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Abstract

Background: A family of hydrophilic acylated surface (HASP) proteins, containing extensive and variant amino acid repeats,
is expressed at the plasma membrane in infective extracellular (metacyclic) and intracellular (amastigote) stages of Old
World Leishmania species. While HASPs are antigenic in the host and can induce protective immune responses, the
biological functions of these Leishmania-specific proteins remain unresolved. Previous genome analysis has suggested that
parasites of the sub-genus Leishmania (Viannia) have lost HASP genes from their genomes.

Methods/Principal Findings: We have used molecular and cellular methods to analyse HASP expression in New World
Leishmania mexicana complex species and show that, unlike in L. major, these proteins are expressed predominantly
following differentiation into amastigotes within macrophages. Further genome analysis has revealed that the L. (Viannia)
species, L. (V.) braziliensis, does express HASP-like proteins of low amino acid similarity but with similar biochemical
characteristics, from genes present on a region of chromosome 23 that is syntenic with the HASP/SHERP locus in Old World
Leishmania species and the L. (L.) mexicana complex. A related gene is also present in Leptomonas seymouri and this may
represent the ancestral copy of these Leishmania-genus specific sequences. The L. braziliensis HASP-like proteins (named the
orthologous (o) HASPs) are predominantly expressed on the plasma membrane in amastigotes and are recognised by
immune sera taken from 4 out of 6 leishmaniasis patients tested in an endemic region of Brazil. Analysis of the repetitive
domains of the oHASPs has shown considerable genetic variation in parasite isolates taken from the same patients,
suggesting that antigenic change may play a role in immune recognition of this protein family.

Conclusions/Significance: These findings confirm that antigenic hydrophilic acylated proteins are expressed from genes in
the same chromosomal region in species across the genus Leishmania. These proteins are surface-exposed on amastigotes
(although L. (L.) major parasites also express HASPB on the metacyclic plasma membrane). The central repetitive domains of
the HASPs are highly variant in their amino acid sequences, both within and between species, consistent with a role in
immune recognition in the host.
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Introduction

Kinetoplastid parasites of the genus Leishmania cause a diverse

spectrum of infectious diseases, the leishmaniases, in tropical and

subtropical regions of the world (reviewed in [1]). Mammalian-

infective Leishmania species are divided into two subgenera,

Leishmania (Leishmania) and Leishmania (Viannia), that differ in their

developmental cycles within the female sandfly vector. Transmis-

sion of species of both subgenera from vector to mammalian host

requires parasite differentiation into non-replicative flagellated

metacyclic promastigotes. These forms are inoculated when a

female sandfly takes a blood meal; the parasites enter resident

dermal macrophages and transform into replicative amastigotes

that can be disseminated to other tissues, often inducing immuno-

inflammatory responses and persistent infection. The fate of

Leishmania amastigotes in the host determines disease type, which

can range from cutaneous or mucocutaneous infection to diffuse

cutaneous or the potentially fatal visceral leishmaniasis [1].

Comparative sequencing of three Leishmania genomes, L. (L.)

major and L. (L.) infantum from the L. (Leishmania) sub-genus and L.

(V.) braziliensis from the L. (Viannia) sub-genus, has revealed high

conservation of gene content and synteny across the genus [2,3,4].

A number of loci show significant variation in size and gene

complement between species, however. One example is the GP63

locus, containing tandemly arrayed genes coding for surface

glycoproteins that are critical for macrophage invasion and
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virulence [5,6]. This locus is present in all three sequenced

Leishmania species but varies considerably in size and number of

genes present. Another example is the LmcDNA16 locus,

originally identified on chromosome 23 of L. (L.) major [7,8,9,10]

but since also found in L. (L.) donovani [11], L. (L.) infantum [3] and

other L. (Leishmania) species. This locus is characterised by the

presence of two Leishmania-specific gene families encoding

hydrophilic acylated surface proteins (HASPs; [7,9,10,12,13])

and small hydrophilic endoplasmic reticulum associated proteins

(SHERPs; [14]). The HASPs have conserved N- and C- termini

but a sub-set, the HASPBs, possess divergent central domains

containing hydrophilic amino acid repeats that exhibit both inter-

and intra specific variation in their size and composition

[10,11,15]. Acylation of the HASPBs involves N-terminal

myristoylation and palmitoylation, modifications that are required

for protein targeting to the parasite plasma membrane [13]. In L.

major, HASPB expression is confined to mammalian-infective

stages of the parasite life cycle, the metacyclics and amastigotes.

While HASPBs are antigenic in the host [16,17] and can induce

protective immune responses [18,19,20], the biological functions

of both the HASP and SHERP proteins remain unresolved [7].

To date, while the LmcDNA16 locus has been identified in all

L. (Leishmania) species analysed, expression and localization of the

encoded proteins has not been studied in New World L.

(Leishmania) species. Here, we present analysis of HASPB

expression in two representative sub-species, L. m. mexicana and

L. m. amazonensis. Furthermore, the LmcDNA16 locus has been

reported as absent from the published L. (V.) braziliensis genome,

one of the few chromosomal regions showing strong divergence

between sub-genera [3]. Instead, an apparently unrelated region

containing several putative genes of unknown coding capacity is

found in this position on chromosome 23 [3].

In this paper, we investigate this region further and identify at

least two novel but closely-related L. (V.) braziliensis genes coding

for putatively acylated repeat-containing proteins. These, like the

HASPB proteins in L. (L.) mexicana but unlike those in L.major, are

predominantly expressed on the plasma membrane of amastigotes.

We name these proteins orthologous HASPs (oHASPs) and refer to

the locus as the orthologous HASP locus (OHL). Sequencing one of

these new L. (V.) braziliensis genes in clinical isolates taken from

Brazilian leishmaniasis patients has identified extensive sequence

variation in the amino acid repeat regions, while some but not all

sera samples taken from the same patients recognise recombinant

protein expressed from the same open reading frame expressed in

E. coli. These data identify a new molecular marker for L. (V.)

braziliensis infection and suggest the potential for antigenic change

within this class of amastigote proteins.

Materials and Methods

Genome sequences and computational analyses
The L. (L.) major, L. (L.) infantum, L. (V.) braziliensis and Leptomonas

seymouri genome sequences [21,22] were obtained from GeneDB

(www.genedb.org - [23]) during the period June – September

2009. Comparative alignments of the target loci (and flanking

regions) were performed using the BLASTALL program [24] and

visualised using the Artemis Comparison Tool [25].

N-terminal myristoylation and palmitoylation sites in target

sequences were predicted using NMT – The MYR Predictor

[26,27] and CSS-Palm 2.0 [28] with default settings. CLUSTAL

alignments were generated for inter- and intra-species analysis of

the oHASP protein repetitive regions using the CLUSTALW2

program (default settings) hosted by EBI.

Leishmania species and strains
The Leishmania species and strains used in this study are

described in Table 1 and include 11 L. (V.) braziliensis clinical

isolates, provided as genomic DNA by the Leishmaniasis

Immunobiology Laboratory, Institute of Tropical Pathology and

Public Health, Goiás Federal University (Leishbank - IPTSP/

UFG/GO). The identities of species and strains were confirmed

using restriction fragment length polymorphism (RFLP) analysis

[29]. The clinical isolates were identified as L. (V.) braziliensis by

PCR-typing with ribosomal DNA and glucose-6-phosphate

dehydrogenase/META2 genes as described [30,31,32].

L. (L.) major, L. (V.) braziliensis and L. (L.) infantum parasites were

maintained in culture as described [33]. L. (L.) mexicana and L. (L.)

amazonensis parasites were maintained in culture and differentiated

according to the method of Bates [34]. L. (V.) braziliensis

promastigotes and intramacrophage amastigotes were generated

and purified as described [33]. In brief, macrophages were

incubated with stationary-phase L. (V.) braziliensis at a ratio of 1:10

for 2 hr at 34uC, prior to washing twice with DMEM, replacement

with fresh complete DMEM and further incubation for 48 hr at

34uC before amastigote harvesting, using 0.05% saponin and a

single density isotonic Percoll gradient.

DNA extraction and analysis
Genomic DNA from each species and strain was extracted as

follows: 56108 – 56109 parasites were pelleted by centrifugation

(2000 g, 10 min, 4uC) and washed twice with sterile PBS. Pellets

were resuspended in 9 ml NET Buffer (0.01 M Tris pH 8.0,

0.05 M EDTA, 0.1 M NaCl) and 1 ml 10% SDS, ribonuclease A

(Sigma Aldrich) added to a final concentration of 100 mg/ml and

the mixture incubated at 37uC for 30 min. 200 ml proteinase K

(20 mg/ml) was added and the mixture incubated at 55uC
overnight. Parasite genomic DNA was extracted with phenol-

chloroform, washed twice in 70% ethanol, resuspended in TE

buffer and stored at 4uC.

Author Summary

Single-celled Leishmania parasites, transmitted by sand
flies, infect humans and other mammals in many tropical
and sub-tropical regions, giving rise to a spectrum of
diseases called the leishmaniases. Species of parasite
within the Leishmania genus can be divided into two
groups (referred to as sub-genera) that are separated by
up to 100 million years of evolution yet are highly related
at the genome level. Our research is focused on identifying
gene differences between these sub-genera that may
identify proteins that impact on the transmission and
pathogenicity of different Leishmania species. Here we
report the presence of a highly-variant genomic locus
(OHL) that was previously described as absent in parasites
of the L. (Viannia) subgenus (on the basis of lack of key
genes) but is present and well-characterised (as the
LmcDNA16 locus) in all members of the alternative
subgenus, L. (Leishmania). We demonstrate that the
proteins encoded within the LmcDNA16 and OHL loci
are similar in their structure and surface localisation in
mammalian-infective amastigotes, despite significant dif-
ferences in their DNA sequences. Most importantly, we
demonstrate that the OHL locus proteins, like the HASP
proteins from the LmcDNA16 locus, contain highly variable
amino acid repeats that are antigenic in man and may
therefore contribute to future vaccine development.

Surface Proteins on Leishmania Amastigotes
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PCR primers were designed using the Primer3 web utility [35]

with default settings and synthesised by Eurogentec. All primer

sequences used are shown in Table S1. PCR amplifications for

sequencing and cloning were carried out in either a Peltier PTC-

200 Thermocycler (MJ Research) or a TechGene Thermocycler

(Techne) using the Kod polymerase (Novagen) in 3-step reactions,

according to the manufacturer’s instructions. Briefly, the initial

denaturing step required a 2 min incubation at 94uC and was

followed by 35 reaction cycles (1 cycle = 95uC, 30 sec; 55uC, 10

sec; 72uC, 40 sec) and a final extension step of 40 sec at 72uC.

Southern blotting was carried out as described [7] with DIG-

labeled probes and hybridization reagents (Roche) using the

manufacturer’s protocols. Primers for probe amplification were

targeted against the intergenic region within the OHL locus (Table

S1). The membrane was exposed to autoradiography film

(Amersham Hyperfilm HP) and processed using a XoGraph

Compact x4 (XoGraph Imaging Systems).

DNA sequencing of the repeat domains of oHASP genes utilised

cloned PCR products amplified with suitable flanking primers

(Table S1) and cloned into pGEM-T easy vector. All sequencing

was carried out on an Applied Biosystems 3130 sequencer, using

T7 forward and Sp6 reverse primers, in the University of York

Technology Facility; all data were analysed using Applied

Biosystems Sequence Scanner v1.0.

RNA isolation and analysis
Total RNAs (15 mg per track) from procyclic, metacyclic and

amastigotes of L. (L.) mexicana and L. (L.) amazonensis, generated by

axenic culture [34], were extracted and analysed by formaldehyde

denaturing electrophoresis in the presence of commercial RNA

markers, prior to blotting and hybridization as described [14]. The

radioactive probe used for hybridization, NREP, was an oligo-

labelled PCR product generated from the repetitive central

domain of the HASPB gene (GenBank: AJ251974.1) using primers

NREP1 and NREP2 (Table S1).

L. (V.) braziliensis amastigote pellets were resuspended using

TRIzol Reagent (Invitrogen) and total RNA extracted according

to the manufacturer’s instructions. Further purification and

quantitative real-time PCR (RT-qPCR) analysis was carried out

as described [33]. The data generated were normalised using the

constitutively expressed c-glutamyl cysteine synthetase

(LbrM18_V2.1700) [36].

Protein expression, antibody generation and
immunodetection

The L. mexicana HASPB open reading frame (ORF) was

amplified using the primers LEXP5 and LEXP32 (Table S1)

prior to cloning into the Nde1site of pET15b and expression in E.

coli BL21 (DE3) pLysS [14]. His-tagged recombinant protein was

purified by affinity chromatography, checked for purity by SDS-

PAGE, and used to raise polyclonal antibodies (anti-Lmex

HASPB) in rabbits, as described in [14].

The Lbr1110 ORF was PCR-amplified from L. (V.) braziliensis

genomic DNA (wild-type strain), using the Lb1110 primers (Table

S1) and subject to ligation-independent cloning within the

University of York HiTel facility (http://www.york.ac.uk/depts/

biol/tf/hitel/index.htm). The resulting recombinant plasmid was

introduced into E.coli Rosetta 2 and expression achieved in auto-

induction medium [37] with overnight growth at 30uC.

For protein purification, bacterial cells were resuspended in

70 ml buffer containing 300 mM NaCl, 20 mM sodium phos-

phate pH 7.4, 20 mM imidazole, protease inhibitors and DNAse

Table 1. Leishmania species and strains used in this study.

Species Strain Code Source

L. major MHOM/IL/80/Friedlin FVI* - Smith lab cryobank

L. infantum MCAN/ES/98/LLM-877* -

L. donovani MHOM/ET/67/L28/LV9 -

L. mexicana MYNC/BZ/62/M379 -

L. amazonensis MHOM/BR/73/M2269 -

L. guyanensis MHOM/BR/75/M4147 LgM4147-75

L. peruviana MHOM/PE/90/LCA08 LpLCA08-90 P. Volf, Prague

L. braziliensis MHOM/BR/75/M2904 * M2904-75 A. Cruz, São Paulo

L. braziliensis MHOM/BR/84/LTB300 LTB300 Smith lab cryobank

L. braziliensis MHOM/BR/2006/GDL+ GDL-06 S. Uliana, São Paulo/Leishbank - IPTSP/UFG/
GO

L. braziliensis MHOM/BR/2006/HPV+ HPV-06

L. braziliensis MHOM/BR/2003/IMG+ IMG-03

L. braziliensis MHOM/BR/2006/PPS+ PPS-06

L. braziliensis MHOM/BR/2006/TMB+ TMB-06

L. braziliensis MHOM/BR/2006/BES+ BES-06

L. braziliensis MHOM/BR/2005/RPL+ RPL-05

L. braziliensis MHOM/BR/2006/UAF+ UAF-06

L. braziliensis MHOM/BR/2005/WSS+ WSS-05

L. braziliensis MHOM/BR/2006/EFSF+ EFSF-06

These include the reference genome strains* of L. major, L. infantum and L. braziliensis [2,3] plus representative strains of other Leishmania species and L. braziliensis
clinical isolates+. Code, as used to describe strains in Figure 7.
doi:10.1371/journal.pntd.0000829.t001
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I. Lysis was performed by one pass through a continuous flow

French Press at 20 kPSi and 4uC. The crude lysate was cleared by

centrifugation at 50,000 g for 40 min at 4uC followed by filtration

of the supernatant through a 0.8 mm membrane. All purification

steps were carried out on an AKTA100 (GE) fitted with a direct

loading pump. The lysate was loaded directly onto an equilibrated

1 ml HisTrap column (GE) at a flow rate of 1 ml/min. Following

a 10 column volume (CV) wash with buffer A (300 mM NaCl,

20 mM sodium phosphate pH 7.4, 20 mM imidazole), bound

proteins were eluted with buffer B (300 mM NaCl, 20 mM sodium

phosphate pH 7.4, 0.5 M imidazole) using a gradient of 0–100%

B over 10 CV. Fractions of 1 ml were collected and analysed by

SDS-PAGE; peak fractions were pooled and concentrated to

,2 ml. Gel filtration was then performed using a Superdex 75 16/

60 column (GE) and PBS buffer at a flow rate of 1 ml/min,

collecting 1 ml fractions for SDS-PAGE analysis. Purified protein

(final yield, ,4 mg/L cells) was concentrated, stored at 220uC in

PBS containing 25% glycerol and used for polyclonal antibody

production in rabbits (Eurogentech).

Antibodies were purified using a 1 ml NHS-activated HP

column (GE) coupled with 1 mg recombinant Lbr1110 protein.

Following column equilibration with 10 ml binding buffer (20 mM

sodium phosphate pH7, 150 mM NaCl), 15 ml rabbit serum was

loaded onto the column at 0.3 ml/min. Unbound sample was

removed with 5 ml binding buffer and antibody eluted at low pH

(in 0.1 M glycine pH2.7, 0.5 M NaCl) in 0.5 ml fractions directly

into tubes containing 50 ml 1 M Tris-HCl pH9 for neutralisation

and storage.

For immunoblotting, total protein lysates from 26106 parasites

were separated by SDS-PAGE prior to transfer on to PVDF

Immobilon P membrane (Millipore), as described [14]. The

resulting blots were probed with rabbit anti-Lb1110 (1:1000), anti-

Lmex HASPB (1:500) and mouse anti-EF1-a (1:1000; Millipore).

Immune complexes were detected by ECL reagents (Amersham

Biosciences), with 30 sec exposure times. To detect immune

recognition by clinical sera, similar blots were probed with sera

from CL patients (1:300 to 1:500) and control healthy individuals

(also Brazilian), prior to detection with anti-human HRP (1:5000;

Sigma).

For detection by confocal microscopy, antibody-labelling was

performed on live parasites, to detect surface Lb1110, and on

permeabilised cells, to detect total Lb1110 localisation. 26107

parasites were collected by centrifugation at 800 g for 10 min,

washed and resuspended in 100 ml of 1% fatty acid-free BSA

blocking solution (BB International) for 20 min. Live parasites

were labelled with rabbit anti-Lb1110 (1:100) for 30 min at

20uC, then fixed in 4% paraformaldehyde (PFA) before

secondary detection with AlexaFluor-488-conjugated goat

anti-rabbit IgG (1:250 in blocking solution; Invitrogen).

Labelling was also carried out on permeabilised cells which

were first fixed in 4% PFA, washed, then incubated with 0.1%

Triton-X100 (Sigma) for 10 min, washed and then incubated in

1% BSA blocking solution for 20 min at 20uC before labelling

as above. Parasites were allowed to adhere to polylysine slides

(Sigma) for 20 min and coverslips mounted with Vectashield

containing DAPI (Vector Laboratories), prior to imaging using

a Ziess LSM 510 meta with a Plan-Apochromat 63X/1.4 oil

DIC I objective lens. Images were acquired using LSM510

version 3.5 software.

For detection by epifluorescence microscopy (Figure 1C, lower

panel), axenic amastigotes of L. mexicana were fixed and

permeabilised as described above before labelling with anti-

LmexHASPB (1:100) and detection with goat-anti-rabbit-FITC

secondary antibody (Sigma). Fluorescent parasites were viewed

using a Nikon Microphot FX epifuorescent microscope, images

captured with a Photometrics CH350 CCD camera and data

analysed via IPLab Spectrum software (Scanalytics). Intrama-

crophage L. mexicana amastigote infections were carried out as

described above for L. braziliensis, except that macrophages were

grown on glass coverslips. Infected macrophages were fixed and

permeabilised as described above. HASPB localisation (Figure 1C,

upper panel) was determined using anti-Lmex HASPB, with

detection by AlexaFluor-488-conjugated goat anti-rabbit IgG

(1:250; Invitrogen).

Figure 1. Expression of HASPB genes in L. (L.) mexicana and L. (L.) amazonensis. A. RNA expression: total RNAs from were size separated in the
presence of formaldehyde, blotted and hybridised sequentially with probes specific for the HASPB gene repeat regions (NREP) and the ribosomal S8
gene (S8). The filters were also stained with methylene blue (MB) before hybridisation. The size of the HASPB transcript is shown on the left of the
blots. B. Protein expression: total parasite lysates (using 26106 parasite-equivalents per track) from procyclic (P), metacyclic (M) and axenic
amastigotes (A) of L. (L.) amazonensis and L. (L.) mexicana were analysed by SDS-PAGE, prior to blotting with antibodies raised against recombinant
L.(L.) mexicana HASPB (top panel). Bottom panel: Coomassie-stained gels prior to blotting; molecular mass markers are shown on the left (kDa). C.
Detection of L. (L.) mexicana HASPB expression in fixed amastigotes within a macrophage (top panel) and from axenic culture (bottom panel).
Immunofluorescence microscopy using the LmxHASPB antibody from B (green) and counterstaining with DAPI (blue) reveals the large macrophage
nucleus (top panel) and smaller parasite nuclei and kinetoplasts (in both panels). Size bar: 5 mm.
doi:10.1371/journal.pntd.0000829.g001
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For analysis by flow cytometry, parasites were labelled live as

described above. Samples were analysed on a Dako CyAn ADP

and data evaluated by Summit 4.3 Software.

Clinical samples
Sera samples taken from 6 patients, from whom L. (V.)

braziliensis parasites were also isolated, were kindly provided by

the Leishmaniasis Immunobiology Laboratory, Institute of Trop-

ical Pathology and Public Health, Goiás Federal University

(Leishbank - IPTSP/UFG/GO; see Table 1). The blood samples

were collected as part of the initial diagnostic procedure, at the

time of first clinical evaluation and prior to treatment.

Results

The L. (L.) mexicana HASPB genes are expressed
predominantly in intracellular amastigotes

The LmcDNA16 locus, encoding HASP and SHERP proteins,

is conserved in all New and Old World L. (Leishmania) species

analysed including L. (L.) major, L. (L.) donovani, L. (L.) infantum, L.

(L.) mexicana and L. (L.) amazonensis [3,8,9,10,11,38]. In the two

New World L. (Leishmania) species, L. (L.) mexicana and L. (L.)

amazonensis, the LmcDNA16 locus on chromosome 23 contains

several HASP genes [39]. However, unlike in L. (L.) major in which

HASPB sequences are expressed highly in both metacyclics and

amastigotes, HASPB expression occurs predominantly in amasti-

gotes, both at the RNA and protein level, in species of the L. (L.)

mexicana complex (Figure 1). RNA blotting with the NREP probe

overlapping the central repetitive region of the predicted HASPB

open reading frame (ORF) detects a single 2 Kb transcript in both

L. (L.) mexicana and L. (L.) amazonensis that is ,10-fold more

abundant in axenic amastigotes than in metacyclic promastigotes

and barely detectable in procyclic parasites (Figure 1A). This

expression pattern correlates with that observed at the protein

level, using an antibody raised against recombinant protein

expressed from the central repetitive region of the L. (L.) mexicana

ORF to detect wild type proteins in lysates of the different parasite

stages in both species (Figure 1B). A single HASPB protein of

,35 kDa (L. (L.) mexicana) and ,29 kDa (L. (L.) amazonensis) is

detected by immuno-blotting in axenic amastigotes only. As

observed with L. (L.) major HASPB, these proteins run aberrantly

when separated by SDS-PAGE [10]; the molecular masses

deduced from the gene sequences are 18.6 kDa and 14.9 kDa

respectively. Fluorescence microscopy using the same antibody

shows localisation of the HASPB protein in a punctate pattern at

the plasma membrane of both axenic and intra-macrophage

parasites in L. (L.) mexicana (Figure 1C) and also, in L. (L.)

amazonensis (data not shown).

These data confirm that the HASPBs of the L. (L.) mexicana

complex are differentially regulated during the parasite life cycle,

as in L. (L.) major, but unexpectedly, expressed predominantly in

the macrophage-dwelling amastigotes.

Replacement of the LmcDNA16 locus in L. (Viannia)
species

Although conserved in L. (Leishmania) species, the LmcDNA16

locus was reported as missing in L. (V.) braziliensis, one of the few

chromosomal regions showing significant divergence between

Leishmania species sequenced to date [3]. Instead, a non-syntenic

region of ,7Kb (named here the OHL locus) is positioned at the

same chromosomal location in L. (V.) braziliensis, as determined by

examination of the LmcDNA16 locus flanking regions that contain

genes that are conserved in all sequenced L. (Leishmania) species

(Figure 2A). In addition, partial genome sequencing of Leptomonas

seymouri, a related insect parasite, has identified a similar variable

region between the same conserved flanking genes which is of

reduced size and contains two ORFs (Figure 2A).

To confirm the content of the Leishmania loci, PCR amplification

was used to probe L. (Viannia) and L. (Leishmania) species for

HASPB and SHERP sequences, as well as for the two new ORFs

identified in the OHL region of L. (V.) braziliensis

(LbrM23V2.1110 and LbrM23V2.1120). This analysis confirmed

the presence of conserved HASPB and SHERP genes in all

analysed L. (Leishmania) species and their absence in L. (Viannia)

species (data not shown). Similarly, the newly identified ORFs

were only detected in the L. (Viannia) species although notably, the

sizes of the bands observed were variable in both number and size

(data not shown). Previous studies have shown that the genes

within the LmcDNA16 locus exhibit both inter- and intra-species

variation in size and content [11,15]. Similar variation in the size

of the OHL region was demonstrated by hybridisation analysis of

genomic DNAs from L. (V.) braziliensis, L. (V.) peruviana and L. (V.)

guyanensis (Figure S1). Southern blots of HinDIII/XhoI-digested

DNA (utilising restriction sites flanking the L. (V.) braziliensis OHL

region) probed with a specific intergenic fragment (located

between LbrM23V2.1110 and LbrM23V2.1120; see Figure 2B)

identified single bands of different sizes larger than 12 Kb in L.

(V.) braziliensis, L. (V.) guyanensis and L. (V.) peruviana DNA. These

fragments were all considerably larger than the ,7 Kb predicted

to span the break in chromosomal synteny derived from L. (V.)

braziliensis genome analysis (Figure 2A).

Additional bioinformatics analysis revealed a sequence mis-

assembly derived from a ,3.2 kb collapsed repeat sequence within

the OHL locus. Collapsed repeats of this type frequently arise

during automated genome assembly when sequence reads

originating from distinct repeat copies are incorrectly joined to

generate a single unit. They are identified as genomic regions with

significantly increased read depth. The collapsed repeat identified

here contains conserved ,1.2 kb sequences (A) flanked by

,0.8 kb sequences (B) forming an ABAB motif, as shown in

Figure 2B. Each A sequence contains a putative ORF containing

multiple iterations of conserved 30 nt sequences that code for a

large amino acid repeat domain (see Figure 3). The number of

repetitive 30 nt sequences varies between the two ORFs identified

in GeneDB (http://www.genedb.org) as LbrM23V2.1110 and

LbrM23V2.1120, with 4 and 14 iterations respectively. It is

important to note however that these two ORFs differ only in the

number of repeat units present.

Examination of the individual sequence reads that map to the

collapsed repeat region reveal the presence of another ORF

variant (containing 12 iterations of the repeat motif). While only

three variant ORFs were detected in this analysis, the increased

read depth within the OHL region suggests that multiple copies of

each motif could be present and that the structure of this repeat

region consists of a tandemly repeated ABAB pattern, with

sequence diversity within the iterated sequences, spanning more

than 12 Kb of genomic DNA. Further analysis to more precisely

define the size and composition of the OHL locus is in progress.

Characterisation of the putative ORFs within the L.
braziliensis OHL region

From the analysis above, the two ORFs identified within the

OHL region (LbrM23V2.1110 and LbrM23V2.1120) represent

only part of the coding capacity of this domain; there are several

more related genes that are not mapped within the OHL locus

representation shown in Figure 2. Focusing on the sequence of the

single LbrM23V2.1120 ORF, features characteristic of Leishmania

genes were identified: a translation initiation site (Figure 3Ab) with
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an upstream AG splice acceptor site flanked by a conserved

consensus sequence motif (212cCNcccNcNCAGNaN(C/T)N+5;

Figure 3Aa) preceded by a long polypyrimidine tract. CLUS-

TALW alignments of all putative ORFs identified in this locus,

together with their flanking regions, revealed strong conservation

of the 59- and 39-UTRs and putative conserved splice acceptor

sites ,230 nt upstream of the translation initiation site`(data not

shown). While 39 polyadenylation (poly A) sites show significant

variation between characterised Leishmania genes and cannot

usually be identified by simple sequence consensus motifs, use of

the PREDATERM program here (which predicts poly A sites

based on local nucleotide composition) facilitated identification of

putative poly A sites within the flanking B sequences of the oHASP

genes (as positioned in Figure 3Ac). This information suggested

that the 39-UTRs of these genes are extensive, in common with

other Leishmania genes. While these predicted RNA processing sites

require experimental verification, their positions confirm that the

OHL genes span the A and B sequences in Figure 2B, with the

repeats arranged in an AB, AB reiterating pattern for RNA

expression.

Comparative analysis of the putative proteins encoded by the

OHL ORFs revealed significant conservation although, as

described above, variation was observed in the composition and

number of iterations of the 30 nt repeats that code for hydrophilic

10 amino acid repeats (Figures 3B). Of particular interest is the

presence of conserved N-terminal residues, including a 2nd

position glycine and a 5th position cysteine, confirmed as potential

sites for N-myristoylation and palmitoylation using the NMT- The

MYR Predictor and CSS-PALM predictive tools [27–28]. By

contrast, screening for potential prenylation sites (by PrePS), GPI-

modification sites (by big-PI Predictor) or GPI-anchor signal

sequences (by GPI-SOM ) returned no positive predictions.

Overall, these data indicate that the AB sequence repeats

embedded within the OHL locus have the necessary sequence

components for identification as functional genes coding for

proteins that contain large internal hydrophilic repeat domains

and may be modified both co- and post-translationally by N-

myristoylation and palmitoylation. The OHL ORFs, therefore,

have very similar characteristics to the L. (Leishmania) HASPB

proteins, features evident in the comparisons and alignments

presented in Figure 3 and Figure S2.

A similar analysis of the two L. seymouri ORFs reveals that both

contain large hydrophilic amino acid repeat domains that are

larger than those observed in the HASPs and oHASPs and also

Figure 2. Alignment of the HASP/SHERP loci and related regions in Leishmania species. A. Alignments of chromosome 23 from three
Leishmania species (L. (L.) major, L. (L.) infantum, L. (V.) braziliensis) and the syntenic region of a partial Leptomonas seymouri assembly, showing the
HASP/SHERP (or LmcDNA16) loci of L. (L.) major and L. (L.) infantum flanked by conserved syntenic regions that extend in excess of 50 kb in each
direction. The closest flanking orthologous genes are linked by angled arrows. Gene colours indicate their current annotation status: red,
experimentally characterised; orange, orthologous genes present in other genera; green, orthologous genes present only within the Leishmania
genus; pink, genes unique to single Leishmania species. The OHL locus of L. (V.) braziliensis is also shown located in the same position as the HASP/
SHERP locus in the Old World species with the same flanking orthologous genes. The syntenic region from the draft sequence of L. seymouri reveals
two genes (blue) that show similarity to the unique genes in L. (V.) braziliensis. * note that the draft assembly for L. seymouri has no gene IDs assigned
and the position numbers do not reflect the actual position of the locus on the chromosome. B. Representative map of the L. (V.) braziliensis OHL
locus (deduced from this study; not to scale). Restriction sites used for blotting analysis and probe hybridisation sites (vertical black bars within
intergenic regions) are shown. The collapsed repeat identified within this locus contains two distinct regions (A, 1.2 k and B, 0.8 kb) with the
conserved unique gene (Lb1120) overlapping both fragments as shown . The copy number of the AB motif has not been accurately determined but is
estimated to occupy no less than 15 Kb of chromosomal DNA (estimated from Southern Blot data, Figure S1).
doi:10.1371/journal.pntd.0000829.g002
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more degenerate (Figure 3B). Predicted sites for N-myristoylation

and palmitoylation are also found in these deduced protein

sequences (Figure 3B).

Expression and localisation of the OHL gene products
To investigate RNA expression from the two characterised

OHL genes (LbrM23_V2.1110 and LbrM23_V2.1120), RT-

qPCR was used for quantitative analysis of transcript levels in

macrophage-derived amastigotes and axenic procyclic and

metacyclics of L. (V.) braziliensis. The results were normalised

using the experimentally-characterised c-glutamyl cysteine syn-

thetase (LbrM18_V2.1700) as a constitutive control and Meta1

(LbrM17_V2.0980) as a marker for metacyclic expression [36].

Data were analysed using the Pfaffl method [33] and showed that

the transcript abundances from both genes are increased 5 – 10

fold in the infective metacyclic and amastigote stages relative to

the procyclic stages of the parasite (Figure 4). As expected,

expression of the Meta1 gene was highly up-regulated in

metacyclics versus amastigotes, as previously reported [36].

These observations show strong correlation with the stage-

regulated transcript abundances of the HASPB genes in L. (L.)

major [8] but less so with the L. (L.) mexicana species, that show

predominant RNA expression in amastigotes, by RNA blotting

and hybridisation analysis (Figure 1).

To further probe gene expression at the protein level, the OHL

gene encoding the smallest number of repeats (LbrM23_V2.1110

or Lb1110) was chosen for detailed analysis. Using an affinity-

purified antibody raised against recombinant Lb1110 expressed

in E. coli (see Materials and Methods), several approaches were

used to investigate Lb1110 expression in the different L. (V.)

braziliensis life cycle stages (Figure 5). Firstly, immunoblotting

detected strong reactivity with the 15 kDa recombinant protein

and recognised a protein of the same size only in amastigotes of L.

(V.) braziliensis (Figure 5A). In view of the RNA expression

analysis above, this observation suggests that expression of the

Lb1110 gene may be regulated translationally, unlike the L. (L.)

mexicana homologue described in Figure 1. A second protein,

migrating at ,2x the observed molecular mass of recombinant

Lb1110, was also detected by anti-Lb1110 in amastigote lysates

although this molecule was also detectable at low levels in

metacyclics and procyclics (when compared to the differential

loading indicated by detection of the constitutive marker, EF1a).

It is likely that this protein is an additional oHASP containing a

more extended repeat domain that is recognised by anti-Lb1110.

Other OHL genes may also be expressed as proteins that are of

lower abundance and therefore not readily detectable by

immunoblotting.

Flow cytometry was used as a second method to quantify

Lb1110 protein surface expression in procyclic, metacyclic and

amastigote L. (V.) braziliensis. In these experiments, surface-

exposed Lb1110 was detected by live primary antibody labelling

prior to fixation and detection with AlexaFluor 488-conjugated

goat anti-rabbit IgG (see Materials and Methods). Prior to live cell

staining, the amine-reactive fluorophore sulfo-succinimidyl-7-

amino-4-methylcoumarin-3-acetic acid (Sulfo-NHS-AMCA) was

used to confirm cell viability; dead cells staining with this reagent

emit a strong blue fluorescence and could be omitted from further

analyses. As shown in Figure 5B, live cell staining with anti-

Lb1110 was not detectable in control (no primary antibody used)

or procyclic parasite populations. Conversely, 13% of parasites in

a metacyclic population stained with anti-Lb1110 while 90% of

amastigotes were positive with this antibody. These results confirm

the stage-specificity of Lb1110 expression and demonstrate its

surface exposure on the majority of amastigotes.

Figure 3. Structure of an oHASP gene and ORF sequences of related proteins. A. One copy of a L. (V.) braziliensis oHASP gene is shown (not
to scale). The 59-UTR is defined by a trans-splicing acceptor site (a) and translation initiation site (b), identified using consensus sequences derived by
[42]. The putative polyadenylation site (c) was predicted by PREDATERM [43]. Within the oHASP ORF (grey bar), the central black domain represents
the amino acid repeats, which comprise .60% of the ORF. Primers designed to amplify the repeat region are indicated by the red arrows (d) and are
shown in Table S1. B. Sequences of HASPB and oHASP ORFs from L. (L.) major, L. (V.) braziliensis and L. seymouri. The repeats are italicised in each
protein; those highlighted in green show inter- and intra-species variation in the number of repeat units present within these multicopy ORFs; the
putative sites for N –myristoylation and palmitoylation, determined experimentally in L. (L.) major HASPB [13], are indicated (red and blue
respectively).
doi:10.1371/journal.pntd.0000829.g003
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As a third approach to determining the localisation of the

Lb1110 protein, expression was visualised in either live or

permeabilised and fixed L. (V.) braziliensis by indirect immunoflu-

orescence and confocal microscopy (Figure 5C). Antibody

labelling was carried out either pre- or post-fixation at 20uC, in

order to compare antigen localisation at the surface membrane

with that detected both externally and internally within the

parasite. DAPI staining of the parasite nucleus and kinetoplast was

used as a counter-stain in these experiments. As shown in the

upper panel of Figure 5C, anti-Lb1110 staining is specific to L. (V.)

braziliensis amastigotes and, in live antibody labelled cells, Lb1110

localises to a site close to the protrusion of the rudimentary

flagellum, which could be indicative of antibody capping of the

surface exposed protein. In permeabilised cells (labelled Total

Lb1110), by comparison, staining is evident in a punctate pattern

indicative of plasma membrane and flagellar localisation on both

faces of the membrane bi-layer. In the lower panel of Figure 5C, a

single L. (V.) braziliensis amastigote is shown at higher magnifica-

tion, clearly demonstrating the plasma membrane localisation

following permeabilisation but surface localisation to the rudi-

mentary flagellum in the non-permeabilised L. (V.) braziliensis cell.

In contrast, the live labelling pattern on the L. (L.) mexicana

amastigote in the same figure (‘Surface HASPB’) is very similar to

the total labelling pattern on the fixed L. (V.) braziliensis amastigote

(and to the fixed labelling seen in Figure 1C), suggesting that

antibody capping is minimal on live L. (L.) mexicana under the

labelling conditions used. Overall, these data suggest that the

surface distribution of Lb1110 to the amastigote flagellum is not an

artefact of antibody capping in these live cells.

Given the amastigote-dominant expression of Lb1110 and its

surface exposure on live parasites, in a pattern similar to that

observed for HASPB expression in L. (L.) major metacyclic

parasites [40], we next investigated whether this protein is

recognised by human immune serum collected from patients

infected with L. (V.) braziliensis. Six serum samples derived from

infections with the L. (V.) braziliensis clinical isolates listed in Table 1

were used to probe blots of separated parasite proteins from

different stages, together with recombinant protein (as used in

Figure 5A). Two examples of these immunoblots, representative of

the patterns observed, are shown in Figure 6, probed with serum

taken from HPV-06 and TMB-06 infections (using the same serum

dilution and length of chemical exposure for all blots). Recognition

of a broad size range of proteins in total parasite extracts was

evident in all stages with each antiserum, while normal human

serum detected few proteins above background levels and did not

recognise recombinant Lb1110. Interestingly, the recombinant

protein was strongly detected by HPV-06 but not by TMB-06.

Overall, these data confirm the antigenicity of Lb1110 and, as

with the central repetitive domain of L. (L.) major HASPB, it can be

predicted that the Lb1110 repeats may provide dominant epitopes

for antibody recognition. It is also evident that not all antisera

taken from infected patients recognise Lb1110, suggesting that this

antigen could be unstable or variant in vivo. To investigate this

further, oHASP gene repeats were analysed in a number of L. (V.)

Figure 4. Expression profiling of L. (V.) braziliensis oHASP genes. Quantitative analysis of RNA expression in procyclic, metacyclic and
amastigote stages of L. (V.) braziliensis was carried out by RT-qPCR as described [33] with results displayed as ratios of fold increase in expression in
metacyclics (black bars) and amastigotes (hatched bars) relative to procyclic parasites. Error bars represent standard errors of the mean. In this
analysis, c-glutamyl cysteine synthetase (LbrM18_V2.1700) was used as a constitutive control and Meta1 (LbrM17_v2.0980) as a stage-specific control
for metacyclic parasites [36].
doi:10.1371/journal.pntd.0000829.g004
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braziliensis clinical isolates (provided as genomic DNAs from

Leishbank - IPTSP/UFG/GO and listed in Table 1).

Sequencing of the variable repeat domains within the
oHASPs

Variation in the number of repeat iterations present in each of the

2 OHL ORFs described above (LbrM23V2.1110 and

LbrM23V2.1120), coupled with the large size of the non-syntenic

region, raised the possibility that further ORFs with distinct repeat

regions might be present in this region, as discussed earlier. To

verify this prediction, genomic DNA from the L. (V.) braziliensis

genome strain (MHOM/BR/75/M2904) was subjected to PCR

with primers designed to amplify the repetitive domain in the

oHASPs (Figure 3Ad, Table S1). The PCR products were sub-

cloned into the pGEM-T-easy vector, 10 clones of each selected and

their insertions sequenced. The repeat domain structure was then

determined for each clone and each unique sequence translated and

Figure 5. Expression and localisation of Lb1110 protein in L. (V.) braziliensis. A. Immunoblotting analysis of Lb1110 expression in procyclics
(P), metacyclics (M) and amastigotes (A) of L. (V.) braziliensis (strain M2904-75). Recombinant Lb1110 (R), migrating as a 15 kDa protein on SDS-PAGE,
was used to generate anti-Lb1110, the antiserum used to probe the blot shown, loaded with total protein lysates from the different parasite stages.
Anti-EF1a was used as a constitutive control for protein loading on the re-probed blot below. B. Analysis of Lb1110 expression by flow cytometry in
live parasites using the antibody described in A. Surface-exposed Lb1110 was detected by live primary antibody labelling prior to fixation and
detection with AlexaFluor 488-conjugated goat anti-rabbit IgG. Total Lb1110 was detected by antibody-labelling post-fixation. Prior to live cell
staining, the amine-reactive fluorophore sulfo-succinimidyl-7-amino-4-methylcoumarin-3-acetic acid (Sulfo-NHS-AMCA) was used to confirm cell
viability; dead cells stained with this reagent emit a strong blue fluorescence and can be omitted from further analyses. The experiment shown was
one of two conducted, both of which showed similar % cell counts. Control, no primary antibody. C. Use of confocal microscopy to detect either total
or surface-exposed Lb1110 in L. (V.) braziliensis stages (top panel); control, no primary antibody used. Amastigotes only of L. (V.) braziliensis and L. (L.)
mexicana (bottom panel) are shown as DIC (differential interference contrast) images and following staining with DAPI, anti-Lb1110 or anti-HASPB,
either pre- or post-fixation for surface or total protein distribution. Scale bars, 5 mm.
doi:10.1371/journal.pntd.0000829.g005

Figure 6. Immune recognition of recombinant Lb1110 and total parasite proteins by human sera. Samples of the same protein extracts
analysed in Figure 5A were separated by SDS-PAGE, blotted and probed with human antiserum (at 1:300 – 1:500 dilution) collected from patients that
were the source of two of the clinical isolates listed in Figure 7 (HPV-06, TMB-06). NHS, normal human serum.
doi:10.1371/journal.pntd.0000829.g006
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aligned using CLUSTALW. Three unique sequences were

identified (comprising 9, 12 and 14 repeat units) and aligned

(Figure S3) revealing variations in the number and sequences of the

repeat domains of the oHASP ORFs in a single strain.

The variations in size and composition of the repeat domains of

the L. (V.) braziliensis genome strain oHASPs, as described above,

are similar to those reported in the repetitive domains of L. (L.)

major and L. (L.) donovani HASPBs [11,15] and typical of the

observed inter- and intra- species variation in this protein family in

the L. (Leishmania) subgenus. To determine the extent of similar

variation in the L. (Viannia) oHASPs, a total of 11 isolates of L. (V.)

braziliensis (Table 1) and single strains of L. (V.) peruviana and L. (V.)

guyanensis were analysed, using the same approach as above,

cloning and sequencing multiple clones of each strain. These data

are presented in Figure 7, which includes the organisation of

translated repeat domains in up to 4 independent clones from each

PCR amplification (A) and the composition of each repeat unit

analysed (B).

The number of distinct repeat domains identified in each strain

of L. (V.) braziliensis varied from 2–6 per strain. The average repeat

domain comprised 14 iterations with 6 being the lowest observed

and 15 the highest (Figure 7). While the composition of the repeat

domains varied both between and within strains, it is interesting to

note that the most prevalent motif within the repeat region across

all strains (excepting LTB300 and RPL-05) is GGDHGHEHMD

(Figure 7B, sequence G). Also of note, the repeat domains in the

LTB300 strain are very similar to those observed in L. (V.) peruviana

strain LpLCA08-90. Similarly, the RPL-05 strain shares greater

conservation with the L. (V.) guyanensis strain LgM4147-75 repeat

domains than with the L. (V.) braziliensis genome strain (M2904-

75). In these cases, the most prevalent repeat unit appears to be

GGDHVPEKAN (Figure 7B, sequence X) and

GGDHGHGNMD (Figure 7B, sequence F) respectively. Intrigu-

ingly, the overall structure of the repeat domains is well conserved

between the representative sequences from each strain with the

individual motifs occupying very specific positions (Figure 7). The

functional significance of this conservation has not yet been

investigated further.

In comparison to L. (V.) braziliensis, considerable variation in the

repeat domains was observed for both L. (V.) peruviana and L. (V.)

guyanensis (although only a single isolate of each species was

investigated). Analyses of these sequences show the level of

conservation at the amino acid level between L. (V.) braziliensis and

L. (V.) guyanensis to be ,76%, L. (V.) braziliensis and L. (V.) peruviana

,62% and L. (V.) guyanensis and L. (V.) peruviana ,57%, suggesting

that the L. (V.) peruviana repeat domain is the most divergent in

content (Figure 7). Moreover the average size of the oHASP repeat

domain is significantly less in L. (V.) peruviana (Figure 7). These

species-specific variations in the size and content of the repeat

domains are similar to those observed in the HASPB sequences in

L. (Leishmania) species.

Discussion

The LmcDNA16 locus, identified on chromosome 23 in all L.

(Leishmania) species examined to date, contains two unusual and

Figure 7. Distribution of repeat units within repeat domains of OHL variants from L. (Viannia) species. PCR amplification, cloning and
sequencing were used to analysis the OHL repeat domains in strains of L. braziliensis, L. peruviana and L. guyanensis (described in Table 1). Each
unique OHL sequence identified per strain (i - vi) was analysed and the position (within the repeat domain, shown in A) and composition of each
individual 10-amino acid repeat unit (lettered A-Z, numbered 1-9 plus #) recorded in B. Sequences marked as single occurrence only (*) contain
several low quality reads; a reliable sequence could not be definitively determined.
doi:10.1371/journal.pntd.0000829.g007
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apparently unrelated gene families (encoding the HASPs and

SHERPs), both of which are preferentially expressed during

infective stages of the parasite life cycle. Ongoing functional

characterisation using transgenic parasite lines lacking this locus

has revealed an essential role for members of these gene families in

facilitating differentiation of L. (L.) major parasites in the sandfly

vector, Phlebotomus papatasi [41]. These observations suggest that

the HASP and/or SHERP proteins are also likely to be essential

for parasite transmission from vector to host in L. (L.) major. The

absence of the HASP/SHERP locus from the L. (V.) braziliensis

genome assembly, and the identification in this study of the

distinct, if related, OHL region encoding proteins that also contain

amino acid repeats and localise predominantly to the amastigote

(but not metacyclic) plasma membrane, raises questions regarding

the role of these parasite proteins in transmission from vector to

host in L. (Viannia) species.

The data generated in this study demonstrate that the OHL and

LmcDNA16 loci are subgenus specific (found in L. (Viannia) and L.

(Leishmania) respectively), yet probably arose from a common

ancestor, as suggested by analysis of the syntenic region in the

monogenetic L. seymouri. Interestingly, in all Leishmania species

examined so far, this region of chromosome 23 encodes gene families

with similar features. These include (a) the presence of large

hydrophilic amino acid repeat domains within proteins that are

potentially N-terminally acylated; and (b) localisation and exposure of

at least one of the encoded proteins at the plasma membrane during

infective stages of the parasite life cycle. The similarity in expression

patterns and localisation of the HASP and oHASP proteins supports

the proposal that the encoding genes are orthologous.

The HASPBs have been previously shown to be recognition

targets for host immune responses [16,17,18,19,20], possibly due to

their high charge and the presence of extended hydrophilic amino

acid repeat domains. Intriguingly, the variations observed in the size

and composition of the oHASP repeats, both between L. (Viannia)

species and within L. (V.) braziliensis strains, are similar to those

observed in the HASPBs. These data support the proposal that the

oHASP and HASPB proteins may have conserved functions,

although the role of the repeat domains in both proteins is still

unclear. While amino acid repeats are frequently involved in

protein-protein contacts and could facilitate key interactions during

parasite differentiation in the sand fly, the repeat domains of

HASPB (and oHASP) are also expressed and diversified as surface

antigens in the host, as reported in L. major [15,16] and in this paper.

The detection of Lmex HASPB and Lb1110 predominantly in

amastigotes of L. (L.) mexicana and L. (V.) braziliensis respectively

suggests a dominant role for these proteins in the host rather than

the vector for these species. Perhaps the significant sequence

variation observed between the repeat domains of the oHASP

proteins in the clinical isolates of L. (V.) braziliensis used here could be

a consequence of variable host immune pressure.

Evolution of the LmcDNA16 loci and LmcDNA16
replacement regions

In addition to the complete genomes of L. (L.) major, L. (L.)

infantum and L .braziliensis [2,3], sequence data are also currently

available for L. seymouri, a monogenetic protozoan that parasitizes

insects, nematodes and ciliates and is the closest sequenced relative

to Leishmania. The presence of a syntenically-positioned locus

containing ORFs that code for putative N-acylated proteins

containing large hydrophilic amino acid repeat domains suggests

the presence of this hypermutable locus in the pre-Leishmania state.

Whether this locus is present in Crithidia species remains unknown.

Given the comparative simplicity of the locus in L. seymouri, the

expansion seen in Leishmania spp. could be representative of the

shift from the monogenetic life cycle of ancestral Leishmania to the

digenetic life cycle of parasites from the Leishmania sensu strictu

genus. A key step in this process is the evolution of the parasite-

parasitized insect relationship allowing Leishmania to use sand flies

as their vector. Our recent observation that the LmcDNA16 locus

is essential for L. (L.) major differentiation in Phlebotomus papatasi

[41] may be of relevance in this respect.

Concluding remarks
Recent studies have demonstrated the importance of HASP

proteins for L. major differentiation in the sand fly vector, while the

antigenic properties of these molecules suggest their suitability as

targets for vaccine development. Previous comparative genomic

analyses of L. (V.) braziliensis, L. (L.) major and L. (L.) infantum,

however, reported the absence of the HASP/SHERP (or

LmcDNA16) locus on chromosome 23 in L. (V.) braziliensis – with

a smaller non-syntenic locus (the OHL locus) found at that

location.

In this paper, we show that the oHASP proteins coded within

the OHL locus are orthologues of HASPB, possessing similar

expression, localisation and antigenic properties. Of particular

interest is the inter- and intra-species variation in the size and

composition of the oHASP repeat domains (also observed in

HASPBs) which could indicate that host (and/or vector) immune

pressure is driving sequence diversification within this locus.

Further study is now required to investigate the antigenic

properties of the oHASPs, explore their interaction with the host

immune system and investigate their utility as diagnostic agents for

L. (L.) Viannia clinical infections.

Supporting Information

Figure S1 DNA hybridization analysis indicating the relative

size of the OHL locus in L. Viannia species. 250 ng of genomic

DNA from L. (V.) peruviana (Lp), L. (V.) guyanensis (Lg) and L. (V.)

braziliensis (Lb), extracted from strains listed in Table 1 (Lb from

strain M290475) were digested with XhoI and HinDIII, size

separated through 0.6% agarose and hybridized with a digox-

igenin probe targeting a repetitive intergenic region (vertical black

bars in Figure 2B). A single hybridizing band was observed in the

L. (V.) guyanensis and L. (V.) braziliensis digests while two weaker

bands (black dots) were detected for L. peruviana. Molecular

markers (M) are shown on the left (Kb).

Found at: doi:10.1371/journal.pntd.0000829.s001 (0.76 MB TIF)

Figure S2 CLUSTALW alignment of the translated oHASP

ORF (Lb1110, containing 14 repeat units) with HASPB sequences

from L. (L.) major, L. (L.) infantum and the translated orthologous

ORF identified in L. seymouri. N-myristoylation and palmitoylation

sites are shown highlighted in red and blue respectively; conserved

residue(*); conserved substitutions(:); semi-conserved substitution (.)

Found at: doi:10.1371/journal.pntd.0000829.s002 (0.47 MB TIF)

Figure S3 CLUSTALW alignment of the sequenced OHL

ORFs (containing 9, 13 and 14 repeat units) revealing variation in

both the sequence and number of repeated motifs in the amino

acid repeat domains.

Found at: doi:10.1371/journal.pntd.0000829.s003 (0.25 MB TIF)

Table S1 Primers used for PCR amplifications in this study.

Found at: doi:10.1371/journal.pntd.0000829.s004 (0.35 MB TIF)
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