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Abstract

Recently, Komodakiset al. [6] developed theFastPD
algorithm for the semi-metric labeling problem, which ex-
tends the expansion move algorithm of Boykovet al.[2]. We
present a slightly different derivation of the FastPD method.

1. Preliminaries

Consider the following energy function:

E(x | θ̄) =
∑

u∈V

θ̄u(xv) +
∑

(u,v)∈E

θ̄uv(xu, xv) (1)

HereG = (V , E) is an undirected graph. Variablesxu for
nodesu ∈ V belong to a discrete setxu ∈ Xu. Thus,
labelingx belongs to the setX = ⊗u∈VXu.

We denote~E = {(u → v), (v → u) | (u, v) ∈ E},
i.e. (V , ~E) is the directed graph corresponding to undirected
graph(V , E).

The energy function (1) is specified by unary termsθu(i)
and pairwise termsθuv(i, j) (i ∈ Xu, j ∈ Xv). It will
be convenient to denote them asθ̄u;i and θ̄uv;ij , respec-
tively. We can concatenate all these values into a sin-
gle vector θ̄ = {θ̄α | α ∈ I} where the index set is
I = {(u; i)} ∪ {(uv; ij)}. Note that(uv; ij) ≡ (vu; ji),
so θ̄uv;ij and θ̄vu;ji are the same element. We will use the
notationθ̄u to denote a vector of size|Xu| andθ̄uv to denote
a vector of size|Xu ×Xv|.

1.1. LP relaxation

In this section we describe a linear programming (LP)
relaxation of energy (1) which plays a crucial role for algo-
rithms in [5, 6]. This “natural” relaxation was studied ex-
tensively in the literature, in particular by Schlesinger [10]
(for a special case whenθuv(i, j) ∈ {0, +∞}), Kosteret
al. [7], Chekuriet al. [3], and Wainwrightet al. [11].

Primal problem Let us introduce binary indicator vari-
ables:τu;i = [xu = i], τuv;ij = [xu = i, xv = j] where
[·] is the Iverson bracket: it is 1 if its argument is true, and
0 otherwise. Variables{τu;i}, {τuv;ij} must belong to the
following constraint set:

Λ =

{
τ ∈ R

I
+

∑
i∈Xu

τu;i = 1 ∀ u ∈ V
∑

i∈Xu

τuv;ij = τv;j
∀ (u → v) ∈ ~E ,

j ∈ Xv

}

Clearly, the problem of minimizing function (1) can be
formulated as follows:

minimize 〈θ̄, τ〉

subject to
τ ∈ Λ

τuv;ij ∈ {0, 1}

The LP relaxation in [10, 7, 3, 11, 5, 6] is obtained by drop-
ping the integrality constraint:

minimize 〈θ̄, τ〉
subject to τ ∈ Λ

(2a)

Reparameterization and dual problem The dual prob-
lem to (2a) can be defined using the notion of reparameter-
ization [10, 11].

Definition 1. Suppose vectorsθ and θ̄ define the same en-
ergy function, i.e.E(x | θ) = E(x | θ̄) for all configura-
tionsx. Thenθ is called areparameterizationof θ̄.

Let us introducemessageMuv;j ∈ R for directed edge
(u → v) ∈ ~E and labelj ∈ Xv. We denoteMuv =
{Muv;j | j ∈ Xv} to be a vector of size|Xv|, andM =

{Muv | (u → v) ∈ ~E} to be the vector of all messages. This
vector defines reparameterizationθ = θ̄[M ] as follows:

θu;i = θ̄u +
∑

(u,v)∈E

Mvu;i

θuv;ij = θ̄uv;ij − Muv;j − Mvu;i
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In this paper̄θ denotes the original parameter vector, and
θ = θ̄[M ] denotes its reparameterization defined by some
message vectorM . To simplify notation, we denote the cor-
responding energy function asE(x) = E(x |θ) = E(x | θ̄).

Let us define

Φ(θ) =
∑

u∈V

min
i∈Xu

θu;i +
∑

(u,v)∈E

min
i∈Xu

j∈Xv

θuv;ij

It is easy to see that for any messagesM valueΦ(θ̄[M ]) is
a lower bound on the energy:Φ(θ̄[M ]) ≤ minx E(x). This
motivates the following maximization problem:

maximize Φ(θ)
subject to θ = θ̄[M ]

(2b)

In other words, the goal is to find the tightest possible
bound. This maximization problem is dual to (2a) (see
e.g. [12]).

1.2. Optimality conditions

Consider fractional labelingτ ∈ Λ and messagesM
corresponding to reparameterizationθ = θ̄[M ]. It is well-
known that(τ, M) is an optimal primal-dual pair (i.e.τ is
an optimal solution of (2a) andM is an optimal solution
of (2a)) if and only if the followingcomplementary slack-
nessconditions hold:

τu;i > 0 ⇒ θu;i = min
i′∈Xu

θu;i′ (3a)

τuv;ij > 0 ⇒ θuv;ij = min
i′∈Xu

j′∈Xv

θuv;i′j′ (3b)

Algorithms in [5, 6] maintain aninteger primal vector
τ ∈ Λ (or equivalently a labelingx ∈ X ). With such a
restriction reparameterizationθ = θ̄[M ] satisfying (3) may
not exist. Thus, conditions (3) must be relaxed. Given num-
berfapp ≥ 1, let us say that(x, M) satisfiesfapp-relaxed
complementary slacknessconditions if the following holds
for all nodes and edges:

θu(xu) ≤ min
i∈Xu

θu;i +

(
1 −

1

fapp

)
θ̄u(xu) (4a)

θuv(xu, xv) ≤ min
i∈Xu

j∈Xv

θuv;ij +

(
1 −

1

fapp

)
θ̄uv(xu, xv) (4b)

Theorem 2 (cf. [5]). Suppose that pair(x, M) satisfies
eq. (4). Thenx is an fapp-approximation, i.e.E(x) ≤
fapp miny E(y).

Proof. Let us sum (4a) over nodesu ∈ V and (4b) over
edges(u, v) ∈ E . We obtain

E(x) ≤ Φ(θ) +

(
1 −

1

fapp

)
E(x)

1

fapp

E(x) ≤ Φ(θ) ≤ min
y

E(y)

1.3. LP relaxation for submodular functions of bi-
nary variables

The expansion move algorithm [2] and algorithms in [5,
6] rely on solving the minimization problem with (at most)
binary variables. In this section we consider the case when
Xu = {0, 1} orXu = {0} for all nodesu. Furthermore, we
assume that functionE is submodular, i.e. each termθuv

with Xu = Xv = {0, 1} satisfiesθuv;00 +θuv;11 ≤ θuv;01 +
θuv;10. (Note that expressionθuv;00+θuv;11−θuv;01−θuv;10

is invariant to reparameterization.)

This case has several important properties (see e.g. [1]).
First, it can solved efficiently by computing a maximum
flow in a graph with|V| + 2 nodes and|V| + |E| edges.
Second, the algorithm produces aninteger optimal solution
τ ∈ Λ (or equivalently labelingx ∈ X which is a global
minimum of E). Thus, optimality conditions (3) are re-
duced to

θu(xu) = min
i∈Xu

θu;i (5a)

θuv(xu, xv) = min
i∈Xu

j∈Xv

θuv;ij (5b)

Finally, reparameterizationθ is in anormal form, i.e. terms
θuv satisfy

θuv(0, 0) = θuv(imax, jmax) = min
i∈Xu

j∈Xv

θuv;ij (6)

whereimax is the maximal label inXu andjmax is the max-
imal label inXv.

Handling singleton nodes In a practical implementation
nodesu with Xu = {0} can be handled as follows. First, for
each “boundary” edge(u, v) with Xu = {0},Xv = {0, 1}
we choose messageMuv so thatθuv;00 = θuv;01. Namely,
Muv;0 = 0, Muv;1 = θ̄uv;01 − θ̄uv;00. Then we solve the
LP relaxation for nodesu with Xu = {0, 1} ignoring sin-
gleton nodes and their incident edges. In this step only mes-
sagesMuv for edges(u → v) with Xu = Xv = {0, 1} are
allowed to be modified. Clearly, upon termination condi-
tions (5) and (6) will hold for all nodes and edges.

Restricting messages It is easy to see that adding a con-
stant to vectorMuv preserves optimality ofM . Thus, when
solving problem (2b) we can require thatMuv;0 = 0 for all
(u → v) ∈ ~E . This constraint will be used later.

Given term θ̄uv and reparameterizationθuv for edge
(u, v) with Xu = Xv = {0, 1}, messagesMuv, Mvu can be
computed as follows: (1) add constantC = θ̄uv;00 − θuv;00

to vector θuv so that we getθuv;00 = θ̄uv;00; (2) set
Muv;0 = Mvu;0 = 0, Muv;1 = θ̄uv;01 − θuv;01, Mvu;1 =
θ̄uv;10 − θuv;10.



2. FastPD algorithm [6]

From now on we assume that the setXu is the same for
all nodes:Xu = L, and that vector̄θ satisfies the following
for all nodes and edges:

θ̄u;i ≥ 0 ∀ i ∈ L (7a)

θ̄uv;ii = 0 ∀ i ∈ L (7b)

θ̄uv;ij > 0 ∀ i, j ∈ L, i 6= j (7c)

We also consider a special case when the triangular inequal-
ities hold:

θ̄uv;ij ≥ θ̄uv;ik + θ̄uv;kj ∀ i, j, k ∈ L (7d)

Note that if we add the symmetry condition (θ̄uv(i, j) =
θ̄uv(j, i)) then eq. (7a)-(7c) give the definition of a semi-
metric, and eq. (7a)-(7d) give the definition of a metric,
However, the symmetry will not be needed.

We denote θ̄min
uv = mini,j∈L,i6=j θ̄uv;ij , θ̄max

uv =

maxi,j∈L θ̄uv;ij andfapp = 2 max(u,v)∈E
θ̄max

uv

θ̄min
uv

.

2.1. General overview

FastPD algorithm [6] maintains integer primal configu-
rationx ∈ X and dual variables (messages)M which de-
fine reparameterizationθ = θ̄[M ]. The following invariants
hold during the execution:

θuv(xu, xv) = 0 (8a)

θuv(i, i) = 0 ∀ i ∈ L (8b)

These properties can easily be ensured in the beginning: for
anyx it is straightforward to find messagesM so that (8)
holds. At each step, the algorithm selects some labelk ∈ L
and performs thek-expansionoperation described in sec-
tion 2.2. After the first pass over labels inL the following
condition holds for all nodesu:

θu(xu) = min
i∈L

θu;i (9)

The algorithm terminates when there was a pass over all
labelsk ∈ L but configurationx has not changed. At this
point an additional property holds for all edges. In the case
of triangular inequalities (7d) we have

θuv;ij ≥ 0 ∀ i, j ∈ L, i=xu or j=xv (10)

Without triangular inequalities eq. (10) cannot be guaran-
teed. Instead, the following weaker version holds:

θuv;ij ≥ θ̄uv;ij − θ̄max
uv ∀ i, j ∈ L, i=xu or j=xv (10′)

The final step of the algorithm is to scale messages down:

Muv;j := Muv;j/fapp (11)

After that thefapp-relaxed complementary slackness con-
ditions (4) will hold and therefore labelingx will be within
factorfapp from the optimum.

2.2.k-expansion step

The input to this step is labelk and primal-dual pair
(x◦, M◦). Let us denoteX̃u = {x◦

u, k}, and letẼ be the
restriction of functionE to configurationsx with xu ∈ X̃u.
Ẽ can be viewed as an energy function of (at most) binary
variables. We assume that labelx◦

u corresponds to 0 and la-
bel k corresponds to 1 (ifk 6= x◦

u). Note that messagesM
define reparameterization not only for the original energy
E, but also for the restrictioñE.
Submodular case First, let us consider the case when
function Ẽ is submodular. (We get this case if, for exam-
ple, triangular inequalities (7d) hold.) Thek-expansion step
solves the LP relaxation for the restrictioñE, as described
in section 1.3. The LP relaxation has an integer solution.
Thus, the goal is to find a global minimum of̃E and mes-
sagesM that give optimal reparameterization forẼ:

x := arg min
xu∈ eXu

Ẽ(x) (12a)

M := arg max
M :θ=θ̄[M ]

Φ̃(θ) (12b)

where the objective function in the maximization problem
is

Φ̃(θ) =
∑

u∈V

min
i∈ eXu

θu;i +
∑

(u,v)∈E

min
i∈ eXu

j∈ eXv

θuv;ij

To achieve efficiency, one could start with reparameteri-
zationθ◦ = θ̄[M◦] when solving (12b). This can be formu-
lated as follows: (i) find message incrementM δ and corre-
sponding reparameterizationθ = θ◦[M δ] which maximizes
Φ̃(θ); (ii) setM := M◦ + M δ.

When solving problem (12b), only componentsMuv;k

for edges(u → v) with x◦
v 6= k will be allowed to change.

In other words,Muv;j = M◦
uv;j for labelsj ∈ Lv where

Lv = (L − {k}) ∪ {x◦
v}. This is not a severe restriction:

as discussed in section 1.3, it still allows to find anoptimal
solution to (12b).

FunctionẼ may have several global minima. If their
cost equalsE(x◦) thenx

◦ is not updated, i.e.x is chosen
asx

◦. This guarantees convergence since the number of
configurations is finite.

Note that in the primal domain the method is equivalent
the expansion move algorithm of Boykovet al. [2].
Non-submodular case If function Ẽ is non-submodular
then the following operations are performed. For each non-
submodular edge(u, v) with

θ̄uv(x◦
u, x◦

v) > θ̄uv(x◦
u, k) + θ̄uv(k, x◦

v)

terms θ̄uv(x◦
u, k) and θ̄uv(k, x◦

v) are increased by non-
negative constants until we get an equality:

θ̄uv(x◦
u, x◦

v) = θ̄′uv(x
◦
u, x◦

v) = θ̄′uv(x◦
u, k) + θ̄′uv(k, x◦

v)



whereθ̄′ is the modified parameter vector. The algorithm
then proceeds in the same way as before. Namely, define
Ẽ′ to be the restriction of functionE(· | θ̄′) to labelingsx
with xu ∈ X̃u. It is easy to see that̃E′ is submodular. The
LP relaxation ofẼ′ is now solved yielding pair(x, M) and
corresponding parameter vectorθ′ = θ̄′[M ]. Finally, vector
θ̄′ is restored to its original valuēθ, and vectorθ′ is changed
to θ = θ̄[M ].

Note that in the primal domain this algorithm is a spe-
cial case of the more general majorize-minimize technique
(see e.g. [8]). It is also equivalent to the “truncation”
trick described in [9]. In the context of the labeling prob-
lem “truncation” was proposed independently in [4] and
in [9]. Both papers state that the method produces anfapp-
approximation, but in [9] this fact is mentioned without
proof.

2.3. Correctness of FastPD

Theorem 3(cf. [6]). (i) After thek-expansion reparam-
eterizationθ = θ̄[M ] satisfies conditions(8).

(ii) After the first pass over all labelsk condition(9) holds.

(iii) Upon convergence pair(x, M) satisfies condtion(10)
(in the case of triangular inequalities(7d)) or condi-
tion (10′) (without triangular inequalities).

Proof. Submodular case By assumption, conditions (8)
hold for the initial reparameterizationθ◦ = θ̄[M◦]:

θ◦uv(xu, xv) = 0 (13a)

θ◦uv(i, i) = 0 ∀ i ∈ L (13b)

We haveMuv;j = M◦
uv;j for labelsj ∈ Lv. Therefore,

θu(i) = θ◦u(i) ∀ i ∈ Lu (13c)

θuv(i, j) = θ◦uv(i, j) ∀ i ∈ Lu, j ∈ Lv (13d)

Eq. (13d) and (13a) yield

θuv(x◦
u, x◦

v) = 0 (13e)

Using eq. (13e) and condition (6) of the normal form we
obtain

θuv(k, k) = 0 (13f)

θuv(x◦
u, k) ≥ 0, θuv(k, x◦

v) ≥ 0 (13g)

Finally, from the optimality conditions (5) we obtain

θu(xu) ≤ θu(i) ∀i ∈ X̃u (13h)

θuv(xu, xu) = 0 (13i)

Non-submodular case Let θ◦ = θ̄[M◦] andθ = θ̄[M ] be
the reparameterizations before changingθ̄ and after restor-
ing θ̄, respectively. We claim that conditions (13) hold ex-
cept that (13g) is replaced with the following:

θuv(x◦
u, k) ≥ θ̄uv(x

◦
u, k) − θ̄max

θuv(k, x◦
v) ≥ θ̄uv(k, x◦

v) − θ̄max (13g′)

Indeed, eq. (13a)-(13f), (13h)-(13i) can be shown in
the same way as before, using the fact thatθuv(k, k) =
θ′uv(k, k), θ′uv(x◦

u, x◦
v) = θuv(x

◦
u, x◦

v) whereθ′ = θ̄′[M ]
is the reparameterization ofθ̄′ obtained after solving the LP
relaxation. Instead of (13g) we now have

θ′uv(x◦
u, k) ≥ 0, θ′uv(k, x◦

v) ≥ 0

If the term for edge(u, v) is submodular thenθuv = θ′uv,
so (13g′) clearly holds. Otherwise,

Mvu;x◦

u

+ Muv;k = θ̄′uv(x◦
u, k) − θ′uv(x◦

u, k)

≤ θ̄′uv(x◦
u, k)

= θ̄uv(x◦
u, x◦

v) − θ̄′uv(k, x◦
v)

≤ θ̄uv(x◦
u, x◦

v) ≤ θmax
uv

which implies the first inequality in (13g′). The second in-
equality follows from the first inequality applied to the re-
verse edge.

We now prove the theorem using equations (13).
Proof of (i) We already showed (8a) (see (13i)). Eq. (8b)
follows from (13b), (13d) and (13f).
Proof of (ii) Let L̃ be the set of labels processed so far at
least once. Let us prove by induction on the number of steps
thatθu(xu) ≤ θu(i) for each nodeu ∈ V and labeli ∈ L̃.

The base of the induction is trivial: in the beginning̃L
is empty. Suppose that the claim holds for vectorθ◦ and
labelingx

◦ in the beginning of thek-expansion step. The
factθu(xv) ≤ θu(i) for labeli = k follows from (13h). For
labeli ∈ L̃ − {k} we have

θu(xu) ≤ θu(x◦
u) = θ◦u(x◦

u) ≤ θ◦u(i) = θu(i)

(The first inequality follows from (13h), the second inequal-
ity is by the induction hypothesis, and the two equalities
follow from (13c)).
Proof of (iii) We consider only the case with triangular
inequalities (7d). (The proof for the general case is entirely
analogous; we just need to use eq. (13g′) instead of (13g).)

Consider the last iteration, i.e. a complete pass over la-
belsk ∈ L in which configurationx has not changed. Let̃L
be the set of labels processed in this iteration. Let us prove
by induction on the number of steps thatθuv(x, j) ≥ 0 for
labelsj ∈ L̃.

The base of the induction is trivial: in the beginningL̃ is
empty. Suppose that the claim holds for vectorθ◦ in the be-
ginning of thek-expansion step. Eq. (13d) and (13g) imply



that the claim also holds for vectorθ and setL̃ ∪ {k} after
the step.

The analogous fact for termθuv(k, xv) can be shown in
the same way.

Theorem 4 (cf. [5, 6]). If reparameterizationθ = θ̄[M ]
satisfies conditions(8), (9) and (10′) then after message
scaling(11) thefapp-relaxed slackness conditions(4) hold.

Proof. Let M ′ = M/fapp be the messages after scaling
andθ′ = θ̄[M ′] be the corresponding reparameterization.
Proof of (4a) Consider nodeu. There holds

θ′u;i = θ̄u;i +
∑

(u,v)∈E

M ′
vu;i = θ̄u;i +

θu;i − θ̄u;i

fapp

=
1

fapp

θu;i +

(
1 −

1

fapp

)
θ̄u;i

Using this equality and eq. (9) we obtain

θ′u(xu) =
1

fapp

min
i∈L

θu;i +

(
1 −

1

fapp

)
θ̄u(xu)

≤ min
i∈L

θ′u;i +

(
1 −

1

fapp

)
θ̄u(xu)

Proof of (4b) Now consider edge(u, v). Let us show that
θ′uv;ij ≥ 0 for all i, j ∈ L. If i = j then this follows
from (8b). Suppose thati 6= j. From (10′) we get

Mvu;xu
+ Muv;j ≤ θ̄max

uv

Mvu;i + Muv;xv
≤ θ̄max

uv

Mvu;xu
+ Muv;xv

= 0

Adding the first two equations and subtracting the third one
yields

Mvu;i + Muv;j ≤ 2 θ̄max
uv

M ′
vu;i + M ′

uv;j =
Mvu;i + Muv;j

fapp

≤ θ̄min
uv

θ′uv;ij = θ̄uv;ij − (M ′
vu;i + M ′

uv;j) ≥ θ̄uv;ij − θ̄min
uv ≥ 0

as claimed. Thus,mini,j∈L θ′uv;ij ≥ 0.
Finally, using (8a) we get

θ′uv(xu, xv) = θ̄uv(xu, xv)−M ′
uv;xv

−M ′
vu;xu

= θ̄uv(xu, xv) −
θ̄uv(xu, xv) − θuv(xu, xv)

fapp

=

(
1 −

1

fapp

)
θ̄uv(xu, xv) .
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