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Periodic Orbit Theory for Rydberg Atoms in External Fields
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Although hydrogen in external fields is a paradigm for the application of periodic orbits and the
Gutzwiller trace formula to a real system, the trace formula has never been applied successfully to other
Rydberg atoms. We show that spectral fluctuations of general Rydberg atoms are given with remarkable
precision by the addition of diffractive terms. Previously unknown features in atomic spectra are
exposed: there are new modulations that are neither periodic orbits nor combinations of periodic orbits;
“core shadowing” generally decreases primitive periodic orbit amplitudes but can also leadetses
[S0031-9007(98)05735-4]

PACS numbers: 32.60.+i, 03.65.Sq, 05.45.+b

Periodic orbit theory, in the form of the Gutzwiller = Rydberg atoms and molecules in the field-free case
trace formula (GTF) [1], provides the most powerful are described by quantum defect theory (QDT), one of
framework for the semiclassical quantization of chaoticthe most widely used theories in atomic physics. In
systems. It is more than a decade since it was firsQDT, the effects of a multielectron core are described
shown that the GTF provides a quantitative description oby a set of phase shifts, or “quantum defects;; in
the oscillations in the density of states of highly excitedeach partial wave/. In the limit when the quantum
hydrogen atoms in magnetic fields [2]. However, the tracelefects vary smoothly withl, they can be related to
formula has never been applied successfully to any othehe classical precession angle of the Kepler ellipse by
species of singly excited (Rydberg) atoms. This is clea® = 27d§;/dl. For many atoms only the lowest partial
from comparisons between accurate quantal spectra singgaves have nonzero quantum defects. For example, for
the spectral amplitudes for nonhydrogenic atoms diffeeven parity lithium,6p = 0.47 and §,=, = 0 while for
substantially from those of hydrogen [3]. helium §y = 0.37 and §,=, = 0. In this case, variation

Much effort has been expended in developing closeaf §; with [ is clearly not smooth.
orbit theory [4-7], the semiclassical theory which de- In this Letter, we present an approach that, for the first
scribes photoabsorption by atoms in external static fieldg¢ime, combines the Gutzwiller trace formula with quantum
By matching semiclassical waves to Coulomb waves neadefect theory and, hence, sheds new insight on the
the nucleus, the photoabsorption strength is obtained adassical interpretation of quantum defects. Our approach
a sum of contributions from only those orbits that closeyields simple analytical expressions for the differences
at the nucleus. In contrast)l periodic orbits contribute in amplitudes for general nonhydrogenic atoms. We
to the GTF (the eigenvalue spectrum). It was showrcompare the new semiclassical results with full quantal
that, provided core-scattered waves are included consigalculations and, for well isolated orbits, find them to be
tently in the matching procedure, closed orbit theory carextremely accurate, for example, to within abddgs at
be applied to general atoms in fields [8—10]. But, fori = 0.01.
nonhydrogenic atoms one finds additional modulations A surprising finding, predicted by theory and confirmed
of O(\/I) or higher relative to the hydrogenic contribu- by quantal results, is that, although the amplitudes of the
tions—the “combination recurrences”’—that are due toprimitive orbits are mostly reduced, as one would expect
sums of closed orbits. Contributions from the harmon-from the idea of core shadowing, in the nonhydrogenic
ics of closed orbits are reduced in amplitude through corease they can alsimcrease This is shown below to be
shadowing [8—10] but those associated with the first tradue to a dephasing between diffractive (core) and geomet-
versals of the primitive orbits are unaffected. ric (Coulomb) contributions. Combinations of periodic

However, closed orbit theory does not account, evemrbits appear with order at leagt Most significantly,
qualitatively, for the observed differences between atomiciew modulations appear that are not combinations of
species for the eigenvalue spectrum, i.e., the densityeal periodic orbits but are rather pure diffractive orbits.
of states,p(E) = —ImTrG(E)/7. In the density of They pass through the core and are made periodic by the
states—quantitatively well-described by periodic orbitdiffraction. We emphasize that all these effects are accu-
theory for hydrogen—amplitudes of primitive periodic rately described by the diffractive periodic orbit theory.
orbits can vary substantially between atoms, in contrast The periodic orbit theory of diffraction was developed
with closed orbit theory. Also, the modulations associatedecently for Hamiltonians with discontinuities [11—-13].
with combinations of periodic orbits appear at differentFor our purposes, a good example of a diffractive system
orders inZ relative to closed orbit theory. is the cardioid billiard, which has a single sharp vertex. In
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this case, periodic orbits are decomposed into two kinds: We consider the specific example of Rydberg atoms
those that do not intersect the vertex (geometric orbitsin a static magnetic field of strength, (atomic units).

and those that do (diffractive orbits). The density of state§'he quantum spectra are calculated at a constant scaled
has been shown to be obtained as a sum: energye = Ey~2/3, that is forfixed classical dynamics.
Quantum mechanically, we calculate a set of eigenvalues,

1 1
p(E) = — o MTrGe(E) — — ImTrGp(E). (1) ™3 corresponding to different effective[14]. Below,
The first (geometric) term yields the ordinary GTF. Thel denotesy /3. _ o _
trace, over the second (diffractive) contribution has been For Rydberg atoms in a magnetic field, the best studied

shown to be [11,13] periodic orbits are the straight line orbit perpendicular
T to the field,R;, and the “balloon” orbit,Vll. The well-
TrGp(E) = Y —2 [[d0)G(gn,gns1:E).  (2)  known Garton-Tomkins orbit [15]R;, is responsible for
p the quasi-Landau oscillations observednin= 1 atomic

whereT), is the to_tal sum of periods t_aken over the pathsspectra near the ionization limit at energy spacing
between the vertices anf{n) is the diffraction constant ~15x4; these were the first observed “footprints” of
which depends on the type of diffraction. Equation (2)periodic orbits in a real physical system. The balloon
encapsulates the important result that the trace integr@rbit dominatesn = 0, odd+ spectra with oscillations of
taken between theth and(n + 1)th vertices is propor- spacing~0.64/iw. The effect of the core on the orbit
tional to the Green’s function between those points. parallel to the field,V,, is relatively weak [4,8,9]. The
We apply diffractive periodic orbit theory to our periodic orbit labeling terminology of Ref. [16] is used
atomic systems by treating the nonhydrogenic core agroughout.
a diffractive source. The crucial step is to obtain an For the case ofs-wave scattering, each diffractive
expression for the diffractive constamt in terms of  contribution in Eq. (2) is
quantum defects. To this end, we consider an incoming 12

- 4 27 . 0; .
Coulomb wave;béoll, which approaches the atomic core dG = h(*° — 1) T sinZ sin-L

from infinity at an anglef, to thez axis. On reaching 12 2 2

the core,zp((;;)ﬂ produces a scattered waw,.., which

feeds outgoing semiclassical waves along periodic orbitsand, in effect, represents the contribution of a pure
scane €AN be decomposed into an outgoing Coulomb wav@iffractive orbit. Note the additional phase of/4
together with aﬁ»core-scattered wave [Fc.u(r,0) =  relative to an equivalent geometric primitive periodic
lp((;zﬂ(r,e) + teore(r, 8). The Coulomb scattered wave orbit.

is strongly back focused alorgy= 6, and can be written Now we see that the amplitude of each nonhydro-
in closed form [5]. Our first approximation consists genic primitive periodic orbit actually arises from the

; 9 action but a different phase: a geometric one of the
(i.e., the usual GTF). The core-scattered way@re, . ) o
arising from the incoming wave at anglg, is equated Gutzwiller form weighted by the trace of the stability

with the source of diffractive semjclassical waves. At ampatrlx, M, in the usual manner, €., for theth or!mt
radius, o = 50 bohr, we expresgicare in a partial-wave An = (7S,)/4 |2 — Tr M, |, and a diffractive one, given

X ei(S/ﬁ*,u,w/Z*ﬂ'/4)’ (5)

expansion which, fom = 0 is [5] by Eq. (5), following the same path and of similar action
P 2 72\1/4 but weighted byl /./m;, wherem, is an element of.
eore = <7> This contrasts with the cardioid billiard where a typical

. contribution is either pure geometric or pure diffractive.
* —i37 /4y 2i8 We can easily show that the fractional reduction of am-
X ;Ylo(ﬁf,O)Yzo(H,O)e (e D, plitude for a primitive periodic orbit of a nonhydrogenic
(3) atom relative to that of hydrogen is
where g, are the quantum defects. Finally, we takéo  A;/4,
be the fractional amplitude scattered by the core:

000.0,) = Uero, 00/ 000,y (@) =1+ ARISITO) — 4R SING)SING + )V,

All calculations and comparisons with fully quantal (6)
spectra presented here have been carried out-feave where, in general,
scattering (appropriate for atoms such as lithium or helium
which are used frequently in experiments of 0atoms in R = A,}l\/32—7 sin(6;/2) sin(6;/2) . @
fields). So, belows = 8§, and, in this caseycr is mi2
isotropic. However, generalization to odd parity or atomsAll parameters, e.g., initial and final angles, 6, refer
with multiple quantum defects is straightforward. to the particular primitive orbit under consideration. The
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fractional reduction or increase is of(+/7i). In general, 0.2
¢ = —m /4. However,R, runs along a boundary of the
fundamental symmetry domain and so requires special
treatment: when stable, with winding number, we
find¢p = —7/4 — v /2andR = 2./(7/m12) sin(m7v).
The most important correction in Eq. (6) is tkéi term.
This is zero for§ = —¢ and positive for siftd + ¢) <
0, leading to anincreased amplitude for a primitive
periodic orbit. In contrast, in closed orbit theory, the main
photoabsorption source term and the core-scattered terms
do not have thisr /4 dephasing.

Harmonics of primitive orbits also have further contri-
butions from product terms aP(%). However, product
terms also give additional weak contributions at actions
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combination has amplitude ! Vi
2i8 2 N
-1 1

87T2(S1 + Sz) |(€ — llaz _0.11 iemlc assical

Mt ' Scaled Action

1 9} 2 g2 /2
X | sin—+ sin—- sin— sin— . (8) FIG.1. (a) Comparison of Fourier transforms of the density
2 2 2 of states for hydrogen and lithiun® (= 0.40457) in a static

. : o magnetic field at constant scaled energy= —0.2 from a
In Fig. 1(a) we show Fourier transforms of the oscil fully quantal calculation with averagé = 1/90. Note the

latory part of the ever; m = 0, eigenvalue spectra for changes in amplitudes of periodic orbits and new modulations
hydrogen and lithium § = 0.40457) in a static mag- due to diffractive orbits in the lithium case. (b) Comparison
netic field at constant scaled energy= —0.2, and with ~ between quantal and semiclassical difference spectra obtained
n = 7—1/3 — 1! ranging from60 to 120. In Fig. 1(b) by coherently subtracting the Fourier transforms shown in (a).

" ” : This exposes the diffractive contributions to the spectrum and
we plot the "difference” spectrum obtained by COher'eliminates contributions from orbits which do not pass through

ently subtracting the Fourier transform of the hydrogenighe core. Shown are changes in periodic orbit amplitudes due
spectrum from that of lithium; this exposes the diffrac-to diffraction, diffractive combinations of two periodic orbits,
tive contributions and eliminates contributions from pe-and pure diffractive orbits marke®, and D,. Away from
riodic orbits which do not pass through the core. ForPifurcations, which affec, and D,, the agreement between
comparison, we also plot a semiclassical difference Spe(g_uantum and semiclassical calculations is excellent.
trum obtained by summing all terms of ordg¥i and ;
agreement is excellent. The discrepancyDinis due to  so their contribution is overestimated semiclassically. On
the effects of bifurcations that are not taken into accounexamination of the diffractive orbits we find that they
in the semiclassical calculation presented here. correspond to the first closure of asymmetric periodic
We can see that for lithium the amplitudes ®f and  orbits, some of which correspond to th&, series of
its harmonic R,, as well asV{ and other orbits are “exotic orbits” [16]. In hydrogenic eigenvalue spectra
substantially reduced. There are additional small peaksuch orbits contribute only at thefull period, whereas
which correspond accurately to sums of periodic orbitsin the diffractive case they appearcsure.
Importantly, there are strong peaks (marked and D) We have carried out a detailed study of these effects for
which do not match any combination of orbits. At theseseveral scaled energies to study thand é dependence
scaled actions§( = 2.87 and S = 2.94) we find orbits of the diffractive effects. In Figs. 2(a)—2(d) we compare
that are closed but not periodic. For hydrogen, onlythe fractional change relative to hydrogen between the
orbits that are periodic in the fundamental symmetryfully quantal and semiclassical expressionsRerand V.
domain contribute. Here we see that pure diffractiveThe agreement is very good. For thelependence there
orbits, such asD,, can contribute to the nonhydrogenic are fewer points forv] since a wide spectral range is
spectrum atO(\/7), so are substantially stronger than required to resolve it from a nearby orbit. An especially
combinations of orbits. The peak &t= 2.87 is due to interesting feature is the dephasing Rf relative to Vi
an isolated closed orbit and is obtained almost exactlgeen in Figs. 2(c) and 2(d). The diffractive contribution
from Eq. (5) as seen in Fig. 1(b) [note that in Fig. 1(a)to V| is —#/4 out of phase with the geometric term.
the peak associated with this orbit is masked by théAs a result the amplitude exceeds that of hydrogen for
peak of a periodic orbit which does not approach thed < #/4 and is minimal até = 0.657. In contrast,
nucleus]. The peak &t = 2.94 consists of contributions the geometric and diffractive contributions f&; are
from a pair of nonisolated orbits close to a bifurcationalmost in phase at = —0.275 and remain so for a wide
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09 0.9 the standard theory using a model potential. Then, the

1
OV, 0213 observed closed orbit modulations were modeled by su-
perposing thousands of very unstable orbits. Hence, the
071 081 0.2 issue of whether the dynamics of nonhydrogenic atoms at
moderate scaled energies is an instance of chaos (i.e., very
05 on . unstable motion) or an effect “beyond periodic orbits,”
S 50 100 pn 150 such as diffraction, remains open. Our work addressed
@v, this issue.
< 104 104 0275 _ Currently, there is added interest in diffract.ive systems
< o since they have very recently been associated with a
< 038 0.3 new class of intermediate level statistics (“half-Poisson”)
-0.2 [18]. Recently, eigenvalue statistics for rubidium in
06 05 &/ 10 0650 05 &/m 10 fields were investigated .experimentally [19] and shown
© Combimafionorbifl > () Diffractive orbit to _be nearer the Gaussian orthogonal ensemble (C_SOE)
02+ 0275 151 02 limit than comparable hydrogenic results. Hence, given
that spectroscopic resolution exceeds mean level spacing,
01 & S 101 D, experimental verification of diffractive effects in the
SRS 0.5 1 eigenvalue spectrum, for example, the presence of the
00 ‘ 00 ‘ “D” modulations, is, in principle, possible.
0.0 05 §/r 1.0 0.0 05 §/r 10 We are indebted to E.B. Bogomolny, D. Delande,

FIG. 2. Dependence of diffractive contributions éinand §: and J.B. Delos for helpful advice and discussions. The

comparison between quantum results (full circles) and semiclauthors acknowledge funding from the EPSRC.
sical formula, Eq. (6), (solid line) showing near exact agree-

ment. The vertical axis represents the ratio of nonhydrogenic

to hydrogenic amplitudes. (a) DependencedgfAy on # for

R, ate = —0.2, —0.6, and—0.45. (b) Same as (a) fov; at

€ = —0.2.and—0.275. (c) Dependence of;/Ay on quantum
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