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Abstract

This paper aims to analyse the dynamic system optissaginment with departure time choice, which is an
important, yet underdeveloped area. The main contribwiidhis paper is the necessary conditions and the
sensitivity analysis for dynamic system optimizing flawollowing this, we revisit the issue of dynamic
externality in a more plausible way. We showed that Hneixternality can be derived and interpreted from
the control theoretic formulation and the sensitivity Igsia of traffic flow. To solve the system optimal
assignment, we propose a dynamic programming solution agpriVe present numerical calculations and
discuss the characteristics of the results. In pdaticwe contrast the system optimal assignment wsth i
equilibrium counterpart in terms of the amount of trayeerated, flow profiles, and travel costs.

1 Introduction

This paper aims to analyse the dynamic system optissaginment with departure time choice, which is an
important, yet underdeveloped area. The dynamic systamad@ssignment process suggests that there is a
central “system manager” to distribute network trafficroiame within a fixed horizon. Consequently, the
total, rather than individual, travel cost of all telers through the network is minimised.

The travel cost incurred by each traveller is cargid to have three distinct components: time-specifitsco
associated with the departure time of the travellemftbe origin, and the arrival time at the destination
respectively; and a cost related to the travel #meoute. Given the assigned network flow, the associated
travel times through the network are determined by didrafodel. This paper uses the linear whole-link
traffic model proposed by Friesz et al. (1993), who considiretravel time on each link to be a linear non-
decreasing function of whole link traffic. This traffic mébdatisfies the principles of flow conservation,
proper flow propagation (i.e. consistency between flows ekl times), non-negativity of flow, first-in-
first-out (FIFO), and causality. Detailed discussionhig traffic model can be referred to Mun (2001).

This paper starts with introducing the formulation of dymagystem optimal assignment, which is an
optimal control problem with state-dependent response. Folipwiriesz et al. (2001), the optimality
conditions for this special kind of control problem can bevderiusing the calculus of variations technique.
At optimality, traffic is assigned such that the tatgstem travel cost is minimized. To solve the dynamic
system optimization, information on the sensitivity of Wadue of the objective function with respect to the
control variable is necessary. Section three illustratesvel sensitivity analysis of travel time and travel
cost with respect to perturbations in inflow. Sectioarfthen shows a dynamic-programme algorithm for
solving dynamic system optimal assignment. Numerical t#lons are given in section five. Finally,
concluding remarks are given in section six.

2 Formulation of dynamic system optimal assignment
The system optimal assignment with departure time choicixfat travel demand can be formulated as the

following optimal control problem. The optimization problem (1)nimizes the total system travel cost
within the planning horizon given a predefined amount of tbtalighput:

minZ = Z]Ca (s)e,(s)ds (1a)
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subject to:
0,912 =e, 9 1as (1b)
% e (9-0.0) s (10
dE(;‘C(S):ea(s) ,Oa,Os (1d)
Zéa(T) =Jy (Le)
eia(s)zo ,0a,0s (1f)

We consider the total travel co§i, (S) encountered by each traveller on the travel link hasetllistinct

components. The first component is the time spent on lireyalong the link, which is determined by the
travel time model embedded. In addition to the travel tineeadd a time-specific cost [Ta (S)] associated

with arrival time 7,(s) at the destination. Finally, we add a time-speotfist h(s) associated with
departure from the origin at tinge Possible choices of these time-specific cost functioasnvestigated by
Heydecker and Addison (2005). Consequently, the total traselz;, (S) associated with departure on liak
at time s is determined as a linear combination of these costs as

C.(s) = h(s)+[7,(s) -]+ f[7,(s)]. 2)

The notation7,(S) denotes the exit time from the lirkfor traffic which enters at time. For Friesz’s
(1993) linear whole-link traffic model7,(s) takes the following functional form:

X, (S)

a

r,(s)=s+g¢, +

®3)

where the amount of whole link traffic at tiraés represented by, (S). The free flow travel time and the
capacity of the travel link are denoted py and Q, respectively.

Equations (1b) ensure the proper flow propagation along eaté fBquations (1c) are the state equations
that govern the evolution of link traffic. Equations (1d) defime ¢cumulative inflowE, (S) . Equation (1e)

specifies the amount of total through@yt generated in the system within the time horiZorConditions
(1) ensure the positivity of the control variable. Sinceesz's (1993) traffic model has been shown to
satisfy FIFO structurally (Mun, 2001), we do not need toaddexplicit constraint for this.

The optimality conditions for the optimization problem (1) te derived as
+A,(8) - A[r,(9)] = p.(9) =v

s ,0s0[0,T], 4
+,(8) = AT, (9] 2 1, (9) =v

>O:>a—Z

e,(s)
=0=> G_Z
ou
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where (/,(S) =V is a constant of time and its magnitude is determined bypteéefined amount of

... 0Z e P .
throughput. The derivative—| represents the sensitivity of the value of the objecfunction with

S

respect to a perturbatiaenin the profile of inflow at times, where

0z| _al%
.= %{ ! C, (t)e, (t)dt}
TaC N ©)
=C,(s)+ [—2| e, (t)ct
I,

The quantityg—Z indeed can also be interpreted as the marginal cotitribof adding an additional traffic
u

S

to the link to the total travel cost on this link.i$ the sum of two component€, (S) is the travel time
oC,

T
experienced by that additional traveller given the cunmftic condition; I

0
travel cost, which is also known as externality, addedhis/ ttaveller to each of the existing travellers.
Understanding the nature of this externality is impudri@ managing dynamic network, and it requires

e, (t)dt is the additional

S

a

knowing , Which is analysed in Section 3.

S

Furthermore, the costate variablg(s) is determined as:

A = Qi [@s Flr. 0De. (e ©)

a t=s

This costate variabld, (S) represents the sensitivity of the value of the objectimetfon wih respect to the

changes in state variabbe, (S). In other words, the costate variablg(s) is interpreted as the marginal
travel cost of increasing the link traffic volume by one .Uhiite details of derivation of this set of optimality

conditions can be found in the full version (Chow, 2006).
3 Sensitivity analysis

In this section, we start with establishing an expresiothe derivatives of the time of exit from a link with
respect to a parameter of the inflow profile. Following ttig, externality with respect to additional traffic
can be derived.

Consider the expression of the whole link traffig,(s), it can be written alternatively as
x,(s) = E,(s)-G,(s) =E,(s) - E,[0,(9)] = j e, (t)dt, @)
t=0,(s)

in which o, (s) is the time of entry to the link that leads to exitiaie s. The expression for the time of exit
in (3) then becomes
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r,(s) :s+¢a+i iea(t)dt. (8)

a t=0,(s)

A perturbatioru in the profile of inflowe, (S) induces a change in the time of exit as

dra) _dfg, [EXOL:
duj, du s t=0u(S)
1df s
== % fe.dt | ©)
Q. du {t-aja(s) }
1

{ de (t) da (s) elo. (S)]}
t=0,(9)

The first term is the bracket can be calculated diredio determine the second term in (9), we first apply
the definitional relationship,

rlo.(9]=s. (10)

and using chain rule implies

dr,|  _or|  9r[0.(9]00.(9 an
duj, oy Oul, 00,(s) du
However, at the same time we note that
dTa = E =0, (12)
du o.(9) du
sinces is fixed with respect to perturbation
Hence,
or,| , or[o,(9]90,(9 _, w3
oul,y 00,(s) ou
Furthermore,
dz,[o,(s)] _ d7,]o,(9)] 90, (s) _ds _ L
ds 00,(s) 0s ds
orfo. (9] 1 . (14)
00,(s)  00,(9
0s

Therefore,
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. (15)

aa(s)

90,(s) _ (orJo(9]) ar.| _ do,(sar,
ou | do.(s) , oul,, ds ou

Ta(s)

Thus,

_ 1] de(t) . do,(9
=2 {j .0 _do ea[aa<s>]}

) Qia{mj % d+e, [Ua (S)]maﬁ

ds odu
1| ¢ deft) or

=— ——~dt+g,(s)=
Qa{ I ga( ) ou Ua(S)}

The derivative of exit time with respect to the perttidreu is then expressed in terms of the dependence of
the inflow profile e, (S) in whichs lies betweers and o, (S) , the current outflong, (S) , and the derivative

} (16)
Ta(s)

t=0,(s)

of exit time at the time of entry7, (S) .

L . dr. (s . ,
When the analysis is implemented in computer, calculat-mgg requires knowing the value of
u
dr . . : . . . . .
g a , in which o, (s) usually is not an integer. Therefore, a linear interpmteis needed to determine
u a.
a(s)

dr
the value of—2

as
duf,
dr, _dr, dr, _dr,
dloy o) Wl lg)
ACEIAC] [o,(9)]-o.(9)]
(17)
dr dr dr dr
=2 =8 +{da - ](aa(s)—taa(s)b
Ulgys AUl 9] Ulro,91 AU 0,09

where the notatior o, (S) | represent the smallest integer not smaller tbeyfs), and |, (s) | is the
greatest integer not larger than ().

After deriving the sensitivity of travel time with regpeo inflow, the sensitivity of the objective function
with respect to inflow can be deduced as
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oz| ol
ag‘a{¥%®%®m1
LacC
=C,(s) + [=2| e (t)dt . (18)
Jl.
°

=C,0+ [+ o)

e, (t)dt

4 Solving dynamic system optimum

We propose the following procedure to solve for the dynanstesy optimal assignment with fixed travel
demand:

Step O: Initialisation

0.1.Guess an initial equilibrium co&,, ;

0.2 set the overall iteration counter:=1;

0.3sete,(k):=0 for all linksa, all[1, A], and all times, k[1[1,K]. The notatione, (k) represents the
assigned inflow to linla between timekAs and (k +1)As. The total number of simulated time steps
is denoted aK =T /As and the total number of parallel links is denotedAby set time index
k:=0;

0.4 set costatesl, (k) := 0 for all timesk I [1, K] ;

0.5 set the link indexa :=1;
0.6 set the time indeXx ;= 0;

0.7 set the overall iteration counter :=1.

Step 1: network loading
Find 7,(k+1) by loading the travel link using the inflog, (k) at the current iteration.

Step 2: equilibrating
2.1 CalculateC, (k +1) = h(k +1) +[r, (k +1) — (k + D]+ f[r, (k + ]+ A, (k +1) - A [r, (k +1)];
C,(k+1)-C,(k) and  O'= 0Q
As de, (k)
flra(k+D)] - fz, (k)]
r(k+)-r,(k)
2.3 updatee, (k) :=e,(k) —/d with the second-order searching directidr= % and the step size

2.2 calculate Q=

=(1+f'[fa(k+1)])Qi, in  which

a

flr. (k)] =

71, which is interpolated linearly as

= Cy -Ca(k+1)
Cl(k+1)-C2(k+1)’

where Cl(k +1) and C2(k +1) represent the corresponding valuesGyf(k +1) when e, (k) is

being updated withnz is taken as 1 and O respectively. To deterniinetwo network loadings are
required.
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Sep 3: Calculating costate variables
3.1 Computel, (k) = A, (k +1) +(1+ '[r,(t)])

eal—(t)AS;

3.2 calculate/la[ra(k)] from A, (k) and7,(K).

Step 4: Convergence verification
4.1. Check if |C,(s) —C.4|< € or n' is greater than the predefined maximum number of iibeetions,

then go to step 3.2; otherwise, $et:=n' +1 and go to step 1.1.
4.2. ifk =K, then go to step 3.3; otherwise k + 1 and go to step 1.1;
4.3. ifa= A, then go to step 3.4; otherwige a + 1 and go to step 0.5;

.Y e(K)C, (k+])-C,
H — kOK alA
4.4 defineé = ZZea (k)C;d

kOK alJA
equilibrium. If n is greater than the predefined maximum number of ovésatitions or ¢ is
sufficiently small, i.e.{ < & where& is an arbitrarily small number, then go to step 3.Bemtise set
n:=n+1 and go to step 1.2;

4.5. check if the total throughpuE,, =ZZea(k) from the system is equal to the predefined total
Oa Ok

demand Jy for the o-d pair. If yes, thenterminate the algorithm; otherwise update

as the measure of disequilibrium, which is equal to z¢

. . 1 Jdg—E dE
C =C + % , and go back to step 0.3. The derivati*aec"Td is derived by Heydecker
od

dc’
(2002) as

%5 ([h'(sz)+ Hrell(s)+ 1) ]Qa_

aC” T L[S )+l (s st )+ f T (sh)

5 Numerical calculations

To illustrate the analyses above, we demonstrate some inahwlculations. We consider a single link,
which has a free flow time 3 mins and a capacity 20 vehsfoimecting a single origin-destination pair.
The origin-specific cost is considered to be a monotonerlifeation of time with a slope -0.4. The
destination cost function is piecewise linear, which hapemalty for arrivals before the preferred arrival

time t° =50, and increases with a rate 2 afterwards. The sizlisofetized time interval\s is taken as 1
min. The length of the planning horizdB,T], whereT=100, is set such that that all traffic can be cleared
by timeT. The total amount of traffid , is taken as 390 vehs. Figure 1 plots the inflow, the outflow, a
the total cost at dynamic user equilibrium. The traffiassigned to the link during times 18 and 49.
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Figure 1 Dynamic user equilibrium assignment

To investigate the accuracy of the sensitivity analysiSeantion 3, we suppose the inflow is perturbed at
time 18, and plot the associated variations in trawe iin Figure 2. The variations are calculated according
to (16). In the same figure, we also plot the variatidegermined by using numerical finite difference
method. To calculate the finite difference, we firgtrease the inflow at time 18 by one unit, and keep the
values of other inflows at other times unchanged. The ti@igin travel times are then calculated by
repeated link loading with the original inflow profile verdhe perturbed inflow profile. The result shows
that the analytical variations given by (16) can repregmntrue variations in travel time reasonably well. It

can be observed that the variations take the valdé@f during times and7_(S) (i.e during times 19 and
21), and then depend on the profile of outflow and previoustiarsafterz, (S) .
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0.02

Variations of link travel time

0.04 I —=— Analytical
|
|
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|
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Time (min)

Figure 2 Sensitivity of travel time with respect tpeturbation in inflow

Using the derivative of travel time with respect tdanf, the externality, i.e.
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T

e, (0dt = [+ [, 05

S 0

tac
! ou

e, (t)dt,

induced by adding an additional inflow at all times can theralculated accordingly. Figure 3 shows the
profile of the externality for inflow under dynamic user eitpailim.
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Figure 3 Externality at dynamic user equilibrium

Calculating the dynamic system optimal assignment is stiprogress. Figure 4 shows the inflow, the
outflow, and the travel cost after one iteration of optinirafrom the dynamic user equilibrium. With the
same total throughpuly, the period of assignment shifts from times [18, 49] to tif@eH0]. It is also
observed that this assignment, on the one hand, encouragdspattures. On the other hand, it also has to
maintain a certain amount of early departures to indubigh service rate for the departures at later times.
The total system travel cost is decreased from 6,143.4hrviehuser equilibrium to 5,777.60 veh-hr. This

assignment profile is still subject to further revision.
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Figure 4 Solving dynamic system optimal assignment
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6 Concluding remarks

This paper analyses the dynamic system optimizing flow alosiggie travel link. We propose a novel
sensitivity analysis of travel time and travel costhwiespect to perturbations in inflow. We also preskate
solution method using the dynamic programming approachagpplied it to the numerical example. The
characteristics of the results were discussed.

The main contribution of this paper is the necessary condidodsthe sensitivity analysis for dynamic
system optimizing flow. The investigation also gives us a deepeéerstanding of the nature of system
optimal assignment problems. In addition to analyzimd) soiving the system optimizing flow, we also note
that each additional traveller, who enters theesysdt a certain time, imposes an additional traesl on the
others who enter the system at that time and theredlVe regard this additional cost as “externality
Understanding the nature of the externality is impeértanmanaging dynamic network. However, previous
research is implausible due to the underlying traffic mediepted (Carey and Srinvasan, 1993; Yang and
Huang, 1997). This paper revisited the dynamic exteyrialia more plausible way. We also showed that how
the externality can be derived and interpreted fromciwetrol theoretic formulation and the sensitivity
analysis. This paper considered single-link networks irclivbinly the departure time choices of travellers
are considered. We are currently extending the presengsanaind discussion to multi-route and multi-
destination networks in which the joint choices of departime and travel route of travellers are
investigated.
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