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Periodic Orbit Theory for Rydberg Atoms in External Fields
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Although hydrogen in external fields is a paradigm for the application of periodic orbits and the
Gutzwiller trace formula to a real system, the trace formula has never been applied successfully to other
Rydberg atoms. We show that spectral fluctuations of general Rydberg atoms are given with remarkable
precision by the addition of diffractive terms. Previously unknown features in atomic spectra are
exposed: there are new modulations that are neither periodic orbits nor combinations of periodic orbits;
“core shadowing” generally decreases primitive periodic orbit amplitudes but can also lead toincreases.
[S0031-9007(98)05735-4]
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Periodic orbit theory, in the form of the Gutzwiller
trace formula (GTF) [1], provides the most powerfu
framework for the semiclassical quantization of chaot
systems. It is more than a decade since it was fi
shown that the GTF provides a quantitative description
the oscillations in the density of states of highly excite
hydrogen atoms in magnetic fields [2]. However, the trac
formula has never been applied successfully to any oth
species of singly excited (Rydberg) atoms. This is cle
from comparisons between accurate quantal spectra si
the spectral amplitudes for nonhydrogenic atoms diff
substantially from those of hydrogen [3].

Much effort has been expended in developing close
orbit theory [4–7], the semiclassical theory which de
scribes photoabsorption by atoms in external static field
By matching semiclassical waves to Coulomb waves ne
the nucleus, the photoabsorption strength is obtained
a sum of contributions from only those orbits that clos
at the nucleus. In contrast,all periodic orbits contribute
to the GTF (the eigenvalue spectrum). It was show
that, provided core-scattered waves are included cons
tently in the matching procedure, closed orbit theory ca
be applied to general atoms in fields [8–10]. But, fo
nonhydrogenic atoms one finds additional modulation
of Os

p
h̄d or higher relative to the hydrogenic contribu

tions—the “combination recurrences”—that are due
sums of closed orbits. Contributions from the harmon
ics of closed orbits are reduced in amplitude through co
shadowing [8–10] but those associated with the first tr
versals of the primitive orbits are unaffected.

However, closed orbit theory does not account, eve
qualitatively, for the observed differences between atom
species for the eigenvalue spectrum, i.e., the dens
of states,rsEd ­ 2Im Tr GsEdyp . In the density of
states—quantitatively well-described by periodic orb
theory for hydrogen—amplitudes of primitive periodic
orbits can vary substantially between atoms, in contra
with closed orbit theory. Also, the modulations associate
with combinations of periodic orbits appear at differen
orders inh̄ relative to closed orbit theory.
0031-9007y98y80(13)y2797(4)$15.00
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Rydberg atoms and molecules in the field-free ca
are described by quantum defect theory (QDT), one
the most widely used theories in atomic physics.
QDT, the effects of a multielectron core are describe
by a set of phase shifts, or “quantum defects,”dl, in
each partial wave,l. In the limit when the quantum
defects vary smoothly withl, they can be related to
the classical precession angle of the Kepler ellipse b
Q ­ 2pddlydl. For many atoms only the lowest partia
waves have nonzero quantum defects. For example,
even parity lithium,d0 . 0.4p and dl$2 . 0 while for
helium d0 . 0.3p anddl$2 . 0. In this case, variation
of dl with l is clearly not smooth.

In this Letter, we present an approach that, for the fir
time, combines the Gutzwiller trace formula with quantu
defect theory and, hence, sheds new insight on t
classical interpretation of quantum defects. Our approa
yields simple analytical expressions for the differenc
in amplitudes for general nonhydrogenic atoms. W
compare the new semiclassical results with full quan
calculations and, for well isolated orbits, find them to b
extremely accurate, for example, to within about1% at
h̄ . 0.01.

A surprising finding, predicted by theory and confirme
by quantal results, is that, although the amplitudes of t
primitive orbits are mostly reduced, as one would expe
from the idea of core shadowing, in the nonhydrogen
case they can alsoincrease. This is shown below to be
due to a dephasing between diffractive (core) and geom
ric (Coulomb) contributions. Combinations of periodi
orbits appear with order at leasth̄. Most significantly,
new modulations appear that are not combinations
real periodic orbits but are rather pure diffractive orbit
They pass through the core and are made periodic by
diffraction. We emphasize that all these effects are acc
rately described by the diffractive periodic orbit theory.

The periodic orbit theory of diffraction was develope
recently for Hamiltonians with discontinuities [11–13]
For our purposes, a good example of a diffractive syste
is the cardioid billiard, which has a single sharp vertex.
© 1998 The American Physical Society 2797
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this case, periodic orbits are decomposed into two kind
those that do not intersect the vertex (geometric orbit
and those that do (diffractive orbits). The density of state
has been shown to be obtained as a sum:

rsEd ­ 2
1
p

Im Tr GgsEd 2
1
p

Im Tr GDsEd . (1)

The first (geometric) term yields the ordinary GTF. Th
trace, over the second (diffractive) contribution has bee
shown to be [11,13]

Tr GDsEd ­
X
p

Tp

ih̄

Y
n

dsndGsqn , qn11; Ed , (2)

whereTp is the total sum of periods taken over the path
between the vertices anddsnd is the diffraction constant
which depends on the type of diffraction. Equation (2
encapsulates the important result that the trace integ
taken between thenth and sn 1 1dth vertices is propor-
tional to the Green’s function between those points.

We apply diffractive periodic orbit theory to our
atomic systems by treating the nonhydrogenic core
a diffractive source. The crucial step is to obtain a
expression for the diffractive constantd in terms of
quantum defects. To this end, we consider an incomin
Coulomb wave,c

s2d
Coul, which approaches the atomic core

from infinity at an angle,uf , to thez axis. On reaching

the core,c
s2d
Coul produces a scattered wave,cscatt, which

feeds outgoing semiclassical waves along periodic orbi
cscatt can be decomposed into an outgoing Coulomb wa
together with a core-scattered wave [5]:cscattsr , ud ­
c

s1d
Coulsr , ud 1 c

uf
coresr, ud. The Coulomb scattered wave

is strongly back focused alongu . uf and can be written
in closed form [5]. Our first approximation consists
of equatingc

s1d
Coul with the source for geometric paths

(i.e., the usual GTF). The core-scattered wavec
uf
core,

arising from the incoming wave at angleuf , is equated
with the source of diffractive semiclassical waves. At
radius,r0 . 50 bohr, we expressc

uf
core in a partial-wave

expansion which, form ­ 0 is [5]

c
uf
core ­

µ
2p2

r3

∂1y4

3
X̀
l­0

Yp
l0suf , 0dYl0su, 0de2i3py4se2idl 2 1d ,

(3)

wheredl are the quantum defects. Finally, we taked to
be the fractional amplitude scattered by the core:

dsui , ufd ­ c
uf
coresr0, uidyc

s2d
Coulsr0, ufd . (4)

All calculations and comparisons with fully quanta
spectra presented here have been carried out fors-wave
scattering (appropriate for atoms such as lithium or heliu
which are used frequently in experiments of atoms
fields). So, belowd ; d0 and, in this case,c

uf
core is

isotropic. However, generalization to odd parity or atom
with multiple quantum defects is straightforward.
2798
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We consider the specific example of Rydberg atom
in a static magnetic field of strength,g (atomic units).
The quantum spectra are calculated at a constant scal
energye ­ Eg22y3, that is forfixed classical dynamics.
Quantum mechanically, we calculate a set of eigenvalue
g

22y3
i , corresponding to different effectivēh [14]. Below,

h̄ denotesg1y3.
For Rydberg atoms in a magnetic field, the best studie

periodic orbits are the straight line orbit perpendicular
to the field,R1, and the “balloon” orbit,V 1

1 . The well-
known Garton-Tomkins orbit [15],R1, is responsible for
the quasi-Landau oscillations observed inm ­ 1 atomic
spectra near the ionization limit at energy spacing
,1.5h̄v; these were the first observed “footprints” of
periodic orbits in a real physical system. The balloon
orbit dominatesm ­ 0, odd-l spectra with oscillations of
spacing,0.64h̄v. The effect of the core on the orbit
parallel to the field,V1, is relatively weak [4,8,9]. The
periodic orbit labeling terminology of Ref. [16] is used
throughout.

For the case ofs-wave scattering, each diffractive
contribution in Eq. (2) is

dG ­
p

h̄se2id 2 1d
Ç

2p

m12
sin

ui

2
sin

uf

2

Ç1y2

3 eisSy h̄2mpy22py4d, (5)

and, in effect, represents the contribution of a pure
diffractive orbit. Note the additional phase of2py4
relative to an equivalent geometric primitive periodic
orbit.

Now we see that the amplitude of each nonhydro
genic primitive periodic orbit actually arises from the
interference between two contributions with the same
action but a different phase: a geometric one of the
Gutzwiller form weighted by the trace of the stability
matrix, M, in the usual manner, i.e., for thepth orbit
A

p
H ­ spSpdy

q
j2 2 Tr Mp j, and a diffractive one, given

by Eq. (5), following the same path and of similar action
but weighted by1y

p
m12, wherem12 is an element ofM.

This contrasts with the cardioid billiard where a typical
contribution is either pure geometric or pure diffractive.

We can easily show that the fractional reduction of am
plitude for a primitive periodic orbit of a nonhydrogenic
atom relative to that of hydrogen is

AdyAH

­
q

1 1 4R2 sin2sddh̄ 2 4R sinsdd sinsd 1 fd
p

h̄ ,

(6)

where, in general,

R ­ A21
H

s
32p

m12
sinsuiy2d sinsufy2d . (7)

All parameters, e.g., initial and final angles,ui, uf , refer
to the particular primitive orbit under consideration. The
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fractional reduction or increase is ofOs
p

h̄d. In general,
f ­ 2py4. However,R1 runs along a boundary of the
fundamental symmetry domain and so requires spec
treatment: when stable, with winding numbern, we
find f ­ 2py4 2 npy2 andR ­ 2

p
spym12d sinspnd.

The most important correction in Eq. (6) is the
p

h̄ term.
This is zero ford ­ 2f and positive for sinsd 1 fd ,

0, leading to an increased amplitude for a primitive
periodic orbit. In contrast, in closed orbit theory, the mai
photoabsorption source term and the core-scattered ter
do not have thispy4 dephasing.

Harmonics of primitive orbits also have further contri
butions from product terms ofOsh̄d. However, product
terms also give additional weak contributions at action
that are sums of periodic orbits. For example, a two-orb
combination has amplitude

8p2sS1 1 S2d
se2id 2 1d2

jm1
12m2

12j
1y2

3

Ç
sin

u
1
i

2
sin

u
1
f

2
sin

u
2
i

2
sin

u
2
f

2

Ç1y2

. (8)

In Fig. 1(a) we show Fourier transforms of the oscil
latory part of the even-l, m ­ 0, eigenvalue spectra for
hydrogen and lithium (d ­ 0.4045p) in a static mag-
netic field at constant scaled energye ­ 20.2, and with
n ­ g21y3 ­ h̄21 ranging from60 to 120. In Fig. 1(b)
we plot the “difference” spectrum obtained by coher
ently subtracting the Fourier transform of the hydrogen
spectrum from that of lithium; this exposes the diffrac
tive contributions and eliminates contributions from pe
riodic orbits which do not pass through the core. Fo
comparison, we also plot a semiclassical difference spe
trum obtained by summing all terms of order

p
h̄ and h̄;

agreement is excellent. The discrepancy inD2 is due to
the effects of bifurcations that are not taken into accou
in the semiclassical calculation presented here.

We can see that for lithium the amplitudes ofR1 and
its harmonic R2, as well asV 1

1 and other orbits are
substantially reduced. There are additional small pea
which correspond accurately to sums of periodic orbit
Importantly, there are strong peaks (markedD1 and D2)
which do not match any combination of orbits. At thes
scaled actions (S . 2.87 and S . 2.94) we find orbits
that are closed but not periodic. For hydrogen, on
orbits that are periodic in the fundamental symmetr
domain contribute. Here we see that pure diffractiv
orbits, such asD2, can contribute to the nonhydrogenic
spectrum atOs

p
h̄d, so are substantially stronger than

combinations of orbits. The peak atS . 2.87 is due to
an isolated closed orbit and is obtained almost exac
from Eq. (5) as seen in Fig. 1(b) [note that in Fig. 1(a
the peak associated with this orbit is masked by th
peak of a periodic orbit which does not approach th
nucleus]. The peak atS . 2.94 consists of contributions
from a pair of nonisolated orbits close to a bifurcatio
ial
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FIG. 1. (a) Comparison of Fourier transforms of the density
of states for hydrogen and lithium (d ­ 0.4045p) in a static
magnetic field at constant scaled energy´ ­ 20.2 from a
fully quantal calculation with averagēh ­ 1y90. Note the
changes in amplitudes of periodic orbits and new modulation
due to diffractive orbits in the lithium case. (b) Comparison
between quantal and semiclassical difference spectra obtain
by coherently subtracting the Fourier transforms shown in (a)
This exposes the diffractive contributions to the spectrum an
eliminates contributions from orbits which do not pass through
the core. Shown are changes in periodic orbit amplitudes du
to diffraction, diffractive combinations of two periodic orbits,
and pure diffractive orbits markedD1 and D2. Away from
bifurcations, which affectV1 and D2, the agreement between
quantum and semiclassical calculations is excellent.

so their contribution is overestimated semiclassically. On
examination of the diffractive orbits we find that they
correspond to the first closure of asymmetric periodic
orbits, some of which correspond to theXn series of
“exotic orbits” [16]. In hydrogenic eigenvalue spectra
such orbits contribute only at theirfull period, whereas
in the diffractive case they appear atclosure.

We have carried out a detailed study of these effects fo
several scaled energies to study theh̄ andd dependence
of the diffractive effects. In Figs. 2(a)–2(d) we compare
the fractional change relative to hydrogen between th
fully quantal and semiclassical expressions forR1 andV 1

1 .
The agreement is very good. For theh̄ dependence there
are fewer points forV 1

1 since a wide spectral range is
required to resolve it from a nearby orbit. An especially
interesting feature is the dephasing ofR1 relative toV 1

1
seen in Figs. 2(c) and 2(d). The diffractive contribution
to V 1

1 is 2py4 out of phase with the geometric term.
As a result the amplitude exceeds that of hydrogen fo
d & py4 and is minimal atd . 0.65p. In contrast,
the geometric and diffractive contributions forR1 are
almost in phase ate ­ 20.275 and remain so for a wide
2799
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FIG. 2. Dependence of diffractive contributions on" and d:
comparison between quantum results (full circles) and semicl
sical formula, Eq. (6), (solid line) showing near exact agre
ment. The vertical axis represents the ratio of nonhydrogen
to hydrogenic amplitudes. (a) Dependence ofAdyAH on " for
R1 at e ­ 20.2, 20.6, and20.45. (b) Same as (a) forV 1

1 at
e ­ 20.2 and20.275. (c) Dependence ofAdyAH on quantum
defect,d, for R1. (d) Same as (c) forV 1

1 : note the dephasing
relative to R1 and that the amplitude exceeds the hydrogen
value ford , py4. (e) and (f ) dependence of contributions o
combination and diffractive orbits ond. Here the ratio relative
to the first contribution of the circular orbit,C, is shown. As
predicted by the theory, combination orbits show a sin2 d be-
havior while diffractive orbits follow a sind curve.

range of scaled energies aboute . 20.3, where the orbit
undergoes its2:1 resonance withn . 0.5.

In Figs. 2(e) and 2(f) we investigate the combinatio
orbits and the diffractive orbit that appears ate ­ 20.2
for S . 2.87. In this case we plot the ratio of amplitudes
relative to the first peak ofC, the circular orbit, a periodic
orbit that does not pass through the nucleus and, hence
unaffected by the diffraction. In both cases the agreeme
is very good.

In conclusion, we have shown that periodic orbit theor
(the GTF) may be applied to all singly excited atoms a
successfully as for hydrogen by bringing in the effects o
QDT in the form of diffractive corrections. Also, to our
knowledge, this is the first demonstration of a diffractiv
effect in a real system, since previously diffraction ha
been applied only to model problems such as billiard
Although we show explicit results fors-wave scattering
in lithium and helium, our method is applicable generall
to other Rydberg atoms and molecules in external fields

An interesting recent calculation [17] treated the pho
toabsorption of general atoms within the framework o
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the standard theory using a model potential. Then, th
observed closed orbit modulations were modeled by s
perposing thousands of very unstable orbits. Hence, th
issue of whether the dynamics of nonhydrogenic atoms
moderate scaled energies is an instance of chaos (i.e., v
unstable motion) or an effect “beyond periodic orbits,”
such as diffraction, remains open. Our work addresse
this issue.

Currently, there is added interest in diffractive system
since they have very recently been associated with
new class of intermediate level statistics (“half-Poisson”
[18]. Recently, eigenvalue statistics for rubidium in
fields were investigated experimentally [19] and show
to be nearer the Gaussian orthogonal ensemble (GO
limit than comparable hydrogenic results. Hence, give
that spectroscopic resolution exceeds mean level spacin
experimental verification of diffractive effects in the
eigenvalue spectrum, for example, the presence of th
“D” modulations, is, in principle, possible.

We are indebted to E. B. Bogomolny, D. Delande
and J. B. Delos for helpful advice and discussions. Th
authors acknowledge funding from the EPSRC.
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