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Quantum Chaos with Nonperiodic, Complex Orbits in the Resonant Tunneling Diode
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(Received 8 June 1998)

We show that special types of orbits, which arenonperiodicand complex“saddle orbits” (SOs),
describe accurately the quantal and experimental current oscillations in the resonant tunneling diode in
tilted fields. The SOs solve the puzzle of broad regions of experimental oscillations where we find no
real or complex periodic orbit (PO) that can explain the data. The SOs succeed in regimes involving
several nonisolated POs, where PO formulas fail. We show that their contribution can, unexpectedly,
decay very slowly in the classical limit. [S0031-9007(98)07876-4]

PACS numbers: 05.45.+b, 03.65.Sq, 73.20.Dx
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The resonant tunneling diode (RTD) in tilted fields ha
recently been intensively investigated as an experimen
probe of “quantum chaos” [1–6]. It is widely considered
to be a paradigm of periodic orbit (PO) theory in a real sy
tem, yet to date no PO formula has been shown to provi
a full and quantitative description of the current. Sever
approaches were presented recently [7–9], expressing
tunneling current in terms of periodic orbits. We demon
strated previously [10] that they yielded only reasonab
agreement for theamplitudesof current oscillations in
specific regimes, namely, the stable (torus-quantizatio
region and its opposite extreme, the isolated unstable pe
odic orbit regions. They failed in an intermediate regim
spanning a broad range of field values. There one fin
regions where there is no real PO or alternatively compe
ing nonisolated POs. As we argue below, it is not simply
question of improving the PO theory with uniform approxi
mations. In the regions where there is no real PO, ev
complex “ghost” POs [11] cannot explain the experimen
tal oscillations (for convenience we continue neverthele
to refer to these regions as “ghost regions”).

While the well-known Gutzwiller trace formula relates
classical POs to the quantal density of states (DOS)
a chaotic system, in our case, we seek a semiclassi
theory for the DOSweightedby a matrix element (here
a tunneling probability). Previous semiclassical theorie
of matrix elements for e.g., molecular vibrational spectr
[12] excluded the matrix element from stationary phas
considerations imposed on the rapidly varying functio
eiSsz,z0dy h̄ of the classical actionS of a trajectory. This
approach yields the observed spectra as a sum over P
However, in the RTD problem, the tunneling matrix ele
ment varies on a comparable scale toSsz, z0dyh̄. We show
here that the correct stationary phase condition inclu
ing the tunneling matrix element, arising from the the
ory proposed in [8], yields orbits of a new type—which
we call “saddle orbits” (SOs). The SOs arenonperi-
odic andcomplexand describe the current accurately eve
in regimes where the previous semiclassical PO theor
failed. They also show good agreement with the expe
mental amplitudes obtained from Bell Lab data [2]. Th
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SOs are quite distinct from the real closed orbits identifie
in atomic photoabsorption from localized ground state
[13]. As for ghosts, the imaginary component of the ac
tion provides a damping term. We show that for SO
a further weighting term due to the matrix element ca
partially cancel this damping. This yields contribution
which can decay slowly with decreasinḡh, also solv-
ing the puzzle of oscillations which persist far into the
ghost regions.

We recall briefly the RTD model [1]. An electric field
F (along x) and a magnetic fieldB in the x-z plane
(at tilt angle u to the x axis) are applied to a double
barrier quantum well of widthL ­ 1200 Å. Because
of translational invariance, the dynamics reduces to tw
degrees of freedom inx andz. The electrons are confined
in the z direction by the magnetic field which provides a
harmonic potential. In thex direction they are confined
by the barriers. Electrons in a two-dimensional electro
gas accumulate at the first barrier and tunnel through bo
barriers giving rise to a tunneling currentI. In the process
they probe the classical dynamics—regular or chaotic—
within the well. The current oscillates as a function o
applied voltageV . After rescaling with respect toB
(q ! q, p ! pyB) [9], the dynamics at givenu and ratio
of injection energy to voltage (R ­ EyV , 0.15 for the
Bell Lab experiments) depends only on the paramet
e ­ VyLB2.

The theoretical scaled current is a DOS weighte
by a tunneling matrix element:IsBd ­

P
i WidsB 2 Bid.

We used the Bardeen matrix element [14] form fo
Wi, which is an overlap betweenf0, the initial state
describing the electrons prior to tunneling, andci, the
wave function in the quantum well. We consider her
that the initial state is in the lowest Landau state:f0szd ­p

B cosuyp exps2B cosuz2y2d.
In the experiments, incoherent processes such

phonon emission damp the current bye2Tyt , whereT is
the period of the motion of an electron in the well an
t , 0.11 ps. Details of the experimental data reductio
and quantum calculations were given in [9,10]. We ca
obtain reliable experimental amplitudes in regimes whe
© 1998 The American Physical Society
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the current is dominated by a single frequency (pu
period-one or period-two).

For the semiclassics, one can reexpress the Bard
matrix element in terms of energy Green’s functions an
use their semiclassical expansion over classical paths
get the following expression for the tunneling current [8]

IsBd ~ Re
Z

dz
Z

dz0
X
cl

m
21y2
12 eiSsz,z0d2B cosusz21z02dy2,

(1)

where m12 ­
≠z0

≠pz
is an element of the monodromy

matrix mij, for a trajectory sx ­ 0, z; px , pzd ! sx0 ­
0, z0; p0

x , p0
zd with initial momentum pz along z, and

which must connect both walls of the well.
The stationary phase condition applied to Eq. (1) give

i
≠S
≠z 2 B cosuz ­ 0 ­ i

≠S
≠z0 2 B cosuz0. The contribut-

ing trajectories will therefore satisfy the condition

pz ­ i cosuz, p0
z ­ 2i cosuz0, (2)

as ≠S
≠z ­ 2Bpz in our scaled model. One sees clearl

that these trajectories, which we call saddle orbits, w
invariably becomplexand nonperiodic. It follows that
we cannot consider the repetitions of a given SO—
one does for POs when investigating period-doubled o
cillations. Instead, one finds other SOs of quite differe
shapes with longer periods. We found that all the SO
which give a substantial contribution to the current hav
z ­ z0. They retrace themselvesoncebecause of an inter-
mediate bounce normal to a wall or a “soft” bounce on th
energy surface.

In [8] the term in Eq. (2) was neglected in order to get
formula in terms of POs with null momentumpz ­ 0 ­
p0

z . It was found in [10] that this formula is accurate
only over part of the experimental range. In order t
understand over which regimes PO formulas succeed a
where they fail, we consider the regime where a se
retracing SO and a PO counterpart are reasonably clo
One can then establish a link between them by express
the SO in terms of an expansion around the PO. Maki
a Taylor expansion of the action and neglecting≠nS

≠zn for
n . 2, one finds

zSO >
zPO

1 2 d
, (3)

whered ­ i cosu
m̄12

m̄1121 andm̄ij is the scaled monodromy
matrix of the PO. Later we find that the PO an
SO current amplitudes are in agreement only when th
perturbative link is valid. Also, we found that non-self
retracing SOs, which correspond to segments of POs,
not relevant to these experiments.

We plot some of these trajectories in Figs. 1(a)–(d
together with their corresponding PO counterpart. Th
link between SOs and POs is evident in Fig. 1(a), whic
shows a regime where the SO and PO are very simil
In this case thex-z path of the SO is not very complex
(the imaginary part is an order of magnitude smaller tha
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the real part). The connection between SO and PO
generally not so visible though. Figure 1(b) shows th
stable POt0, its related “primitive” SOt0-SO as well as
anotherSO, which seems completely unrelated to them
This SO (2t0-SO) plays, in fact, the role of thesecond
repetition of the primitive SO: its complex action and
the real part of its period are twice (within 1%) thos
of t0-SO. Despite the obvious difference in their path
some of the properties of the (SO-PO) pair such as th
monodromy matrix or action can be very similar.

Perhaps the most interesting situation is when Eq. (3)
not valid and there is no straightforward relation betwee
the SOs and the POs which can contribute to the curr
at a given period. This is seen in Fig. 1(c), where the S
interpolates between a ghost PO and a real PO. This f
is illustrated in Fig. 1(e), where we plotted the evolutio
of the starting positionz (at x ­ 0) againste. One sees
that a single SO is linked to a large number of POs. T
latter are the basic traversing 2-bounce POs (t0, t0

0, . . .)
to which have been attributed (in previous work) th
period-one oscillations of the current. Their complicate
dynamics has been well studied [9,15]. They under
an infinite cascade of tangent bifurcations, where th

FIG. 1. (a)–(d) Shape inx-z plane of thereal part of SOs,
with the related POs. (a)u ­ 27±, e ­ 2000. Differences
between the SO and its counterpart POsS1d are minimal.
(b) u ­ 11±, e ­ 20 000. We show the main period-one PO
t0, its related SO as well as the SO which is related to its seco
repetition2t0. (c) u ­ 11±, e ­ 3000. The SO is between the
real POt0

0 and the ghost POt0. (d) u ­ 27±, e ­ 5000. A
ghost POsS0d and a real POsS00d are present. The real part
of the SO is closer in shape to the real part of the gho
(e) u ­ 11±. Evolution of the startingz (at x ­ 0) with e
for the main period-one POt0, showing part of its infinite
cascade of tangent bifurcations wheret0 disappears, leaving a
ghost while a similar PO appears at a lowere. Also shown
is the behavior of the related SO. We see that a single S
“interpolates” smoothly between the successive disappear
and reentrant POs. This illustrates the striking simplicity an
power of the SO approach in comparison with POs.
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disappear leaving a ghost. Subsequently at some low
e a similar PO reappears from the opposite edge of t
surface of section. Over somee interval this reentrant
PO coexists with the ghost of the old PO.

In comparison, the corresponding SO behaves in
much simpler way, “interpolating” between the successiv
POs. For example, fore . 10 000 the SO is related tot0,
which disappears in a tangent bifurcation ate ­ 6500.
The SO remains close to thet0 ghost down toe ­ 3000,
where it veers away towards the new orbitt0

0 which
appeared from the edge ate ­ 4300. One sees this
fact clearly in Fig. 1(c), where the SO is between th
t0 ghost andt0

0. The same happens atu ­ 27±, where
the 3-bounce POS0 disappears in a tangent bifurcation a
e ­ 7700, leaving a ghost, while a similar POS00 appears
at e ­ 5500. As seen in Fig. 1(d), the SO is very close
to the ghost ofS0, but it will soon approach the new PO a
lower e. Note that SOs never disappear in bifurcation
as they are nonperiodic, but rather when they “miss
bounce” on the emitter wall because of the voltage drop

The semiclassical current is given by the straightfo
ward Gaussian integration resulting from the stationa
phase approximation applied on (1). After normalizing t
the amplitude atu ­ 0±, the current due to one SO is ap
proximated by a simple analytical formula:

IsBd ­ Re
eBsiS̃2cosuz2d1impy2p

2 cosum̃12 1 m̃21y cosu 1 2im̃11
, (4)

wherem is a Maslov index, and̃S and m̃ij are, respec-
tively, the scaled action and element of the classical mo
odromy matrix of the SO. One can also use the expans
in Eq. (3) to approximate the SO current by the relate
PO. Expanding the actionS of the SO around the PO up
to second order, one finds

IsBd . Re
eBfiS̄2cosuz̄2s1y12ddg1im̄py2p

2 cosum̄12 1 m̄21y cosu 1 2im̄11
, (5)

where S̄ and z̄ are, respectively, the scaled action an
starting position of the PO. This is exactly the PO formu
presented in [8] and tested in [10]. So we see that t
PO formula will give accurate results provided that th
higher derivatives ofS are smalland that the perturbative
expansion of the SO around the PO is justified. This latt
point is the most relevant, as it is the prime reason wh
the PO formula fails in certain regions.

We show in Fig. 2 a comparison between quanta
experimental, and semiclassical amplitudes for period-o
and period-two currents. The corresponding comparis
with the PO formula was presented in [10].

Figure 2(a) shows the period-one amplitudes atu ­
11± in the unstable and ghost region, while Fig. 2(b
shows the stable torus regime. We found [10] th
for the stable (e . 7000) and the chaotic (e , 2500)
regions PO theory (usingt0 andt0

0) gave good agreement.
These are regions where the SO and PO currents
almost equal, according to Eq. (5). But the intermedia
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region (2500 , e , 7000) was a puzzle: the PO formula
including the ghost failed to account for the quantal an
experimental oscillations, by a factor of3. Figure 2(a)
shows that the SO completely solves this problem, givi
accurate results over the entire range from the tor
regime to the chaotic regime, including the ghost region

The main reason why Eq. (5) fails in that region wa
illustrated in Fig. 1(a): the SO cannot be approximated
the ghost PO, as it is also related to the newt0

0. In this
case it is not because the third derivative ofS is large.

The same happens for theS0 ghost at 27± [Fig. 2(d)].
The SO describes very well the broad plateau of quan
and experimental amplitudes, while POs failed. On
again, this is because the SO interpolates between
ghost (which appears ate ­ 7700) and the new POS00

(which appears ate ­ 5500), as illustrated in Fig. 1(d).
Therefore, the failure of the PO theory in these regions
due to the sequence of tangent bifurcations, each follow
by a new reentrant PO [as illustrated in Fig. 1(f)], whic
rules out a simple connection between one SO and one

The SO also solves the intricate superposition of tw
nonisolated (in action and phase-space localization) P
[10]: the second repetition oft0 (which yields quantized
torus states) andS0 for e , 13 000, u ­ 27±. Indeed,

FIG. 2. Quantal, experimental, and semiclassical amplitud
The SO labels indicate which PO they are related to. Peri
one at u ­ 11± in the unstableyghost region (a) and in the
stable (torus-quantization) regime (b).t0-SO describes very
accurately the quantal current, even in the ghost regions2500 ,
e , 7000d where PO theories fail. (c) Period two atu ­ 11±.
The SO formula improves over the PO formula, giving ver
accurately the quantal maximumse , 15 000d. Experimental
amplitudes were not obtained for this case since there w
a strong period-one beat in this region. (d) Period two
u ­ 27±. As in (c), the peak at lowe is well described
by both the SO and the PO formulassS1d. S0-SO gives the
contribution to the very broad plateau where no real PO
present s5000 , e , 8000d. 2t0-SO is responsible for the
current fore . 17 000, with no overlap withS0-SO.
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there is no overlapping region for the related SO
which now describe accurately the current, as shown
Fig. 2(d). In Fig. 2(c) one sees that the period doublin
maximum arounde , 15 000 is described very precisely
by the SO, an improvement over the PO results. Final
we note that for both angles the period-two maxima
low e , 2000 are described equally well by either the PO
or the SO formula. Here both trajectories (S1-SO andS1)
are very similar as seen in Fig. 1(a). The experiment
amplitudes are lower than theory, but this is consiste
with a 10% uncertainty int.

The strength and persistence of the contribution of the
complex orbits, even in the region where the SO formu
does not reduce to the PO formula (such as in the gh
regions) is quite remarkable. Usually (e.g., in the densi
of states or the photoabsorption spectra of atoms [11,16
the contribution of complex ghost POs is extremely wea
They are exponentially damped away from the bifurcatio
(as e changes), since the imaginary part of the actio
increases as the ghost becomes more complex. Howe
in the RTD the tunneling amplitude includes an addition
term due to the initial state:

jIsBdj ~ e2BfS̃I 1cosusz2
R2z2

I dg, (6)

where the subscriptsI and R denote the real and imagi-
nary parts. We see that theimaginarypartzI of the start-
ing position of a SO can partly cancel the damping du
to S̃I . This is the reason why even “very” complex SO
can contribute. For instance, theS0-SO amplitude in the
ghost region atu ­ 27± shows a broad plateau and very
slow decay away from the bifurcation (e , 7700).

Similarly, ghost POs are exponentially damped in th
classical limit h̄ ! 0 (which corresponds in our scaled
model to B ! `). We also investigated thēh ! 0
behavior of the SO current in the ghost regions. Th
behavior atu ­ 27± is most striking. The cancellation
of the argument in Eq. (6) is near perfect, so the curre
amplitudes decay very slowly (linearly) withB even
thoughSI is large. This very surprising feature is see
experimentally (see Fig. 6 of [9]). This behavior is uniqu
to the SOs, as it has never been observed in oth
“tunneling”-type complex trajectories, which are strongl
suppressed asSIyh̄ increases.

We emphasize that this work is consistent with previou
studies of “scarring” in the RTD. It has been found tha
quantum states localized near some isolated or multip
POs can dominate the tunneling [4,5]. We have als
investigated wave functions and Wigner distribution
We found that in the strong scarring regions, where th
relevant scarring PO is only marginally unstable [4] (e.g
for u ­ 27±, e ­ 10 000), the real part of the SO is very
close to the PO—within the “̄h” quantum uncertainty.
This can also be the case with scars carried by gho
s,
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POs (e.g.,u ­ 27±, e ­ 7000). This is reasonable since
after all it is the bundle of classical trajectories in th
neighborhoodof POs and SOs which scars or carries th
electrons. Regions like theu ­ 11± ghost region where
the SO and PO are really different in shape do not sho
strong scarring by single states and the quantal curren
carried by broad clusters of states.

We conclude that the SOs are a novel and success
way to approach semiclassical quantization of these typ
of chaotic systems. We recall that SOs arise solely fro
the inclusion of the initial state in the stationary phas
condition. Hence one could expect SOs to be potentia
relevant in the description of the expectation value
a quantal quantity (expressed as a density of sta
weighted by some matrix element [12]) if the observab
in the matrix element is very localized and so varies
rapidly aseiSy h̄. Vibrational photoabsorption spectra o
molecules [12] (which also involve localized Gaussian
are one example.

We are greatly indebted to E. Bogomolny and D
Rouben for invaluable help and to G. Boebinger fo
providing his experimental data. T. S. M. acknowledge
funding from the EPSRC. D. S. S. acknowledges financ
support from the TMR programme.

[1] T. M. Fromholdet al., Phys. Rev. Lett.72, 2608 (1994).
[2] G. Muller, G. S. Boebinger, H. Mathur, L. N. Pfeiffer, and

K. W. West, Phys. Rev. Lett.75, 2875 (1995).
[3] D. L. Shepelyansky and A. D. Stone, Phys. Rev. Lett.74,

2098 (1995).
[4] E. E. Narimanov and A. D. Stone, Phys. Rev. Lett.80, 49

(1998).
[5] P. B. Wilkinsonet al., Nature (London)380, 608 (1996).
[6] T. S. Monteiro, D. Delande, A. J. Fisher, and G. S. Boe

binger, Phys. Rev. B56, 3913 (1997).
[7] E. E. Narimanov, A. D. Stone, and G. S. Boebinger, Phy

Rev. Lett.80, 4024 (1998).
[8] E. B. Bogomolny and D. C. Rouben, Europhys. Lett.43,

111 (1998); Eur. Phys. J. B (to be published).
[9] D. S. Saraga and T. S. Monteiro, Phys. Rev. E57, 5252

(1998).
[10] D. S. Saraga, T. S. Monteiro, and D. C. Rouben, Phys. R

E 58, R2701 (1998).
[11] M. Kus, F. Haake, and D. Delande, Phys. Rev. Lett71,

2167 (1993).
[12] B. Eckhardt et al., Phys. Rev. A 45, 3531 (1992);

B. Huppertet al., J. Phys. B30, 3191 (1997).
[13] M. L. Du and J. B. Delos, Phys. Rev. A38, 1913 (1988).
[14] J. Bardeen, Phys. Rev. Lett.6, 57 (1961).
[15] E. E. Narimanov and A. D. Stone, Phys. Rev. B57, 9807

(1998).
[16] P. A. Dando, T. S. Monteiro, D. Delande, and K. T. Taylo

Phys. Rev. Lett.74, 1099 (1995).
5799


