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Abstract

Background: Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized pathologically by the
presence in the brain of intracellular protein inclusions highly enriched in aggregated alpha-synuclein (a-Syn). Although it
has been established that progression of the disease is accompanied by sustained activation of microglia, the underlying
molecules and factors involved in these immune-triggered mechanisms remain largely unexplored. Lately, accumulating
evidence has shown the presence of extracellular a-Syn both in its aggregated and monomeric forms in cerebrospinal fluid
and blood plasma. However, the effect of extracellular a-Syn on cellular activation and immune mediators, as well as the
impact of familial PD-linked a-Syn mutants on this stimulation, are still largely unknown.

Methods and Findings: In this work, we have compared the activation profiles of non-aggregated, extracellular wild-type
and PD-linked mutant a-Syn variants on primary glial and microglial cell cultures. After stimulation of cells with a-Syn, we
measured the release of Th1- and Th2- type cytokines as well as IP-10/CXCL10, RANTES/CCL5, MCP-1/CCL2 and MIP-1a/CCL3
chemokines. Contrary to what had been observed using cell lines or for the case of aggregated a-Syn, we found strong
differences in the immune response generated by wild-type a-Syn and the familial PD mutants (A30P, E46K and A53T).

Conclusions: These findings might contribute to explain the differences in the onset and progression of this highly
debilitating disease, which could be of value in the development of rational approaches towards effective control of
immune responses that are associated with PD.
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Introduction

Parkinson’s disease (PD) is the second most common neurode-

generative disorder, after Alzheimer’s disease. It is characterized

pathologically by the presence of deposits of aggregated a-

synuclein (a-Syn) in intracellular inclusions, known as Lewy

bodies, in the substantia nigra pars compacta (SN) of the brain [1,2],

and by the loss of dopaminergic neurons [3,4]. There is

considerable evidence indicating a role of a-Syn in the etiology

of PD, in which the conversion of a-Syn from soluble monomers to

aggregated amyloid-like insoluble forms is a key event in PD

pathogenesis [5]. However, the cellular and molecular mecha-

nisms underlying the pathological actions of a-Syn are still not

completely understood. Traditionally, a-Syn has been viewed as

an exclusively intracellular, cytoplasmic protein which is highly

expressed in dopaminergic neuronal cells. Lately, accumulating

evidence showing the uptake of extracellular a-Syn by glia and

neurons via endocytosis [6,7], the release and exocytosis of a-Syn

to the medium [8,9], and the presence of a-Syn in cerebrospinal

fluid [10,11] and blood [11] both in its aggregated and non-

aggregated forms has pointed at the importance of studying the

effects of extracellular a-Syn on surrounding cells in the brain.

Alpha-Syn is a 140-amino acid protein that is highly enriched in

presynaptic neuronal terminals, in particular in the neocortex,

hippocampus, and SN [12], as well as within astrocytes and

oligodendroglia [13,14]. The physiological role of a-Syn is still

being established, but its interaction with pre-synaptic membranes

suggests that one function may be the regulation of synaptic vesicle

pools, including control of dopamine levels [15]. Alpha-Syn

belongs to the group of proteins described as natively unfolded
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[16], meaning that it does not adopt a well-defined globular

structure, but instead a broad ensemble of dynamically interacting

and largely disordered conformations [17,18]. Three missense

mutations, A53T, A30P and E46K, as well as multiple copies of

wild-type (Wt) a-Syn, are linked to hereditary, early-onset PD [19–

22]. In vitro studies have shown that the ensemble of a-Syn

conformers is perturbed by the mutations [23], at least in the cases

of A30P and A53T studied. Presumably as a result of the differences

in their structural, biophysical and biochemical characteristics, the

various mutants have been reported to have different cytotoxic

effects, and this cytotoxicity to be mediated by different pathways

(reviewed in [24]). Nevertheless, the factors contributing to both

familial and sporadic cases of PD are not understood in any detail.

Even though the central nervous system (CNS) has been

traditionally seen as an immune-privileged organ, it has become

increasingly evident that inflammation is actively involved in the

pathogenesis of various degenerative diseases including multiple

sclerosis, Alzheimer’s disease and PD (reviewed in [25]). Indeed,

accumulating evidence indicates that the onset and progression of

PD is accompanied by a robust and highly localized inflammatory

response mediated by reactive astrocytes and activated microglia

in affected areas in the brain of PD patients [26–30]. Whether

microglial activation protects or exacerbates neuronal loss is

currently the subject of debate [31–34]. Significantly, a link was

established a few years ago between extracellular, aggregated a-

Syn and activation of microglia [35] leading to dopaminergic

neurotoxicity, and a few recent in vivo studies have shown that

microglial activation and neurodegeneration can be directly

caused by a-Syn overexpression [36–40]. Even though evidence

has accumulated pointing at the importance of the immunological

features of a-Syn related to the pathogenesis of Parkinson’s disease

(reviewed in [2,41]), the effects of extracellular a-Syn on the

cellular and molecular components of the immune system linked

to PD pathology [42], remain largely unexplored.

Up to this point, research on a-Syn-mediated cell response has

focused primarily on the effects of aggregated a-Syn on

neuroinflammation [43] or on activation of microglia [24,35,44–

46]. In turn, most of these studies have focused on nitrated a-Syn

[43,45,46], assuming that extracellular a-Syn has been modified in

a similar manner to a-Syn found in Lewy bodies [47,48] 2a

typically pro-oxidative environment2 an assumption that is still

uncertain [42] and might not be valid for secreted a-Syn.

Moreover, it has been recently shown that non-aggregated,

exogenous a-Syn can regulate the key brain cytoactive molecules

matrix metalloproteinase-9 and tissue plasminogen activator in

glial cells [49,50], and induces higher TNF-a, IL-1b and ROS

release levels than aggregated a-Syn in microglia [50]. Further-

more, it has also been observed that, in contrast to the aggregated

form, monomeric a-Syn enhances microglial phagocytosis [51].

These results and other recent findings point at the importance of

exploring the effects on the immune response of non-aggregated/

monomeric as well as aggregated extracellular a-Syn. Despite the

fact that some investigations in this direction have been done using

monocytic cell lines [52], human astrocytes [53], or microglia [37],

nothing has been reported about the cytokine expression profile of

primary microglial cells induced by non-aggregated a-Syn, under

conditions where the aggregation state of the protein has been

characterized. Likewise, apart from a recent article focusing on the

pro-inflammatory effects of an a-Syn double mutant which does

not exist in nature [54], a comparative study of wild-type a-Syn

and pathologically relevant a-Syn mutants is still lacking.

Moreover, so far there are no data available on key chemokines

that might control the differential homing and activation of T cell

subsets, monocytes and glial cells in this context.

In this work, we have compared the activation profile of non-

aggregated, extracellular Wt a-Syn and its PD-linked variants, by

measuring the release of key interleukins and chemokines in glial

cells. Our findings demonstrate significant differences in the

immune response profiling of Wt a-Syn and PD-related mutants

that might indicate the existence of different pathways towards PD

onset and progression.

Results and Discussion

Characterization of a-Synuclein preparations
It is known that a-Syn has a tendency to self-assemble under

certain conditions to form dimers [55,56] and higher order

oligomeric species in addition to amyloid-like fibrils [57]. In order

to assess the purity and oligomerization state of the a-Syn

preparations used in this study, we subjected the purified Wt and

mutant a-Syn protein variants to electrophoretic analysis

(Figure 1). As expected from additional analysis by mass

spectrometry (not shown), each of the four a-Syn preparations

migrated as a single, well defined band corresponding to ca.

14.5 kDa as analysed by SDS-PAGE (Figure 1A). However,

when the samples were subjected to native PAGE (Figure 1B),

they migrated as less defined bands of ca. 110–120 kDa, as found

previously for monomeric a-Syn a natively unfolded protein with a

large charge/mass ratio under these conditions [58]. Finally, the

rather smeared bands corresponding to ca. 50–60 kDa observed

by Blue Native PAGE (BN-PAGE) (Figure 1C), in which proteins

migrate solely as a function of their apparent mass [59], indicates

that the a-Syn preparations are monomeric. Taken together, our

data demonstrate a well defined monomeric state for the

functional characterization of immune-elicited reponses by the

a-Syn protein variants. In order to analyse the oligomeric state of

a-Syn present in the cell cultures after 20 hours, a specific and

sensitive ELISA assay [60] was used. As can be observed, a low

amount of a-Syn oligomers were formed by the end of the

incubation step with cells, with #4.3% of oligomers relative to the

initially added a-Syn (Figure 1D). In addition, in order to assess

the total amount of a-Syn still present in the medium by the end of

the incubation step with cells, a time-course quantification of a-

Syn in the culture supernatants was performed after 1, 6 and

20 hours (Figure S1). We found that after 20 hours, the a-Syn

content was still ca. 60% of the exogenously added amount.

In order to assess the level of cytotoxicity induced by a-Syn at

the concentrations used in this study, we next performed lactate

dehydrogenase (LDH) release assays with microglial cells. After

incubating primary mixed cultures for 20 hours with the a-Syn

variants at 5 mg/ml (the highest concentrations used in this work),

the cytotoxicity levels displayed by all four a-Syn variants were

found to be very low (#8%) and similar to basal control levels

(Figure 1E). Therefore, it can be concluded that the parameters

measured in this study after a-Syn treatment of cell cultures are

not linked to alterations in cellular viability and therefore represent

a specific a-Syn immune mediated-response.

Characterization of primary microglial cultures
Microglial cells were purified from long-term cultures of

neonatal mouse brains as described in the Materials and Methods

section. The purity of the isolated microglial fraction was

evaluated by two independent approaches. First, immunofluores-

cence procedures were used as shown in Figure 2, where the

absence of contaminating macroglial cells after purification was

confirmed since less than 1% of the total cells stained positively for

GFAP, an intermediate filament specifically expressed in macro-

glial cells (Figure 2A). As a positive control, most of the cells

a-Syn and Innate Immunity
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Figure 1. Determination of the purity, oligomeric state and cytotoxic effects of preparations of a-synucleins. (A) SDS-PAGE
electrophoresis and (B) native PAGE electrophoresis of wild type (Wt) and mutant (A53T, A30P and E46K) a-Syn preparations; (C) BN-PAGE of wild
type (Wt) and mutant (A53T, A30P and E46K) a-Syn preparations; (D) a-Syn oligomer content after 20 hr incubation with cells (on a protomer basis),
relative to the initial amount of exogenously added a-Syn, as determined by sandwich ELISA. (E) LDH release in mixed glial cultures following
incubation for 20 hours with the highest concentration of a-Syn used in our experiments, i.e. 5 mg/ml. MG132, a proteasome inhibitor, was used at
6 mM as a control. Values are means from triplicate measurements.
doi:10.1371/journal.pone.0013481.g001
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detached by trypsinization of the long-term cultures from neonatal

mouse brains –expected to be macroglia– were found to be

strongly immunostained for GFAP (not shown). As a second

measure of the purity of microglial cell cultures, the majority of

cells were found to express the pan haematopoietic lineage marker

CD45 (Figure 2B), the monocyte-macrophage marker CD11b

(Figure 2C), and the mature macrophage markers CD68 and F4/

80 (Figures 2D and 2E, respectively). In addition, quantitative

RT-PCR was employed to amplify specifically the GFAP and

CD11b genes (Figure 2F), and the results indicate no detectable

mRNA expression of the GFAP macroglial marker, and a clear

up-regulation of the microglia-specific CD11b gene expression

after stimulation by lipopolyssacharide (LPS). Taken together, the

cell marker profiles observed confirms the high purity of the

microglial cultures and hence to the reliability of the results

obtained using our purified microglial cell culture model.

Pro-inflammatory response of a-Syn-stimulated glia and
microglia

In the normal CNS, brain tissue provides an immunosuppres-

sive environment, which seems to be important for the proper

function of the CNS. Under circumstances that cause disruption of

this environment, including chronic inflammatory conditions in

neurodegenerative diseases, a variety of immune regulatory and

inflammatory mediators can be activated [25]. Although various

types of cells have been identified as sources of cytokines in the

CNS, microglia appear to be a principal source of pro-

inflammatory and immune regulatory cytokines [25,61]. In order

to explore the immunological properties of extracellular, non-

aggregated a-Syn, as well as to evaluate the importance of the

cellular context in this process, we measured by ELISA the release

of a series of key cytokines after incubation for 20 hours of mouse

primary cultures of mixed glia and isolated microglia, with

exogenously added Wt a-Syn or the early onset PD-linked a-Syn

variants A30P, E46K, and A53T (at 0.2, 1 or 5 mg/ml).

First, we assayed the release of IL-6, TNF-a, IFN-c and IL-1b,

four key pro-inflammatory cytokines (Figure 3 and S2). Wild-type

a-Syn moderately stimulated the release of IL-6 in mixed glial

cultures (Figure 3A, left panel), but contrary to findings for

aggregated Wt a-Syn [62], this effect was hardly detectable on

isolated microglia (Figure 3A, right panel). And in contrast to the

comparable IL-6 response observed for the four a-Syn variants

reported in a study using the human U-373 MG astrocytoma cell

line [53], we found remarkable differences in their behaviour,

notably a very strong IL-6-mediated pro-inflammatory response

induced by the A30P and E46K variants after stimulation of both

mixed glial and microglial cultures. These differences could be

explained by the nature of the cell line used by Klegeris and

coworkers. Alternatively, given that astrocytes are the most

abundant glial cell population of the CNS participating in local

innate immune responses; this result could be consistent with our

finding of less marked differences (Figure 3A) between the a-Syn

variants in mixed glial cultures. The A53T variant, however,

caused a weak but significant increase in IL-6 levels on total glia

but not on isolated microglia, similar to Wt a-Syn but even less

prominent. In the case of TNF-a and IFN-c levels measured in

microglial cultures, only stimulation with A30P produced a

significant increase (Figure S2), partially coinciding with the IL-

6 observed profile. Therefore, A30P and E46K appear to drive IL-

6, TNF-a, and IFN-c cytokine secretion in the context of PD-

affected glia.

When we assayed the levels of IL-1b from mixed glial cultures

(Figure 3B, left panel), only the A30P and E46K a-Syn variants

Figure 2. Evaluation of the purity of isolated microglial cell fractions. Immunofluorescence characterization of purified microglial cell
cultures for the specific macroglial lineage marker GFAP (A), the pan haematopoietic lineage marker CD45 (B), and the mature macrophages markers
CD11b (C), CD68 (D), and F4/80 (E). Nuclei are counterstained in blue with Hoechst 33342. Scale bar: 100 mm. mRNA expression (qRT-PCR) from
isolated microglial preparations after no stimulation (control) or after stimulation with 1 mg/ml LPS for 20 hours (F). Specific primers for amplifying
the GFAP and CD11b genes were used.
doi:10.1371/journal.pone.0013481.g002
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showed a significant stimulatory effect. Interestingly, when tested

on isolated microglial cells, while A30P did not cause a significant

rise in IL-1b levels relative to the control, Wt a-Syn 2in

agreement with a previous report of mRNA levels in a comparable

experiment design [37]2 and especially E46K, showed a very

significant increase in cytokine release (Figure 3B, right panel).

Taken together, these results suggest that A30P and E46K, as

opposed to either Wt a-Syn or the A53T variant, induce a pro-

inflammatory response in glia. Remarkably, only two of the three

PD-linked variants of a-synuclein were IL-1b inducers in primary

glia, and contrary to expectations from previous studies performed

using cell line cultures and other studies involving modified a-

synuclein species, our results show that the A53T a-Syn variant

has instead a very modest activity in regulating the innate immune

response by primary glia and microglia. These findings indicate

the need for further detailed studies on the role of the glia in early

PD onset before detailed conclusions as to the role of the latter in

PD can be drawn.

Previously, the available data had shown that the A30P and

A53T a-Syn variants, but not the Wt and the E46K forms,

efficiently induced the release of IL-1b when added to THP-1

macrophage cell line cultures [52] and that all the a-Syn variants

were able to increase IL-1b secretion in THP-1 cells only when co-

treatments with INF-c were included, suggesting a pro-inflamma-

tory response in already immune-primed THP-1 cells [52]. Our

data, obtained with primary microglial cultures, indicate a very

different behaviour. Thus, Wt and E46K a-Syn in our study

appear to be pro-inflammatory in primary microglia, while the

A30P and A53T variants seem to be unable to produce a

significant response. These differential responses of these two

studies point at the importance of the differentiation/maturation

status of the primary microglia, which suggests that there could be

multiple subtle but important differences in immune responses

during the establishment of PD. It is interesting that these

differences were only revealed in primary settings that were not

over-primed, as was the case of IFN-c treated THP-1 cells.

Figure 3. Pro-inflammatory interleukin profile of a-Syn-stimulated primary mixed glial and isolated microglial cultures. IL-6 (A) and
IL-1b (B) release was measured by ELISA in culture supernantants of mixed glia (left) and microglia (right) after a 20-hour treatment with monomeric
Wt or mutant a-Syn variants or lipopolysaccharide (LPS). Values are mean 6 S.E.M. (n = 4). * P,0.05, ** P,0.01, *** P,0.001. The results shown are
representative of two or three independent experiments with microglia and mixed glial cultures, respectively.
doi:10.1371/journal.pone.0013481.g003
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The observed effects on IL-1b secretion by primary glia and

microglia are of particular interest considering the emerging role

of an adaptive immune response in PD, in particular by CD4+ T

cells [63]. Given IL-1’s known effects to promote T cells responses,

our findings on IL-1b regulation by a-Syn variants in innate

immunocompetent cells require further attention in view of the

potential effects of the latter in mediating immune tolerance and T

effector responses.

IL-10 regulation by a-Syn-stimulated glia and microglia
Although most studies in the past have focused on microglial

production of pro-inflammatory cytokines, a large body of

evidence has supported the notion that microglia also produce

cytokines with anti-inflammatory or regulatory activities [25].

Indeed, a strong induction of IL-10 2recognized as an anti-

inflammatory cytokine2 had been observed for microglial cells

stimulated with nitrated, aggregated Wt a-Syn [62]. We therefore

investigated the effects of non-aggregated and unmodified a-Syn

on glial secretion of IL-10 2a Th2 immunoregulator2 which

reduces cytokine production by Th1 cells (Figure 4). Our results

show that only the A30P variant produced a significant increase in

IL-10 levels in mixed glial cells (top panel) whilst, on the contrary,

the A53T variant caused a significant reduction of IL-10 basal

levels, also observed in microglia, likely suggesting a lack of

microglial response, a differential uptake by microglia, or an effect

of the uptaken a-Syn on the endogenous IL-10 when A53T is

present. In this sense, it has been reported a link between a-Syn

and the microglial activation features [64], including phagocytic

ability.

In microglial cells, on the other hand, only the E46K variant

produced an increase in IL-10 levels as compared to the control

(bottom panel). These results might suggest that microglial cells, in

order to produce a-Syn-driven endogenous IL-10, require both

IL-6 and IL-1b secretion. In this sense, while Wt a-Syn increased

only IL-1b production in microglial cells, A30P increased only the

IL-6 production. These facts could reflect the requirement of a

doubly activated state of the microglia for IL-10 production.

Although the general mechanism that generate IL-10 production

within the CNS during neuroinflammation is still not well enough

understood, our results support a role for a-Syn in the modulation

of the microglial phenotype as suggested by Austin and

collaborators [64].

Chemokine release profiles by a-Syn-stimulated glia and
microglia

Chemokines are involved in a wide variety of disorders in the

CNS and their actions contribute to reactive glial changes and

neuronal injury in neuroinflammatory conditions [65–67]. We

therefore sought to determine the chemokine release profiles of

glial and microglial cells induced by non-aggregated Wt and PD-

linked a-Syn variants. In particular, we assayed the release of IP-

10/CXCL10, RANTES/CCL5, MCP-1/CCL2 and MIP-1a/

CCL3 chemokines (Figure 5).

The regulation by a-Syn of IP-10/CXCL10 in CNS cells has

not been previously reported. In addition, the only data available

regarding RANTES/CCL5 levels in PD are from a transgenic rat

model for A53T a-Syn [38], or from sera and thus relate to

peripheral dysregulation in the cytokine network associated with

PD patients [68–70], and although no information is given on the

genetic background of these PD patients, these studies reported

increased levels of circulating RANTES/CCL5. Our results show

large and comparable effects for A30P and E46K variants on IP-

10/CXCL10 and RANTES/CCL5 release, both by mixed glial

cultures and by microglia (Figures 5A and 5B). Remarkably,

neither Wt nor A53T in both glial cultures and microglia

produced a relevant increase in IP-10/CXCL10 or RANTES/

CCL5 secretion, the latter result in agreement with the one

reported for the striatum and SN in the (A53T) rat model [38].

These data suggest a specific role for A30P and E46K a-Syn

variants associated with enhancement of Th1-cell recruitment,

activation, and effector potential.

Besides their role as chemoattractants, IP-10/CXCL10 and

RANTES/CCL5 are known to induce T-cell proliferation and

cytokine production [71], suggesting a role for A30P and E46K a-

Figure 4. Immunoregulatory effect of a-Syn-stimulation in
primary mixed glial and isolated microglial cultures. IL-10
release was measured by ELISA in supernatants of a-Syn-stimulated
mixed-glial cultures (top) and microglia (bottom) after a 20-hour
treatment with monomeric Wt or mutant a-Syn variants, or lipopoly-
saccharide (LPS). Values are mean 6 S.E.M. (n = 4). * P,0.05, ** P,0.01,
*** P,0.001. The results shown are representative of two or three
independent experiments with microglia and mixed glial cultures,
respectively.
doi:10.1371/journal.pone.0013481.g004
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Syn variants beyond purely innate pro-inflammatory responses. In

this sense, IP-10/CXCL10 is pivotal in generating antigen-specific

T-cells [71]. As the possible roles of adaptive immune responses in

PD is gaining increasing attention [72,73], our data should

contribute to a better understanding of the differential immune

responses exerted by the different a-Syn variants in terms of

augmented microglia and macrophage recruitment and/or

activation. The strong pro-inflammatory species (IL-1b, IL-6, IP-

10/CXCL10, and RANTES/CCL5) whose release the A30P and

E46K variants seem to promote in the CNS could lead to

augmented macrophage recruitment and/or activation. This view

is supported by the observation of upregulation of MCP-1/CCL2

and MIP-1a/CCL3 by A30P and E46K (Figures 5C and 5D).

Interestingly, the large effects observed for A30P and E46K were

much more pronounced in microglia, indicating a context-

dependent stimulation mechanism. Further studies to asses the

Figure 5. Chemokine release profile of a-Syn-stimulated primary mixed glial cultures and isolated microglia cultures. IP-10 (A),
RANTES (B), MCP-1 (C), and MIP-1a (D) were measured in supernantants of mixed-glial cultures (left) and microglia (right) after a 20-hour treatment
with monomeric Wt or mutant a-Syn variants, or lipopolysaccharide (LPS). All chemokines were assayed by ELISA as described in Materials and
Methods. Values are mean 6 S.E.M. (n = 2). * P,0.05, ** P,0.01. The results shown are representative of two and three independent experiments
with microglia and mixed glial cultures, respectively.
doi:10.1371/journal.pone.0013481.g005
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extent to which peripheral inflammation may amplify the

neuroinflammation contributing to PD are needed, but our results

raise the possibility of the need for a more personalised

manipulation of the different PD situations in terms of immuno-

supressory treatments and/or immunomodulatory therapeutic

approaches.

Previously, in addition to increased levels of TNF-a, IL-6, and

INF-c, stimulation of microglia with nitrated, aggregated a-Syn

had been shown to enhance the secretion of MCP-1/CCL2

[46,62]. In this work, we also found significantly higher levels of

MCP-1/CCL2 induced by non-aggregated Wt a-Syn, as well as a

similar MCP-1 release profile in mixed glial cultures for Wt a-Syn

and its A30P and E46K variants, while A53T caused no detectable

chemokine release (Figure 5C).

In summary, stimulation of total glia and microglia with A30P

and E46K variants show large increases of IP-10/CXCL10,

RANTES/CCL5, MCP-1/CCL2 and MIP-1a/CCL3 levels. Wt

a-Syn, however, only induced the release of MCP-1/CCL2 and

MIP-1a/CCL3, but not in isolated microglia, suggesting potential

differential effects of Wt a-Syn and its variants on Th1/Th2

activation and/or recruitment, and a more prominent effect for

A30P and E46K a-Syn variants in adaptive immune responses in

PD.

Effect of non-aggregated a-Syn stimulation on microglial
phagocytosis

Phagocytosis is believed to be involved in steady-state tissue

homeostasis, via the clearance of apoptotic cells, and the

promotion of tissue repair and resolution of the wound [66,74].

These aspects are related to the ‘alternative activation’ and

acquired deactivation of the microglia, as a counter phenotype to

the ‘classically activated’, pro-inflammatory, microglia [74].

Therefore, in order to assess the role of Wt a-Syn and the PD-

linked variants on phagocytosis, we used fluorescein-conjugated

tracker microparticles for measuring the phagocytosis capacity of

differentially activated primary microglial cells (Figure 6).

It has been previously reported that monomeric Wt a-Syn

enhances phagocytosis of a microglial cell line [51], and indeed,

our results show that Wt and A53T a-Syn promote phagocytosis of

microglial cells (Figure 6B), while the opposite effect was

observed for cell cultures stimulated by the A30P and E46K a-

Syn variants (Figures 6A and 6B). Interestingly, the phagocytic

capacity measured for the stimulated microglia was observed to be

inversely correlated to the IL-6 release levels induced by the

different a-Syn variants (Figure 3A). Our findings point to

induction of differential microglial phenotypes by a-Syn variants.

Thus, A53T a-Syn, which was not associated with a robust pro-

inflammatory activity, produced an increase in the phagocytic

capacity that could reflect an alternative activation state of the

microglia, as observed with CNS damage [61]. However, Wt a-

Syn, which was associated with a moderate proinflammatory

response in our model, promoted phagocytosis in microglia,

indicating a combination of alternative and classical activation

states, a scenario that has been related to chronic inflammatory

processes such as those observed in Alzheimer’s disease [74]. On

the other hand, the A30P and E46K variants of a-Syn induced a

strong pro-inflammatory response, combined with reduced

phagocytic capacity, reflecting a classical activation state, which

is clearly associated with the most cytotoxic situation.

Taken together, our results suggest that extracellular, non-

aggregated Wt a-Syn produces a moderate to low pro-inflamma-

tory response in glia, together with a reduction of the

immunoregulatory response, and a moderate stimulation of Th1

chemokine secretion. The A30P and E46K pathological variants,

on the other hand, can induce strong pro-inflammatory and

immunoregulatory responses, together with marked increases in

chemokine release levels, both in total glia and microglia. This

exacerbated native immune response generated by these two a-

Syn variants might explain the earlier onset and more rapid

evolution of these two genetic forms of PD as compared to the

sporadic variety. Intriguingly, our results from the pathologically-

linked A53T variant, apart from a weak effect on IL-6 levels, did

not provoke a significant native immune response. This finding

suggests that there are other mechanisms of neurodegeneration

that can contribute to the pathogenesis of PD, perhaps involving

adaptive immune responses that might be promoted specifically by

the A53T variant.

In comparison to the classical sporadic form of PD, the clinical

phenotypes associated with mutations in a-Syn are characterized

by an earlier disease onset but a reduced prevalence of tremor

[75–79]. Studies that help to correlate the different a-Syn variants

with the mechanism of neurodegeneration, and ultimately with

disease progression, are therefore of considerable importance.

However, we should be cautious about preclinical studies in

animal models relating to translational research, as immune

responses might vary between mice and human systems [80].

Equally important is to mention the lack of physiologically

oriented studies employing human primary microglia, rather than

immortalised cell lines. In this context, our results on the effects on

glial native immunity exerted by extracellular, non-aggregated Wt

a-Syn and the various familial PD-linked variants could be of

value in the development of rational approaches towards effective

control of immune responses that are associated with PD.

Materials and Methods

a-synuclein overexpression, purification, and preparation
Human wild-type a-Syn and the A30P, E46K and A53T

mutants were overexpressed in E. coli BL21(DE3) cells using

plasmid pT7-7 and purified as described previously [81] with

minor modifications, as follows. After cell transformation,

BL21(DE3)-competent cells were grown in LB in the presence of

ampicillin (100 mg/ml). Protein expression was induced with

1 mM IPTG, and cells were harvested by centrifugation at

3,500 g after shaking at 37uCfor 4 hours. The cell pellet was

resuspended in 10 mM Tris–HCl (pH 8.0), 1 mM EDTA, and

EDTA-free protein inhibitor cocktail (Roche Diagnostics, Burgess

Hill, UK), and lysed by multiple freeze–thaw cycles and

sonication. The cell suspension was boiled for 20 min and

centrifuged at 20,000 g. Streptomycin sulphate was added to the

supernatant to a final concentration of 10 mg/ml and the mixture

was stirred for 15 min at 4uC. After centrifugation at 13,500 rpm,

the supernatant was collected and ammonium sulphate was added

(to 0.36 g/ml). The solution was stirred for 30 min at 4uC and

centrifuged again at 13,500 rpm. The pellet was resuspended in

25 mM Tris–HCl (pH 7.7), and loaded onto an HQ/M-column

on a BioCAD (Applied Biosystems, Foster City, USA) workstation.

The synuclein proteins were eluted at ca. 300 mM NaCl with a

salt gradient from 0 mM to 600 mM NaCl. The pure a-Syn

fractions were pooled together and dialyzed extensively at 4uC
against water. Protein purities were .95% as determined by SDS-

PAGE, and molecular masses were confirmed by electrospray

mass spectrometry.

In order to get rid of any possible bound contaminants, the

purified proteins were subjected to denaturation with 6 M urea in

20 mM Tris/HCl (pH 8.0) for 1 hour at room temperature and

subsequently dialyzed at 4uC against 20 mM Tris/HCl (pH 8.0)

containing 3 M, 1.5 M, 0.75 M, and 0.375 M urea, and finally
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against water. Afterwards, the protein preparations were concen-

trated by centrifugation using a 10 k Amicon Ultra-Centrifugal

Filter Device (Millipore Iberica, Madrid, Spain), and passed under

sterile conditions through a 0.22-mm filter, and stored at 280uC.

PAGE electrophoresis analyses of the a-Syn preparations
Ten mg of protein were loaded onto a 15% SDS-PAGE gel (the

loading buffer containing 0.1 M DTT), or 25 mg onto a 4–12%

gradient Tris-glycine native PAGE gel (Lonza Group, Basel,

Switzerland), and subjected to electrophoresis at 200 V. Gels were

stained with Blue Silver [82], and destained with water. For Blue-

Native PAGE (BN-PAGE), samples were prepared according to

the protocol described previously for purified samples [83] with

some modifications. Briefly, 12 mg of protein for experimental

samples and 20 mg for protein markers were loaded on a

continuous 15% poly-acrylamide gel. Ovalbumin and bovine

serum albumin (Sigma-Aldrich, St. Louis, USA) were used as

protein markers for native PAGE and BN-PAGE assays. After

Figure 6. Effect of a-Syn-stimulation on microglial phagocytosis. (A) After treatment of the primary microglial cell cultures with a-Syn (1 mg/
ml) for 20 hours, cells were incubated with fluorescent microspheres for 1 hour. After fixing the cells, phagocytosis was assessed by fluorescence
microscopy analysis. The phagocytic index was calculated by dividing the fluorescence from the phagocytosed microspheres by the total number of
cells in the images. Four images were analysed for each sample in each experiment, and the results shown are representative of three independent
experiments. A.U.: arbitrary units. (Representative microscopy images used to determine the phagocityc activity of microglial cultures stimulated with
Wt (top) an A30P (centre) a-Syn, or non stimulated microglial cells (bottom). From left to right, green fluorescent microspheres, Hoechst-stained cells,
and cells as observed in the absence of fluorescence. Scale bar: 50 mM.
doi:10.1371/journal.pone.0013481.g006
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electrophoresis, gels were destained in a solution of 50% methanol

and 10% acetic acid until the bands were clearly visible.

Time-course determination of total a-Syn and oligomer
content in the medium after incubation with cells

For a quantitative assessment of the oligomeric content of

culture supernatants, a specific sandwich ELISA assay [60] and a

calibration curve with oligomers of an a-Syn variant carrying six

point mutations (V63A, T64S, N65H, V66L, V71F, T72S), were

used. Such oligomers were prepared as follows: a 700 mM solution

in PBS of the mutant a-Syn was incubated overnight at RT, and

subjected to centrifugation with a 100 kDa cut-off centrifugal filter

(Millipore #UFC510024). The resulting retentate was rinsed with

150 ml of cold PBS and subjected to centrifugation as before. This

procedure was repeated three more times, in order to eliminate the

non-oligomerized protein. The oligomeric nature of the prepared

a-Syn fraction was confirmed by native PAGE and Western blot

(not shown), and the a-synuclein protomer concentration was

determined with the BCA assay kit (Pierce, Rockford, USA.).

Quantification of total a-Syn species in culture supernatants

after 0, 1, 6 and 20 hours of incubation with cells at 37uC was

performed by ELISA. Briefly: individual wells of 96-well ELISA

plates were coated with 100 ml of cell-free culture supernatants.

Plates were incubated at 37uC for 2 hours and washed with 0.5%

Tween20/PBS, pH 7.2 (PBST). Plates were blocked with 200 ml of

1% BSA in PBS and incubation at 37uC for 1 hour. After washing

with PBST, 100 ml/well of a 1 mg/ml biotinylated anti-a-Syn 211

mouse mAb [Santa Cruz Biotechnology, Santa Cruz, USA;

biotinylated as previously described [60] diluted in 1% BSA in

PBS were added and plates were incubated at 37uC for 1 hour.

After washing with PBST, 100 ml/well of 1:5000 dilution of

ExtrAvidin-alkaline phosphatase (Sigma-Aldrich, St. Louis, USA)

in 1% BSA in PBS were added, and plates were incubated at 37uC
for 30 min. After washing with PST, 100 ml/well of pNPP

substrate (Sigma, St. Louis, USA) were added, and absorbance

at 405 nm was measured within 30 minutes.

Cell cultures
Mixed glial cultures were prepared from the cerebral cortices of

1–3 days-old C57BL/6 mice (University of Seville Animal Core

Facility, Seville, Spain) according to previously described methods

[33] with some modifications. After mechanical, trypsin-mediated

(BioWhittaker, Verviers, Belgium) dissociation, followed by filtra-

tion in DMEM-F12 with 10% inactivated FBS (BioWhittaker,

Verviers, Belgium), cells were cultured at 37uC onto 12-well plates

treated with poly-D-lysine (Sigma-Aldrich, St. Louis, USA). After 2

days, half of the volume of culture medium was carefully changed,

and completely changed after 4 days of culture. Cells were used for

stimulation or microglial isolation at day 18–22 of culture.

Microglial isolation was carried out according to previously

described methods [84] with some modifications. The supernatant

was removed and the wells were washed with DMEM-F12 without

inactivated FBS; this conditioned medium was stored to be used

later. Cells were incubated for 30–45 min with DMEM-F12/

trypsin 0.25% solution at 37uC and complete medium was added to

inactivate trypsin and the supernatant containing microglial cells

collected. Conditioned medium was added to attached microglia;

the following day the medium was changed for normal medium,

and microglial cultures were stimulated after 5 days post isolation.

Immunofluorescence analysis
Purified microglia were characterized by immunocytochemistry

on the basis of their expression of the pan haematopoietic marker

CD45 and of the monocyte/macrophage markers CD11b, F4/80

and CD68. Additionally, the absence of Glial Fibrillary Acidic

Protein (GFAP)-positive astrocytes in purified microglial cell

cultures was also established. By contrast, trypsin-detached cells,

largely astrocytes but containing some microglial cells, were plated

back into 12-multiwell tissue culture plates and immunocyto-

chemically processed as mentioned above.

For detection of CD45, CD11b and CD68 cell-surface antigens,

cells were fixed for 10 min at room temperature (RT) in PBS

containing 4% paraformaldehyde, washed twice in PBS and finally

blocked overnight at 4uC in PBS containing 3% bovine serum

albumin (BSA). The cells were then incubated for 1 hour at 4uC
with a fluorescein isothiocyanate (FITC)-conjugated rat anti-

mouse CD45 monoclonal antibody (Leukocyte Common Antigen,

Ly-5, clone 30-F11, BD Pharmingen, Franklin Lakes, USA) and a

FITC-conjugated rat anti-mouse CD11b monoclonal antibody

(clone M1/70, BD Pharmingen, Franklin Lakes, USA). Cells were

exposed to primary rat anti-mouse F4/80 monoclonal antibodies

(clone Cl:A3-1, Serotec, Oxford, UK) for 1 hour at RT at a final

dilution of 1:100 in PBS. For detection of CD68 and GFAP

intracellular antigens, 4% PFA-fixed cells were permeabilized and

blocked overnight at 4uC in PBS containing 3% BSA and 0.5% of

the permeabilizing detergent Triton-X-100. The following day,

cells were incubated for 1 hour at 4uC in PBS containing a

dilution of 1:100 rat anti-mouse monoclonal CD68 antibodies

(clone FA-11, Serotec, Oxford, UK) and a 1:300 dilution of anti-

GFAP mouse monoclonal antibodies (clone G-A-5, Sigma-

Aldrich, Saint Louis, USA). Labelling with F4/80 and CD68

primary antibodies was detected from fluorescence measurements

after incubating cells for 30 min at RT in PBS containing 1:100

diluted FITC-conjugated goat anti-rat IgG secondary antibodies

(Jackson ImmunoResearch, West Grove, USA). For GFAP

detection, an Alexa Fluor 488 nm goat anti-mouse IgG secondary

antibody solution (Invitrogen, Paisley, UK) was added for 30 min

at RT at a final dilution of 1:300 in PBS. Immunofluorescence

images were captured with an inverted fluorescence microscope

Olympus IX71 using the digital image processing softwares DP

Controller and DP Manager (Olympus Europa, Hamburg,

Germany).

Phagocytosis assays
FluoresbriteTM carboxylate 0.75 m microspheres (2.64% Solid-

Latex; Polysciences Inc, Warrington, USA) were used as

fluorescein-conjugated tracker microparticles for measuring the

phagocytosis capacity of differentially activated microglial cells.

One hour before starting the phagocytosis assay, fluorescent

microspheres (1.0861011 particles/ml) were mixed at a ratio of

1 ml/20 ml inactivated FBS (BioWhittaker, Verviers, Belgium) and

incubated for 1 hour at 37uC in order to opsonise fully the

carboxylate groups. The mixture of microspheres and FBS was

then resuspended in fresh DMEM-F12 medium (BioWhittaker,

Verviers, Belgium), with L-glutamine and P/S antibiotics

supplements to obtain normal 10% FBS-supplemented media

containing 5.46108 microspheres/ml.

After removal of 400 ml of supernantant from the a-Syn-

stimulated microglial cell cultures, a volume of 150 ml of

resuspended microspheres was added to each well to obtain a

final concentration of 1.086108 particles/ml. The particles were

then homogenously distributed throughout each well by gentle

movements of the plate and incubated for 1 hour at 37uC. The

medium containing non-phagocytosed microspheres was then

removed and the cells were washed with PBS prior to their fixation

with 4% paraformaldehyde in PBS for 30 min at 4uC. One ml of

PBS containing the nuclear fluorescent dye Hoechst 33342 (1 mg/
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ml) was then added to the cells, and the plates were stored at 4uC
for a minimum of 24 hours before being analyzed.

Determination of the phagocytic index
For each cell culture condition, the phagocytic capacity of

microglial cells was determined by analysing fluorescent images of

phagocytosed FITC-labelled microspheres and by staining cell

nuclei with Hoechst 33342. An Olympus IX71 fluorescence

microscope equipped with the digital image processing softwares

DPController and DPManager (Olympus Europa, Hamburg,

Germany) was used.

For each random field, a mean phagocytic index was calculated

by determining the intensity of specific green and blue fluores-

cence emissions with digital imaging analysis software MetaMorph

(MDS Analytical Technologies, Toronto, Canada). Specific green

fluorescence emitted by FITC-microspheres was determined by

subtracting the mean background fluorescence calculated from

three different areas of the image where no cells were present,

from the overall mean green fluorescence of the entire image.

Specific blue emitted nuclear fluorescence was then calculated in a

similar manner. The phagocytic index corresponds to the specific

green/blue ratio. The mean phagocytic index was calculated from

4 random fields of cells (.100 cells) and was considered as a

representative value of the phagocytic capacity of the microglial

cells, as previously determined for mouse peritoneal macrophages

within normal media for 24 hours with 1 ml/ml of lipopolysachar-

ide (LPS).

qRT-PCR
Expression of GFAP and CD11b was determined by using a

two-step quantitative real-time PCR. Total RNA from two

microglial culture wells, one without treatment and one treated

with LPS for 16 hours, was extracted using the RNeasy Micro Kit

(Qiagen GmbH, Hilden, Germany) according to the manufactur-

er’s protocol. One mg of RNA was reverse-transcribed using the

Quantitect Reverse Transcription kit (Qiagen GmbH, Hilden,

Germany) according to the manufacturer’s protocol. qPCR was

performed with SYBRH Premix EX TaqTM (Perfect Real Time)

(Takara Bio Inc., Otsu, Shiga, Japan) on an ABI Prism 7500 Real

Time PCR System. Primers used were: HPRT_For: 59-GTAAT-

GATCAGTCAACGGGGGAC-39, HPRT_Rev: 59-CCAGCAA-

GCTTGCAACCTTAACCA-39; GFAP_For: 59-ATCGAGATC-

GCCACCTACAG-39, GFAP_Rev: 59-CTCACATCACCACG-

TCCTTG-39; CD11b_For: 59-CAGATCAACAATGTGACCG-

TATGG-39, CD11b_Rev: 59-CATCATGTCCTTGTACTGC-

CGC-39). Multiple transcripts were analyzed simultaneously for 40

cycles using an optimized qRT-PCR thermal profile. Changes in

gene expression were determined using the 22DDCt method with

normalization to endogenous hypoxanthinephophoribosyltransfer-

ase (HPRT) control.

Cytotoxicity assays
The cytotoxic effect of the a-Syn variants under study was

evaluated from the extent of LDH release with by using the LDH

Cytoxicity Detection Kit (Roche, Basel, Switzerland) in MGC,

following stimulation with the maximum concentration of wild-

type a-Syn, its mutants or LPS (Sigma-Aldrich, St. Louis, USA),

used in the present experiments (5 mg/ml for a-synuclein samples

and 1 mg/ml for LPS). The limiting value in each case was

determined using 6 mM MG132 (Sigma-Aldrich, St. Louis, USA),

which is known to be lethal for cells at the concentration used,

again using the manufacturer’s protocol.

Cytokine release measurements
Glial mixed cultures and isolated microglial cultures were

stimulated with Wt a-Syn and its mutational variants at different

concentrations (5 mg/ml and 1 mg/ml for MGC and 1 mg/ml and

0.2 mg/ml for MiG) for 20 hours. LPS at a concentration of 1 mg/

ml, and culture medium alone were used as positive and negative

controls, respectively. Culture supernatants were harvested and

centrifuged at 700 g for 5 min. and cell-cleared supernatants were

recovered and stored at 280uC before cytokine measurement. IL-

6, IL-1b, TNF-a, IFN-c and IL-10 levels were assayed using

Mouse IL-6/IL-1b/TNF-a/IFN-c/IL-10 BD OptEIA ELISA set

(BD Biosciences, Madrid, Spain) according to the manufacturer’s

protocol. Chemokine levels in the culture supernatants were

determined by a specific sandwich ELISA by using capture/

biotinylated detection antibodies obtained from Peprotech (Lon-

don, UK) according to the manufacturer’s recommendations.

Cytokine profiles shown are representative of three independent

experiments.

Ethics statement
All animals were handled in strict accordance with good animal

practice as defined by the relevant national/EU guidelines and the

CEA-CABIMER Experimental Animal Committee, and all

animal work was approved by the appropriate committee (file

CEA-2010-14).

Data analysis
All values are expressed as mean 6 S.E.M. Statistical

significance (Student’s test, two-tailed) was evaluated using SPSS

Statistics 17.0 (IBM Company, Chicago, USA).

Supporting Information

Figure S1. Time-course quantitation of total a-Syn in cell

culture supernatants. Total a-Syn content measured by direct

ELISA in culture supernatants recovered after addition of wild-

type a-Syn to mixed glial cultures and incubation for 0, 1, 6 and

20 hours at 37uC.

Found at: doi:10.1371/journal.pone.0013481.s001 (0.06 MB TIF)

Figure S2. TNF-a and IFN-c release profile of a-Syn-

stimulated primary microglial cultures. TNF-a (A) and

IFN-c (B) levels were measured by ELISA in culture supernantants

of microglia after a 20-hour treatment with exogeneously added a-

Syn variants, or lipopolysaccharide (LPS). Values are mean 6

S.E.M. (n = 3). The results shown are representative of two

independent experiments.

Found at: doi:10.1371/journal.pone.0013481.s002 (0.13 MB TIF)
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