is recovered after a combination of positive and negative straining, the
average volume flux over the intervals is small owing to the action of the positive
strain, where 〈Q〉/Q0 ∼ 1/S2 � 1.
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Figure 4. Demonstration of the non-ergodic nature of the straining field, where the straining rate is
either initially positive or negative, and the initial width and strength of the wake is the same. The
ratio between the maximum and minimum flow speed which is straining the flow is 9 and the length
of the straining sections are chosen to be l1/l2 = 1. In (a) the wake width is shown as a function

of distance. The width is normalized by
√
ν/α where α > 0 is the positive straining rate associated

with a sequence of alternate straining sections. In (b) the vorticity magnitude is normalized by its
initial value. The figure shows the significant influence of the initial straining field, particularly when
the wake is initially narrow.

When the strain rate of the initial segment of the flow is negative (i.e. α1 < 0), the
wake width initially grows significantly with distance and the volume flux increases.
When 0 < S � 1, the asymptotic expressions developed for the case of an initially
wide wake, (4.7), are still applicable. For an initially narrow wake, (4.4) and (4.5) apply,
but with the modification that the expressions for Ỹ2n and Ỹ2n+1 are interchanged.
These results show that the development of a wake is sensitive to the order in which
the strain rates are applied to the flow, as indicated in figure 4, so that a random
sequence of straining is a non-ergodic process.

4.2. Vorticity cancellation due to wake interaction

The effect of positive strain is to confine the wake, enhancing vorticity cancellation,
leading to the disappearance of the wake and reduction in the volume flux. The
effect of wake confinement, by bounding walls or through wake–wake interaction
with neighbouring bodies, also leads to vorticity cancellation. The calculation is
straightforward but the results are important. Consider the effect of a series of
parallel planar laminar wakes, separated by a distance h and advected by a mean
speed UE = (U0, 0). According to (2.3), the vorticity development is described by

U0

∂ω

∂x
= ν

∂2ω

∂y2
. (4.7)

Because of the effect of the bounding walls, or by symmetry,

∂ω

∂y
= 0, (4.8)

at y = ± 1
2
h. The body is located on the centreline, y = 0. Applying the method of

separation of variables and using the flow symmetry about y = 0, shows that the
vorticity is

ω(x, y) =

∞∑
n=1

an sin

(
2nπy

h

)
exp

(
−4n2π2xν

h2U0

)
. (4.9)
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The volume flux associated with the flow (4.9) is

Q(x) = −2

∫ h/2

0

yωdx = −
∞∑
n=1

2an(−1)n+1

nπ
exp

(
−4n2π2xν

h2U0

)
. (4.10)

Thus, the volume flux decays rapidly over a characteristic distance

U0h
2

4π2ν
, (4.11)

corresponding to the time it takes for vorticity to diffuse laterally across a channel of
width h.

When the bodies are arranged in a square lattice (e.g. Rollet-Miet et al. 1999),
separated by a distance h, and the flow past them is characterized by a Reynolds
number Reb = U0D/ν, the downstream distance beyond which the flow is irrotational,
expressed in relative size of the body separation is O(Reb(h/64D)). Combining §§ 4.1
and 4.2 shows first that complex straining typically leads to an effective widening of
wakes and enhanced decay of vorticity, and secondly, where wakes diffuse into one
another, the vorticity decays quite quickly over a distance of order Reb(h/64D).

5. Concluding remarks
In this paper, we have examined the widespread phenomenon of wake disappear-

ance, which occurs when the wake is confined, due to the action of a positive straining
field, or to wakes diffusing into one another or through the effect of walls. The same
processes occur in both laminar and turbulent flows. We have also examined the
effects of a sequence of positive and negative large-scale strains, and shown that these
broaden the wake greatly but do not necessarily reduce the peak velocity or momen-
tum flux in the wake. Their average effect is not like that of extra eddy diffusion; in-
deed, there may be a transfer of momentum flux to the wakes from the straining flows.

With constant positive strain, the volume flux in the wake decreases rapidly with
downstream distance until the flow ultimately becomes irrotational, and the far-field
flow is dipolar. The strength of the dipolar component is a combination of that
resulting from the body in an unstrained flow, and a second new contribution due
to the straining field. In a positively strained flow, the drag force on the body is
now no longer proportional to the volume flux far downstream (which eventually
tends to zero), but is determined by the momentum flux arising from the dipolar flow
field. The total drag is essentially the sum of the viscous drag in uniform flows and
the inviscid force arising from the straining flow. This analysis shows why viscous
and inviscid forces may be superposed for moderate rates of external strain, which
is consistent with the flow computations of Magnaudet, Rivero & Fabre (1995) and
two-phase flow models used in practice.

Even in unstrained flows, the wakes of bodies experience some straining caused
by the flow over the body in the near field. This effect may be so large (if Ỹ � 1)
as in the case of bubbles and localized impulsive motions such as vortex rings, that
the momentum flux of the downstream wake ρQ(0)U0 is much less than the drag
on the object. In that case, Betz’s formula for the drag is invalid and the drag is
determined by laminar (or turbulent stresses) induced by the external flow, and by
any entrainment processes across the control surface.

Disappearance and rapid annihilation of vorticity occurs in a number of different
environmental flows. Isolated monopolar vorticities in the ocean which are char-
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acterized by an intense vortical core and surrounded by opposite signed vorticity
(Kloosterziel 1990), decay rapidly owing to the diffusing of the inner core into the
outer ring of opposite signed vorticity. When eddies are moving relative to the sur-
rounding fluid, such as those in turbulent flows, they shed vorticity (e.g. Turner 1973;
Rottman, Simpson & Stansby 1987) and the mechanism of vorticity cancellation
described in this paper means that the influence of the wake of the eddies or coherent
structures downstream are generally negligible, so that they may be analyzed locally
(except for their effect on the mean flow) and their downwind influences can be
neglected.

The results in this paper, when applied to flow through groups of bluff bodies and
eddies, indicate that the wakes tend to disappear because of vorticity cancellation
due to the effect of strain and wake–wake interaction, but which process dominates
depends on the pattern of the obstacles (or eddies). For staggered patterns of obstacles,
the wakes’ disappearance is determined by vorticity cancellation, whereas for in-line
patterns, it is determined more by wake–wake interaction. For a random distribution,
the distribution of the first rows may have a permanent effect, because the flows are
not ergodic. The results, which need to be extended to the case where finite strains
are applied over a limited extent of the wake, give a theoretical foundation for the
assumption that the force on each object in relation to the local flow may be only
weakly affected by wakes of upwind objects. It is important to note, however, that
the entire flow field is affected by forces on all objects, and their combined effect may
be estimated in terms of the distributed force exerted by collections of objects on the
flow (Jerram, Belcher & Hunt 1997).
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Appendix A

The equivalence between the similarity solution and an exact solution to (2.3) is
demonstrated here. The vorticity distribution downstream of a rigid body is assumed,
say, to be of the form,

ω(y)

Ω(0)
= − y

( 1
2
π)1/2Y (0)

exp

(
− y2

2Y (0)2

)
, (A 1)

which is located at the origin φ0 = 0 and the initial size of the wake is assumed to be
much smaller than (ν/|α|)1/2, that is Y (0) � (ν/|α|)1/2. At the origin, ψ′ = U0y. The
downstream vorticity is thus

ω

Ω(0)
= −

∫ ∞
−∞

y

Y (0)
exp

(
− y2

2Y (0)2
− (U0y − ψ)2

4νφ

)
( 1

2
π)1/2
√

4πφν
U0dy. (A 2)
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The above equation may be integrated exactly to give

ω

Ω(0)
= − U2

0ψ

( 1
2
π)1/2Y (0)(U2

0 + 2νφ/Y (0)2)3/2
exp

(
− ψ2

4νφ
+

ψ2U2
0

4νφ(U2
0 + 2νφ/Y (0)2)

)
.

When α > 0, the streamfunction ψ → αxy while the velocity potential φ → 1
2
αx2, in

which case

ω

Ω(0)
→ −Y (0)2α

ν

y

( 1
2
π)1/2(ν/α)1/2

1

(αx/U0)2
exp

(
− y2

2ν/α

)
, (A 3)

which is identical to the similarity solution (2.18) and (2.21) in the limit αx/U0 � 1.
When α < 0, the downstream vorticity tends to

ω

Ω(0)
→ − y

( 1
2
π)1/2Y (0)/(1 + αx/U0)

exp

(
− y2

2Y (0)2/(1 + αx/U0)2

)
, (A 4)

thus the width of the wake spreads as Y (0)/(1+αx/U0) while the peak vorticity tends
to a constant value, consistent with (2.24).

Appendix B
The volume flux associated with the laminar wake of a flat plate is calculated from

integral constraints placed on the flow. The volume flux (associated with the wake)
is a function of downwind distance and is denoted by Qw(x), where x is the distance
from the RSP. The volume flux ultimately tends to the value Q(0) which denotes the
volume flux far downwind of the body.

The laminar flow (u, v) past a flat plate is described, to leading order, by

∂u2

∂x
+
∂uv

∂y
= ν

∂2u

∂y2
, (B 1)

where gradients of pressure parallel to the plate are negligible because the streamlines
are parallel. Writing

M(x) =

∫ ∞
−∞

(u2 −U2
0 )dy,

the momentum equation (B 1) may be expressed as

dM
dx

= −
[
uv + ν

∂u

∂y

]0+

y=0−
(B 2)

On the centreline, there is no vertical flow and v = 0. When the vertical surface, over
which the integration over y takes place, does not cut the plate, the right-hand side of
(B 2) is zero because the shear-free condition ∂u/∂y = 0 applies. However, when the
vertical line over which the integration is taken, cuts the plate, the right-hand side of
(B 2) is non-zero owing to the shear stress adjacent to the plate surface. From (B 2),
we find that downwind of the plate (x > 0), M is constant so that

M(x) = −
∫ ∞
−∞

2U(U0 − u)dy +

∫ ∞
−∞

(u−U0)
2dy = C,

where C is a constant. The first term on the right-hand side is linear in velocity, and
is equal to the sum of the positive volume flux associated with the wake (Qw(x)) and
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the associated volume flux associated with a source term (qs(x)), so that

Qw(x)− qs(x) =
1

2U0

∫ ∞
−∞

(u−U0)
2dy + C. (B 3)

Downwind of the RSP, the volume flux in the wake and the source are related (by
the conservation of the mass) through

qs(x) = 1
2
Qw(x),

where the factor of 1
2

arises because the source also generates an upstream volume
flux qs. Far downwind, the right-hand side of (B 3) tends to a constant value C ,
because the square of the velocity deficit tends to zero faster than the wake spreads,
while the left-hand side tends to 1

2
Q(0). Thus, the volume flux in the wake is

Qw = Q(0) +
1

U0

∫ ∞
−∞

(u−U0)
2dy, (B 4)

which decreases monotonically with downstream distance.
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