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Summary 

We explored the epidemic history of HIV-1 subtype B in the United Kingdom using 

statistical methods that infer the population history of pathogens from sampled gene 

sequence data. Phylogenetic analysis of HIV-1 pol gene sequences from Britain showed 

at least six large transmission chains, indicating a genetically variable, but 

epidemiologically homogeneous, epidemic among men having sex with men. Through 

coalescent-based analysis we showed that these chains arose through separate 

introductions of subtype B strains into the United Kingdom in the early-to-mid 1980s. 

After an initial period of exponential growth, the rate of spread generally slowed in the 

early 1990s, which is more likely to correlate with behaviour change than with reduced 

infectiousness resulting from highly active antiretroviral therapy. Our results provide new 

insights into the complexity of HIV-1 epidemics that must be considered when 

developing HIV monitoring and prevention initiatives.  

 



More than 57,700 people have been infected with human immunodeficiency virus 

type 1 (HIV-1) in the United Kingdom (UK) since the first identification of AIDS in 

1982 (http://www.hpa.org.uk/). Despite a recent increase in heterosexually acquired 

infections within the UK, predominantly originating in sub-Saharan Africa, the most 

prevalent clade of virus within the country remains subtype B, from the main group (M) 

of HIV-1, which is mainly transmitted through sex between men (1). To date, very little 

is known about how subtype B successfully invaded the British population, and more 

importantly, how the virus has subsequently spread and evolved.  

Phylogenies reconstructed from sampled viral gene sequences hold valuable and 

unique information about the past structure of a population and can be used to understand 

the course of a viral epidemic over time (2, 3). Hence the history of a pathogen 

population can be inferred from the genealogy of randomly sampled strains (as 

represented by a phylogenetic tree) using the coalescent theory of population genetics (4, 

5). By this means, one can reconstruct the changing number of infected individuals 

through time and estimate the demographic parameters that shape the epidemic, such as 

the rate of growth in the number of infections and the date of introduction of a lineage 

into a host population (6). Molecular data on HIV-1 within the UK has become 

increasingly available since the introduction of routine HIV-1 gene sequencing for drug-

resistance monitoring. The genetic variability of the envelope (env) gene has previously 

made it attractive for evolutionary studies. However, we have recently demonstrated that 

the polymerase (pol) gene encodes sufficient variation to reconstruct transmission events, 

despite the potential bias conferred by emergence of drug resistance-associated mutations 

(7). Moreover, while the coalescent framework assumes neutral evolution, the HIV-1 pol 



gene is known to be under positive and negative selection (8-11). However, selection on 

HIV genes within infected individuals does not appear to generate non-neutral 

genealogies at the epidemiological (among-individual) level (12) and therefore should not 

significantly bias coalescent estimates. Importantly, previous coalescent analyses have 

yielded similar demographic estimates from different HIV-1 genes which are under 

considerably different selection pressures (13).  

Using a new statistical framework, we reconstructed the history of the HIV-1 

subtype B epidemic in the UK from a large dataset of contemporary pol gene sequences. 

For the first time, we characterised separate sub-epidemics of HIV-1 within a defined risk 

group, dating the introduction of epidemiologically significant viral lineages and 

estimating their rates of spread. Our analysis, using UK data, illustrates the complexity of 

HIV-1 epidemics that is applicable to other transmission groups and geographic regions. 

 

Methods 

Study population  

HIV-1 subtype B pol gene sequences were generated from plasma samples 

collected in the UK by the Health Protection Agency’s Antiviral Susceptibility Reference 

Unit. The samples were submitted for routine genotypic drug resistance testing between 

1999 and 2003, and included samples from acute infections, chronic but drug-naïve 

infections, and from patients at the time of therapy failure. The sequences were 952 base 

pairs (bp) long, including the full protease gene as well as the first 218 codons of the 

reverse transcriptase (RT) gene. Around 85% these sequences were from men who had 

sex with men (MSM). 



 

Phylogenetic reconstruction  

To identify HIV-1 lineages derived from single independent introductions of the 

virus into the UK population, a neighbor-joining (NJ) phylogenetic tree was constructed 

from 3429 HIV-1 subtype B pol gene sequences (1645 UK isolates plus 1784 subtype B 

reference sequences from throughout the world) (14). The tree was estimated under the 

Hasegawa-Kishino-Yano model of nucleotide substitution (15). The non-UK sequences 

used for the study were extracted from GenBank (http://www.ncbi.nlm.nih.gov/) and the 

Los Alamos HIV Sequence Database (http://www.hiv.lanl.gov/). The size of the sequence 

alignment, as well as the computational power required, prevented the use of a more 

complex evolutionary model.  

After identification of UK transmission clusters, sequences of non-UK origin 

were removed and the phylogenies of the clusters were re-estimated with the program 

Paup*, using a maximum likelihood approach (16). The trees were constructed under the 

General Time Reversible model of nucleotide substitution (17), with proportion of 

invariable sites and substitution rate heterogeneity, since this was the optimal model 

selected by the program Modeltest (18). Each UK cluster was rooted using a subtype D 

pol sequence from our database. The statistical robustness of the ML topologies was 

assessed by bootstrapping, using 1000 replicates (19). The sequences in the transmission 

clusters are deposited in GenBank under the accession numbers AY669865 to 

AY670087.  

 

Estimation of HIV-1 subtype B pol gene rate of nucleotide substitution 



In order to work within a calendar timescale (i.e. years), the genealogies were 

rescaled by applying a constant rate of nucleotide substitution µ (units are nucleotide 

substitutions/ site/year) to the branches of the phylogenies. Preliminary analyses 

demonstrated that the time span covered by our UK samples (i.e. five years) was not 

sufficient to reliably estimate µ. The rate of nucleotide substitution was therefore 

estimated from an independent dataset of 106 subtype B pol gene sequences. The 

sequences used to estimate µ were sampled between 1983 and 2000 from men having sex 

with men and injecting drug users (IDUs) participating in cohort studies at the Academic 

Medical Centre of Amsterdam (20). The sequences were 804 bp long, including the entire 

protease gene (294 bp) and the first 510 bp of the RT gene. GenBank accession numbers 

for these sequences are available in the original publication. A posterior distribution for 

substitution rate was estimated by Bayesian Markov Chain Monte Carlo (MCMC) 

inference (21) using a MCMC chain of 10,000,000 states sampled every 100th generation, 

as implemented in the program Beast (http://evolve.zoo.ox.ac.uk/beast). The estimated 

posterior distribution was subsequently used as an empirical prior distribution in the 

coalescent analyses that follow. 

 

Estimation of demographic history and population dynamics 

The investigation of the epidemic history of the six UK clusters involved two 

steps. Firstly, several different models of demographic history, each of which illustrate 

effective numbers of infections through time, were compared in order to select the model 

that best describes the epidemiological history of the UK transmission clusters. The 

demographic models were evaluated by likelihood ratio test (LRT), from likelihoods 



calculated by the program Genie (22). The five models tested in the present study were 

constant population size, exponential growth, piecewise logistic (exponential growth 

followed by constant population size), piecewise expansion (constant population size 

followed by exponential growth), and piecewise con-exp-con (constant growth periods 

flanking an exponential growth phase). See reference 16 for more details of these models. 

In order to fit a constant molecular clock framework, as required for coalescent analyses, 

the program TipDate (23) was used to rescale each transmission tree under the Single 

Rate Dated Tip (SRDT) model.  

Secondly, the demographic and evolutionary parameters of the epidemic, together 

with their confidence intervals, were estimated by Bayesian MCMC inference using a 

chain of 10,000,000 states sampled every 100th generation, as implemented in the 

program Beast. The estimated parameters include the date of the most recent common 

ancestor (MCRA) of the cluster, the effective number of infections at the most recent 

time of sampling Ne (i.e. the effective number of prevalent infections), and the growth 

rate during the exponential phase r. The Bayesian MCMC results were used to calculate a 

marginal posterior distribution of the demographic model for each cluster, a graphical 

representation of the effective number of infections through time, generated using the 

program Tracer (http://evolve.zoo.ox.ac.uk/tracer/).  

 

Results 

Introduction of HIV-1 subtype B into the UK 

The initial NJ phylogenetic tree constructed from 3429 UK and worldwide 

subtype B pol sequences is too large to display here (see supplementary information). A 



schematic representation of the clustering patterns seen within the phylogeny is presented 

in Fig.1. Three clustering patterns were distinguished, namely, sporadic UK sequences, 

non-UK transmission clusters, and UK transmission clusters. Sporadic UK sequences (i.e. 

those that do not group with other UK lineages in the tree) probably represent single, 

independent introductions of the virus without subsequent spread. Transmission clusters 

were identified as clades of sequences from a particular location that descend from a 

common ancestor, indicating spread of the virus in that region. UK transmission clusters 

were differentiated from non-UK clusters on the basis of the size of the clade and the 

proportion of UK sequences within it: UK transmission clusters were defined as those 

clades with more than 25 sequences, 90% or more of which were of UK origin. A 

minimum clade size of 25 was used because smaller sample sizes are unlikely to give 

reliable coalescent estimates under complex demographic models. A minimum fraction 

of 90% UK sequences was chosen to ensure that the clusters that were identified 

represent chains of transmission that have overwhelmingly occurred in the UK.  

However, we note that this methodology probably underestimates the number of 

transmission chains identified.  

Most of the UK sequences represented sporadic lineages (86%), scattered among 

sequences from other geographical areas, suggesting much geographical mixing and 

migration of subtype B strains on a worldwide scale. Nonetheless, six UK transmission 

clusters were identified, involving 45, 62, 29, 26, 27 and 34 sequences. These 

transmission chains were distinct (i.e. reciprocally monophyletic), indicating that at least 

six independent introductions of subtype B HIV-1 have succeeded in sustaining onward 

transmission within the UK over time, and until the present. Each transmission chain 



contained sequences from a variety of locations within the UK and no obvious 

geographic correlations were observed. The robustness of the clusters within the overall 

tree could not be statistically evaluated due to the huge size of the dataset. Nonetheless, 

the branching patterns of the six UK lineages showed statistical robustness when 

compared to subsets of worldwide control sequences using bootstrap analyses (neighbor-

joining method with 1000 replicates, as implemented in the program Paup*; data not 

shown). To further explore the history of these six successful viral lineages, sequences of 

non-UK origin were removed from the six clusters and the phylogenetic histories of the 

UK sequences were rigorously re-estimated using a maximum likelihood approach. The 

ML trees are available from the authors on request. 

 

Estimation of the rate of evolution for the HIV-1 subtype B pol gene  

The rate of evolution for the subtype B HIV-1 pol gene was calculated using an 

independent dataset of 106 sequences, sampled between 1983 and 2000 in Amsterdam 

(20). Using a Bayesian MCMC method, this rate was estimated to be 2.55x10-3 

substitutions per nucleotide site per year (95% confidence intervals: 1.74x10-3 to 3.51x10-

3). In comparison, previous estimates of HIV-1 evolution rates have typically relied on 

partial env gene sequences and have ranged from 2.4 x 10-3 to 6.7 x 10-3 subst./site/year 

(24-26). Our estimate is consistent with the order of magnitude of 10-3 expected for an 

HIV-1 gene. The phylogenetic trees in Fig.2 are thus shown on a timescale of years.  

 

Epidemic history and parameter estimation 



For each of the six clusters, a model of logistic population growth best fitted the 

demographic information contained in the tree topologies (likelihoods shown in 

supplementary information). Under the logistic model, the effective number of infections 

Ne grows exponentially at rate r from time ta (time of the most recent common ancestor 

of the cluster) then decreases in growth rate towards the present. A schematic 

representation of the logistic model is given in Fig.3. Note that Ne reflects the number of 

infections contributing to new infections, rather than the total number of prevalent 

infections within the transmission cluster.  

The demographic parameters that determine the shape of the logistic growth curve 

were estimated by Bayesian MCMC inference (Table 1) and the epidemic histories of the 

six clusters were reconstructed, with appropriate confidence limits (Fig. 2). Our estimates 

suggest that three of the six genealogies originated in the early 1980s (1981 for cluster 2, 

1983 for clusters 1 and 3), whereas the remaining clusters were introduced later in the 

same decade (1986 for clusters 4 and 6, 1987 for cluster 5). While the initial exponential 

growth phase clearly ended in the early 1990s for clusters 1 to 5 (see fig. 2a to 2e), the 

growth rate decrease is more tentative for cluster 6 and is only apparent very recently (see 

Fig. 2f), such that cluster 6 appears to also fit a model of exponential growth. To explore 

this issue further, we estimated the epidemic doubling time of each transmission cluster at 

the most recent sampling time, year 2003 (by rearrangement of the model in Pybus et al., 

2001)(27). This ‘current’ epidemic doubling time is considerably shorter for cluster 6 

than for clusters 1-5; specifically, the current doubling time for cluster 6 is significantly 

more likely to be <20 years (equal to an exponential growth rate >0.035 years-1) in 

comparison to the other clusters (data not shown). In marked contrast, the exponential 



growth rates at the time of initiation of each cluster (r) are very similar, with an average 

of 0.80 years-1. Finally, the current effective number of infections Ne varied from cluster 

to cluster, ranging from 94 (cluster 5) to 1350 (cluster 6) effective infections.  

 

Discussion 

Our estimates suggest that the HIV-1 subtype B epidemic currently circulating 

within the UK is comprised of at least six established chains of transmission, introduced 

in the early and mid 1980s. This demonstrates the existence of distinct, possibly non-

overlapping sexual networks within the predominant MSM risk group and argues against 

the hypothesis that one initial entry of HIV-1 was responsible for the spread of the 

subtype B epidemic. It also emphasises the role of migration in the HIV-1 epidemic in 

Britain, as illustrated by the overwhelming prevalence of sporadic lineages (86% of the 

total UK samples) in the genealogy, representing viruses arising from outside the UK that 

have failed to establish a large outbreak. 

The transmission clusters we characterised had similar epidemic curves and 

geographic distributions within the UK, indicating a concurrent spread under similar 

demographic pressures, at least during the early stages of the epidemic. The introduction 

of the earlier viruses in the early 1980s (i.e. clusters 1-3) seems to coincide with the 

explosion of new infections reported by epidemiological data at the time 

(http://www.hpa.org.uk/). The coupling of HIV strain ‘immigration’ with epidemiological 

changes is likely to have favoured the emergence and persistence of the transmission 

chains presently circulating amongst MSM. However, the first UK cases of AIDS were 

reported in 1982 (http://www.who.int/emc-hiv/fact_sheets/), and these individuals were 



probably infected within a window of 10 years prior to that time, hence the currently 

circulating strains may not represent the first HIV-1 lineages identified within the UK. If 

earlier strains existed they may have been unsuccessful in sustaining transmission chains 

until the present, and may no longer be of epidemiological significance. However, the 

absence of older strains could also reflect a sampling bias. 

For all six transmission clusters, the exponential growth phase coincides with a 

reported augmentation of newly-acquired HIV-1 infections within MSM and IDU in the 

UK (http://www.hpa.org.uk/). The average growth rate during the initial exponential 

phase was estimated to be 0.80 years-1 (ranging from 0.47 to 1.38), approximating a 

doubling time of 1 year. This value is similar to that estimated for the US subtype B 

epidemic (0.83 years-1, 0.72 to 0.94), suggesting that the two epidemics follow similar 

trends at the macro-epidemiological scale (26). This idea is supported by the effective 

number of infections estimated for the two epidemics. Despite a wide variation in Ne 

across the six UK transmission clusters, the average effective number of infections 

among the six UK clusters is 445, which is approximately 2.5% of the infected 

population. This is remarkably similar to the values for the US epidemic, where the 

effective number of infections and prevalence in 1995 reached 5000 and 200,000 

infections, respectively. Ne represents the number of infections contributing to onward 

transmission, rather than the larger number of actual infections. Importantly, we observe 

that the population represented by cluster 6 exhibits a faster doubling time in 2003 than 

the other five clusters, suggesting a difference in current growth rate among clusters. 

Current surveillance data for the UK reports a very recent increase in infections in MSM 



(http://www.hpa.org.uk/) and it is reasonable to suppose that the lineage we have 

identified as cluster 6 has contributed to this recent upturn in infection. 

Since 1990, there have been important changes in Britain’s demographic 

structure, social attitude and awareness of HIV-1/AIDS (28). Despite a very recent 

increase in high-risk behaviour among men having sex with men (such as the number of 

sexual partners or concurrent partnerships), a significant increase in consistent condom 

use has been reported since 1990. Such a change in sexual health, coupled to large-scale 

educational campaigns over the past decade, could explain the equilibrium reached by the 

effective number of prevalent infections. The effect of antiretroviral therapy on past 

epidemic dynamics should also be considered: although such therapy is instituted 

primarily to reduce progression of disease, it may also impact on transmission through 

reduction of infectivity. If so, we would expect evidence of growth rate decrease in the 

late (rather than early) 1990s – the time that highly active antiretroviral therapy became 

widely used.  In fact, Health Protection Agency data suggests no significant changes in 

the incidence of HIV-1 within gay men since the late 1980s, and an actual increase over 

the past 3 years (29). We therefore suggest that antiviral therapy has not had a significant 

impact on the growth of the epidemic; indeed, some studies suggest that the epidemic is 

driven by transmissions in primary infection (30-32), before therapy is usually initiated. 

The current increase in new infections is too recent to be reflected in the growth 

dynamics of any of the six populations identified by our analysis. On-going analyses of 

the type undertaken here will clarify whether the recent increase in new subtype B 

infections derive from longstanding viral lineages, or newly introduced viruses.   



In conclusion, we show that currently circulating HIV-1 subtype B strains entered 

the UK in the mid 1980s and that the rate of spread of these lineages slowed in the early 

1990s. It is often assumed that the HIV-1 epidemic within the UK is composed of 

smaller, independent epidemics defined by risk group. We demonstrate here the existence 

of multiple sub-epidemics (at least six) within MSM that obey similar demographic 

constraints during their early stages, yet exhibit differences in their more recent rates of 

spread. The identification of these multiple lineages within the predominant risk group of 

the HIV-1 epidemic in the UK suggests the existence of sub-epidemics within groups of 

MSM, and it is reasonable to assume that this structure exists in comparable risk groups 

in other countries. Such heterogeneity must therefore be considered when developing 

HIV monitoring prevention and treatment initiatives.  
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Figure legends 

Fig.1 

Schematic representation of the phylogeny generated from 3429 UK and worldwide HIV-

1 subtype B pol sequences. Filled circles represent sequences from the UK, while open 

squares represent non-UK sequences. Three branching patterns were distinguished: (a) 

non-UK transmission clusters, (b) sporadic UK infections, and (c) UK transmission 

clusters. Transmission clusters are clades of sequences from a particular location that 

descend from a common ancestor, indicating a successful spread of the virus in that 

location. UK transmission clusters are defined as those clades that include at least 25 

sequences, 90% or more of which are of UK origin. 

  

Fig. 2 

Phylogenetic trees of the six UK transmission clusters and their corresponding estimated 

epidemic histories (all shown on the same timescale).  The trees represent the ancestral 

relationships of sequences belonging to each cluster. (a) cluster 1, (b) cluster 2, (c) cluster 

3, (d) cluster 4, (e) cluster 5, (f) cluster 6.  The demographic histories were estimated by 

Bayesian MCMC inference using a model of logistic growth (see text for details) and 



show change in the effective number of infections through time (timescale in calendar 

years). The dark line shows the median estimate of the effective number of infections, 

whereas the light lines show the 95% confidence limits of the estimate. 

 

Fig. 3 

Schematic representation of the logistic model of population growth.   

According to this model, the number of infections population grows exponentially at rate 

r from time ta (time of the most recent common ancestor of the sampled sequences). The 

growth rate slows as time moves towards the present, such that Ne represents the 

effective number of infections at the present.  Ne can be thought of as the number of 

infections contributing to new infections, rather than the total number of prevalent 

infections within the cluster. 
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Table 1. Parametric estimates (with 95% confidence intervals) under the logistic growth demographic modelfor the six lineages

Cluster µ a Ne b r c Origin of the tree ( yrs)

Cluster 1 2.55 x 10-3 (0.0017, 0.0035) 493 (201, 833) 1.08 (0.66, 2.56) 1983 (1978, 1988)
Cluster 2 2.55 x 10-3 (0.0017, 0.0035) 386 (190, 655) 0.47 (0.30, 0.95) 1981 (1976, 1987)
Cluster 3 2.55 x 10-3 (0.0017, 0.0035) 98 (42 , 171) 0.50 (0.19, 4.62) 1983 (1977, 1988)
Cluster 4 2.55 x 10-3 (0.0017, 0.0035) 250 (88, 483) 1.38 (0.63, 2.50) 1986 (1982, 1991)
Cluster 5 2.55 x 10-3 (0.0017, 0.0035) 94 (36, 85) 0.68 (0.35, 2.10) 1987 (1983, 1991)
Cluster 6 2.55 x 10-3 (0.0017, 0.0035) 1350 (109, 5489) 0.67 (0.37, 3.85) 1986 (1981, 1991)

US cluster d 6.7 x 10-3 (n/a, n/a) 4 830 (1995, 26 750) 0.834 (0.72 / 0.945) 1968 (1966, 1970)

a Rate of nucleotide substitution, in substitutions per site per year, estimated from an independent dataset of subtype B pol sequences
b Effective number of infections
c Rate of exponential growth, in years -1

d from Robbins et al. , 2003
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