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Abstract. This paper treats a simple model, which can be exactly solved,
motivated by the back-and-forth motion of ocean bacteria. In particular, the
probability is determined that a bacterium moving randomly along a fluid
line through the origin in a linear shear flow hits the origin before time t.

§1. Introduction. Many ocean bacteria do not use the much studied ‘run-
and-tumble’ motion, but rather a ‘back-and-forth’ motion [3]. In this study,
we consider a simplified system, motivated by the back-and-forth motion of
ocean bacteria in a linear shear flow, for which an exact solution is possible.
This solution is of some interest in its own right, and would also be useful in
testing numerical code for more realistic models.

Luchsinger et. al. [3] compare the effectiveness of the run-and-tumble
motion and the back-and-forth motion in simple linear-flow models of the
turbulent marine environment. They conclude that the back-and-forth
motion is better at keeping the bacterium in a nutrient rich patch than the
run-and-tumble motion would be.

In this study however, we consider the motion of a bacterium in a linear
shear flow on a length scale that is much larger than the individual back-and-
forth steps and investigate the distance of the bacterium as a function of time
from a point on the line of the bacterium’s motion, but we ignore rotational
diffusion of the bacterium. In effect, we study the effectiveness of this motion
as a search strategy.

Other related work considers the energetics of bacterial motion, and in
particular the influence of body size [4].

§2. The model. Throughout, we assume a flow field vðx; yÞ ¼ ð0; �xÞ in
Cartesian coordinates, where � is the shear rate. It does not appear that the
exact result given below extends easily to a general linear flow. We assume a
frame in which the point ‘food source’ is at the origin, so in this frame it is
fixed for all time. We further suppose that the back-and-forth motion has
sufficiently small steps that we can replace it by a Brownian motion on a line
that moves with the flow and passes through the origin.

Both rigid and flexible bodies tumble in a linear shear flow (see [1, 2, 5]), but
elongated bodies, for example a rod-like body, move approximately like a fluid
line element for a significant part of the cycle, and we shall consider the motion
only in that phase of the motion. For an axisymmetric ellipsoid, with aspect
ratio r, the period of the tumbling motion is

T ¼ 2�ðrþ r�1Þ=�; ð1Þ
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and we therefore need to assume that t � T , where T is the tumbling time for
the bacterium (see [1]). For a more detailed discussion of the various timescales
for the motion of a flexible body in a shear flow, which in their case is a polymer
molecule, see [5].

Our main goal is to find the probability that such a bacterium, which is
moving along a correctly oriented line, has of reaching the origin by time t.

Countless important effects have been ignored, such as drift (or a bias to the
motion), rotational diffusion of the bacterium and the finite step size, but the
inclusion of any of these would rob us of the exact solution.

Since the bacterium diffuses along a line through the origin that is advected
by the shear flow, the angle �t of this line to the x axis is changed only by the
advection, and we find that

tan �t ¼ �tþ tan �0: ð2Þ

If the bacterium hits the origin, then the process is stopped; otherwise, the
position ðX ;YÞ of the bacterium satisfies the Itô equation

dXt ¼ cosð�tÞ�dWt; dYt ¼ sinð�tÞ�dWt þ �Xtdt; ð3Þ

whereW is standard Brownian motion and � is a constant. The diffusivity along
the line through the origin is D � 1

2�
2.

The probability �tðx; yÞ of hitting the origin by time t for a bacterium, start-
ing at ðX0;Y0Þ ¼ ðx; yÞ, can also be expressed in the form of a partial differential
equation

@�

@t
¼ D

@2�

@r2
þ �x

@�

@y
; ð4Þ

where r � ðx2 þ y2Þ1=2; the initial condition is

�0ðx; yÞ ¼
1; if ðx; yÞ ¼ ð0; 0Þ;
0; otherwise;

�
ð5Þ

and the boundary conditions are �tð0; 0Þ ¼ 1 and �t is bounded for all t5 0.
However, it is a little easier to use stochastic calculus to solve this problem.

2.1. The exact solution. First note that

ðdXtÞ2 ¼ �2 cos2ð�tÞdt ¼ ��1�2d�t: ð6Þ

Thus

Xt ¼
d
��1=2�Bð�tÞ; ð7Þ

where B is a standard Brownian motion, and ‘¼d ’ means ‘equal in law’. So X is a
pure Brownian motion in terms of a ‘time’ �t. (The situation is more complex in
the case of general linear flow.)

Changing to plane polar coordinates, the position of the bacterium ðR; �Þ is
given by

Rt ¼
d
��1=2�Bð�tÞ sec �t: ð8Þ
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Using (2), the distance from the bacterium to the origin can be written as

Rt ¼
d
��1=2� 1þ ð�tþ tan �0Þ2

� �1=2
Bðarctanð�tþ tan �0ÞÞ: ð9Þ

Provided that X0 > 0, the event of the bacterium hitting the origin is
equivalent to Xt ¼ 0. So, applying the reflection principle to (7) and using (2),
we find that

�tðx; yÞ ¼ erfc x 4D��1ðarctanð�tþ y=xÞ � arctanðy=xÞÞ
� ��1=2

h i
ð10Þ

for x > 0. The solution in x < 0 follows from the symmetry �tð�x;�yÞ ¼
�tðx; yÞ, and at x ¼ 0 by the obvious limit.

2.2. The long-time limit of the exact solution. Also of interest is the
probability of ever hitting the origin, namely,

!ðx; yÞ � lim
�t!1

�tðx; yÞ ¼ erfc x

�
4D��1

�
�

2
� arctanðy=xÞ

���1=2
" #

; ð11Þ

with D��1 fixed.
Notice that limx # 0 !ðx; yÞ ¼ 1 for all y, which is to be expected as the line

x ¼ 0 is unaffected by the flow, and that !ðx; yÞ < 1 elsewhere.

§3. Conclusion. The analytical result for the probability of a bacterium
hitting the origin before time t when moving randomly along a fluid line
through the origin is likely to be useful in improving estimates of stages of
more complex models of ocean bacterial motion. Also, it should help to
determine the benefits of the back-and-forth motion as opposed to the run-
and-tumble motion, even though we have considered a somewhat simplified
model.

It seems unlikely that exact solutions exist for much more complex, or more
realistic, models. It might be possible, however, to include some of the neglected
effects, for example, rotational diffusion or a bias to the motion, using
asymptotic methods. Even the extension to a general linear flow appears to
be algebraically much more complex.

Also, such exact solutions provide useful checks on more realistic numerical
models.
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