
Journal of Fluid Mechanics
http://journals.cambridge.org/FLM

Additional services for Journal of Fluid Mechanics:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

Turbulent channel flow near maximum drag reduction: 
simulations, experiments and mechanisms

P. K. PTASINSKI, B. J. BOERSMA, F. T. M. NIEUWSTADT, M. A. HULSEN, B. H. A. A. VAN DEN 
BRULE and J. C. R. HUNT

Journal of Fluid Mechanics / Volume 490 / September 2003, pp 251  291
DOI: 10.1017/S0022112003005305, Published online: 19 August 2003

Link to this article: http://journals.cambridge.org/abstract_S0022112003005305

How to cite this article:
P. K. PTASINSKI, B. J. BOERSMA, F. T. M. NIEUWSTADT, M. A. HULSEN, B. H. A. A. VAN DEN 
BRULE and J. C. R. HUNT (2003). Turbulent channel flow near maximum drag reduction: 
simulations, experiments and mechanisms. Journal of Fluid Mechanics, 490, pp 251291 
doi:10.1017/S0022112003005305

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/FLM, IP address: 144.82.107.20 on 19 Oct 2012



J. Fluid Mech. (2003), vol. 490, pp. 251–291. c© 2003 Cambridge University Press

DOI: 10.1017/S0022112003005305 Printed in the United Kingdom

251

Turbulent channel flow near maximum
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It is well known that the drag in a turbulent flow of a polymer solution is significantly
reduced compared to Newtonian flow. Here we consider this phenomenon by means
of a direct numerical simulation of a turbulent channel flow. The polymers are
modelled as elastic dumbbells using the FENE-P model. In the computations the
polymer model is solved simultaneously with the flow equations, i.e. the polymers are
deformed by the flow and in their turn influence the flow structures by exerting a
polymer stress. We have studied the results of varying the polymer parameters, such
as the maximum extension, the elasticity and the concentration. For the case of highly
extensible polymers the results of our simulations are very close to the maximum drag
reduction or Virk (1975) asymptote. Our simulation results show that at approximately
maximum drag reduction the slope of the mean velocity profile is increased compared
to the standard logarithmic profile in turbulent wall flows. For the r.m.s. of the
streamwise velocity fluctuations we find initially an increase in magnitude which
near maximum drag reduction changes to a decrease. For the velocity fluctuations
in the spanwise and wall-normal directions we find a continuous decrease as a
function of drag reduction. The Reynolds shear stress is strongly reduced, especially
near the wall, and this is compensated by a polymer stress, which at maximum
drag reduction amounts to about 40% of the total stress. These results have been
compared with LDV experiments of Ptasinski et al. (2001) and the agreement, both
qualitatively and quantitatively, is in most cases very good. In addition we have
performed an analysis of the turbulent kinetic energy budgets. The main result is a
reduction of energy transfer from the streamwise direction, where the production of
turbulent kinetic energy takes place, to the other directions. A substantial part of the
energy production by the mean flow is transferred directly into elastic energy of the
polymers. The turbulent velocity fluctuations also contribute energy to the polymers.
The elastic energy of the polymers is subsequently dissipated by polymer relaxation.
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Netherlands.
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We have also computed the various contributions to the pressure fluctuations and
identified how these change as a function of drag reduction. Finally, we discuss some
cross-correlations and various length scales. These simulation results are explained
here by two mechanisms. First, as suggested by Lumley (1969) the polymers damp
the cross-stream or wall-normal velocity fluctuations and suppress the bursting in the
buffer layer. Secondly, the ‘shear sheltering’ mechanism acts to amplify the streamwise
fluctuations in the thickened buffer layer, while reducing and decoupling the motions
within and above this layer. The expression for the substantial reduction in the wall
drag derived by considering the long time scales of the nonlinear fluctuations of this
damped shear layer, is shown to be consistent with the experimental data of Virk
et al. (1967) and Virk (1975).

1. Introduction
The character of turbulence in a dilute polymer solution differs substantially from

that in Newtonian fluids. Since the discovery by Toms (1949) that addition of a
small amount of long-chain polymers to a turbulent pipe or channel flow results in a
significant reduction of frictional drag, this phenomenon has attracted much attention
both from the applied and fundamental point of view. Since turbulence consists of
a large range of spatial scales, one might expect that because of their small size
polymers could only influence the smallest or micro-scales of turbulence by changing
the effective viscosity and that flow processes which primarily depend on the large
macro-scales would remain unaffected. However, the effect of drag reduction implies
that the polymers are able to fundamentally change the large-scale turbulent statistics
and structures, especially in the buffer layer. Despite this phenomenon being well
known for more than 50 years and widely applied in practice, a convincing physical
explanation and quantitative models are both still lacking.

Over the past 50 years numerous papers have been written, discussing experimental,
numerical and theoretical aspects of the subject. For a general review the reader is
referred to Lumley (1969) and to the more recent work of Gyr & Bewersdorff (1995).
Two principal theoretical concepts have been put forward to explain the phenomenon
of drag reduction by polymers. The first can be attributed to Lumley (1969, 1973), who
proposed a mechanism based on the extension of the polymers. He postulated that
stretching of randomly coiled polymers, primarily in regions with strong deformations
such as the buffer layer, increases the effective (extensional) viscosity. The result is
damping of small eddies, a thickening of the viscous sublayer and consequently drag
reduction. Lumley also mentions that the influence of the polymers on the turbulence
only becomes important when the time scale of the polymers (e.g. the relaxation time)
becomes larger than the time scale of the flow, which is known as the onset of drag
reduction. The second theory, attributed to de Gennes (1990), is that drag reduction
is caused by the elastic rather than the viscous properties of polymers. This idea is
supported by experiments showing that drag reduction also occurs when the polymers
have been injected in the centre of the pipe (e.g. McComb & Rabie 1979, 1982).
However, these authors establish that in these cases drag reduction is a wall effect
localized in the buffer layer. De Gennes’ explanation is that the shear waves which
are caused by the elasticity of the polymers prevent production of turbulent velocity
fluctuations at the small scales. Both theories, however, are somewhat qualitative and
they fail to explain the dynamics of wall turbulence quantitatively.
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A major result in polymer drag reduction was obtained by Virk et al. (1967),
Virk, Mickley & Smith (1970) and Virk (1975). They observed that the amount of
drag reduction is limited by an empirical asymptote, called the mean drag reduction
asymptote (MDR) or Virk asymptote. This means that for each value of the Reynolds
number the friction is limited by a lower bound. The asymptote was originally
proposed for polymer solutions, for which the shear viscosity could be taken as
constant and equal to that of the solvent, but by a small modification of the Reynolds
number it can be generalized to more concentrated solutions for which the viscosity
of the solution is no longer constant (Gyr & Bewersdorff 1995, p. 105).

From the various other experimental contributions that have been published we
should mention here Laser Doppler Velocimetry (LDV) measurements in channel flow
(Harder & Tiederman 1991; Wei & Willmarth 1992; Willmarth, Wei & Lee 1987)
and pipe flow (Pinho & Whitelaw 1990; den Toonder, Nieuwstadt & Kuiken 1995;
den Toonder et al. 1997). In all these experiments similar changes are observed
for mean velocity, turbulence intensities and Reynolds stresses. However, these
experiments have all been carried out in dilute polymer solutions for which the
amount of drag reduction is not near the MDR. Experimental data at higher values
of drag reduction are reported by Gampert & Yong (1989) for duct flow and by
Warholic, Massah & Hanratty (1999a) and Warholic et al. (2001) for channel flow.
The latter suggest that for maximum drag reduction the Reynolds stress almost
vanishes and this has the implication that polymers produce rather than dissipate
turbulent kinetic energy. Ptasinski et al. (2001) have carried out pipe flow experiments
close to the MDR. Their main result is that the addition of polymers significantly
modifies the turbulence statistics. They also find that the turbulent shear stress is
substantially suppressed but that it remains definitely non-zero. The decrease of the
turbulent stresses is primarily compensated by an increase of the polymer stresses.
We will discuss these experiments in more detail in connection with the presentation
of our simulation results. Other experiments indicate that polymer additives suppress
the appearance of strong vortices and reduce the formation of large eddies (Bonn
et al. 1993; Cadot, Douady & Couder 1995; Douady, Couder & Brachet 1991).

With increasing computer capabilities and the development of advanced viscoelastic
models, it has become possible to perform direct numerical simulations (DNS) of
turbulent drag reducing flows. The advantage of this approach is that one can
more easily isolate and study the effect of various polymer properties (like elasticity,
stretching and concentration) on the flow. Moreover, simulations provide quantities
like pressure and two-point correlations which are difficult to obtain experimentally
and which offer additional insight into the mechanism of polymeric drag reduction.
Generally it is assumed that polymers in turbulent flow must be highly stretched before
they can effectively change the turbulence (Hinch 1977). Based on this assumption,
Orlandi (1995) performed a direct numerical simulation by coupling the extensional
viscosity to the local deformation of the flow and by proposing an anisotropic stress
model. A similar approach was used by den Toonder et al. (1995, 1997) who confirm
that a high elongational viscosity is important. In these studies it is assumed that a
highly stretched polymer orients itself into the flow direction while exerting a viscous
anisotropic stress in this direction.

These simulations lead to drag reduction and have been able to confirm the
experimental observations at least qualitatively. However, these models are still quite
simple and for instance do not take relaxational effects of the polymers into account.
Massah et al. (1993) and Massah & Hanratty (1997) studied the configurational
changes of single polymer molecules in simple rheological shear and elongational
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flows and in turbulent flows by representing the polymers as FENE bead–spring
chains. These studies reconfirm the unraveling of the polymers by strong straining
deformations. In addition they show that the polymer configuration changes mainly
in the buffer layer and that polymers introduce additional stresses associated with
their stretching. However, in these simulations only the influence of the turbulence
on the polymers is considered and not the effect of the polymers back on the
flow. Sureshkumar, Beris & Handler (1997) and Dimitropoulos, Sureshkumar &
Beris (1998) have performed a DNS in combination with a more realistic polymer
model, the so-called FENE-P model, which we will discuss in detail in the following.
These simulations, which have been carried out for cases representative of dilute
polymer concentrations, predict a drag reduction and a change in turbulence statistics
comparable to what is found in the experiments. They also provide some criteria
for the onset of drag reduction. The FENE-P model could also be applicable to
fibres which cause drag reduction (McComb & Chan 1985), though the effect is
different than for polymers since fibres are stiff and cannot be extended from a coiled
configuration.

No numerical simulations have been performed for the high drag reduction regime,
although the results of Warholic et al. (1999a , 2001) and Ptasinski et al. (2001)
indicate that the polymer behaviour near the maximum drag reduction asymptote
has major consequences for the turbulence. Therefore, in the current study we have
performed direct numerical simulations of turbulent channel flow with polymers close
to the maximum drag reduction or Virk asymptote. We are able to reach this regime
by use of a rather high Reynolds number, together with high polymer concentrations
and strongly extensible polymers. Our objective is to interpret the effects of polymers
on turbulence in this regime and to suggest a mechanism for the drag reduction. We
compare our findings with those obtained for Newtonian flow and with experimental
data obtained at large drag reduction, in particular the data of Ptasinski et al. (2001).
Furthermore, we focus on the polymer contribution to the total stress and discuss its
influence on the kinetic energy of the mean flow and the turbulence. We also consider
the budget of the elastic energy of the polymers. Finally, we discuss cross-correlations
and various length scales in the flow and set up a hypothesis for a buffer layer
mechanism to explain the behaviour of the friction coefficient near the maximum
drag reduction asymptote.

The outline of this paper is as follows. In § 2 we describe the governing equations
for the flow and the constitutive equations for the FENE-P model. The numerical
procedures of the simulations and the numerical parameters of the flow, the polymers
and the geometry are given in § 3. In § 4 we present the results for the flow statistics,
such as first- and second-order velocity statistics, extension of the polymers and
various shear stress contributions together with a comparison with experiments of
Ptasinski et al. (2001). In § 5 we focus on the kinetic energy and its connection with
the elastic energy of the polymers. In § 6 we deal with the pressure and its influence
on the flow. In § 7 we discuss cross-correlations and various length scales and the
behaviour of the friction coefficient in the high drag reduction regime. Finally the
main conclusions are drawn in § 8.

2. Governing equations
We consider the isothermal flow of an incompressible fluid in an orthogonal

Cartesian coordinate system (x, y, z) for the streamwise (mean flow), spanwise and
wall-normal directions respectively. The general equations are given by the continuity
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equation and the equation for the conservation of momentum:

∇ · u = 0, (2.1)

ρ
Du
Dt

≡ ρ
∂u
∂t

+ ρu · ∇u = −∇p + ∇ · τ . (2.2)

In these equations u is the velocity vector, t is the time, ρ is the density and τ is
the total extra stress tensor. D/Dt denotes the material derivative. The fluid that we
consider is a polymer solution, which is a mixture of a Newtonian solvent in which
long-chain linear polymer molecules are dissolved. In order to obtain a full solution,
a relation is needed between the stress and the deformation history. To this end we
take the total stress to be the sum of a Newtonian part due to the solvent (τ (s)) and
a non-Newtonian part due to the polymers (τ (p)) according to

τ = τ (s) + τ (p) = βη0(∇v + (∇v)T) + τ (p), (2.3)

where β = ηs/η0, the ratio of the solvent viscosity ηs to the total zero-shear-rate
viscosity of the solution η0.

The polymer contribution to the stress (τ (p)) must be related to the flow field and
to the polymer configuration. For this a polymer model is needed which is able to
describe the polymer dynamics in a turbulent flow realistically. Here, we consider
the so-called elastic dumbbell model, which has its origin in kinetic theory (Bird
et al. 1987). In this theory the polymers are considered as small mechanical objects
(the dumbbells) and this allows us to calculate rheological properties such as the
stress–strain relationship. The elastic dumbbell is represented by two spherical beads
with mass m connected by a non-bendable spring. The configuration of a dumbbell
is fully specified by its length and its direction, which is represented by the vector
Q. Although molecular architecture and internal configurations are neglected, the
model contains two essential characteristics of linear polymers, namely orientability
and stretchability. These properties are essential to describe the rheological properties
of the polymer solution.

The polymer stress tensor consists of a contribution from the intramolecular
potential (the connecting spring) and a contribution from the motion of the beads.
From kinetic theory, the so-called Kramers expression for this stress can be derived
(Bird et al. 1987, p. 69). It consists of an isotropic equilibrium value and a deviation
from this equilibrium value due to flow. Only the latter is dynamically significant and
is therefore the extra polymeric stress τ (p) introduced in (2.3). It is given by

τ (p) = −nkT I + n
〈

Q F(c)
〉
, (2.4)

where n is the number of polymers per unit volume, k is the Boltzmann constant, T

is the absolute temperature and F(c) is the retractive force of the spring. The brackets
〈· · ·〉 denote an average over the distribution function which gives the probability of
all dumbbell configurations. In a condition of no flow (2.4) reduces to zero.

The dumbbells are convected through the flow and are deformed by forces due
to straining by the flow. Convection is related to the motion of the centre of mass
of the dumbbells while the deformation changes the dumbbell configuration, i.e. the
orientation and the separation of the beads. From these forces equations of motion for
the beads can be derived and this leads to an evolution equation for the conformation
tensor 〈 Q Q〉. The forces experienced by the beads are the hydrodynamic Stokes drag
force, the force due to Brownian motion (because of thermal fluctuations the beads
experience rapid and irregular accelerations) and the spring or connector force, which
is the result of the intramolecular potential of the dumbbell. Inertia is neglected
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because of the small mass of the beads and their slow motion through the solvent.
The evolution equation for the conformation tensor 〈 Q Q〉 is

D〈 Q Q〉
Dt

≡ ∂〈 Q Q〉
∂t

+ u · ∇〈 Q Q〉

= ∇u · 〈 Q Q〉 + 〈 Q Q〉 · (∇u)T +
4kT

ζ
I − 4

ζ

〈
Q F(c)

〉
. (2.5)

On second line of the right-hand side, the first two terms represent deformation by
hydrodynamic forces, the third term refers to Brownian motion and the fourth term
is the elastic retraction of the spring. The parameter ζ is the Stokes friction coefficient
of the beads.

Up to now we have discussed the elastic dumbbell theory without specifying the
connector force. One of the most common and realistic models is based on a finitely
extensible nonlinear elastic (FENE) spring which was introduced by Warner (1972).
In this paper, we use a modification of the FENE model proposed by Bird, Dotson
& Johnson (1980), which is called the FENE-P model. For the FENE-P model the
connector force F(c) is

F(c) =
H Q

1 − 〈Q2〉/Q2
0

, (2.6)

where H is the spring constant, Q0 is the maximum separation of the beads and
〈Q2〉 = tr〈 Q Q〉 is the ensemble squared averaged length of the polymer. This pre-
averaging in the de-nominator of equation (2.6), which is known as the Peterlin
approximation and which distinguishes the FENE-P from the FENE model, allows
us to obtain a closed-form expression for (2.4) for the polymer stress τ (p) in terms of
〈 Q Q〉 for which a separate closed-form equation (2.5) is available.

Let us scale the dumbbell vector with the length
√

kT /H , so that Q̃ = Q/
√

kT /H .
This allows us to introduce a dimensionless length parameter b = HQ2

0/kT . Further-
more we introduce the relaxation time of the dumbbell λ= ζ/4H and the conformation
tensor c= 〈 Q̃ Q̃〉. Equations (2.4) and (2.5) combined with the dumbbell force (2.6)
then lead to the following equations for the polymer stress:

τ (p) = nkT (−I + f c) (2.7)

and
∂c

∂t
= −u · ∇c + ∇u · c + c · (∇u)T +

1

λ
(I − f c) , (2.8)

with

f =

(
1 − 1

b
trc

)−1

. (2.9)

We find that the polymer stress is characterized by three parameters: the relaxation
time λ, the length parameter b and the parameter nkT which is related to the viscosity
ratio β . The relation between β and the parameter nkT (determining the polymer
concentration) is used in order to compute the polymer stress in (2.7) and according
to Wedgewood & Bird (1988) is

ηp = (1 − β)η0 = nkT λ
b

b + 3
. (2.10)

where ηp is called the polymer viscosity. The conservation equations (2.1)–(2.3)
together with (2.7)–(2.9) form a closed set of equations and their numerical solution
will be discussed in the next section.
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3. Numerical algorithm and parameters
3.1. Computational procedures

For the numerical solution we discretize equations (2.1), (2.2) and (2.8) on a three-
dimensional grid and integrate them in time. The flow geometry is a channel with
height H and the flow is considered to be fully turbulent. The wall shear stress is τw

from which we obtain the friction velocity u∗ =
√

τw/ρ with ρ the fluid density. Let us
introduce dimensionless variables, x̃ = x/H , ũ = u/u∗ and t̃ = tu∗/H . The pressure and
the polymer stress tensor are made dimensionless with ρu2

∗. This gives the following
equation for the conservation of momentum:

∂ ũ
∂t̃

= −ũ · ∇̃ũ − ∇̃p̃ + β
1

Re∗
∇̃2ũ + ∇̃ · τ̃ (p). (3.1)

where Re∗ = ρu∗H/η0 is the Reynolds number. The evolution equation for the
conformation tensor becomes

∂c

∂t̃
= −ũ · ∇̃c + ∇̃ũ · c + c · (∇̃ũ)T +

1

λ̃
I︸ ︷︷ ︸

G(u,c)

−1

λ̃
f c︸ ︷︷ ︸

H (c)

, (3.2)

where λ̃ = λu∗/H is the dimensionless relaxation time. Note that the tensor c = 〈 Q̃ Q̃〉
is already dimensionless. From now on we will drop the tilde symbol and consider
these equations in their non-dimensional form only.

The system of equations is discretized using a pseudospectral method in the
streamwise (x) and spanwise (y) directions and a finite difference method in the wall-
normal (z) direction. Periodic boundary conditions are applied in the two homo-
geneous directions and no-slip boundary conditions on the two channel walls. We use
a staggered grid, so that the pressure and the x- and y-velocity components are deter-
mined in the centres of the gridcells, while the z-velocity component is determined at
the cell walls. For the conformation tensor c and the polymer stress tensor τ (p) we
define the xz- and yz-components at the cell walls and the other four components in
the cell centres. In this way we obtain an accurate discretization of all gradients in
the wall-normal direction.

The integration of the discretized equations does not necessarily produce a positive
definite value for the tensor c. However, positive definiteness of this tensor is
essential (see Dupret & Marchal 1986) as it is related to the (positive) length of
the polymers. The violation of this constraint may occur in the numerical solution
of time-dependent viscoelastic flow problems and becomes worse as elasticity effects
become more important. To avoid this problem a small artificial diffusive term is
added to the equation for the conformation tensor in order to improve the stability
of the computations (see Sureshkumar et al. 1997). More precisely, we add an extra
term κ/(u∗H ) ∇2c to term G (u, c) of equation (3.2). The diffusivity κ should be
small compared to the relaxational diffusivity H 2/λ, or κλ/H 2 � 1. Furthermore the
effect of this diffusive term should approach zero when the grid size and time step
decrease. In our case we have taken κ/(u∗H ) = 1.2 × 10−2. It should be stressed that
the introduction of the artificial stress diffusivity is necessary for numerical stability
reasons only. In the Appendix we study the effect of varying this diffusivity for
selected results and show that a small variation does not significantly modify our
results. A detailed analysis on the addition of the stress diffusivity has been performed
by Sureshkumar & Beris (1995) and Sureshkumar et al. (1997), who used a value of
κ/(u∗H ) = O(10−2).
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The momentum equations are integrated in time using a second-order Adams–
Bashforth method for the advective, diffusive and polymer terms with the standard
pressure correction method to enforce continuity. The time step is determined using
the Courant criterion.

For the integration of the discretized equation for the polymer conformation tensor,
which is solved simultaneously with the continuity and the momentum equations, we
use a second-order Adams–Bashforth scheme for the advection and the deformation
due to the flow and a second-order Adams–Moulton scheme for the FENE-P force
in order to prevent the dumbbells from exceeding their maximum length, i.e. trc < b.
This leads to the following discrete equation:

cn+1 = cn + �t
(

3
2
Gn − 1

2
Gn−1 + 1

2
Hn + 1

2
Hn+1

)
, (3.3)

where G(u, c) (including the artificial diffusion term) and H (c) are given by equation
(3.2). The resulting expression for c at the new time step then becomes

cn+1

(
1 +

�t

2λ

1

1 − (trcn+1)/b

)
= cn + �t

(
3
2
Gn − 1

2
Gn−1 + 1

2
Hn

)
. (3.4)

Taking the trace of this equation and rearranging the terms leads to a quadratic
equation for trcn+1 which can be solved. With this value of trcn+1 we calculate using
equation (3.4) the value of all components of c at the new time level. Finally using
(2.7) we obtain the polymer stress at the new time level.

To compute the various viscoelastic flows we use the following procedure. First a
computation of the Newtonian fluid is carried out by running the code without the
FENE-P model until a steady state is reached. The polymer computations are started
with a fully developed velocity field of the Newtonian fluid as initial condition. The
initial condition for the conformation tensor c is computed by substituting the mean
velocity profile U (z) for Newtonian flow, which for this initialization is assumed to
be a time-independent unidirectional shear flow, in equation (3.2). This is done to
develop a not too unrealistic field for c as starting condition. Initially, the fields of c
and the velocity u are not coupled (i.e. β = 1). This is continued until a steady state
is reached for c. From then on the value of β is set to the value given in table 1.
The coupled equations (3.1), (3.2) and (2.7) are then integrated until a steady state
is again reached, which takes approximately 10T, where the time scale T is defined
as H/u∗. The computations are then continued for another 10T–12T during which
data fields are collected with a separation of 0.1T. This time separation is large
compared to the integral time scale of the turbulence, so that these data fields can
be considered as statistically independent. During post-processing these data fields
are used to compute various statistics, which are obtained by spatial averaging over
the streamwise and spanwise directions and temporal (ensemble) averaging over the
data fields.

3.2. Flow parameters

All physical quantities to be discussed in the following sections are expressed in
dimensionless wall units denoted with the superscript +. This means that all velocities
are scaled with the friction velocity u∗ and stresses with ρu2

∗. The wall shear stress τw is
connected to the pressure gradient via the streamwise momentum balance according
to

τw =
H

2

�P

�x
. (3.5)
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All lengths are scaled with ηw/ρu∗, with ηw the local viscosity at the wall. We have
to specify the viscosity at a fixed position because of the shear-thinning behaviour of
the FENE-P model. The viscosity is not constant, but is decreasing with increasing
shear rate. The viscosity ηw is defined as in Pinho & Whitelaw (1990), Draad, Kuiken
& Nieuwstadt (1998) and Ptasinski et al. (2001) by

ηw =
τw

(∂Ux/∂z)w
. (3.6)

The simulations are performed in a flow box with dimensions 1.5H × H × H in the
streamwise (x), spanwise (y) and wall-normal (z) directions respectively. Turbulent
flow in a comparable domain has been studied in detail by Jimenez & Moin (1991),
who call it a minimal flow unit (MFU). The concept of the MFU is the creation of
a minimal size flow geometry in which essential turbulent characteristics, dynamics
and morphology resemble the turbulence properties of a full-scale turbulent channel
flow. The idea of using a MFU in our case is that this minimizes the number of
grid points needed for computation of the flow field, so that enough computational
resources remain for the computation of the polymer stress which is computationally
very expensive. It is relevant to point out that our flow is fully turbulent in the
whole channel and at all times. Jimenez & Moin (1991) found that the requirements
for the MFU are a spanwise extent of at least 100 wall units and a streamwise
extent of 250–350 wall units. Because we have to deal with polymer fluids, for which
turbulent structures like streaks usually become larger, we have chosen a somewhat
bigger domain. Based on the Reynolds number Re∗ = ρu∗H/η = 360 for which the
Newtonian flow simulation is carried out, the dimensions of our channel are chosen
as (Lx, Ly, Lz) = (540x+, 360y+, 360z+). According to Dean’s correlation (Dean 1978)
for the relationship between the wall stress τw and the bulk (mean) velocity Ub the
Reynolds number for Newtonian flow based on Ub and H is equal to Re = 5500. For
the viscoelastic cases we define the Reynolds number as

Rew =
ρUbH

ηw

. (3.7)

The computations are carried out on a grid with 48 × 32 × 100 gridpoints in the x-,
y- and z-directions respectively and with a dimensionless time step of �t = 2 × 10−4 t̃

for the Newtonian case. For the viscoelastic cases the time step is set to half this
value in order to keep the simulations stable. Our results for Newtonian flow agree
very well with the results of Kim, Moin & Moser (1987), which is considered as
the standard reference for direct numerical simulations of channel flow at moderate
Reynolds numbers.

As we have seen above, we can choose three parameters freely in the FENE-P
model: the extensibility parameter b, the relaxation time λ and the ratio of solvent to
the total viscosity β . An objective of our study is to investigate how these parameters
affect the flow and its drag-reducing capability. Therefore, let us consider these
parameters in more detail.

For a system in equilibrium, we can derive from (2.8)–(2.9) (with ∇ · u = 0 and
∂c∂t = 0) that

trceq =
3b

b + 3
, (3.8)
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Run β We∗ b Rew ηw/η0 %DR

N 1 – – 5486 1 –
A 0.6 54 100 8609 0.792 26
B 0.6 54 1000 10246 0.938 61
C 0.6 72 1000 10574 0.967 66
D 0.8 54 1000 7020 0.977 40
E 0.4 54 1000 12616 0.810 64

Table 1. Numerical parameters of the FENE-P model used in the direct numerical simulations.
All simulations are carried out with Re∗ = 360. N indicates the Newtonian flow simulation.

while for the maximum value trcmax = b, so that√
trcmax

trceq

=

√
b + 3

3
. (3.9)

In other words b determines the ratio of the maximum and the equilibrium polymer
length.

The relaxation time λ can be written as a dimensionless Weissenberg number which
give the ratio of the relaxation time of the polymers to the characteristic time scale
of the flow:

We∗ =
λ

η0/ρu2
∗

=
ρλu2

∗
η0

. (3.10)

We use in the definition of the Weissenberg number the zero-shear-rate viscosity η0

because of the shear-thinning behaviour of the polymer model. Finally, β is directly
related to the polymer concentration via (2.10).

One simulation for Newtonian flow and five simulations for the polymer solutions
have been performed. In all simulations the Reynolds number is Re∗ = 360, but the
three parameters of the FENE-P model are varied. An overview of the numerical
parameters for which computations have been carried out is given in table 1, where N
denotes the Newtonian flow simulation and A, B, C, D and E refer to the viscoelastic
cases. Runs A and B differ in the extensibility parameter, i.e. the maximum polymer
length with run B being representative of a longer polymer than run A; runs B and
C differ with respect to the relaxation time, i.e. the Weissenberg number with run C
being representative of a stiffer polymer than run B; the difference between runs B, D
and E is the parameter β , i.e. the polymer concentration n, with increasing polymer
concentrations going from runs D, B to E. The value of β , especially for run E,
might seem to be low (i.e. high polymer concentration) compared to other studies like
Sureshkumar et al. (1997). However, we consider these values to be realistic as the
polymer solutions in most high-regime drag-reduction experiments (Warholic et al.
1999a; Ptasinski et al. 2001) show very significant shear-thinning behaviour which
implies non-negligible effects of the polymer on the fluid properties.

The results of these computations will be compared with each other and with the
results of the Newtonian simulation. In addition we will compare the results for a set
of experiments that we have carried out and which are described in detail in Ptasinski
et al. (2001). From these experiments four cases have been selected, for which drag
reduction is close to the simulations. They are denoted with the abbreviation ‘exp’
and the same letter as the corresponding simulation. For completeness, an overview
of the corresponding simulations and experiments is presented in table 2.
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Simulations Experiments

Run %DR Run Concentration %DR

N – exp N none (water) –
A 26 exp A 20 w.p.p.m. 23
B 61 exp B 103 w.p.p.m. 63
C 66 exp C 435 w.p.p.m. 70

Table 2. Overview of the simulations (see table 1) and corresponding experiments (see
Ptasinski et al. 2001) which are used in the comparison of the results.

4. Flow statistics
4.1. Relation between friction factor and Reynolds number

Usually the amount of drag reduction (as a percentage) is expressed as the reduction
of the pressure drop (or alternatively as the reduction of the friction coefficient) due
to the addition of the polymers compared to Newtonian flow (see Gyr & Bewersdorff
1995):

DR% =
�PN − �PP

�PN

× 100% =
CF,N − CF,P

CF,N

× 100% (4.1)

at equal (wall) Reynolds number for the polymer and Newtonian fluid. In this equation
CF is the friction coefficient and the suffices N and P stand for the Newtonian and
polymer case, respectively. The friction coefficient is defined as

CF =
τw

1
2
ρU 2

b

, (4.2)

where τw is the wall shear stress and Ub the bulk or mean velocity. For a Newtonian
fluid the relation between the friction coefficient and the Reynolds number for a
laminar and turbulent flow is given by Dean (1978):

CF =
12

Re
(4.3)

and

CF = 0.073Re−1/4, (4.4)

where the Reynolds number is defined in terms of the channel height H and the bulk
velocity Ub. Note that due to the general similarity between pipe and channel flow
(4.4) is very similar to Blasius’ relation for pipe flow (with the only difference being
that the value of the constant is 0.079 instead of 0.073). When polymers are added
the drag in turbulent flow will be lower (at least if the onset Reynolds number is
exceeded). At high polymer concentrations the friction coefficient will approach an
empirical asymptote, called the maximum drag reduction asymptote (MDR) or Virk
(1975) asymptote which is

C
−1/2
F = 19.0 log

(
RewC

1/2
F

)
− 32.4. (4.5)

This relation was originally proposed for pipe flow, but we will show in the next
section that it is also applicable to channel flow. Rew is the wall Reynolds number
defined in (3.7).

The relation between the friction factor CF and the wall Reynolds number Rew

is shown in figure 1. Let us first consider the results of the numerical simulations.
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Figure 1. The relation between the friction coefficient and the wall Reynolds number. The +
symbols marked by the letters N, A, B, C, D and E are the results of the numerical simulations
for which the details are given in table 1. The other symbols denote experiments and each
experimental is marked by a letter to indicate the ‘closest’ simulation. The three lines are for
(4.3), (4.4), and (4.5).

For a relatively small value of the extensibility parameter (b = 100, run A) we find
only a small amount of drag reduction. On increasing this parameter (to b = 1000,
run B) the drag reduction increases to a value close to the maximum drag reduction
asymptote. When we further increase the elasticity (to We∗ = 72, run C) or the polymer
concentration (to β = 0.4, run E) the results remain near the asymptote. A smaller
value of the concentration (β = 0.8, run D) leads to a smaller value of the drag
reduction. Let us next compare these results with LDV experiments on turbulent pipe
flow. For details regarding these experiments refer to den Toonder et al. (1997) and
Ptasinski et al. (2001). Four cases have been selected, in which the value of the drag
reduction is comparable with the simulations N (Newtonian), A, B and C. The drag
reduction percentages for the experiments are: for exp A: %DR = 23, for exp B:
%DR = 63 and for exp C: %DR = 70 and these data are also plotted on figure 1.
The statistical errors for the LDV experiments are approximately 2% for the first
moments (mean velocity) and 4% for the second moments (r.m.s. values and stresses).

4.2. Velocity statistics

4.2.1. Mean velocity

It is known that the mean streamwise velocity profile for fully developed turbulence
at large Reynolds numbers obeys the following relations in the viscous sublayer and
in the logarithmic layer, respectively (see Kim et al. 1987):

U+ = z+, z+ < 5, (4.6)

U+ = 2.5 ln(z+) + 5.0, z+ > 30. (4.7)

In figures 2(a), 2(b) and 2(c) we show the results for the dimensionless mean
streamwise velocity profile as function of the distance from the wall z+ for the
Newtonian flow and for the viscoelastic cases together with the expressions given
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Figure 2. Mean streamwise velocity profile as a function of the distance from the wall z+.
(a) DNS of Newtonian profile and runs A, B and C. (b) Experiments from Ptasinski et al.
(2001) for cases comparable with the DNS cases N, A, B and C. (c) DNS of Newtonian profile
and runs B, D and E. Also shown are the theoretical profiles in the viscous sublayer (4.6), the
logarithmic layer for Newtonian flow (4.7) and the Virk asymptote (4.8).

above. In the viscous sublayer all profiles collapse to (4.6) by definition. Further away
from the wall the velocity of the polymeric flow increases compared to Newtonian
case, which is consistent with drag reduction. Virk et al. (1970) and Virk (1975) have
proposed that for the maximum drag reduction asymptote the velocity profile should
satisfy

U+ = 11.7 ln(z+) − 17.0, z+ > 30. (4.8)

Originally this profile was proposed for pipe flow. However Warholic et al. (1999a , b,
2001) established in their experimental (LDA and PIV) work that this profile is also
valid for a channel flow.

The profile for the Newtonian fluid is in excellent agreement with (4.6) in the
viscous sublayer and with (4.7) in the logarithmic layer, both for the simulations
and for the experiments. In figure 2(a) we see that for b = 100 (case A) the profile
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in the logarithmic layer is shifted upwards parallel to the logarithmic profile of the
Newtonian simulation. This implies that the additive constant in (4.7) is increased
from 5.0 to 8.4. The same behaviour is seen in the experimental results for low
drag reduction (case exp A) shown in figure 2(b). In the channel flow experiments
of Warholic et al. (1999a) and in the DNS of Sureshkumar et al. (1997) the same
behaviour is found for the mean velocity profile at low drag reduction. Furthermore,
the upward shift of the logarithmic profile can be interpreted as a thickening of the
buffer layer. According to Lumley (1969, 1973) the upward shift of the logarithmic
profile is equivalent to drag reduction.

For the simulations with higher drag reduction, which are mainly connected to
an increase of the elongational parameter b (runs B, C, D and E) the slope of
the logarithmic profile deviates from the value given by (4.7). For the cases with the
highest drag reduction (C and E) the slope is close to the value given by the maximum
drag reduction asymptote (4.8). To our knowledge this is the first simulation in which
the maximum drag reduction asymptote has been confirmed. Other simulations, e.g.
Dimitropoulos et al. (1998), had either a too low value of the Reynolds number
or a too high value of β , i.e. a too low polymer concentration. The experimental
cases B and C in figure 2(b) show a profile close to the maximum drag reduction
profile. This is consistent with the results of the simulations for the comparable cases.
The maximum drag reduction profile is even slightly exceeded for case C, which can
be attributed to very strong shear-thinning behaviour of the fluid for this case and
therefore some inaccuracies in determination of the viscosity at the wall and the
scaling in terms of the wall units.

The effect of the viscosity ratio (and thus of the polymer concentration) is illustrated
in figure 2(c), where it is shown that for the lowest values of β (runs B and E) a
limit for the slope close to the maximum drag reduction profile is reached, while for
a lower viscosity ratio (run D) only a minor increase of the slope compared to the
Newtonian profile is found.

Finally we should mention that for the cases with small values of b (not shown
in this paper) we have found only a minor effect on the velocity profile compared
to Newtonian flow. Summarizing, we have seen that a high extensibility parameter b

in combination with high elasticity given by large values of We∗ and large values of
the polymer concentration or alternatively low values of β are necessary to reach the
maximum drag reduction regime.

4.2.2. Second-order turbulence statistics

We introduce the well-known Reynolds decomposition for a fluctuating variable
by splitting this into a mean part (denoted by upper case) and a fluctuation (denoted
by lower case with a prime). Alternatively we indicate the mean part by an overbar
(...). The dimensionless root mean square (r.m.s.) of the velocity fluctuations in the
α-direction (α = (x, y, z)) is defined as

rms(u+
α ) =

1

u∗

√
u′

α
2. (4.9)

The root mean square of the streamwise velocity fluctuations, rms(u+) is shown in
figure 3 for both simulations and experiments. The results of figure 3(a) indicate that
the peak value for the polymer solutions is higher than that for the Newtonian case.
The peak value seems to grow with increasing extensibility parameter b (compare for
instance runs A and B). However, for the case of the highest Weissenberg number
(run C, for which the largest drag reduction is observed) the value is decreased
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Figure 3. Profiles of the root mean square of the streamwise velocity fluctuations as a
function of the distance from the wall. (a) DNS of Newtonian profile and runs A, B and C.
(b) Experiments from Ptasinski et al. (2001) with cases comparable with the DNS cases N, A,
B and C. (c) DNS of Newtonian profile and runs B, D and E.

compared to case B. This behaviour of the peak value (including the decrease at
the highest drag reduction) is confirmed by the experiments shown in figure 3(b).
However, it appears that the height of the peak found in the simulations (especially
in the high drag reduction runs) is higher than the peak value observed in the
experiments. This might be due to shortcomings in the FENE-P model. Brownian
dynamics simulations of FENE (without pre-averaging) and FENE-P (with pre-
averaging) dumbbells (Herrchen & Öttinger 1997; Keunings 1997) and chains (Van
den Brule 1993) in non-stationary elongational flows show for instance that the
Peterlin approximation can cause some changes in the rheological behaviour (like
overprediction of the polymer stresses). In this respect we note that the difference
between simulations and experiments occurs in the region where the highest elongation
occurs, i.e. in the buffer layer.
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Figure 4. Profiles of the root mean square of the spanwise velocity fluctuations as a function
of the distance from the wall. (a) DNS of Newtonian profile and runs A, B and C. (b) DNS
of Newtonian profile and runs B, D and E.

Figure 3(a) also shows that for the polymer cases the location of the peak is shifted
to the centre of the channel. This is consistent with the shift of the logarithmic region
in the mean velocity profile. Again this behaviour is consistent with the experiments
of figure 3(b). Finally, we note that close to the wall (for z+ < 10) and in the centre
of the channel (for z+ > 100) the value of rms(u+) for the polymeric flows does not
differ much from the Newtonian case.

In figure 3(c) we show the behaviour for the cases with varying viscosity ratio β or
for varying polymer concentration. We see that the peak of the r.m.s. value increases
monotonically with decreasing β . Also, the location of the peak moves continuously
away from the wall with decreasing β .

In figure 4 we present the root mean square of the spanwise velocity fluctuations,
rms(v+), as a function of the distance from the wall. In figure 4(a) we observe for
b = 100 (case A) a slight decrease compared to the Newtonian case with again a
shift of the peak to the centre of the channel. The values in the centre of the channel
are comparable to those for the Newtonian flow. For the large value of b (run B)
we observe a strong decrease across the whole channel. Also, a larger shift of the
peak value is noted. For high elasticity (run C) the values do not alter significantly
compared to those of run B except near the centre of the channel. The effect of varying
the concentration shown in figure 4(b) indicates a general decrease of rms(v+) for
increasing polymer concentration, i.e. decreasing β , although only a minor difference
is found between the two highest concentrations. The overall behaviour found for
rms(v+) is in reasonable agreement with experiments of Pinho & Whitelaw (1990),
who are among the few who measured spanwise velocity fluctuations.

The r.m.s. of the wall-normal velocity fluctuations, rms(w+), is shown in figure 5
for both the simulations and the experiments. The results of the simulations show
an almost continuous decrease across the channel for the runs A, B and C or
in other words for increasing drag reduction. Similarly to the spanwise r.m.s. the
values decrease with increasing polymer extensibility and decrease only slightly with
increasing elasticity (figure 5a). The experiments shown in figure 5(b) confirm the
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Figure 5. Profiles of the root mean square of the wall-normal velocity fluctuations as a
function of the distance from the wall. (a) DNS of Newtonian profile and runs A, B and C.
(b) Experiments from Ptasinski et al. (2001) with cases comparable with the DNS cases N, A,
B and C. (c) DNS of Newtonian profile and runs B, D and E.

behaviour of rms(w+) as function of the drag reduction. The agreement between
simulation and experimental results is very good, at least qualitatively.

In both the simulations and experiments we observe again a shift of the peak value
of rms(w+) towards the centre of the channel. The effect of polymer concentration
in figure 5(c) shows an overall decrease as a function of increasing concentration, i.e.
decreasing β , except for the two highest concentrations where the change is minimal.

4.3. Mean polymer extension

In some explanations of drag reduction (Lumley 1969, 1973) the influence of the
polymers on the turbulent flow is connected to the extension of the polymers by
the flow deformation. This would for instance result in a high extensional viscosity,
which could possibly affect the turbulent structures. Therefore we consider the mean
extension of the polymers, i.e. the polymer length compared to the equilibrium length
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Figure 6. The average polymer extension for the simulations of the viscoelastic fluids. The
two continuous lines denote the theoretical maximum values, see (3.9), for run A with b = 100
(lower line) and runs B, C, D and E with b = 1000 (upper line).

as a function of the position in the flow. The polymer extension is normalized to
the length in equilibrium in order to show how much the polymers are stretched
in the turbulent flow. The dimensionless length of the polymers is by definition
equal to

√
trc= |〈 Q̃ Q̃〉|. We have seen before that the maximum length is given by√

trcmax =
√

b and that the ratio between the maximum and the equilibrium length is
given by (3.9). This equation implies for instance that for b = 1000 (cases B, C, D and
E) the polymer can extend to about 18 times its equilibrium length. In figure 6 the
mean polymer extension is shown as a function of the distance to the wall. We see
that for smallest value of the extensibility parameter b, i.e. b = 100 or (case A), the
extension is relatively small, which corresponds to a small amount of drag reduction.
Nevertheless in relative terms, compared to their maximum value the polymers for
case A are close to fully extended near the wall.

For b = 1000, i.e. cases B, C, D and E, we find much greater stretching of the
polymers, again primarily in the wall region. Therefore we conclude that a sufficiently
high value of the extensibility parameter is essential for drag reduction. Figure 6 also
shows that the highest value of the Weissenberg number (case C) results in the largest
extension. This case also corresponds to highest drag reduction. Compared to their
maximum value the cases with b = 1000 do not seem to reach a fully extended state.

4.4. Turbulent, viscous and polymer shear stresses

For a stationary fully developed flow we can derive from (3.1) an equation for the
mean flow which results in a balance between the pressure gradient and the total
stress. Together with the stress decomposition into a solvent and a polymer part, and
with the Reynolds decomposition the equation for the xz-component of the shear
stress becomes

0 = −∂P

∂x
+

∂

∂z

(
−u′

xu
′
z +

β

Re∗

∂Ux

∂z
+ τ (p)

xz

)
︸ ︷︷ ︸

τ+

, (4.10)
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Figure 7. Profiles of the turbulent (Reynolds) shear stress as function of the distance from
the wall. (a) DNS of Newtonian profile and runs A, B and C. (b) Experiments from Ptasinski
et al. (2001) with cases comparable with the DNS cases N, A, B and C. (c) DNS of Newtonian
profile and runs B, D and E.

with τ + = τ+(r)
+ τ+(s)

+ τ+(p)
indicating the turbulent or Reynolds stress, the viscous

stress of the solvent and the polymer stress, respectively. The sum of these three
contributions is the total shear stress which, because of the constant pressure gradient,
has a linear profile over the channel height with the value zero at the centre of the
channel and the value ±τw given by (3.5) at the walls. The total shear stress is thus
equal to τ+ = 1 − 2z/H .

Let us first discuss the turbulent stress obtained from our simulations and from
experiments. The results are presented in figure 7. All viscoelastic simulations result in
a shift away from the wall and a decrease in the magnitude compared to the Newtonian
simulation. The decrease becomes larger for increasing polymer extensibility, elasticity
and concentration. The general behaviour is confirmed by the experiments shown in
figure 7(b) and also by other experiments (see e.g. Harder & Tiederman 1991; Wei
& Willmarth 1992). The strongest reduction in the stress found in our simulations
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for run C is about 50%. This is less than observed in our experimental work (see
figure 7c), which results in a reduction of dimensionless Reynolds stress by about
75%. Nevertheless the trend found in our simulations is confirmed by the experiments.
Warholic et al. (1999a , b) suggest that at maximum drag reduction the Reynolds stress
should nearly vanish. Neither our simulations nor our observations of figure 7 confirm
this suggestion.

The various contributions to the total shear stress as given by (4.10) obtained
from our simulations are shown in figure 8. All values are presented in dimensionless
form (scaled with ρu2

∗). For reasons of simplicity we show only half of the domain
and depict all stresses as positive quantities. For Newtonian flow (figure 8a) only
the Reynolds stress and the viscous stress are non-zero and they add up to the
total stress. For the viscoelastic simulations (figure 8b–f ) all three contributions
are plotted (τ+(r)

, τ+(s)
, τ+(p)

) and these are directly computed from simulations. The
most obvious result from these latter plots is that for the viscoelastic simulations the
Reynolds and viscous stresses no longer add up to the total stress. This is called
the ‘Reynolds stress deficit’. It implies that there must be a contribution of the
polymers to the stress. For the low drag reduction simulations (figures 8b and 8e)
the polymer stress contribution is relatively small and it occurs mainly close to the
wall. For the drag reduction close to maximum (figures 8c, 8d and 8f ) this
contribution is large and can become 40%–50% of the total stress. Moreover, in
this case the polymeric stress is important across the whole channel.

The various stress contribution obtained from the experiments are shown in figure 9.
In contrast to the simulations the polymer stress in this case is computed indirectly
as the difference between the total stress and the sum of the Reynolds and solvent
stress. It is clear that the polymer stress increases monotonically with increasing drag
reduction and for the highest case (exp C, figure 9d) it contributes 60% of the total
stress. This is even more that in found in our DNS and is mainly due to the strong
Reynolds stress reduction.

5. Energy budgets
In this section we will consider the various terms in the budget of the kinetic energy

of the turbulence and in the budget of the elastic energy of the polymers. We use the
index notation and apply the well-known summation convention (which means that
a repeated index indicates a summation over all coordinate directions).

5.1. Kinetic energy of the mean flow

We first consider the kinetic energy of the mean flow defined by 1
2
UiUi . An equation for

this quantity is found by multiplying the mean part of the momentum equation (3.1)
with Ui . The result is

D

Dt

(
1
2
UiUi

)
= Pu + T (r)

u + T (s)
u + T (p)

u + Du − εu − Wu (5.1)

with

Pu = −Ui

∂P

∂xi

, (5.2)

T
(r)
ii + T

(s)
ii + T

(p)
ii =

∂

∂xj

(
−Uiu

′
iu

′
j +

β

Re∗
Ui

∂Ui

∂xj

+ Uiτ
(p)
ij

)
, (5.3)

Du = u′
iu

′
j

∂Ui

∂xj

, (5.4)
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Figure 8. Shear stress contributions as a function of the distance from the wall computed
with DNS. τ+(r)

: Reynolds stress, τ+(s)
: solvent stress, τ+(p)

: polymer stress, τ+: total stress.
(a) Newtonian run; (b) run A; (c) run B; (d) run C; (e) run D; (f ) run E.

εu =
β

Re∗

(
∂Ui

∂xj

)2

, (5.5)

Wu = τ
(p)
ij

∂Ui

∂xj

. (5.6)
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Figure 9. Shear stress contributions as a function of the distance from the wall from
experiments of Ptasinski et al. (2001) with cases comparable with the DNS cases N, A,

B and C. τ+(r)
: Reynolds stress, τ+(s)

: solvent stress, τ+(p)
: polymer stress, τ+: total stress.

(a) exp N; (b) exp A; (c) exp B; (d) exp C.

In these equations, Pu is the production of mean flow kinetic energy, i.e. the work
performed by the mean pressure gradient. The terms T (r)

u + T (s)
u + T (p)

u denote the
transport of mean kinetic energy by turbulent velocity fluctuations, by viscous stress
and by polymer stress, respectively. When integrated over the entire channel, these
three terms will not contribute to the total budget. Du is called the deformation work.
Finally, εu and Wu stand for dissipation of energy by the Newtonian shear stress
and by mean polymer stress, respectively. The production of energy is positive, while
the deformation work and the dissipation terms make a negative contribution to the
budget.

5.2. Kinetic energy of the turbulence

The equation for the turbulent kinetic energy, 1
2
u′

iu
′
i follows by multiplying the

equation for the velocity fluctuation with u′
i where the latter equation can be obtained

from (3.1). The results is

D

Dt

(
1
2
u′

iu
′
i

)
= Pii + T

(r)
ii + T

(π)
ii + T

(s)
ii + T

(p)
ii − εii − Wii, (5.7)
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with

Pii = −u′
iu

′
j

∂Ui

∂xj

, (5.8)

T
(r)
ii =

∂

∂xj

(
− 1

2
u′

iu
′
iu

′
j

)
, (5.9)

T
(π)
ii =

∂

∂xj

(−u′
ip

′δij ), (5.10)

T
(s)
ii =

∂

∂xj

(
1

2

β

Re∗

∂

∂xj

u′
iu

′
i

)
, (5.11)

T
(p)
ii =

∂

∂xj

(
u′

iτ
′
ij

(p)
)
, (5.12)

εii =
β

Re∗

(
∂u′

i

∂xj

)2

, (5.13)

Wii = τ ′
ij

(p) ∂u′
i

∂xj

. (5.14)

Here, Pii is the production of turbulent kinetic energy and we note that Pii = −Du

so that this term will be always positive. T
(r)
ii , T

(π)
ii , T

(s)
ii and T

(p)
ii are transport

terms, defining energy transport by the fluctuating Reynolds stress, by pressure
fluctuations, by the fluctuating viscous stress and by fluctuating polymer stresses,
respectively. Again, when integrated over the channel height these transport terms
will not contribute to the budget. The viscous dissipation εii will always be a loss
term and the polymer stress work Wii can in principal be either positive or negative.
All energy budget terms are made dimensionless consistent with the scaling of the
velocity statistics in § 4.2.

We consider here the results for the turbulent kinetic energy for Newtonian flow
and for two polymer simulations: runs A (b = 100) and B (b =1000), both with
β = 0.6 and We∗ =54. In figures 10 and 11 the various terms in the turbulent kinetic
energy budget terms are plotted as a function of the distance from the wall. The
results for Newtonian flow are in very good agreement with data from Mansour, Kim
& Moin (1988). For viscoelastic flow we observe a decrease of the production with
increasing extensibility parameter. For the highest value of b we observe a significant
shift of the peak away from the wall, which is consistent with the thickening of the
buffer layer. The viscous dissipation for the polymer flows is much smaller than for
the Newtonian flow. Finally, we see that the polymer stress work makes a negative
contribution to the budget everywhere in the channel, which means this is acting as
a dissipative term. The polymer stress work becomes more important with increasing
b. The contributions of the transport terms illustrated in figure 11 show a similar
behaviour: all budget terms (for turbulent, viscous and polymer transport) become
smaller in magnitude with increasing b and show a significant shift away from the
wall.

5.3. Turbulent kinetic energy per component

Let us now consider the equations for the various components of the turbulent kinetic
energy, 1

2
u′

αu
′
α , separately. The balance equation for the α-component is (no summation
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The transport by pressure fluctuations (T (π)
ii ) is very small and is not shown in this graph. Only

z+ < 100 is shown as all transport terms are almost zero in the centre of the channel.
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over α)

D

Dt

(
1
2
u′

αu
′
α

)
= Pαα + T (r)

αα + T (π)
αα + T (s)

αα + T (p)
αα + Παα − εαα − Wαα, (5.15)

with all budget terms defined as in equations (5.8)–(5.14). However, one extra term
appears in (5.15), which is called the pressure strain Παα and which is defined†

Παα = p′ ∂u′
α

∂xα

. (5.16)

This term is responsible for redistribution of energy over the three coordinate
directions and the sum of the three pressure strain components must be zero.

In figure 12 the terms in the kinetic energy budget for the streamwise component are
shown, which is the largest component in magnitude. The production in this budget
is equal to the production of the total kinetic energy. For the viscous dissipation there
is not much difference with the total energy. The most important result of these
graphs is the very strong decrease of the pressure strain for the polymer cases
in comparison the Newtonian case. This means that the energy transfer from the
streamwise component to the other components is much smaller than for a Newtonian
flow and thus that most kinetic energy remains in the streamwise direction. This
explains why the r.m.s. of the streamwise velocity fluctuations increases when polymers
are added (figure 3a) and why the r.m.s. values of the spanwise and wall-normal
fluctuations decrease (figures 4a and 5a). Looking at the polymer stress work, we see
that this term is dissipative everywhere in the channel. Unlike the viscous dissipation,
the largest (absolute) value is not found at the wall but in the buffer layer. This
confirms our hypothesis that the buffer layer is the the region where polymers
contribute most to the changes in turbulence. The transport contributions to the
energy budget of the streamwise component do not significantly differ from the
budget of the total kinetic energy.

The terms of the budget for the spanwise direction are shown in figure 13. Again we
find a decrease in magnitude for the pressure-strain term with increasing b which is the
only positive contribution to this budget (apart from small transport contributions).
The decrease of this term is consistent with the smaller r.m.s. values of the spanwise
velocity fluctuations (see figure 4a). Furthermore, for the highest value of b we observe
a strong decrease of viscous dissipation which implies that most dissipation is due to
the polymers. Note also that the transport terms over the channel height have almost
vanished for the highest drag reduction case.

The results for the wall-normal energy budget, given in figure 14 show a similar
behaviour to that for the spanwise component. Again we observe a smaller pressure
strain with increasing polymer extensibility (and drag reduction), corresponding to
smaller r.m.s. (figure 5a). The main dissipation is again due to the polymers.

5.4. Elastic energy of the polymers

Another form of energy which plays a role in our problem is the potential energy
stored in the elastic polymers. Let us first derive a balance equation for this elastic
energy. In an elastic spring model, where the connector force F in general is F = F( Q)

† Sometimes the pressure strain is written as Παα = −u′
α∂p

′/∂xα = p′∂u′
α/∂xα − u′

αp
′, which is the

sum of the pressure strain and pressure transport in our case. However, we use the definition of
(5.16), as in this case

∑
α Παα = 0.
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Figure 12. The turbulent kinetic energy budgets of the streamwise direction ( 1
2
u′2) as a

function of the distance from the wall z+ for Newtonian flow (thick lines) and for the FENE-P
model with β = 0.6, We∗ = 54 and b = 100 (run A, closed symbols) and b = 1000 (run B, open
symbols). (a) production (Pxx) and viscous dissipation (−εxx); (b) pressure strain (Πxx) and

polymer stress work (−Wxx); (c) transport by turbulent stress (T (r)
xx ), viscous (solvent) stress

(T (s)
xx ) and polymer stress (T

(p)
xx ). The transport by pressure fluctuations (T (π)

xx ) is negligibly small
and is not shown here. Only z+ < 100 is shown as all transport terms are almost zero in the
centre of the channel.

with Q the extension of the spring, the elastic energy P is equal to

P =

∫
F( Q) dQ. (5.17)

This has to be multiplied by n (the number of polymers per unit volume) to obtain
the elastic energy per unit volume. For the FENE-P model where the force F(c) is
specified by (2.6), the polymer energy becomes

P = n

∫
F( Q) dQ = −nHQ2

0

2
ln

(
1 − 〈Q2〉

Q2
0

)
= 1

2
nkT b ln f, (5.18)

with f = f (trc) specified in (2.9). Taking the trace of the equations for the polymer
stress (2.7) and the evolution of the polymer conformation tensor (2.8) we find (in
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Figure 13. The turbulent kinetic energy budgets of the spanwise direction ( 1
2
v′2) as a function

of the distance from the wall z+ for Newtonian flow (thick lines) and for the FENE-P
model with β = 0.6, We∗ = 54 and b = 100 (run A, closed symbols) and b = 1000 (run B, open
symbols). (a) pressure strain (Πvv), viscous dissipation (−εvv) and polymer stress work (−Wvv);
(b) transport by turbulent stress (T (r)

vv ) and viscous (solvent) stress (T (s)
vv ). The transport by

pressure fluctuations (T (π)
vv ) and polymer stress (T (p)

vv ) is negligibly small and is not shown here.
Only z+ < 100 is shown as all transport terms are almost zero in the centre of the channel.
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Figure 14. The turbulent kinetic energy budgets of the wall-normal direction ( 1
2
w′2) as a

function of the distance from the wall z+ for Newtonian flow (thick lines) and for the FENE-P
model with β = 0.6, We∗ = 54 and b = 100 (run A, closed symbols) and b = 1000 (run B,
open symbols). (a) pressure strain (Πww), viscous dissipation (−εww) and polymer stress work
(−Www); (b) transport by turbulent stress (T (r)

ww) and pressure fluctuations (T (π)
ww). The transport

by viscous (solvent) stress (T (s)
ww) and polymer stress (T (p)

ww ) is negligibly small and is not shown
here. Only z+ < 100 is shown as all transport terms are almost zero in the centre of the channel.

index notation)

τ
(p)
ii = nkT (−3 + f cii) (5.19)

and
Dcii

Dt
=

∂cii

∂t
+ uj

∂cii

∂xj

=2
∂ui

∂xj

cij +
1

λ
(3 − f cii). (5.20)
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Figure 15. The various terms of the energy budgets for mean flow kinetic energy, turbulent
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The time derivative of the polymer energy follows from (5.18):

∂P

∂t
= 1

2
nkT b

1

f

∂f

∂cii

∂cii

∂t
= 1

2
nkTf

∂cii

∂t
, (5.21)

and a similar expression can be obtained for ∂P/∂xj . Combining (2.7), (5.19), (5.20)
and (5.21) gives for the material derivative of the polymeric elastic energy

DP

Dt
=

∂P

∂t
+ uj

∂P

∂xj

= τij

∂ui

∂xj

− 1

2λ
f τ

(p)
ii . (5.22)

Applying the Reynolds decomposition to the polymer energy (P =P + P ′) to this
equation leads to

DP

Dt
=

∂P

∂t
+ Uj

∂P

∂xj

= − ∂

∂xj

(u′
jP

′) + τ
(p)
ij

∂Ui

∂xj

+ τ ′
ij

(p) ∂u′
i

∂xj

− 1

2λ
f τ

(p)
ii . (5.23)

The first term on the second line denotes the transport of elastic energy by velocity
fluctuations, the next two terms denote the interaction of the polymers with the mean
and fluctuating velocity field, respectively, and the last term can be recognized as
a dissipative term. We see that the two interaction terms are exactly equal to the
polymeric dissipation of mean flow kinetic energy Wu in (5.1) and the polymer stress
work Wii in (5.7). The dissipative term is the transfer of energy from polymers into
heat by relaxation of the polymers from an extended state to their equilibrium state.
Note that in this term the relaxation time appears as a timescale in which elastic
energy is dissipated.

The interaction between the various processes in the budgets of the kinetic and
elastic energy is schematically illustrated in figure 15.

In figure 16 we have plotted the various contributions to the elastic energy budget
(except the transport term, which is negligibly small) for two different polymer
simulations. From this figure it follows that close to the wall the balance reduces
to a difference between two large terms, i.e. mean flow production and dissipative
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Figure 16. Polymer energy budgets (see (5.23)) as a function of the distance from the wall
z/H for the FENE-P model. (a) run A (β = 0.6, We∗ = 54 and b = 100); (b) run B (β = 0.6,
We∗ = 54 and b = 1000). The transport term is negligible and is therefore not shown here.

relaxation. Further away from the wall, i.e. in the the buffer layer, the production
by the fluctuating velocity field becomes larger than the mean flow term. However,
the largest contribution in total comes from the mean flow which is consistent with
the importance of the polymer stresses in the mean momentum balance at large drag
reduction.

6. Pressure fluctuations
Pressure fluctuations in turbulent flows play an important role in turbulence

modelling. For a review on the role of pressure in turbulence we refer to Willmarth
(1975) and Eckelmann (1988). As we discussed in the previous section, an important
effect of the polymers was found to be the reduction of the pressure strain in
the turbulent kinetic energy budget. Therefore we will now investigate pressure
fluctuations in our simulations and their role in the energy budget more in detail. In
figure 17 we show the root mean square of the pressure fluctuations as a function
of distance from the wall. We note that our results for the Newtonian case are in
good agreement with the results of Kim (1989). This figure shows that the pressure
fluctuations are damped for viscoelastic flow over the entire channel height. The effect
is stronger as drag reduction increases. Also we observe that the maximum of the
r.m.s. is located further away from the wall, which again indicates the thickening of
the buffer region.

To study the pressure in detail we write the Poisson equation for the pressure
(which is the divergence of the fluctuating part of (3.1)) in the following way:

∂2p′

∂x2
i

=
∂2

∂xi∂xj

(−u′
iUj − Uiu

′
j ) +

∂2

∂xi∂xj

(−u′
iu

′
j + u′

iu
′
j ) +

∂2

∂xi∂xj

τ ′
ij

(p)
. (6.1)

From the right-hand side of this equation it can be seen that the pressure fluctuations
consist of three parts. Therefore we can decompose the pressure fluctuation into these
three contributions, by writing p′ =p′

rapid + p′
slow + p′

polymer, which stand for the ‘rapid’,
‘slow’ and ‘polymer’ pressure, and these are defined by

∂2p′
rapid

∂x2
i

=
∂2

∂xi∂xj

(−u′
iUj − Uiu

′
j ), (6.2)
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Figure 17. Root mean square of the pressure fluctuations as a function of the distance from
the wall z/H for Newtonian flow and for all the simulations with the FENE-P model.

∂2p′
slow

∂x2
i

=
∂2

∂xixj

(−u′
iu

′
j + u′

iu
′
j ), (6.3)

∂2p′
polymer

∂x2
i

=
∂2

∂xi∂xj

τ ′
ij

(p)
. (6.4)

The background to the splitting of the pressure is given by Wilcox (1993) and Kim
(1989). In short, we can say that the rapid part is due to the deformation by the mean
flow field and the nonlinear slow part is caused by the interaction of turbulence. The
polymer part depends on the fluctuating polymer stress. Now, by solving these three
Poisson equations we can compute the individual pressure contributions.

In figure 18 we show the r.m.s. of the pressure fluctuation subdivided into the three
contributions discussed above. The results for the Newtonian case are shown together
with two viscoelastic simulations. We see that the rapid part is reduced near the wall,
but it is slightly increased in the centre of the channel (in particular for case B).
As this contribution is due to the mean flow, this effect is the direct result of the
change in the mean velocity profile. The slow part, that accounts for the nonlinear
turbulence effects, is smaller than the Newtonian results almost everywhere and this
effect becomes stronger with increasing drag reduction. Furthermore we find that for
the Newtonian flow the slow part is larger than the rapid part almost everywhere
in the channel, while for case B they become of the same order of magnitude. As
we have seen that drag reduction generally leads to damping of turbulence (e.g. the
Reynolds stress reduction shown figure 7), this manifests itself in this case primarily
as reduction of the nonlinear (slow) part. The influence of the polymers results in
an increase of pressure fluctuations with increasing drag reduction, which is opposite
to the general reduction of the other pressure contributions. For case B the polymer
contribution is about 20% of the total pressure fluctuations.

The individual contributions by the three pressure fluctuations to the pressure-strain
term in the streamwise direction Πxx are shown in figure 19. We saw in figure 12(b)
that the total pressure strain is strongly reduced with increasing drag reduction and
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Figure 19. The contributions to the streamwise pressure strain by the three pressure fluctations
as a function of the distance from the wall z+. (a) Comparison of Newtonian flow (lines) and
the FENE-P model with β =0.6, We∗ = 54 and b = 100 (case A, symbols). (b) Comparison of
Newtonian flow (lines) and the FENE-P model with β = 0.6, We∗ =54 and b = 1000 (case B,
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the maximum values becomes located further away from the wall. Regarding the
three individual contributions, we see that each of these contributions is also reduced
but their relative magnitude stays about the same. The polymer part of the total
pressure strain is negligible and this means that polymer stresses do not contribute
to the exchange of kinetic energy among the three velocity components.

7. Shear sheltering in turbulent drag reduction
In this section we present some ideas on a mechanism for turbulent drag reduction

by polymers. To this end we present and discuss covariance data in the buffer layer in
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Newtonian and polymer flows. Let us first consider a shear-free turbulent boundary
layer over a surface (i.e. the mean velocity and the dissipation do not vary with the
height). The wall-normal velocities of a large turbulent eddy (centred at a height z1

above the surface, velocity wl ) and a small eddy (centred at a height z, velocity ws )
are only very weakly correlated, thus wlws 
 0 (Hunt et al. 1989). The velocity at
height z above the surface will, however, be slightly modified by the induced velocity
of the large eddy given by

w(z) 
 ws +
z

z1

wl . (7.1)

Multiplying this result by the velocity of the large eddy wl ≡ w(z1) and ensemble
averaging gives the following cross-covariance of the velocities at heights z and z1:

w(z)w(z1) 
 z

z1

w(z1)w(z1). (7.2)

Thence the ‘top-down’ normalized covariance has the form

R̂ww(z, z1) =
w(z)w(z1)

w2(z1)

 z

z1

for z < z1. (7.3)

In turbulent layers with shear this covariance can be generalized according to Hunt
et al. (1989) and becomes

R̂ww(z, z1) 
 f

(
z

z1

)
for z < z1. (7.4)

This self-similar form has been measured in many types of complex boundary layers
(Hunt et al. 1989 and references therein). Here, z1 varies over the channel height and
the data collapse on a single curve. For Re → ∞ the effect of shear is less, so that
relation (7.4) approaches (7.3). In figure 20(a) this covariance is shown for our direct
numerical simulations of Newtonian flow. It is very clear that the data collapse on
a single curve for an extensive range of z1, proving the self-similarity of (7.4). The
correlation Rww , usually defined normalized in the conventional way, i.e. with√

w2(z) w2(z1),

is not self-similar.
In figures 20(b) and 20(c) we present R̂ww(z, z1) for two viscoelastic simulations

(cases A and B). We see that for a small extensibility parameter (case A, figure 20b),
the self-similar behaviour is still present and the normalized covariance for the
viscoelastic case does not differ from the Newtonian. However, as the extensibility
parameter and drag reduction increase, figure 20(c), a significant decrease of this
correlation is observed except for the smallest value of z1. Also, the self-similar form
of the curves is no longer found.

Our explanation for this behaviour begins with a consideration of how large eddies
in a turbulent flow approach a rigid boundary. If there is no mean shear the wall-
normal velocity component of these eddies is damped and its integral length scale is
also greatly reduced. In the presence of strong shear in the buffer layer near the wall,
the length scale is further reduced. Thus, although the shear production of small-scale
eddies, that dominates the turbulence process in the wall layer, increases, there is a
blocking or ‘shear sheltering’ (Hunt & Durbin 1999) mechanism at some distance
from the wall. As a consequence of this damping of the larger-scale eddies, they are
blocked and are prevented from penetrating into the near-wall region. The interactions
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Figure 20. The cross-correlation of the wall-normal velocities (see (7.3)) computed by DNS.
(a) Newtonian flow (case N); (b) FENE-P model with β =0.6, We∗ = 54 and b =100 (case A);
(c) FENE-P model with β = 0.6, We∗ = 54 and b = 1000 (case B).

between the structures below and above the layer are significantly reduced, especially
in a Newtonian flow at low and moderate Reynolds numbers. Indeed some models
of near-wall dynamics effectively ignore interactions with the outer flow. This is not
consistent with most data and experiments, especially at very high Reynolds numbers
(Hunt & Morrison 2000).

Our hypothesis is that the addition of polymers means in physical terms a
strengthening of the shear sheltering mechanism. A sketch of the process is shown in
figure 21. At the top of the buffer layer, since here the rate of straining is maximum
in a Newtonian flow, the polymer stretching rate is large and damps the wall-normal
fluctuations (Lumley 1969). This leads to blocking of the large eddies coming from
the centre of the channel. These have a velocity U and a length scale L and cause
amplification of streamwise velocity fluctuations over the lifetime L/U of the eddies
at the top of the buffer layer. But the natural Kelvin–Helmholtz instability of this
shear layer is also suppressed by the action of the polymers, so that there is an
increase in the time taken for the breakdown of this local shear layer as seen by
the signal of the wall-normal velocity (normalized similarly to the covariance R̂ww)
in figure 22. A similar shear sheltering effect is seen when damped wall-normal free-
stream turbulence drives instabilities at the top of a laminar boundary layer (Wu
et al. 1999). Furthermore, both the intense shear and the stability of the layer reduce
the wall-normal velocity fluctuations below this layer. This is in agreement with our
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Figure 21. Simplified sketch of the shear sheltering mechanism. The maximum of the velocity
gradient is located at the top of the shear sheltering layer, where in connection with the large
velocity gradient disturbances are growing by the Kelvin–Helmholtz mechanism and finally
break down. The momentum transport resulting from these disturbances is then transmitted
through the shear sheltering layer by viscous effects. Indicated are a velocity scale U (the bulk
velocity of the friction velocity), a macroscopic length scale L (e.g. the size of large eddies
or a length scale depending on the channel dimensions) and a microscopic length scale  (the
thickness of the shear sheltering layer.

0 0.3 0.6 0.9 1.2 1.5
–0.8

–0.4

0

0.4

0.8

1.2

1.6

2.0

x /H

Newtonian
FENE-P

w
(x

, z
)/

√w
2 (

z 1)

Figure 22. The wall-normal velocity w(x, z) along the streamwise direction normalized like
the covariance in equation (7.3) for Newtonian flow and for run B. z+ = 20, z+

1 = 60.

computed flow statistics which indicate that most turbulent activity is moved away
from the wall and that the finite thickness of the buffer layer increases. However, this
layer does not fill the entire flow as proposed by some authors.

Although there is a strong decrease of the mean level of interactions of the flow in
the regions above and below the shear sheltering layer, the upper region nevertheless
affects that below, where the wall shear stress is generated. It is likely that the
intermittent breakdown of the layer provides the mechanism for the interaction with
the outer flow and the determination of the wall shear stress. This is the basis for
our order-of-magnitude model. The nonlinear wavelike fluctuation of the buffer layer
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with polymers shown in figure 22 is consistent with de Gennes (1990) ‘elastic’ concept.
This is also supported by the data of McComb & Rabie (1979, 1982), Sreenivasan &
White (2000) and Min et al. (2003).

First we balance the inertial and viscous terms in this shear layer. The inertial terms
can be estimated as U2/L, the viscous terms as νU/2, where U is a characteristic
macroscopic velocity scale, whose order of magnitude lies between the mean velocity
Ub and the friction velocity u∗. The macroscopic length scale L is of the order of
the channel height and the microscopic length scale  is of the order of the thickness
of the shear sheltering layer. The dynamics of the shear sheltering layer with strong
polymer actions is quite different from that of the wall layer in a Newtonian flow,
because its considerable stability means that the time scale is determined by the outer
flow. Therefore

U2

L ∼ νU
2

(7.5)

so that the ratio of  to L is given by



L ∼
(

ν

UL

)1/2

= Re−1/2 if U ∼ Ub (7.6)

and by



L ∼
(

ν

UL

)1/2

= Re−1/2

(
Ub

u∗

)1/2

= Re−1/2C
−1/4
F if U ∼ u∗. (7.7)

This shows why with polymers the wall layer thickness  is much greater than in a
Newtonian flow where



L ∼ Re−1C
−1/2
F . (7.8)

Since the wall stress τ in this model is of the order τ ∼ ρνU/, depending on the
estimate of U, the friction coefficient CF (4.2) can now be derived as

CF ∼ Re−1/2 for U ∼ Ub, (7.9)

CF ∼ Re−2/3 for U ∼ u∗. (7.10)

These results can be compared with the maximum drag reduction asymptote (4.5),
which can be approximated by a power-law expression of the form CF =ARe−n with
n 
 0.55 (Virk et al. 1967) or n 
 0.58 (Virk 1975) and which is valid for middle-range
Reynolds numbers 4000 < Re < 40000. Our estimate based on the shear sheltering
effect is broadly consistent with the power law for the Virk asymptote.

Note that for U ∼ u∗ a macroscopic time scale of the flow can be defined by
τf = L/u∗. A comparison of this time scale with the relaxation time of the polymer
λ gives

λ

τf

∼ λu∗

L , (7.11)

which is a Weissenberg number based on macroscopic variables. Typically the
macroscopic length scale L ∼ 0.1H , which gives for this Weissenberg number We> 1.
Thus the proposed mechanism is consistent with the polymer physics.

8. Conclusion and discussion
We have performed direct numerical simulations for a turbulent flow of a Newtonian

fluid with dissolved polymers. The polymers are modelled by means of a realistic
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constitutive equation, the FENE-P model. The coupling between the polymers and the
flow field is two-way, i.e. the polymers are deformed by the velocity field and
the resulting polymer stress is returned into the momentum equations of the flow.
The flow is fully turbulent all the time. In the polymer model we have varied three
parameters: the extensibility parameter b, which is proportional to the square of
the maximum polymer length, the ratio β of the solvent to the total zero-shear-rate
viscosity, which determines the polymer concentration and the Weissenberg number
We∗, which is the ratio of the relaxation time λ of the polymers to the turbulence
time scale. Necessary criteria to obtain the maximum drag reduction asymptote are,
besides a sufficiently high Reynolds number, highly extensible polymers and a high
polymer concentration. We have selected flow conditions and polymer characteristics
such that our simulations are very close to the maximum drag reduction or Virk
(1975) asymptote.

As the pressure drop is kept constant in our simulations drag reduction is manifested
as an increase of the mean or bulk velocity. With respect to the mean velocity profile
we find both in experiment and our simulations only an offset in the additive constant
of the logarithmic profile for the Newtonian flow. At high drag reduction we find also
a large increase of the slope of the profile. Especially in the latter cases the buffer
layer is significantly thickened, as the logarithmic profile starts further away from
the wall. No changes are found in the viscous sublayer. The changes of the mean
velocity profile are qualitatively and quantitatively in excellent agreement with the
experiments of den Toonder et al. (1997) and Ptasinski et al. (2001).

The peak value of the r.m.s of the streamwise velocity fluctuations increases
with increasing parameter b compared to Newtonian flow. At the same time the
maximum of the r.m.s. of the streamwise velocity is located further away from the
wall, reconfirming the thickened buffer layer. For the simulation of the highest drag
reduction case, which also has the largest Weissenberg number, we find that the
peak value is reduced again. Such behaviour, i.e. increasing and then decreasing peak
values of the streamwise velocity fluctuations when drag reduction increases to its
maximum value, have also been found in the experiments. A difference between our
simulation and the experiments is that the changes in the simulations are larger than
in the experiments. This might be related to shortcomings of the FENE-P model.
Especially in time-dependent elongational flows (see Herrchen & Öttinger 1997;
Keunings 1997) the FENE-P model fails to fully represent the rheological behaviour.
A possible solution would be to perform Brownian dynamics simulations, e.g. by
using the Brownian configuration fields method (Hulsen, Van Heel & Van den Brule
1997). This method makes it possible to use the FENE model (without the Peterlin
approximation), but as it does not provide a single closed-form constitutive equation,
the computational requirements are much more demanding.

The r.m.s. of the spanwise and wall-normal velocity fluctuations show a decrease and
a shift away from the wall monotonically with increasing drag reduction. This agrees
very well with the experiments. The Reynolds stress is strongly decreased, though less
than in the experiments. The resulting Reynolds stress deficit is compensated by a
polymer shear stress which for the highest drag-reduction cases is 40%–50% of the
total stress. Contrary to observations of Warholic et al. (1999a) but in agreement with
those of Ptasinski et al. (2001) the Reynolds stress does not vanish at maximum drag
reduction. Computational results for the polymer length show a high extension of the
polymers compared to their length in equilibrium, especially in the neighbourhood of
the wall. It follows that the ability of polymers to stretch is an essential ingredient for
high polymer drag reduction.
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The analysis of the kinetic energy budgets shows that the pressure-strain term,
which is responsible for energy transfer from the streamwise direction to the other
directions, is the most reduced term in the budget and this explains the enhanced
anisotropy of the flow. Furthermore, the polymer stress work is found to be positive
for all cases, which means that polymers dissipate (and not produce) energy. The
highest dissipation by polymers is in the buffer layer, in contrast to the viscous
dissipation which is maximal at the wall. The polymer dissipation of the mean flow
and the turbulent kinetic energy are transferred into elastic energy of the polymers
which in its turn is then dissipated by polymer relaxation.

Finally, from an analysis of cross-correlations we conclude that drag reduction
produces a strong shear sheltering layer near the wall in the buffer layer. The result
is a decoupling of the structures above and below this layer. From an analysis of
various length scales we find a power-law behaviour for the friction coefficient as a
function of the Reynolds number, which resembles the behaviour of the maximum
drag reduction asymptote. So the changes of the flow statistics and structures in the
buffer layer in combination with the shear sheltering mechanism play a key role in
the high drag reduction regime.

Discussions with Professor A. N. Beris and Dr. R. Sureshkumar are gratefully
acknowledged.

Appendix. Effect of variation of the artificial diffusion constant
In § 3 and more precisely in the integration procedure for the polymer conformation

tensor, (3.3), we introduced an artificial diffusivity term κ/(u∗H ) ∇2c, which has to be
added to (3.2) for numerical reasons to avoid instabilities. However, this term should
not have too much influence on the macroscopic flow parameters like velocities and
stresses. A detailed study on the effect of the artificial stress diffusivity on the stability
of viscoelastic flow calculations is given by Sureshkumar & Beris (1995). In this
Appendix we will briefly summarize the reason of the introduction of this term and
its effect on the system of equations and we will show for selected results that the
artificial diffusivity does not significantly alter the result.

Viscoelastic calculations not only introduce extra variables like the polymer
conformation and stress, but more importantly they can lead to a change in the type
of the total system of equations for the momentum and for the polymer conformation
tensor (Joseph 1990). This is in particular the case for high Weissenberg number
problems. A detailed analysis of the type of equations and its consequences for
numerical methods is provided by Keunings (1989). The change of type is associated
with the loss of evolution, which leads to an instability in which short waves will grow
in amplitude (Dupret & Marchal 1986; Joseph & Saut 1986; Marchal & Crochet
1987). In our problem this will lead to a violation of the positive definiteness of
the polymer conformation tensor c, which is an essential property of this tensor. In
principle, for most differential models the conformation tensor will remain positive
definite as long as it is positive definite initially (Hulsen 1990). However, in a
computation this property can be lost due to numerical errors during time integration.

Positive definiteness and thus stability can be conserved by using so-called
‘streamwise upwinding’, as is often done in finite element techniques (e.g. Marchal &
Crochet 1987). In our case this will lead to less accuracy. Min, Yoo & Choi (2001)
and Dubief & Lele (2001) have used an algorithm consisting of a Crank–Nicolson
method and a third-order Runge–Kutta method, which increases stability.
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Figure 23. (a) Mean streamwise velocity profile as function of the distance from the wall z+

with the FENE-P model (parameters β =0.6, We∗ = 54 and b = 100) for two different values of
the artificial diffusivity κ̃ . (b) As (a) but for root mean square profiles of the velocity fluctuations
u′+: streamwise component; v′+: spanwise component; w′+: wall-normal component (c). As
(a) but for various shear stress contributions. R: Reynolds stress; S: solvent (viscous) stress;
P: polymer stress; T: total stress. (d) As (a) but for mean polymer extension.

Another possibility is the use of so-called ‘streamline diffusivity’ which is proposed
by Sureshkumar & Beris (1995) and which is also applied in this paper. As we stated
before, this will increase stability, but should not alter the main results significantly. To
show this, we compare the results of one of our viscoelastic turbulent simulations (run
A, with β = 0.6, We∗ =54 and b =100 and κ̃ = κ/(u∗H ) = 0.012) with a simulation
with the same parameters in the FENE-P model but with κ/(u∗H ) = 0.008. This
comparison is shown for some selected statistics in figure 23. These figures clearly
show that the difference is very small, providing us with evidence that the addition
of a small amount of artificial diffusivity does not significantly modify the simulation
results.
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