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Abstract

Recently, Komodakist al. [6] developed theFastPD
algorithm for the semi-metric labeling problem, which ex-
tends the expansion move algorithm of Boydiosd.[2]. We
present a slightly different derivation of the FastPD metho

1. Preliminaries

Consider the following energy function:
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E(x|0) = Q)

Hereg = (V,&) is an undirected graph. Variableg for
nodesu € V belong to a discrete sat, € X,. Thus,
labelingx belongs to the set’ = @,y X,,.

We denotef = {(u — v),(v — u)| (u,v) € &},

i.e. (V, 5) is the directed graph corresponding to undirected

graph(V, €).

The energy function (1) is specified by unary teling)
and pairwise term#,,,(i,7) (i € X,,j € &,). It will
be convenient to denote them &s; and 0,,.;;, respec-

tively. We can concatenate all these values into a sin-

gle vectord = {0, | a € I} where the index set is
T = {(u;4)} U {(uv;ij)}. Note that(uv;ij) = (vu;ji),

S0 0, g andew ;i are the same element. We will use the
notationd,, to denote a vector of siz&t, | andd,,, to denote

a vector of sizédX,, x X,|.

1.1. LP relaxation

In this section we describe a linear programming (LP) { Mo |(

relaxation of energy (1) which plays a crucial role for algo-
rithms in [5, 6]. This “natural” relaxation was studied ex-
tensively in the literature, in particular by Schlesing&®][
(for a special case whef,,(i,j) € {0,+0oc}), Kosteret
al. [7], Chekuriet al.[3], and Wainwrightet al. [11].

Primal problem Let us introduce binary indicator vari-
ables:7,.; = [y = 1|, Tuvyij = [T = i,2, = j] Where

[-] is the Iverson bracket: it is 1 if its argument is true, and
0 otherwise. Variable$r,;}, {7} must belong to the

following constraint set:
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Clearly, the problem of minimizing function (1) can be
formulated as follows:

0,7)
TEA
Tuvyij € {O, 1}

The LP relaxationin [10, 7, 3, 11, 5, 6] is obtained by drop-
ping the integrality constraint:

minimize

subject to

(@,r)
TEA

minimize
subject to (22)
Reparameterization and dual problem The dual prob-
lem to (2a) can be defined using the notion of reparameter-
ization [10, 11].

Definition 1. Suppose vecto® and§ define the same en-
ergy function, i.e.E(x | §) = E(x | §) for all configura-
tionsx. Thend is called areparameterizatioof 4.

Let us introducemessage\/...;; € R for directed edge
(u — v) € £ and labelj € X,. We denoteM,, =
{Myuv; | j € X,} to be a vector of sizéX,|, andM =
u — v) € £} to be the vector of all messages. This
vector defines reparameterizatida- §[11] as follows:

eu;i = éu+ Z J\/[vu;i
(u,v)EE
_Muv;j

- Mvu;i

Huv;ij



In this pape# denotes the original parameter vector, and

6 = O[M] denotes its reparameterization defined by some

message vectd¥/. To simplify notation, we denote the cor-

responding energy function @&(x) = E(x|0) = E(x|0).
Let us define

(u0)€€ jeX,

Itis easy to see that for any messagés/alue®(0[M]) is

a lower bound on the energ®(0[M]) < miny E(x). This

motivates the following maximization problem:
®(0)

0 = 6[M]

In other words, the goal is to find the tightest possible

bound. This maximization problem is dual to (2a) (see

e.g. [12]).
1.2. Optimality conditions

maximize

subject to (2b)

Consider fractional labeling € A and messages/
corresponding to reparameterizatidor= 6[M]. It is well-
known that(r, M) is an optimal primal-dual pair (i.er is
an optimal solution of (2a) and/ is an optimal solution
of (2a)) if and only if the followingcomplementary slack-
nessconditions hold:

Twi >0 = (3a)

(3b)

eu;i = ;IGH/QL eu;i’

Tuvyij > 0 = Hw;ij = ml/él ouv;i’j/
€

u
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Algorithms in [5, 6] maintain arnnteger primal vector
7 € A (or equivalently a labelinge € X). With such a
restriction reparameterizatioh= 0[] satisfying (3) may
not exist. Thus, conditions (3) must be relaxed. Given num-
ber fopp > 1, let us say thatx, M) satisfiesf,,,-relaxed

complementary slacknessnditions if the following holds
for all nodes and edges:

0y (zy,) < min 0,,.; + (1 —
i€X,

(1_

Theorem 2 (cf. [5]). Suppose that paifx, M) satisfies
eq. (4). Thenx is an f,,,-approximation, i.e.E(x) <
Sapp miny E(y).

Proof. Let us sum (4a) over nodes € V and (4b) over
edgequ,v) € £. We obtain

#(0) + (1-

) Ou () (4a)
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1

f app

euv(xua xv) S mln Huv;ij +
1€EX,

JEXy
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©(6) < minE(y)
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1.3. LP relaxation for submodular functions of bi-
nary variables

The expansion move algorithm [2] and algorithms in [5,
6] rely on solving the minimization problem with (at most)
binary variables. In this section we consider the case when
X, ={0,1} or X, = {0} for all nodesu. Furthermore, we
assume that functio® is submodular, i.e. each teréy,,
with X, = X, = {0, 1} satisfies‘)uv;oo +9uv;11 < Ouv;m +
Ouvi10- (Note that expressiah, ;00 +0uv; 11 —Ouv;01 —uv;10
is invariant to reparameterization.)

This case has several important properties (see e.qg. [1]).
First, it can solved efficiently by computing a maximum
flow in a graph with|V| + 2 nodes andV| + |£| edges.
Second, the algorithm producesiateger optimal solution
7 € A (or equivalently labelingk € & which is a global
minimum of F). Thus, optimality conditions (3) are re-
duced to

Ouo (Iua Iv) = 1%1/'1’(2 euvéij (Sb)
JEXy

Finally, reparameterizatiofis in anormal form i.e. terms
0., satisfy

(6)

O (07 O) = ouv(lmam]max) = 1%1/,1’2 euv;ij

JEXy

wherei,. is the maximal label it and .. is the max-
imal label inx,.

Handling singleton nodes In a practical implementation
nodesu with X, = {0} can be handled as follows. First, for
each “boundary” edgéu, v) with X, = {0}, &, = {0,1}

we choose messag¥,,, so thatf,,,.o0 = Ouwv:01. Namely,
Mupo = 0, Myp1 = Ouv:01 — Ouvi00- Then we solve the
LP relaxation for nodes with X, = {0,1} ignoring sin-
gleton nodes and their incident edges. In this step only mes-
sages\V/,, for edgequ — v) with X, = X, = {0,1} are
allowed to be modified. Clearly, upon termination condi-
tions (5) and (6) will hold for all nodes and edges.

Restricting messages It is easy to see that adding a con-
stant to vecto,,,, preserves optimality af/. Thus, when
solving problem (2b) we can require thét,,., = 0 for all

(u — v) € £. This constraint will be used later.

Given termd,, and reparameterizatiof,, for edge
(u,v) with X, = X, = {0, 1}, messages/,,,, M., can be
computed as follows: (1) add constant= éuv;oo — Ouwv:00
to vectord,, so that we get,,.o0 = éuv;OO; (2) set
]\/[u'u;O = ]\/[vu;O =0, ]\/[u'u;l = éu'u;Ol - eu'u;Ola ]\/[vu;l =
euv;lo - eu'u;lo-



2. FastPD algorithm [6] 2.2.k-expansion step

From now on we assume that the &t is the same for The input to this step is labél and primal-dual pair
all nodes:X, = £, and that vectof satisfies the following ~ (x°, M°). Let us denotet,, = {z7,k}, and letE be the
for all nodes and edges: restriction of function® to configurationsc with z,, € X,.

E can be viewed as an energy function of (at most) binary

0, > ] :
_ Oui = 0 Vz. €L (7a) variables. We assume that lah€l corresponds to 0 and la-
?uv;iz‘ = 0 Viel (7b) bel k corresponds to 1 (it # z¢). Note that messaged
Ouviiy > 0 Vi,jeL,i#j (7¢) define reparameterization not only for the original energy

. . . . E, but also for the restrictiof.
We also consider a special case when the triangular inequal- : .
ities hold: Submodular case First, let us consider the case when
- - - function £ is submodular. (We get this case if, for exam-
Ouviij = Owvsik + Ouviky Vi, 5,k €L (7d) ple, triangular inequalities (7d) hold.) Tteexpansion step
solves the LP relaxation for the restrictiéh as described

in section 1.3. The LP relaxation has an integer solution.
Thus, the goal is to find a global minimum &f and mes-

sages\V/ that give optimal reparameterization fbr

Note that if we add the symmetry conditio,( (i, j) =

0. (j,1)) then eq. (7a)-(7c) give the definition of a semi-
metric, and eq. (7a)-(7d) give the definition of a metric,
However, the symmetry will not be needed.

We deﬁnote Or = ming jer iz 993,131’ gmax  — x = arg min E(x) (12a)
max; jer HUU;U‘ andfapp =2 max(y v)es ﬁ Ty €EXy
) M := arg max ®(f) (12b)
2.1. General overview M:0=0[M]
FastPD algorithm [6] maintains integer primal configu- where the objective function in the maximization problem
rationx € X and dual variables (messagéd)which de- is
fine reparameterizatioh= §[M|. The following invariants () = Z min 6,.; + Z Min By
hold during the execution: ey 1€Xu (u0)EE i_e?)c?u
JEX,Y
euv (.I'u, xv) = 0 (83)

Y . To achieve efficiency, one could start with reparameteri-
Ouo(iyi) = 0  Viel (8b)  zation#° = A[M°] when solving (12b). This can be formu-

These properties can easily be ensured in the beginning: fofat€d as follows: (i) find message in%remémﬁ and corre-
anyx it is straightforward to find messagés so that (8)  SPonding reparameteorlzat|65n: 6°[M°] which maximizes
holds. At each step, the algorithm selects some latelC ®(0); (i) set M := M° + M°.

and performs thé:-expansioroperation described in sec- When solving problem (12b), only componemt,.;y.
tion 2.2. After the first pass over labels ihthe following ~ for edgestu — v) with z7 # k will be allowed to change.

condition holds for all nodes: In other words,M.,,,; = My,.; for labelsj € L, where
L, = (L —{k})U{x2}. Thisis not a severe restriction:

Ou(za) = minby; (9)  asdiscussed in section 1.3, it still allows to findatimal

solution to (12b).

Function E may have several global minima. If their
cost equald”(x°) thenx® is not updated, i.ex is chosen
asx®. This guarantees convergence since the number of
configurations is finite.

Ouviij = 0 Vi,jeLyji=x,0rj=z, (10) Note that in the primal domain the method is equivalent
the expansion move algorithm of Boykeval.[2].
Non-submodular case If function E is non-submodular
then the following operations are performed. For each non-
Ouviij > Oupiij — O Vi j € L i=ux, Of j=z, (10) submodular edgéu, v) with

The algorithm terminates when there was a pass over all
labelsk € L but configurationk has not changed. At this
point an additional property holds for all edges. In the case
of triangular inequalities (7d) we have

Without triangular inequalities eq. (10) cannot be guaran-
teed. Instead, the following weaker version holds:

The final step of the algorithm is to scale messages down: B ) > O (22, k) + Oy (K, 2°)

Ty, T,
Muv' j = Muv' i/ Ja 11 — — .
7 i foan a1 terms 0., (2, k) and 0,,(k,z°) are increased by non-
After that the f,,;,,-relaxed complementary slackness con- negative constants until we get an equality:
ditions (4) will hold and therefore labelingwill be within B B B B
factor f,,, from the optimum. Ouo (20, 20) = 0., (20, 20) =0, (20, k) + 0., (k, z)

u’ v



wheref’ is the modified parameter vector. The algorithm

Non-submodular case Let §° = g[M°] andd = 0[M] be

then proceeds in the same way as before. Namely, definghe reparameterizations before changirand after restor-

E’ to be the restriction of functio®(- | ') to labelingsx
with z,, € fu. It is easy to see thdf’ is submodular. The
LP relaxation ofE” is now solved yielding paifx, M) and
corresponding parameter vectdr= @' [M]. Finally, vector
¢’ is restored to its original valug and vecto#’ is changed
tod = O[M].

Note that in the primal domain this algorithm is a spe-

ing 0, respectively. We claim that conditions (13) hold ex-
cept that (13g) is replaced with the following:

eu'u (.I';, k) 2 9:uv (.I';, k) - émax
Oun(k, ) > Ouu(k,z) — 0™

Indeed, eq. (13a)-(13f), (13h)-(13i) can be shown in
the same way as before, using the fact that(k, k) =

(13d)

cial case of the more general majorize-minimize technique ¢’ , (k, k), 0/, (22,2°) = 0y,(22,2°) whered’ = §'[M]

(see e.g. [8]). It is also equivalent to the “truncation”
trick described in [9]. In the context of the labeling prob-
lem “truncation” was proposed independently in [4] and
in [9]. Both papers state that the method produceg.ap-
approximation, but in [9] this fact is mentioned without
proof.

2.3. Correctness of FastPD

Theorem 3(cf. [6]). (i) After the k-expansion reparam-
eterizationd = 6[M] satisfies conditiong3).

(ii) Afterthe first pass over all labelscondition(9) holds.
(iii) Upon convergence paifx, M) satisfies condtiof10)
(in the case of triangular inequalitiegd)) or condi-

tion (10) (without triangular inequalities).

Proof. Submodular case By assumption, conditions (8)
hold for the initial reparameterizatidti = 6[M°]:

O (T, T0) = (13a)
0y, (i,i) = 0 Vie Ll (13b)
We haveM,,,.; = Mg,.; for labels; € £,. Therefore,

0.(1) = 0.(7) Vi€ Ly (13c)
Oun(t,j) = 05,(i,7) Vi€ Ly,jE L, (13d)

Eq. (13d) and (13a) yield
O (s, 29) =0 (13e)

Using eq. (13e) and condition (6) of the normal form we
obtain

Oun (K, K
Ouv (g, k) >0,

) =0 (13f)
O (ky23) > 0 (139)

Finally, from the optimality conditions (5) we obtain

0.(i) VieX,
= 0

O ()

O (Tus T

IN

(13h)
(13i)

is the reparameterization 6f obtained after solving the LP
relaxation. Instead of (13g) we now have

_ /
- euv'

If the term for edg€u, v) is submodular thed,,,
s0 (134g) clearly holds. Otherwise,

J\/[vu;mz + Muv;k = . ) k) - 9;1,1) (‘T’(L)l,’ k)

A

IN

which implies the first inequality in (13 The second in-
equality follows from the first inequality applied to the re-
verse edge.

We now prove the theorem using equations (13).
Proof of (i) We already showed (8a) (see (13i)). Eqg. (8b)
follows from (13b), (13d) and (13f).
Proof of (ii) Let £ be the set of labels processed so far at
least once. Let us prove by induction on the number of steps
that6,, (z,) < 0,(¢) for each node. € V and labeli € L.

The base of the induction is trivial: in the beginniﬁg
is empty. Suppose that the claim holds for ve@®rand
labelingx® in the beginning of thé:-expansion step. The
factd,(z,) < 0,(7) for labeli = k follows from (13h). For
labeli € £ — {k} we have

Oulu) < Oulwy) = by (xy) < 05(0) = 0u(2)

(The first inequality follows from (13h), the second inegual
ity is by the induction hypothesis, and the two equalities
follow from (13c)).
Proof of (iii) We consider only the case with triangular
inequalities (7d). (The proof for the general case is elytire
analogous; we just need to use eq. () 3ustead of (139).)
Consider the last iteration, i.e. a complete pass over la-
belsk € £ in which configuratiorx has not changed. L&t
be the set of labels processed in this iteration. Let us prove
by induction on the number of steps titat, («, j) > 0 for
labelsj € L. B
The base of the induction is trivial: in the beginnifds
empty. Suppose that the claim holds for ve¢tdim the be-
ginning of thek-expansion step. Eq. (13d) and (13g) imply



that the claim also holds for vectérand setC U {k} after
the step.
The analogous fact for terfh,, (k, z,,) can be shown in
the same way.
O

Theorem 4 (cf. [5, 6]). If reparameterizatiord = 6[M]
satisfies conditiong8), (9) and (10) then after message
scaling(11)the f,,,-relaxed slackness conditiof¥) hold.

Proof. Let M" = M/ f.,, be the messages after scaling
andd’ = 6[M’] be the corresponding reparameterization.
Proof of (4a) Consider node. There holds

O = Bt S My, =0+ Ousi — Ousi
(u,v)EE .fapp
1 1 -
= —eu;i + (1 - ) eu;i
app fapp
Using this equality and eq. (9) we obtain
1\ -
0, (x,) = min f,,.; + (1 — ) Oy (2
(&) Japp €L fapp (&)
<

) e

minf,,.; + (1 —
o,
1€ app

Proof of (4b) Now consider edge:, v). Let us show that

0ni; > Oforalld,j € L. If i = j then this follows
from (8b). Suppose that# j. From (10) we get
Mvu;mu + ]\/[uv;j S églvax
Muu;i + Muv;zu S e_qr;nvax
Mvu;zu + Muv;zu = 0

Adding the first two equations and subtracting the third one
yields

J\/[vu;i + Muv;j < 2 égfx
+ M/ o J\/[vu;i + Muv;j

/ Hmin
]\/‘[uu;i uviy T < euv

f app

+ Mqiv;j)

/! o L !
euv;ij — Yuviry (Mvu;i

Z éuv;ij - éﬁn Z O

as claimed. Thusnin; jec 0,,,.;; > 0.
Finally, using (8a) we get
_M/

VUL

ouv (xuv xv)

9;“} (xu, 1171;) = éuv (Iua Iv) _M{w;wv

ouv (Iu, xv) -

1 _
R euv uytv) .
(1 .fapp) (x ‘T)
O
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