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Despite the merits of rectangular 
dissections as models of smaller 
plans, there is an increasing 
proportion of ‘theoretical 
possibilities’ for larger dissections 
which nevertheless become rather 
unlike the plans of buildings, 
and hence begin to lose their 
practical interest. Such dissections 
consist, certainly, of rectangular 
components corresponding 
to rooms, packed together in 
different configurations. But 
these configurations are not at 
all probable architecturally, in 
ways which are hard to pinpoint 
precisely, but are no less real 
for that. It is something to do 
with such facts as that real 
buildings tend to have limited 
depth, because of the needs of 
daylighting and natural ventilation, 
so that when large they become 
organised into regular patterns of 
wings and courts. Or that rooms 
are set along relatively simple and 
coherent circulations systems 
consisting of a few branching 
corridors which extend along the 
buildings’ whole length. There 
are many dissections which 
are made up, by contrast, of a 
deep maze like agglomeration 
of overlapping rectangles, many 
of them completely internal and 
through which any linking pattern 
of circulation routes would be 
circuitous and confusing. If we 
could capture properties like these 
in explicit geometrical measures, 
then we might be able to limit the 
study of dissections, for example, 
to a much reduced class of 
arrangements which would all  
be ‘building-like’ in some well 
defined sense. Steadman, 1983
 
The deepest root of the  
trouble lies elsewhere: a field of 
possibilities open into infinity has 
been mistaken for a closed realm 
of things existing in themselves
Herman Weyl

Endless corridors and infinite courts
No	idea	in	the	theory	of	architecture	is	more	seductive	than	that	architecture	is	an	
ars combinatoria	—	a	combinatorial	art:	the	idea	that	the	whole	field	of	architectural	
possibility	might	be	made	transparent	by	identifying	a	set	of	basic	elements	and	a	
set	of	rules	for	combining	them	so	that	the	application	of	one	to	the	other	would	
generate	the	architectural	forms	which	exist,	and	open	up	possibilities	that	might	
exist	and	be	consistent	with	those	that	do.	By	showing	architectural	forms	to	be	a	
system	of	transformations	in	this	way,	the	elements	and	rules	would	be	held	to	be	
a	theory	of	architectural	form	—	the	system	of	invariants	that	underlie	the	variety	to	
be	found	in	the	real	world.	The	best-known	statement	of	this	hope	is	that	of	William	
Lethaby	when	he	calls	for	‘a	true	science	of	architecture,	a	sort	of	architectural	
biology	which	shall	investigate	the	unit	cell	and	all	possibilities	of	combination’.1

	 At	first	sight,	this	seems	promising.	Most	buildings	seem	to	be	made	up	from	
a	rather	small	list	of	spatial	elements	such	as	rooms,	courts	and	corridors,	which	
vary	in	size	and	shape	but	which	are	usually	found	in	fairly	familiar	arrangements:	
corridors	have	rooms	off	them,	courts	have	rooms	around	them,	rooms	may	connect	
only	with	these	or	may	also	connect	directly	to	each	other	to	form	sequences,	and	so	
on.	Similarly,	the	aggregates	of	buildings	we	call	villages,	towns	and	cities	seem	to	be	
constructed	from	a	similarly	small	and	geometrically	well-defined	lexicon	of	streets,	
alleys,	squares,	and	so	on.	With	such	an	encouraging	start,	we	might	hope	with	a	little	
mental	effort	to	arrive	at	an	enumeration	of	the	combinatoric	possibilities	in	the	form	
of	a	list	of	elements	and	the	possible	relationships	they	can	enter	into	so	that	we	can	
build	a	reasoned	picture	of	the	passage	from	the	simplest	and	smallest	cases	to	the	
largest	and	most	complex.
	 Unfortunately,	such	optimism	rarely	survives	the	examination	of	real	
cases.	If,	for	example,	we	consider	the	cross-national	and	cross-temporal	sample	
of	177	building	plans	brought	together	in	Martin	Hellick’s	‘Varieties of Human 
Habitation’,2	we	may	well	feel	inclined	to	confirm	at	a	very	broad	level	—	and	with	
great	geometric	variation	—	the	idea	that	there	are	certain	recurrent	spatial	types	
such	as	rooms,	courts	and	corridors,	but	we	also	note	the	prodigious	variations	
of	overall	layout	which	seem	to	be	consistent	with	each.	The	historical	record	
of	actual	buildings	and	how	they	have	evolved	suggests	that	most	buildings	are	
morphologically	unique,	and	it	is	far	from	obvious	how	any	combinatorial	approach	
could	reduce	them	to	a	list	of	types.
	 Even	if	we	isolate	the	problem	of	spatial	relations	from	that	of	shape	and	
size	by,	for	example,	analysing	plans	as	graphs,	then	we	still	find	cornucopian	
variety	rather	than	simple	typology.	For	example,	a	recent	study	of	over	500	English	
vernacular	houses	built	between	1843	and	1930	reveals	exactly	six	pairs	of	duplicate	
graphs,	even	though	the	sample	was	taken	from	a	single	country	during	a	period	
where	some	typological	continuity	could	be	expected.3	Plans	seem	to	be	individual,	
often	with	family	resemblances	or	common	local	configurations,	but	rarely	
consistent	enough	or	clear	enough	to	suggest	a	simple	division	into	types.
	 Theoretical	investigations	of	architectural	possibility	have	led	to	an	even	
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greater	pessimism.	For	example,	studies	which	have	attempted	to	enumerate	
architectural	possibility,	even	within	artificially	constrained	systems	such	as	the	
dissection	of	rectangles	into	patterns	of	room	adjacencies,4	have	invariably	shown	
that	at	an	early	stage	in	the	enumeration	the	number	of	possibilities	quickly	outstrips	
the	number	of	conceivable	cases,	and	a	combinatorial	explosion	of	such	violence	
is	encountered	as	to	exclude	any	practical	possibility	of	continuing	from	smaller	
to	larger	systems.	Thus	Steadman	concludes	in	his	review	of	modern	attempts	at	
the	systematic	enumeration	of	building	plans	that	‘…for	values	of	n	(the	number	of	
cells	in	a	rectangular	“dissection”)	much	greater	than	10,	the	extent	of	combinatorial	
variety	becomes	so	great	that	a	complete	enumeration	is	of	little	practical	purpose;	
and	indeed	that	for	values	of	n	not	much	larger	than	this,	enumeration	itself	
becomes	a	practical	impossibility’.5

	 There	are	in	fact	strong	a priori	grounds	for	Steadman’s	caution.	Although	
by	circumscribing	what	we	mean	by	a	building	in	unlifelike	ways,	for	example,	by	
dealing	only	with	rectangular	envelopes,	or	by	standardising	the	size	and	shape	
of	spaces,	one	can	place	limits	on	combinatorial	possibility	to	the	point	where	
we	can	in	principle	count	numbers	of	possible	arrangements,	however	large,	the	
more	constraints	one	places	on	the	combinatoric	system,	the	less	we	seem	able	
to	account	for	the	variety	which	actually	exists.	But	if	we	relax	these	constraints,	
it	is	far	from	obvious	that	there	are	any	numerical	limits	at	all	on	architectural	
possibility.	For	example,	if	we	require	all	cells	to	be	the	same	size	then	no	cell	can	
be	adjacent	to	more	than	six	others.	But	if	we	allow	cells	to	vary	in	size	and	shape	
as	much	as	necessary,	then	we	may	construct	a	corridor	so	that	arbitrarily	many	
cells	are	directly	adjacent	to	it,	or	a	court	so	that	arbitrarily	many	cells	are	around	it.	
Endless	corridors	and	infinite	courts	must	surely	lead	us	to	abandon	simple	cellular	
enumeration	as	a	route	to	a	combinatoric	theory	of	spatial	possibility	in	architecture.
	
P-complexes in a-complexes
There	is	in	any	case	a	further	profound	problem	in	the	understanding	of	buildings	
as	cellular	dissections	or	aggregations.	An	arrangement	of	adjacent	cells,	whether	
arrived	at	by	aggregation	or	subdivision,	is	not	a	building	until	a	pattern	of	
permeability	from	one	cell	to	the	other	is	created	within	it.	For	example,	figure	8.1a	
shows	a	single	adjacency	complex,	which	we	may	call	an	a-complex,	in	which	
figures	8.1b	and	8.1c	inscribe	different	permeability	complexes,	or	p-complexes.	For	
clarity,	the	p-complexes	of	b	and	c	are	also	shown	as	graphs	in	8.1d	and	e.
	 Evidently,	the	two	will	be	spatially	very	different	buildings,	even	though	the	a–
complexes	are	identical	and	each	p-complex	has	exactly	the	same	number	of	open	
and	closed	partitions.	Over	and	above	the	question	then,	of	how	many	a-complexes	
there	are,	we	must	therefore	also	ask	how	many	p-complexes	are	possible	within	
a	given	a-complex.	We	then	find	a	second	combinatorial	explosion	within	the	first:	
of	possible	p-complexes	within	a	given	a-complex.	Although	an	a-complex	whose	
graph	is	a	tree	(see	Chapter	1)	can	only	have	one	single	p-structure	inscribed	
within	it	(and	then	only	if	we	disregard	connections	to	the	outside)	as	soon	as	this	
constraint	is	relaxed	we	begin	to	find	the	second	combinatorial	explosion:	that	of	
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the	possible	p-complexes	within	each	a-complex.
	 Suppose,	for	example,	that	we	start	with	a	version	of	the	6×6	a-complex	
shown	in	figure	8.1a,	in	which	each	cell	is	demarcated	from	its	neighbour	by	a	two-
thirds	partition	with	a	central	doorway,	as	in	figure	8.1f	and	g.	Obviously,	every	time	
we	close	—	or	subsequently	open	—	a	doorway	we	will	change	the	spatial	pattern	
of	the	p-complex.	The	question	is,	how	many	ways	are	there	of	inscribing	different	
p-complexes	in	this	a-complex	by	closing	and	opening	doors?	We	may	work	it	out	
by	simple	combinatorial	procedure.	First	we	note	that	a	regular	n	×	m	adjacency	
complex	will	always	have	(m(n–1)+(n(m–1))	internal	partitions	between	cells,	giving	
(6(6–1)+(6(6–1))	=	60	in	this	case.	This	means	that	the	first	time	we	select	a	door	to	
close	we	will	be	making	a	choice	out	of	60	possibilities.	The	second	will	be	out	of	
59,	so	there	are	609,	or	3540	possibilities	for	the	first	two	doors.	However	half	of	
these	will	be	duplicates,	since	they	differ	only	in	the	order	in	which	the	doorways	
were	opened,	so	we	need	to	divide	our	total	by	the	number	of	ways	there	are	of	
sequencing	two	events	i.e.	60×59/1×2,	or	1770.	The	third	doorway	will	be	chosen	
out	of	58	remaining	possibilities,	so	there	will	be	60×59×58	or	205320	possible	
combinations	of	three,	but	the	number	of	duplicates	of	each	will	also	increase	to	the	
number	of	different	ways	there	are	of	ordering	three	events,	that	is	1×2×3	(=	6),	so	
the	total	of	different	combinations	for	three	doorways	is	60×59×58/1×2×3	or	34220.
	 The	total	number	of	combinations	for	n	doorways,	will	then	be	60×59×58…×	
(60–n)/1	×	2×	3×…×n,	or	in	general,	n(n–1)(n–2)...(n–m)/m!	In	other	words	the	
number	of	duplicates	increases	factorially	rising	from	1,	while	the	number	of	total	
possibilities	is	multiplied	by	one	less	each	time.	This	means	that	as	soon	as	m	
reaches	n/2,	then	the	number	begins	to	diminish	by	exactly	the	same	number	that	
it	previously	expanded.	The	numbers	in	effect	pass	each	other	half	way,	so	that	
there	are	the	maximum	number	of	different	ways	of	arranging	30	partitions	in	60	
possible	locations,	but	this	number	diminishes	to	1	by	the	time	we	are	opening	the	
60th	doorway,	just	as	it	was	when	we	opened	the	first	doorway.	These	calculations	
reflect	a	simple	intuitive	fact,	that	once	we	have	placed	half	the	partitions,	then	what	
we	are	really	choosing	from	then	on	is	which	to	leave	open,	a	smaller	number	than	
the	partitions	we	have	so	far	placed.	When	we	have	placed	59	partitions,	there	is	
only	one	location	in	which	we	can	place	the	60th,	and	this	is	why	if	we	carry	out	the	
calculation	at	this	point	it	will	give	a	value	of	1.
	 What	exactly	are	the	numbers	we	are	talking	about?	The	procedure	we	have	
outlined	can	in	fact	be	expressed	more	simply	in	a	well-known	combinatorial	formula	
which	can	be	applied	in	any	situation	where	we	are	assigning	a	given	number	of	
entities	to	a	given	number	of	possible	assignments.	If	the	number	of	doorways	is	d,	
and	the	number	of	partitions	p,	then	the	formula	p!/d!(p–d)!	will	give	us	the	number	
of	possibilities	which	we	have	just	worked	out.	With	p=60,	the	highest	value	that	the	
formula	can	yield	will	be	when	d	is	half	the	possible	number,	that	is	60/2×30,	and	the	
result	of	the	calculation	60!/(30!(60	—	30)!)	is	118,264,581,600,000,000		(a	hundred	and	
eighteen	thousand	trillion).	The	second	highest	value,	114,449,595,	100,000,000,	will	be	
when	d	is	29	or	31,	the	next,	103,719,	935,500,000,000,	when	d	is	28	or	32,	and	so	on,	
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and	the	lowest,	1,	when	d	is	0	or	60,	and	the	second	lowest,	60,	when	d	is	1	or	59.
These	kinds	of	numbers	of	possibilities,	though	quite	modest	by	combinatoric	
standards,	are	almost	impossible	to	grasp.	To	give	an	intuitive	idea	of	the	scale	
of	possibilities	we	are	dealing	with	in	the	modest	complex,	we	might	perhaps	
compare	our	maximum	number	of	possible	p-graphs	for	this	comparatively	small	
a-graph	with	another	18-digit	number:	the	number	of	seconds	believed	to	have	
passed	since	the	big	bang	(provided	it	occurred	15	billion	years	ago),	that	is	about	
441,504,000,000,000,000.	This	means	that	if	a	computer	had	begun	at	the	moment	of	
the	big	bang	to	draw	up	all	these	possible	configurations	of	doorways	for	this	one	
modest	adjacency	complex,	then	it	would	have	had	to	work	at	an	average	of	one	
every	four	seconds	to	be	finishing	now.	If	we	printed	out	the	results	on	A4	sheets,	
and	set	them	side	by	side,	they	would	reach	from	Earth	to	the	nearest	star	and	back,	
or	141,255	times	to	the	sun	and	back,	or	just	short	of	a	billion	times	round	the	world.
	 There	are	a	number	of	ways	of	reducing	these	vast	numbers.	For	example,	
each	p-complex	will	have	as	many	duplicates	as	there	are	symmetries	in	the	
system.	We	can	therefore	reduce	all	our	totals	by	this	factor.	We	may	also	decide	
that	we	are	only	interested	in	those	p-complexes	which	form	a	single	building,	that	
is	a	complex	in	which	each	cell	is	accessible	from	all	others	without	going	outside	
the	building.	The	maximum	number	of	doors	that	can	be	closed	without	necessarily	
splitting	the	complex	into	two	or	more	sub-complexes	will	always	be	(n-1)(m-1),	or	
25	in	this	case.	No	way	is	known	of	calculating	how	many	of	the	p-complexes	with	
25	or	less	partitions	will	be	single	buildings,	but,	in	any	case,	the	realism	of	this	
restriction	is	doubtful	because	we	have	not	so	far	taken	any	account	of	permeability	
to	the	exterior	of	the	form,	and	in	any	case,	a	complex	split	into	two	is	still	a	
building	complex	and	may	be	found	in	reality.
	 More	substantively,	we	might	explore	the	effects	on	imposing	Steadman’s	
‘light	and	air’	restrictions	on	the	form.	Here	we	find	they	are	far	less	powerful	than	
we	might	think	in	restricting	p-complexes.	For	example,	we	may	approximate	a	form	
in	which	each	cell	has	direct	access	to	light	and	air	by	making	an	internal	courtyard	
as	in	figure	8.1h	give	or	take	a	little	shifting	of	partitions	to	allow	the	inner	corner	
cells	direct	access	to	the	courtyard.	Combinatorially,	this	has	the	effect	of	reducing	
the	number	of	internal	partitions	by	4	to	56,	and	the	maximum	number	that	may	be	
closed	without	splitting	the	building	by	1	to	24.	The	number	of	p-complexes	that	can	
be	inscribed	within	the	a-complex	is	therefore	still	in	the	thousands	of	trillions.
	 We	will	find	this	is	generally	the	case.	The	imposition	of	the	requirement	
that	each	cell	should	have	direct	access	to	outside	light	and	air	makes	relatively	
little	impact	on	the	number	of	p-complexes	that	are	possible,	the	more	so	since	
direct	access	to	external	light	and	air	will	also	mean	an	extra	possible	permeability	
in	the	system	which	we	have	not	so	far	taken	account	of.	It	is	clear	that	although	
light	and	air	are	inevitably	powerful	factors	in	influencing	the	a-complex,	they	place	
relatively	little	restriction	on	the	possible	p-complexes.	We	might	even	venture	a	
generalisation.	‘Bodily’	factors	like	light	and	air	have	their	effect	on	buildings	by	
influencing	the	a-complex,	but	do	not	affect	the	p-complex	which	is	determined,	
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as	we	have	seen	in	previous	chapters,	and	as	we	will	see	more	generally	below,	
largely	by	the	psycho-social	factors	which	govern	spatial	configuration.
	 If	we	see	buildings,	as	we	must,	as	both	physical	and	spatial	forms,	that	is	
as	a-complexes	with	p-complexes	inscribed	within	them,	then	we	must	conclude	
that	buildings	as	a	combinatorial	system	take	the	form	of	one	combinatorial	
explosion	within	another	with	neither	being	usefully	countable	except	under	
the	imposition	of	highly	artificial	constraints.	Is	the	combinatoric	question	about	
architecture	then	misconceived?	If	it	is,	how	then	should	we	account	for	the	fact	
that	there	do	seem	to	be	rather	few	basic	ways	of	ordering	space	in	buildings.	What	
we	must	do,	I	suggest,	is	rephrase	the	question.	Architecture	is	not	a	combinatorial	
system	tout court	any	more	than	a	language	is	a	combinatorial	system	made	up	
of	words	and	rules	of	combination.	In	language,	most	—	almost	all	in	combinatorial	
terms	—	of	the	grammatically	correct	sequences	of	words	of	a	language	have	no	
meaning,	and	are	not	in	that	sense	legitimate	sentences	in	the	language.	It	is	how	
(and	why)	these	combinatoric	possibilities	are	restricted	that	is	the	structure	of	the	
language.	So	with	architecture.	Most	combinatorial	possibilities	are	not	buildings.	
The	question	is	why	not?	How	is	the	combinatorial	field	restricted	and	structured	so	
as	to	give	rise	to	the	forms	that	exist	and	others	that	might	legitimately	exist?	It	is	
this	that	will	be	the	theory	of	architectural	form	—	the	laws	that	restrict	and	structure	
the	field	of	possibility,	not	the	combinatorial	laws	of	possibility	themselves.
	 How	then	should	we	seek	to	understand	these	restrictions	that	structure	
the	field	of	architectural	possibility?	There	are	a	number	of	important	clues.	First,	
as	the	results	reported	in	Chapter	4–8	show,	the	configurational	properties	of	
space,	that	is	of	the	p-complex,	are	the	most	powerful	links	between	the	forms	of	
built	environments	and	how	they	function.	It	is	a	reasonable	conjecture	from	these	
results,	and	their	generality,	that,	in	the	evolution	of	the	forms	of	buildings,	factors	
affected	the	p-complex	may	dominate	those	affecting	the	a-complex.	Bodily	factors	
affecting	the	a-complex	may	create	certain	limits	within	which	p-complexes	evolve,	
but	buildings	are	eventually	structured	by	factors	which	affect	the	evolution	of	the	
p-complex,	because	it	is	the	p-complex	that	relates	to	the	functional	differences	
between	kinds	of	buildings.
	 Second,	the	properties	of	p-complexes	that	influence	and	are	influenced	by	
function	tend	to	be	global,	or	at	least	globally	related,	configurational	properties,	such	
as	integration,	that	is,	properties	which	reflect	the	relations	of	each	space	to	many,	
even	all,	others.	For	example,	the	average	quantity	of	movement	along	a	particular	line	
is	determined	not	so	much	by	the	local	properties	of	that	space	through	which	the	
line	passes	considered	as	an	element	in	isolation,	but	by	how	that	line	is	positioned	
in	relation	to	the	global	pattern	of	space	created	by	the	street	system	of	which	it	is	a	
part	(see	Chapter	4).	In	general	we	may	say	that	configuration	takes	priority	over	the	
intrinsic	properties	of	the	spatial	element	in	relating	form	to	function.
	 These	conclusions	may	be	drawn	as	generalisations	from	the	study	of	
a	range	of	different	types	of	building	and	settlement.	However,	there	is	a	further,	
more	general,	conclusion	that	may	be	drawn	from	these	studies	which	has	a	direct	
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and	powerful	bearing	on	our	present	concerns.	If	we	consider	the	range	of	cases	
studied	as	instances	of	real	p-complexes	within	the	total	realm	of	the	possible,	we	
find	that	as	complexes	become	larger	they	occupy	a	smaller	and	smaller	part	of	the	
total	range	of	possibility	from	the	point	of	view	of	the	total	spatial	integration	of	the	
complex,	crowding	more	and	more	at	the	integrating	end	of	possibility	as	complexes	
grow.	For	example,	the	recent	doctoral	study	of	over	500	English	houses	from	the	
mid	ninteenth	to	early	twentieth	century	already	referred	to6	with	a	mean	size	of	23.6	
cells,	has	found	most	of	the	houses	lie	within	the	most	integrating	30	per	cent	of	the	
range	of	possibility	and	all	within	50	per	cent.	Analysis	of	large	numbers	of	buildings	
over	a	number	of	years	suggest	that	at	around	150	cells,	virtually	all	buildings	will	be	
within	the	shallowest	20	per	cent	of	the	range	of	possibility,	and	most	much	below	
it,	at	300	cells,	nearly	all	will	be	within	the	bottom	10	per	cent,	and	at	around	500	
most	will	be	within	the	bottom	5	per	cent.	It	is	clear	that	as	buildings	grow,	they	use	
less	and	less	of	the	range	of	possible	p-complexes.	The	same	is	true	of	axial	maps	
of	settlements.7

	 In	short,	the	most	significant	properties	of	p-complexes	seem	to	be	related	
to	the	degree	and	distribution	of	spatial	integration	—	that	is,	the	topological	depth	
of	each	space	from	all	others	—	in	the	complex.	It	follows	that	if	we	can	understand	
theoretically	how	these	characteristic	properties	of	integration	are	created,	then	we	
will	have	made	some	significant	progress	towards	understanding	how	architectural	
possibility	becomes	architectural	actuality.	How	then	does	integration	arise	in	a	p-
complex	in	different	degrees	and	with	different	distributions?	The	simple	fact	is	that	
the	properties	of	any	p-complex,	however	large,	are	constructed	only	by	way	of	a	
large	number	of	localised	physical	decisions:	the	placing	of	partitions,	the	opening	
of	doors,	the	alignment	of	boundaries,	and	so	on.	What	we	need	to	understand	in	
the	first	instance	is	how	the	global	configurational	properties	of	p-complexes	space	
are	affected	by	these	various	types	of	local	physical	change.	It	will	turn	out	that	
the	critical	matter	is	that	every	local	physical	move	in	architecture	has	well-defined	
global	spatial	effects	in	the	p-complex,	including	effects	on	the	pattern	and	quantity	
of	integration.	It	is	the	systematic	nature	of	these	effects	by	which	local	physical	
moves	lead	to	global	spatial	effects	that	are	the	key	to	how	combinatorial	possibility	
in	architecture	is	restricted	to	the	architecturally	probable,	since	these	are	in	effect	
the	laws	by	which	the	pattern	and	degree	of	integration	in	a	complex	is	constructed.
	 Once	we	understand	the	systematic	nature	of	these	laws,	we	will	be	led	to	
doubt	the	usefulness,	and	even	the	validity	of	the	combinatorial	theory	of	architecture	
in	two	quite	fundamental	ways.	First,	we	will	doubt	the	usefulness	of	the	idea	
of	spatial	‘elements’,	because	each	apparent	spatial	element	acquires	its	most	
significant	properties	from	its	configurational	relations	rather	than	from	its	intrinsic	
properties.	Even	apparently	intrinsic	properties	such	as	size,	shape	and	degree	of	
boundedness	will	be	shown	to	be	fundamentally	configurational	properties	with	global	
implications	for	the	p-complex	as	a	whole.	In	effect,	we	will	find	that	configuration	
is	dominant	over	the	element	to	the	point	where	we	must	conclude	that	the	idea	of	
an	element	is	more	misleading	than	it	is	useful.8	Spatial	elements,	we	will	show,	are	
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properly	seen	not	as	free-standing	‘elements’,	with	intrinsic	properties,	waiting	to	be	
brought	into	combination	with	others	to	create	complexes	of	such	properties,	but	
as	local	spatial	strategies	to	create	global	configurational	effects	according	to	well-
defined	laws	by	which	local	moves	induce	global	changes	in	spatial	configurations.
	 The	second	source	of	doubt	will	follow	from	the	first:	it	is	not	combinatorics	
per se	which	create	complexes	but	the	local	to	global	laws	which	restrict	
combinatorics	from	the	vast	field	of	architectural	possibility	to	certain	well-
defined	pathways	of	architectural	probability.	The	theory	we	are	seeking	lies	not	
in	understanding	either	the	theoretically	possible	or	the	real	in	isolation,	but	in	
understanding	how	the	theoretically	possible	becomes	the	real.	We	will	suggest	
that	the	passage	from	possibility	to	actuality	is	governed	by	laws	of	a	very	specific	
kind,	namely	laws	which	govern	the	relation	between	spatial	configuration	and	what	
I	will	call	‘generic	function’.	Generic	function	refers	not	to	the	different	activities	that	
people	carry	out	in	buildings	or	the	different	functional	programmes	that	building	
of	different	kinds	accommodate,	but	to	aspects	of	human	occupancy	of	buildings	
that	are	prior	to	any	of	these:	that	to	occupy	space	means	to	be	aware	of	the	
relationships	of	space	to	others,	that	to	occupy	a	building	means	to	move	about	in	
it,	and	to	move	about	in	a	building	depends	on	being	able	to	retain	an	intelligible	
picture	of	it.	Intelligibility	and	functionality	defined	as	formal	properties	of	spatial	
complexes	are	the	key	‘generic	functions’,	and	as	such	the	key	structures	which	
restrict	the	field	of	combinatorial	possibility	and	give	rise	to	the	architecturally	real.
	
The construction of integration
Let	us	begin	with	figure	8.1f,	a	6×6	half-partitioned	a-complex	with	an	isomorphic	
p-complex	inscribed	within	it,	that	is,	all	partitions	are	permeable.	What	we	are	
interested	in	is	how	the	key	global	configurational	property	of	integration	is	affected	
by	closing	and	opening	the	central	sections	of	the	partitions.	To	make	the	process	
as	transparent	as	possible,	instead	of	using	i-values,	we	will	use	the	total	depth	
counts	from	each	cell	from	which	the	i-value	is	calculated.	Half-partitions	may	
be	turned	into	full	partitions	by	adding	‘bars’,	in	which	case	the	cells	either	side	
become	separated	from	each	other,	without	direct	connection.	Half-partitions	
can	also	be	eliminated,	in	which	case	the	two	cells	become	a	single	space.	If	all	
partitions	to	a	cell	are	barred,	then	that	cell	becomes	a	block	in	the	system.
	 Now	as	we	already	know	from	the	analysis	of	shape	in	Chapter	3,	the	p-
complex	of	figure	8.1f	will	already	have	a	distribution	of	i-values,	which	we	can	show	
in	figure	8.2a	as	total	depth	values,	that	is,	the	total	depth	of	each	cell	from	all	the	
others,	with	the	sum,	5040,	shown	below	the	figure.	It	is	important	for	our	analysis	
that	we	understand	exactly	how	these	differences	arise,	since	all	is	not	quite	as	it	
seems.	We	will,	it	turns	out,	need	to	make	a	distinction	between	the	shape	of	the	
complex	and	the	boundary	of	the	complex.	At	first	sight,	it	is	clear	that	the	differences	
between	the	cells	are	due	to	the	relation	of	the	cell	to	the	boundary	of	the	complex.	
Corner	cells	have	most	depth,	centre	edge	rather	less,	then	less	towards	the	centre.	
If	we	change	the	shape	of	the	aggregate,	say	into	a	12	x	3	rectangle,	as	in	figure	
8.2b	then	all	the	individual	cell	total	depths	will	change,	as	will	the	total	depth	for	the	
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aggregate	as	a	whole	(6330)	reflecting	the	changing	relations	of	cells	to	the	boundary.
However,	if	we	eliminate	the	boundary	by	wrapping	either	of	the	two	aggregates	
first	round	a	cylinder	so	that	left	joined	to	right,	and	then	into	a	torus	so	that	top	
joined	to	bottom,	then	the	total	depths	for	all	cells	in	each	aggregate	would	be	the	
same,	since	starting	from	each	and	counting	outwards	until	we	have	covered	all	the	
cells,	we	will	never	encounter	a	boundary	and	so	will	find	the	same	pattern	of	depth	
from	each	cell.	The	total	depths	of	the	cells	would	in	fact	be	equal	to	the	minimum	
depth	of	the	cells	in	the	bounded	aggregate,	that	is	the	group	of	four	at	the	centre	
of	the	square	form,	whose	value	is	108,	and	the	pair	at	the	centre	of	the	rectangular	
form,	whose	depth	is	132.	However,	this	implies	that	in	spite	of	the	removal	of	the	
boundaries,	these	differences	between	the	square	and	rectangular	shapes	still	
survive.	These	differences	in	total	depth	values	are	it	seems	the	product	of	the	
shape	of	the	aggregate	but	not	of	its	boundary.
	 This	can	be	demonstrated	by	a	simple	thought	experiment.	Take	a	cellular	
aggregate,	say	the	six	by	six	square	and	wrap	it	onto	a	torus,	thus	removing	the	
boundary.	Select	any	‘root’	cell	and	construct	a	justified	graph	—	that	is	a	graph	in	
which	levels	of	depth	of	nodes	from	an	initial	node	are	aligned	above	a	selected	root	
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node	in	a	series	of	layers	representing	depth	—	in	which	all	cells	sharing	a	doorway	
with	the	root	are	the	first	layer,	all	those	sharing	a	doorway	to	a	first	layer	cell	are	the	
second	layer,	and	so	on.	When	the	graph	reaches	any	cell	adjacent	to	the	boundary	
in	the	original	bounded	aggregate	in	the	plane,	any	next,	deeper	cell	with	which	a	cell	
in	the	justified	graph	shares	a	doorway	will	already	be	in	another	branch	of	the	graph.	
Thus	the	justified	graph	finds	the	limits	of	the	original	shape	of	the	aggregate,	even	
though	the	boundary	has	been	eliminated	by	wrapping	on	the	torus.
	 It	follows	that	the	uniform	depth	value	that	will	be	found	in	any	shape	
on	a	torus	will	reflect	the	shape	and	will	be	equal	to	the	minimum	depth	of	the	
original	aggregate	in	the	plane.	This	will	be	108	for	the	square	form	and	132	for	the	
rectangle.	A	depth	of	108	per	cell	(three	times	the	number	of	cells	in	the	complex)	
can	therefore	be	said	to	be	the	depth	due	to	the	square	form	having	a	square	shape	
and	132	the	depth	due	to	the	rectangular	form	having	a	rectangular	shape.	When	
dealing	with	a	standard	shape	therefore	we	may,	if	we	wish,	eliminate	this	amount	
of	depth	from	each	cell,	and	deal	only	with	the	depth	due	to	the	boundary.	These	
remaining	depths	are	shown	for	the	6	x	6	square	and	the	12×3	rectangle	in	figures	
8.2c	and	d.	These	boundary	related	depths	are	due	to	the	fact	that	the	aggregate	
boundary	is	barred	from	its	surrounding	region.	If	we	were	to	open	all	cells	to	the	
outside	by	opening	the	boundary,	and	treating	the	outside	region	as	an	element	in	
the	system	to	be	included	in	depth	calculations,	then	clearly	the	depth	values	would	
all	change,	particularly	if	we	counted	the	outer	region	as	a	single	space,	in	which	
case	cells	close	to	the	boundary	would	have	less	depth	than	cells	at	the	centre.	
This	alerts	us	to	the	fact	that	in	considering	the	barring	—	that	is	the	conversion	of	
half	partitions	into	full	partitions	—	in	a	cellular	aggregate,	the	boundary	is	itself	an	
initial	partitioning,	and	like	any	other	partitioning	it	has	effects	on	the	distribution	of	

depth	in	the	aggregate.	Bearing	this	in	mind,	we	may	now	return	to	the	plane,	and	
hold	shape	and	boundary	steady	by	considering	only	the	square	form,	in	order	to	
explore	the	depth	effects	of	adding	further	barrings	within	the	aggregate.
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It	is	obvious	that	further	internal	barring	will	increase	the	total	depth	for	at	least	
some	cells,	since	it	will	have	the	effect	of	making	certain	trips	from	cell	to	cell	
longer.	It	is	perhaps	less	obvious	that	the	quantity,	as	well	as	the	distribution,	of	
extra	depth	created	by	bars	will	vary	with	the	location	of	the	bar	in	relation	to	the	
boundary.	For	example,	if	we	place	a	bar	in	the	leftmost	horizontal	location	in	the	
top	line	of	cells	in	figure	8.1,	as	in	figure	8.3a,	the	total	depth	in	the	aggregate	will	be	
increased	from	5040	to	5060,	an	additional	20	steps	of	depth,	while	if	we	place	the	
bar	one	to	the	right,	as	in	figure	8.3b,	then	the	increase	in	total	depth	will	be	from	
5040	to	5072,	an	additional	32	steps.
	 How	does	this	happen?	First,	all	the	‘depth	gain’	in	figures	8.3a	and	b	is	on	
the	line	in	which	the	bar	is	located.	On	reflection,	this	must	be	the	case.	Depth	gain	
happens	when	a	shortest	route	from	one	cell	to	another	requires	a	detour	to	an	
adjacent	line.	Evidently,	any	other	destination	on	that	adjacent	line	or	on	any	other	line	
will	not	require	any	modification	to	the	shortest	path,	unless	that	line	is	itself	barred.	
Depth	gain	for	single	bar	must	then	be	confined	to	the	line	on	which	the	bar	occurs.	
But	placing	the	bar	at	different	points	on	the	line	changes	the	pattern	of	depth	gain	for	
the	cells	along	the	line.	Each	cell	gains	depth	equal	to	twice	the	number	of	cells	from	
which	it	is	linearly	barred,	because	each	trip	from	a	cell	to	such	cells	requires	a	two-
cell	detour	via	an	adjacent	line.	Evidently	this	will	be	two	way,	and	the	sum	of	depths	
on	the	two	sides	of	a	single	bar	will	thus	always	be	the	same.	It	follows	that	the	
depth	gain	values	of	individual	cells	will	become	more	similar	to	each	other	as	the	bar	
moves	from	edge	to	centre,	becoming	identical	when	the	bar	is	central.	It	also	follows	
that	the	total	depth	gain	from	a	bar	will	be	maximised	when	the	bar	is	at	or	near	the	
centre	of	the	line,	and	will	be	minimised	at	the	edge.	This	is	illustrated	for	edge	to	
centre	bars	on	a	6-cell	line	in	figure	8.4	a,	b	c,	and	d.
	 The	fact	that	an	edge	location	for	a	partition	minimises	depth	gain	but	
maximises	the	differences	between	cells,	while	a	central	location	maximises	
depth	gain	but	minimises	differences,	is	a	highly	significant	property.	It	means	that	
decisions	about	where	to	place	a	bar,	or	block	a	doorway,	have	implications	for	
the	system	beyond	the	immediate	region	of	the	bar.	If	we	define	a	‘local	physical	
decision’	as	a	decision	about	a	particular	bar	within	a	system,	and	a	‘global	
spatial	effect’	as	the	outcome	of	that	decision	for	the	system	as	a	whole,	it	is	clear	
that	local	decisions	do	have	quite	systematic	global	effects.	In	these	cases,	the	
systematic	effects	follow	what	we	might	call	the	‘principle	of	centrality’.
	 It	might	be	useful	to	think	of	such	‘local-to-global’	effects	as	‘design	
principles’,	that	is,	as	rules	from	which	we	can	forecast	the	global	effect	of	a	local	
barring	decision	by	recognising	what	kind	of	barring	we	are	making.	In	this	case	
the	design	principles	are	two:	that	the	depth	gain	from	a	bar	is	minimised	when	the	
bar	is	placed	at	the	edge	and	maximised	when	placed	at	the	centre;	and	that	edge	
bars	make	for	greater	depth	gain	differences	between	some	cells	and	others,	while	
central	partitions	equalise	depth	gain.
	 Similar	principles	govern	local-to-global	effects	when	we	add	a	second	
bar	in	different	locations	as	in	figure	8.4e-j.	Depth	gains	for	each	cell	are	equal	to	
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twice	the	number	of	cells	on	the	far	side	of	the	nearest	bar.	For	each	cell,	bars	
other	than	the	nearest	on	either	side	do	not	affect	depth	since	once	a	detour	to	
an	adjacent	line	has	been	made,	then	it	can	be	continued	without	further	detour	
to	reach	other	cells	on	the	original	line,	provided	of	course	there	is	no	bar	on	the	
adjacent	line	(see	below).	Figure	8.4k–p	then	shows	that	depth	effects	of	three	to	
five	bars	are	governed	in	the	same	way,	ending	with	the	fully	barred	line	in	which	
each	cell	gains	depth	equal	to	twice	the	number	of	other	cells	in	the	line.	These	
examples	illustrate	a	second	principle:	that	once	a	line	is	barred,	then	depth	gain	
from	the	next	bar	will	be	minimised	by	placing	it	within	the	shortest	remaining	line	
of	cells,	and	maximised	by	placing	it	in	the	longest.	We	can	call	this	the	‘principle	
of	extension’:	barring	longer	lines	creates	more	depth	gain	than	barring	shorter	
lines.	Within	each	line,	of	course,	the	principle	of	centrality	continues	to	hold,	and	
the	distribution	of	depth	gains	in	the	various	cases	in	figure	8.4	follow	these	both	
in	the	principle	of	extension	and	the	principle	of	centrality.	Thus	taking	figures	8.4g	
and	j,	each	has	a	bar	in	the	second	position	in	from	the	left,	but	g	then	has	its	
second	bar	immediately	adjacent	in	the	third	position	in	from	the	left,	while	j	has	its	
second	bar	two	positions	away,	equidistant	from	the	right	boundary	of	the	complex.	
This	is	why	g	has	less	depth	gain	than	j	in	spite	of	its	second	bar	being	in	a	more	
central	location	in	the	complex	as	a	whole,	because,	given	the	first	bar,	what	counts	
is	the	position	of	the	next	bar	in	the	longest	remaining	lines,	and	in	j	the	bar	is	
placed	centrally	on	that	line.	This	shows	an	important	implication	of	the	principles	
of	centrality	and	extension:	when	applied	together	to	maximise	depth	gain,	they	
generate	an	even	distribution	of	bars,	in	which	each	bar	is	as	far	as	possible	from	
all	others;	while	if	applied	to	minimise	depth	gain,	bars	becomes	clustered	as	close	
as	possible	to	each	other	along	lines.
	 Suppose	now	that	instead	of	locating	the	second	bar	on	the	same	line	
we	locate	it	on	an	adjacent	line.	Figure	8.5a–j	shows	the	sequence	of	possibilities	
for	the	location	of	the	second	bar,	omitting,	for	the	time	being	(but	see	below)	the	
case	where	we	join	bars	contiguously	in	a	line.	When	barred	lines	are	adjacent,	
then	for	each	line,	the	depth	gain	is	greater	than	for	each	bar	alone,	but	the	effect	
disappears	when	the	two	barred	lines	are	not	adjacent,	as	in	the	final	two	cases,	
k	and	l.	The	effect	is	identical	if	the	two	bars	are	on	adjacent	lines	away	from	the	
edge.	These	effects	are	best	accounted	for	by	seeing	each	barring	of	two	adjacent	
lines	as	dividing	the	pair	of	lines	into	an	‘inner	zone’,	where	there	is	only	one	bar	to	
circumvent	in	each	direction,	and	two	‘outer	zones’	from	which	two	bars	must	be	
circumvented	to	go	from	one	to	the	other.	The	conjoint	effect	is	entirely	due	to	the	
outer	zones,	in	that	to	go	from	one	outer	zone	to	the	other,	there	is	a	further	bar	to	
circumvent	once	a	detour	to	the	adjacent	line	is	taken	to	circumvent	the	first	bar.	
Depth	gain	for	a	cell	is	therefore	equal	to	twice	the	number	of	cells	that	lie	beyond	
bars	on	either	line.	Thus	the	value	of	twelve	in	the	leftmost	example	in	the	top	row	
is	the	product	of	twice	the	five	cells	on	the	far	side	of	the	bar	in	the	top	row,	plus	
twice	the	single	cell	on	the	far	side	once	you	move	from	the	top	to	the	second	row.	
Similarly,	the	total	depth	of	two	for	each	of	the	cells	to	the	right	of	the	bar	in	the	top	
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row	reflects	the	fact	that	only	one	cell	is	on	the	far	side	of	the	bar	in	the	top	row,	
and	none	are	in	the	second	row.	This	calculation	of	depth	gain	will	work	for	any	
number	of	rows	of	cells,	providing	that	the	bars	are	non-contiguous.	Non-contiguity	
of	bars	means	that	there	is	always	a	‘way	through’	for	a	shortest	path.
	 If	we	then	add	a	third	(non-contiguous)	bar	on	a	third	line,	then	there	are	two	
alternative	possibilities.	If	the	three	bars	are	in	echelon,	as	in	figure	8.5m,	then	‘outer	
zone’	cells	on	all	three	lines	will	gain	depth	additively	equal	to	twice	the	number	of	
cells	in	all	the	opposite	outer	zones.	This	is	because	when	the	bars	are	in	echelon,	
then	every	detour	to	an	adjacent	barred	line	means	that	the	bar	on	that	line	is	still	
beyond	where	you	are	on	that	line,	so	a	further	detour	is	necessary.	Inner	zone	cells	
gain	only	twice	the	number	of	cells	in	the	outer	zones	of	their	own	lines.
	 If	the	bars	are	not	in	echelon,	as	in	figure	8.5n,	then	the	gain	will	only	be	as	
from	a	pair	of	adjacent	lines	since	the	bar	on	the	central	line	must	be	so	placed	as	
to	allow	a	‘way	through’.	The	central	line	will,	however,	gain	depth	from	its	relation	
to	both	adjacent	lines,	and	can	be	counted	first	in	a	pair	with	one,	then	with	the	
other.	If	four	non-contiguous	bars	are	on	four	adjacent	lines,	then	the	depth	gain	
is	according	to	whether	trios	of	lines	are	in	echelon	or	not,	and	so	on.	If	there	are	
two	or	more	bars	on	the	same	line,	then	the	calculations	will	be	according	to	the	
formula	already	outlined.	If	one	of	the	adjacent	lines	is	an	edge	line,	then	likewise,	
this	can	be	calculated	according	to	the	formula	already	explained.
	 These	are	the	possible	non-contiguous	barrings	on	the	same	general	
alignment	(i.e	in	this	case	all	are	horizontal).	What	about	the	addition	of	a	second	
(or	more)	non-contiguous	bar	on	the	orthogonal	alignment,	as	in	figure	8.6a?	We	
already	know	the	effect	of	the	second	bar	on	its	own	line.	Does	it	have	an	effect	
on	the	line	of	the	first	bar?	The	answer	is	that	is	does	not	and	cannot,	provided	it	
is	non-contiguous,	because	while	it	is	non-contiguous	there	will	always	be	a	‘way	
through’	for	shortest	paths	from	cells	on	other	alignments.	Depth	gain	resulting	from	
a	bar	on	a	certain	alignment	can	never	be	increased	by	a	bar	orthogonal	to	that	
alignment,	while	the	bars	are	non-contiguous.
	 What	then	are	the	effects	of	contiguous	bars?	There	are	two	kinds:	linearly	
contiguous	bars,	in	which	two	or	more	partitions	form	a	single	continuous	line;	
and	orthogonally	contiguous	bars,	in	which	two	or	more	bars	form	a	right-angle	
connection.	Within	each	we	can	distinguish	contiguous	bars	which	link	with	another	
bar	at	one	end,	and	those	which	link	at	both	ends.	First	let	us	look	at	the	right	
angle,	or	L-shaped,	case	for	the	single	connected	bar.	Figures	8.6b–e	show	the	
depth	gain	pattern	for	the	simplest	case,	a	two	bar	L-shape,	located	at	four	different	
positions.	The	first	thing	we	note	is	that	in	all	cases	the	depth	gains	on	‘either	side’	
of	the	L	are	in	total	equal,	though	very	differently	distributed.	In	8.6b,	where	the	L	
faces	into	the	top	left	corner,	the	depth	gain	forms	a	very	high	peak	within	the	L,	
which	is	made	up	of	two	elements:	first,	the	depth	gains	along	each	of	the	lines	of	
cells	partitioned	by	the	bar,	of	the	kind	we	have	seen	already;	and	second	by	the	
conjoint	effect	of	the	two	bars	forming	the	L,	in	creating	a	‘shadow’	of	cells,	each	
with	a	depth	gain	of	2,	which	mirror	the	L	shape	on	the	outside	diagonal	to	it.	This	
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is	a	phenomenon	we	have	not	see	before,	since	with	non-contiguous	bars	all	depth	
gains	can	be	accounted	for	by	the	effects	of	individual	bars.
	 As	the	L-shaped	bar	is	moved	from	top	left	towards	the	bottom	right,	while	
maintaining	its	orientation,	as	in	8.6c,d	and	e,	we	find	that	although	the	individual	
effects	of	each	of	the	constituent	bars	making	up	the	L	remains	consistent	with	the	
effects	so	far	noted,	the	conjoint	‘shadow’	effect	diminishes,	because	there	is	less	
and	less	scope	for	the	‘shadow’	as	the	L	moves	towards	the	bottom	right	and	the	L	
shape	follows,	rather	than	inverts,	the	L	formed	by	the	corner	of	the	outer	boundary.	
We	see	then	that	in	this	case	the	effect	of	moving	the	L	from	the	centre	towards	
the	corner	will	be	to	diminish	depth	gain,	as	expected,	as	the	L	moves	towards	a	
corner	from	which	the	L	faces	outwards,	but	to	increase	it	as	the	L	moves	towards	Figure 8.6

Figure 8.6
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a	corner	where	the	L	faces	inwards	towards	the	corner.
	 At	first	sight,	this	seems	to	contradict	the	principle	that	edge	partitions	
cause	less	depth	gain	and	central	partitions	more.	In	fact,	what	we	have	is	a	
stronger	instance	of	the	effect	noted	in	figure	8.4a,	where	the	most	peripherally	
located	partition	created	the	least	depth	gain	overall	but	the	greatest	depth	gain	
for	the	single	cell.	The	depth	gain	was	focused,	as	it	were,	in	a	single	cell.	In	8.6b,	
the	depth	gain	is	even	more	powerfully	focussed	in	a	single	cell,	both	because	
it	focusses	both	the	gain	from	the	two	bars	making	up	the	L,	but	also	from	the	
‘shadow’.	In	other	words	what	counts	as	the	‘other	side’	of	the	partition	is	expanded	
by	forming	contiguous	partition	into	an	‘enclosure’.	Enclosure,	we	might	say,	means	
‘enclosure	with	respect	to	what’.	The	greater	the	area	‘with	respect	to	which’	an	
‘inside’	region	is	enclosed,	then	the	greater	the	enclosure	effect	by	the	focussing	of	
depth	gain.	This	is,	in	effect,	a	generalisation	of	the	‘principle	of	extension’	by	which	
greater	overall	depth	gain	arises	from	the	greater	scope	of	the	effect	of	the	partition.	
In	figure	8.6b,	this	extension	on	the	‘other	side’	of	the	enclosure	includes	the	area	
between	the	two	alignments	affected	by	the	partition,	and	this	increases	
its	extension.
	 This	effect	will	increase	if	we	add	new	contiguous	bars	to	the	original	
L-shape.	Figure	8.6f	for	example	shows	the	depth	gain	pattern	for	an	L-shape	
whose	arms	are	twice	as	long	as	in	the	previous	figure.	The	depth	gain	pattern	is	
similar	to	that	for	single	L-shapes,	but	even	more	extreme.	Figures	8.6g–j	break	this	
down	by	taking	each	of	the	cells	on	the	open	side	of	the	barring	and	showing	the	
shadow	due	to	that	cell.	This	is	calculated	by	taking	each	open	side	cell	in	turn	and	
calculating	the	detour	value	for	each	shadow	cell.	The	shadow	shown	in	figure	8.6f	
evidently,	is	the	sum	of	these	sub-shadows	of	figure	8.6g–k,	plus	those	of	the	four	
cells	on	the	‘open’	side	of	the	L	(which	are	not	shown).
	 Next	consider	the	linear	contiguity	of	bars.	Figure	8.7a–g	shows	a	series	
of	cases	in	which	bars	are	first	extended	linearly	to	double	unit	length	and	moved	
across	from	edge	to	centre,	and	then	triple	unit	length.	Depth	gains	are	larger	even	
than	for	L-shaped	bars,	and	the	rate	of	gain	increases,	not	only	as	the	line	of	bars	
is	moved	from	edge	to	centre,	but	also,	even	more	dramatically,	as	the	number	of	
bars	formed	into	a	continuous	line	is	increased.	For	example,	the	depth	gain	from	a	
single	edge	bar	is	20,	rising	to	36	as	the	bar	moves	to	the	centre,	but	if	we	expand	
the	bar	linearly	to	a	pair,	the	gain	is	180	and	if	we	add	a	third	then	the	gain	is	504.	
This	reflects	a	simple	fact	that	to	detour	round	one	bar	—	say	an	edge	bar	—	to	a	cell	
that	was	initially	adjacent	requires	a	2	cell	detour.	However,	if	a	second	bar	is	added	
in	line,	then	the	detour	will	be	5	cells,	and	if	a	third	is	added,	the	detour	will	be	7	
cells,	and	so	on.	The	contiguous	line	of	bars	is	the	most	effective	way	of	increasing	
depth	in	the	system,	first	because	it	is	the	most	economical	way	of	constructing	an	
object	requiring	the	longest	detour	from	cells	on	either	side	to	the	other	and	second	
because	the	longer	the	bar	the	more	it	has	the	effect	of	increasing	the	number	of	
cells	on	either	side	of	it,	that	is,	it	has	the	effect	of	barring	the	whole	aggregate.	
Evidently,	this	‘whole	object	barring’	will	have	more	depth	gain	to	the	degree	that	the	
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object	is	barred	into	two	equal	numbers	of	cells.	Thus	in	figure	8.7g	the	long	central	
bar	comes	as	close	as	possible	to	dividing	the	whole	object	into	two	equal	parts.
Figure	8.7h–j	then	demonstrates	the	effect	of	linearity	on	three	contiguous	bars.	In	
all	three,	at	least	two	bars	are	located	in	the	second	position	from	the	edge.	In	8.7h,	
the	bars	are	formed	into	a	U-shape	giving	a	total	depth	gain	of	124,	28	more	than	
would	be	gained	by	the	lines	independently	if	they	were	non-contiguous,	and	with	
a	very	strong	peak	inside	the	enclosure.	In	figure	8.7i,	which	is	a	three-bar	L-shape,	
the	total	depth	gain	is	200,	104	more	than	the	lines	would	have	independently,	and	
with	a	less	strong	peak	within	the	enclosure.	In	8.7j,	the	total	gain	is	336,	240	more	
than	for	the	lines	independently,	and	with	a	much	more	even	spread	of	values,	
without	any	single	peak.	These	differences	thus	arise	simply	from	the	shape	formed	
by	the	three	contiguous	lines.	The	principle	is	that	the	more	we	coil	up	bars,	and	
create	a	concentrated	peak	of	depth	gain	within	the	coiled	up	bars,	then	the	less	
the	overall	depth	gain.	Depth	gain	in	the	whole	system	is	maximised	when	bars	are	
maximally	uncoiled	and	construct	a	maximally	linear	‘island’	of	bars.	Since	the	U-
shape	of	8.7h	approximates	a	‘room’,	we	can	say	that	the	most	integration	efficient	
way	of	arranging	three	contiguous	bars	is	to	form	them	into	‘rooms’.	Such	‘rooms’	
will	not	only	have	the	least	depth	gain	effect	on	the	spatial	complex,	but	will	also	
maximise	the	difference	between	the	depth-gain	of	a	single	space	(i.e.	the	‘room’)	
and	that	in	the	other	spaces	of	the	system.	This	is	the	phenomenon	we	first	noted	
for	edge	partitions	in	figure	8.4.
	 Now	if	we	reflect	on	figure	8.7j,	we	can	see	that	all	the	depth	gain	apart	from	
that	due	to	the	individual	bars	is	to	the	central	bar	and	to	the	fact	that	it	connects	two	
ways	to	form	the	line	of	three.	This	means	that	if	we	start	from	a	situation	in	which	we	
have	the	two	outer	bars,	then	the	addition	of	the	single	bar	connecting	the	two	outer	
bars	into	a	line	in	itself	adds	a	depth	gain	of	272.	This	double	connecting	of	bars	to	
form	a	line	is	the	most	powerful	possible	move	in	creating	additional	depth,	not	least	
because	it	must	necessarily	have	the	effect	of	eliminating	a	ring	from	the	system.
	 We	may	summarise	all	these	effects	in	terms	of	four	broad	principles	
governing	the	depth	gain	effects	of	bars:	the	principle	of	centrality:	more	centrally	
placed	bars	create	more	depth	gain	than	peripherally	placed	bars;	the	principle	
of	extension:	the	more	extended	the	system	by	which	we	define	centrality	(i.e.	
the	length	of	lines	orthogonal	to	the	bar)	then	the	greater	the	depth	gain	from	the	
bar;	the	principle	of	contiguity:	contiguous	bars	create	more	depth	gain	than	non-
contiguous	bars	or	blocks;	and	the	principle	of	linearity:	linearly	arranged	contiguous	
bars	create	more	depth	gain	than	coiled	or	partially	coiled	bars.	All	four	principles	
govern	local-to-global	effects	in	that	each	individual	local	physical	move	has	quite	
specific	global	effects	on	the	spatial	configuration	as	a	whole.	At	the	same	time	
these	effects	are	dependent	on	the	number	and	disposition	of	bars	and	blocks	
that	already	exist	in	the	system.	The	four	principles	allow	us	to	keep	track	of	the	
complex	inter-relationships	between	what	is	already	in	the	system	and	the	global	
consequences	of	new	moves.	We	may	therefore	expect	to	be	able	to	construct	
processes	in	which	different	sequences	of	barring	moves	will	give	rise	to	different	
global	configurational	properties.
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Elementary objects as configurational strategies
We	will	see	shortly	that	this	is	the	case.	But	first	we	must	show	that	the	same	
principles	that	govern	the	opening	and	closing	of	partitions,	also	govern	all	other	
types	of	spatial	moves	which	affect	integration	such	as	the	creating	of	corridors,	
courts	or	wells,	and	even	changes	in	the	shape	of	the	envelope	of	the	complex.	Let	
us	first	consider	wells.	Wells	are	zones	within	a	complex	which	are	inaccessible	from	
the	complex	and	therefore	not	part	of	the	spatial	structure	of	the	complex.	They	act	in	
effect	as	blocks	in	the	system	of	permeability.	We	will	see	that	the	effects	of	blocks	of	
different	shapes	and	in	different	locations	have	configurational	effects	on	the	whole	
system	which	follow	exactly	the	same	principles	as	those	for	bars.
	 First,	let	us	conceptualise	blocks	in	terms	of	the	barring	system	we	have	
so	far	discussed.	A	block	is	an	arrangement	of	bars	we	have	so	far	disallowed,	
that	is,	an	arrangement	of	four	or	more	bars	in	such	a	way	as	to	form	a	complete	
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enclosure,	so	that	one	or	more	spaces	is	completely	separated	from	the	rest	
of	the	spatial	system,	and	effectively	eliminated	from	it.	A	block	is	in	effect	the	
elimination	of	one	or	more	cells	from	the	spatial	system.	Three	possible	cases	of	
single	cell	elimination	are	shown	in	figure	8.8a,	b	and	c	with	the	resulting	depth	
gains.	Because	the	block	bars	lines	in	two	directions	all	that	happens	is	that	the	
pattern	of	depth	gain	resulting	from	the	blocks	follows	the	edge	to	centre	rules,	as	
for	bars.	There	will	not,	for	example,	also	be	‘shadow’	effects,	as	with	L-shaped	
bars,	because	the	relation	between	the	enclosed	space	and	those	on	the	other	side	
of	the	L-shape,	which	created	the	‘shadow’	has	been	eliminated	by	the	complete	
closing	off	of	the	block.	We	must	note	of	course	that	the	depth	gains	figures	
are	less	than	for	a	simple	barring,	but	this	is	simply	because	one	cell	has	been	
eliminated	from	the	system.	We	may	if	we	wish	correct	this	by	substituting	i-values	
for	depth	gains,	since	these	adjust	depth	according	to	the	total	number	of	cells	in	
the	system,	but	at	this	stage	it	is	simpler	to	simply	record	the	depth	gains	and	note	
the	effect	of	the	elimination	of	a	cell.
	 Figure	8.8d–g	then	shows	four	possible	shapes	and	locations	for	blocks	
of	four	cells,	together	with	the	depth	gains	for	each	cell	and	the	total	depth	gain	
indicated	bottom	right	of	the	complex.	As	we	would	expect	from	the	study	of	bars,	
the	compact	2×2	block	has	much	less	depth	gain	than	either	of	the	linear	4×1	forms,	
and	the	linear	forms	have	higher	depth	gains	in	central	locations	than	peripheral	
locations	(as	would	compact	blocks).	We	may	note	that,	as	we	may	infer	from	bars,	
the	depth	gain	effects	from	changes	of	shape	are	much	greater	than	those	from	
changes	of	location.	But	also	of	course	the	locational	effects	of	high	depth	gain	
shapes	—	that	is	linear	shapes	—	are	much	greater	than	the	locational	effects	of	low	
depth	gain	—	or	compact	—	shapes.
	 It	is	clear	that	in	this	way	we	can	calculate	the	depth	gain	effect	of	any	
internal	block	of	any	shape	and	that	it	will	always	follow	the	general	principles	we	
have	established	for	bars.	However,	there	is	another	important	consequence	of	this,	
namely	that	we	can	also	make	parallel	calculation	for	blocks	placed	at	the	edge	of	
the	complex.	The	reason	this	is	important	is	that	such	peripherally	located	blocks	are	
not	‘wells’	which	by	definition	are	internal	to	the	complex,	but	changes	in	the	shape	
of	the	envelope	of	the	complex.	It	is	clear	from	this	that	we	may	treat	changes	in	the	
external	shape	of	the	complex	in	exactly	the	same	way	as	interior	‘holes’	within	the	
complex.	Since	we	have	already	shown	that	such	‘holes’	are	special	cases	of	barring,	
then	there	is	a	remarkable	unification	here.	From	the	point	of	view	of	the	construction	
of	integration	—	which	we	already	know	to	be	the	chief	spatial	correlate	of	function	
within	the	complex	—	it	seems	that	partitions	within	the	complex	are	the	same	kind	
of	thing	as	changes	to	the	shape	of	the	complex,	whether	these	are	internal,	as	with	
wells,	or	external,	as	with	changes	in	the	envelope	shape.
	 We	will	now	show	that	the	creation	of	larger	spaces	within	a	complex	such	
as	courts	and	corridors	can	also	be	brought	within	the	scope	of	this	synthesis	and	
be	shown	to	be	the	same	kind	of	phenomenon	and	subject	to	the	same	laws.	First,	
we	must	conceptualise	what	we	mean	by	the	creation	of	larger	spaces	in	terms	of	
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a	barring	process.	Larger	open	spaces	in	the	complex	are	created	by	eliminating	
the	existing	two-thirds	partitions	instead	of	completing	the	partition,	and	in	effect	
turn	two	neighbouring	spaces	into	what	would	then	be	identified	as	a	single	space.	
Figure	8.9a–d	does	this	so	as	to	substitute	open	spaces	for	the	blocks	shown	in	the	
previous	cases,	and	gives	the	consequent	depth	loss	(that	is,	integration	gain)	for	
each	cell.	The	depth	loss	for	the	larger	space	is	calculated	by	substituting	the	new	
value	for	the	whole	space	for	each	of	the	values	in	the	original	form	and	adding	
them	together.	Total	depth	loss	for	each	form	is	shown	below	the	figure.
	 The	first	point	to	be	noted	is	that	the	depth	loss	for	a	shape	of	a	given	size	
is	a	constant,	regardless	of	location	in	the	configuration.	This	is	because	from	the	
point	of	view	of	the	large	space,	the	effect	of	substituting	a	single	space	for	two	or	
more	spaces	is	to	change	the	relations	of	those	spaces	with	each	other	—	that	is	
to	eliminate	a	certain	number	of	steps	of	depth	—	but	not	to	change	the	relations	of	
those	spaces	to	the	larger	system.	However,	although	the	depth	loss	for	the	larger	
space	is	constant,	its	effects	on	the	rest	of	the	system	are	not.	In	fact	they	vary	in	
exactly	the	opposite	way	to	the	blocks.	Whereas	peripherally	located	blocks	add	
less	depth	to	the	system	than	centrally	placed	blocks,	peripherally	placed	open	
spaces	eliminate	less	depth	than	centrally	placed	spaces;	and	a	linear	arrangement	
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of	cells	into	a	single	space	has	a	greater	depth	loss	(more	integrating)	effect	than	
a	square	arrangement,	and	this	effect	is	greater	when	the	linear	space	is	placed	
centrally	than	when	it	is	placed	peripherally.
	 The	first	four	complexes	of	figure	8.10	show	the	same	cases	but	marking	
each	space	with	its	total	depth	from	the	rest	of	the	system	rather	than	its	depth	
loss.	Here	what	we	note	is	that	identical	larger	spaces	in	different	locations	will	
have	different	total	depths	reflecting	their	location	in	the	complex.	It	is	only	the	
depth	loss	from	making	two	or	more	spaces	into	one	that	is	identical,	not	the	
depth	values	of	the	location	of	these	spaces	in	the	complex.	Thus	we	can	see	that	
a	centrally	placed	open	‘square’	is	more	integrating	(i.e.	has	less	total	depth)	in	
itself	than	a	peripherally	placed	one,	and	that	a	linear	form	will	be	more	integrating	
than	a	compact	form.	These	effects	are	of	course	exactly	the	inverse	of	those	of	
blocks,	and	we	may	therefore	say	that	they	are	governed	by	the	same	laws.	In	the	
two	final	examples	in	figure	8.10	the	four	open	cells	are	arranged	as	two	two-cell	
spaces	rather	than	a	single	four-cell	space	and	show	another	inverse	principle:	that	
contiguously	joined	spaces	will	always	create	more	integration	than	a	comparable	
number	of	discrete	spaces.

Figure 8.10
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Thus	the	four	principles	of	centrality,	extension,	contiguity	and	linearity	which	
governed	the	depth	gain	effects	of	bars	and	blocks	also	govern	the	depth	effects	on	
the	global	system	of	creating	larger	open	spaces,	though	in	the	contrary	direction.	
More	centrality	for	larger	spaces	means	more	integration,	more	extended	lines	from	
larger	spaces	means	more	integration,	more	continuity	of	larger	spaces	means	
more	integration	and	more	linearity	of	larger	spaces	means	more	integration.	A	
useful	bonus	is	that	in	the	case	of	larger	spaces	we	can	actually	see	that	the	effects	
are	not	within	the	spaces	themselves	but	are	to	do	with	the	effect	of	the	spaces	on	
the	remainder	of	the	system.
	 We	can	now	draw	a	significant	conclusion.	Not	only	partitions,	internal	
walls	and	external	shape	changes	but	also	rooms	and	larger	linear	or	compact	
open	spaces	such	as	corridors	and	courts	have	all	been	shown	to	be	describable	
in	the	same	formal	terms	and	therefore	to	be,	in	a	useful	sense,	the	same	kind	of	
thing.	This	has	the	important	implication	that	we	will	always	be	able	to	calculate	the	
effects	of	any	spatial	move	in	any	system	in	a	consistent	way,	and	indeed	to	be	able	
to	predict	its	general	effects	from	knowledge	of	principle.	This	allows	us	to	move	
from	a	static	analysis	of	the	global	implications	of	local	changes	in	system	to	the	
study	of	dynamic	spatial	processes	in	which	each	local	move	seeks,	for	example,	
to	maximise	or	minimise	one	or	other	type	of	outcome.	When	we	do	this	we	will	
find	out	that	both	the	local	configurations	we	call	elements	and	the	global	patterns	
of	the	spatial	complex	as	a	whole	are	best	seen	as	emergent	phenomena	from	the	
consistent	application	of	certain	types	of	spatial	move.	We	will	call	these	dynamic	
experiments	‘barring	processes’.
	
Barring processes
For	example,	we	may	explore	barring	processes	which	operate	in	a	consistent	
way,	say	to	maximise	or	minimise	depth	gain,	and	see	what	kind	of	cellular	
configurations	result.	In	making	these	experimental	simulations,	it	is	clear	that	we	
are	not	imagining	that	we	are	simulating	a	process	of	building	that	could	ever	have	
occurred.	It	is	unrealistic	to	imagine	that	a	builder	would	know	in	advance	the	depth	
gain	consequences	of	different	types	of	barring.	However,	it	is	entirely	possible	that	
within	a	building	tradition,	a	series	of	experiments	in	creating	cellular	arrangements	
would	lead	to	a	form	of	learning	of	exactly	the	kind	we	are	interested	in:	that	certain	
types	of	local	move	will	have	global	consequences	for	the	pattern	as	a	whole	which	
are	either	functionally	beneficial	or	not.	We	may	then	imagine	that	our	experiments	
are	concerned	not	with	simulating	a	one-off	process	of	building	a	particular	building,	
but	of	trying	to	capture	the	evolutionary	logic	of	a	trial-and-error	process	of	gradually	
learning	the	global	consequences	of	different	types	of	local	barring	moves.	In	this	
sense,	our	experiments	are	about	how	design	principles	might	be	learnt	rather	than	
how	particular	buildings	might	be	built.
	 First	some	definitions.	We	define	a	barring	move	as	the	placing	of	a	single	
bar	whose	only	known	(or,	on	the	evolutionary	scale,	discovered)	consequence	is	
its	depth	gain	for	the	system	as	a	whole.	A	barring	manoeuvre	is	then	a	planned	
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series	of	two	or	more	moves	where	the	depth	gain	effect	of	the	whole	series	is	
taken	into	account,	rather	than	simply	the	individual	moves.	Manoeuvres	may	be	
2-deep,	3-deep,	and	so	on	according	to	the	number	of	moves	they	contain.	Moves	
are	by	definition	1-deep	manoeuvres.	A	move	may	be	made	in	the	knowledge	that	
one	move	eliminates	more	of	a	certain	type	of	possibility	than	another.	For	example,	
a	bar	placed	away	from	the	boundary	eliminates	two	possible	locations	for	non-
contiguous	bars,	whereas	a	bar	contiguous	with	the	boundary	eliminates	only	one.	
This	is	important,	since	the	location	of	one	bar	will	often	affect	where	the	next	
can	go,	and	it	will	turn	out	that	in	some	processes	in	the	6	x	6	complex	non-edge	
bars	exhaust	non-contiguous	bars	within	about	fourteen	steps,	whereas	with	edge	
bars	it	is	twenty,	and	this	makes	a	significant	difference	to	a	process.	We	allow	
this	knowledge	within	moves,	because	it	can	be	seen	immediately	and	locally	as	a	
consequence	of	the	move,	provided	the	principles	are	understood.
	 Both	moves	and	manoeuvres	thus	have	foresight	about	depth	gain,	but	only	
manoeuvres	have	foresight	about	future	moves.	A	random	barring	process	is	one	in	
which	barring	moves	are	made	independently	of	each	other	and	without	regard	for	
depth	gain	or	any	other	consequence.	We	might	say	then	that	in	describing	moves	
and	manoeuvres	we	are	describing	the	degree	to	which	a	process	is	governed	by	
forethought.	At	the	opposite	extreme	from	the	random	process,	it	follows,	there	will	
be	the	process	governed	by	an	n-deep	manoeuvre,	where	n	is	the	number	of	bar	
locations	available,	meaning	that	the	whole	set	of	bars	is	thought	out	in	advance,	
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and	each	takes	into	account	the	known	future	positions	of	all	others.
	 Let	us	now	consider	different	types	of	barring	process.	Figure	8.11a–d	
sets	out	a	barring	process	of	24	bars,	numbered	in	order	of	placement	in	which	
each	move	is	designed	to	maximise	depth	gain.	We	choose	24	because	25	is	the	
maximum	that	can	be	placed	without	dividing	the	aggregate	into	discontinuous	
zones	(that	is,	in	effect,	into	two	buildings),	and	one	less	means	that	one	‘ring’	will	
remain	in	the	circulation	system	(that	is,	one	cycle	in	its	graph),	so	that	if	there	is	a	
process	which	maximises	some	property	of	this	ring	then	we	might	find	out	what	it	
is.	Bars	are	numbered	in	order	of	placing,	and	we	will	now	review	this	ordering.
	 To	maximise	depth	gain,	our	first	bar	—	bar	1	—	must	be	placed	exactly	to	
bisect	a	line	of	cells.	It	does	not	matter	which	we	select,	since	the	effect	of	all	such	
bisections	will	be	equivalent.	But	bar	2	must	take	into	account	the	location	of	the	first,	
since	depth	gain	will	be	maximal	only	if	it	is	linearly	contiguous	with	it.	The	same	
principle	governs	the	location	of	the	bars	3,	4	and	5.	After	five	moves	therefore	we	
must	have	a	long	central	bar	reaching	to	one	edge,	and	we	have	in	fact	created	the	
form	shown	in	8.7g,	which	is	the	most	depth	gain	efficient	way	of	using	fewest	bars	
to	‘nearly	divide’	the	aggregate	into	two.	Thus	we	have	arrived	at	a	significant	global	
outcome	for	the	object	as	a	whole,	even	though	we	have	at	each	stage	only	followed	
a	purely	local	rule.	Although	individual	moves	had	a	certain	degree	of	choice,	the	
configurational	outcome	as	a	whole,	we	can	see,	was	quite	deterministic.
	 Since	the	next	move	cannot	continue	on	the	central	bar	line	without	cutting	
the	aggregate	into	two,	we	must	look	around	for	the	next	depth	maximising	move.	
We	know	we	must	bisect	the	longest	sequence	of	cells,	and	if	possible	our	bar	
must	be	contiguous	with	bars	already	placed.	To	identify	the	longest	sequence,	
we	must	recognise	that	the	barring	so	far	has	effectively	changed	the	shape	of	
the	complex.	We	could,	for	example,	cut	the	complex	down	the	line	of	the	central	
partition	and	treat	it	almost	as	two	complexes.	As	a	result,	there	is	now	a	longest	
sequence	of	cells	running	around	both	sides	of	the	central	partition	which	does	not	
form	a	single	line,	but	it	does	constitute	the	longest	sequence	of	shortest	available	
routes	in	the	complex.	It	is	by	partitioning	this	line	close	to	its	centre	that	we	will	
maximise	depth	gain,	that	means	placing	the	bar	at	right	angles	to	the	partitioning	
line	at	its	base	in	one	of	the	two	possible	locations.	The	next	bar	must	then	take	
account	of	which	has	been	selected,	and	in	fact	extend	that	bar.	The	next	two	must	
repeat	the	same	move	on	the	other	side,	thus	taking	us	up	the	ninth	bar	in	the	
figure.	The	same	principle	can	then	be	applied	to	the	next	sequence	of	bars,	and	
in	fact	all	we	must	do	to	complete	the	process	is	to	continue	applying	the	same	
principle	in	new	situations	as	they	arise	from	the	barring	process.	By	bar	24,	the	
pattern	is	as	shown	in	the	final	form	in	figure	8.11d.
	 Looking	at	the	final	form,	we	first	confirm	that	once	a	25th	bar	is	added	no	
further	bar	could	be	added	without	splitting	the	aggregate	into	two.	We	also	note	
that	the	configuration	of	space	created	by	the	barring	is,	excepting	the	small	ring	
that	would	be	eliminated	by	bar	25,	a	single	‘unilinear’	sequence	of	cells,	that	is,	the	
form	with	the	maximum	possible	depth	from	all	points	to	all	others.	By	maximising	
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depth	gain	at	every	stage	of	the	process	we	arrive,	perhaps	not	surprisingly,	at	a	
form	which	globally	maximises	depth	gain.	We	also	note,	that	by	applying	simple	
rules	to	the	barring	process,	we	have	converted	a	process	which	theoretically	could	
lead	to	an	astronomical	number	of	possible	global	forms,	to	one	which	leads	almost	
deterministically	to	a	specific	form.
	 Figure	8.12a–d	now	illustrates	the	contrary	process	in	which	each	move	
minimises	depth	gain,	again	with	numbering	in	the	order	of	the	moves.	Bar	1	must	
be	at	the	edge	of	a	line	of	cells,	and	to	minimise	the	loss	of	non-contiguous	bar	
locations	it	should	also	be	on	one	of	the	outermost	lines	of	cells.	Once	we	have	
bar	1,	the	following	moves	to	minimise	depth	gain	must	continue	to	bar	the	already	
barred	line,	since	this	line	is	now	shorter	than	any	other	line,	and	to	do	so	each	
time	as	close	to	the	edge	of	the	remaining	cell	sequence	as	possible.	As	before,	
then,	bars	1	—	5	are	forced,	and	lead	to	a	very	specific	overall	pattern.	A	similar	
procedure	is	then	forced	on	other	edge	lines,	obviously	omitting	bars	which	would	
form	a	right	angle	with	existing	bars,	since	this	would	split	the	system	into	two.	Bars	
1–16	therefore	continue	this	process	until	the	possibilities	are	exhausted.
	 The	next	move	must	be	non-contiguous	and	must	be	as	near	the	edge	
as	possible.	Several	identical	possibilities	exist,	so	we	select	17.	18	and	19	must	
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continue	to	bar	the	same	line,	leaving	only	one	of	two	possible	identical	further	non-
contiguous	moves.	We	select	20.	Now	no	more	non-contiguous	moves	are	available,	
so	we	must	select	contiguous	moves	with	the	least	depth	gain.	The	best	turns	out	
to	be	that	rebarring	the	already	barred	line	on	which	20	lies	has	the	least	depth	
gain,	in	spite	of	the	fact	that	it	creates	a	three-sided	enclosure.	But	the	next	move	
cannot	create	the	same	pattern	to	the	right,	since	this	will	also	create	a	double	line	
block	as	well	as	a	three-sided	enclosure.	Barring	the	open	line	at	22	has	less	depth	
gain	than	barring	the	adjacent	line	to	the	right,	at	which	point	23	becomes	optimal.	
The	final	bar	must	then	be	on	one	of	five	still	open	lines,	the	four	comprising	the	
‘ring’,	and	the	one	passing	through	the	centre.	Cutting	the	ring	creates	much	more	
depth	gain	than	cutting	the	centre	line,	because	it	creates	a	block	in	the	system	
that	is	four	cells	deep	from	the	boundary.	Of	the	possible	locations	on	the	centre	
line,	the	central	location	has	less	depth	gain	because	the	location	one	to	the	right	
creates	a	two-deep	enclosure,	which	creates	more	extra	depth	than	the	difference	
between	the	centre	and	one-from-centre	location.
	 The	depth	minimising	process	has	thus	given	rise	to	a	form	which	is	as	
striking	as	the	depth	maximising	process:	a	ring	of	open	cells	accessing	outer	
and	inner	groups	of	one-deep	cells.	We	have	only	to	convert	the	doors	in	the	ring	
to	full	width	permeabilities	to	create	a	fundamental	building	form:	the	ring	corridor	
accessing	separate	‘rooms’	on	either	side.	This	has	happened	because	the	depth	
gain	minimising	strategy	tends	to	two	kinds	of	linearity:	a	linearity	in	dividing	lines	
of	cells	up	into	separate	single	cells;	and	a	linearity	in	creating	the	open	cell	
sequences	that	provide	access	to	these	cells.	Aficionados	of	Ockam’s	razor	will	
note	that	both	these	contrary	effects	follow	from	the	single	rule	that	bars	should	
always	be	placed	so	as	to	bar	the	shortest	line	of	cells	available	as	near	the	edge	
as	possible.	This	means	that	once	a	line	has	been	divided,	then	it	minimises	depth	
gain	to	divide	it	again,	since,	other	things	being	equal,	the	remainder	of	an	already	
barred	line	will	always	be	shorter	than	an	unbarred	line.	Figures	8.13a	and	b	show	
typical	forms	from	the	two	processes,	together	with	depth	values	for	each	cell.	In	
fact,	the	two	forms	shown	in	Figures	8.1b	and	c.	The	total	depth	for	the	near	depth	
maximising	process	is	15320	while	that	for	the	depth	minimising	process	is	little	
more	than	a	third	as	much	at	5824.	These	differences	are	all	the	more	remarkable	in	
view	of	the	fact	that	each	form	has	exactly	the	same	number	of	partitions.	The	only	
difference	is	the	way	the	partitions	are	arranged.
	 But	in	spite	of	their	differences,	each	of	the	forms	generated	seems	in	its	
way	quite	fundamental.	The	depth	maximising	form	is	close	to	being	a	unilinear	
sequence,	that	is	the	form	with	the	maximum	possible	depth	from	all	cells.	The	
depth	minimising	form	approximates	if	not	a	bush,	then	at	least	a	bush	like	
arrangement	built	on	a	ring.	We	have	arrived	at	these	forms	by	constraining	the	
combinatorial	process	down	certain	pathways	by	some	quite	simple	rules.	These	
have	created	well	defined	outcomes	through	morphological	processes	which	are	
objective	in	the	sense	that	although	the	selection	and	implementation	of	rules	
is	a	human	decision,	the	local	to	global	morphological	effects	of	these	rules,	
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whether	for	the	individual	move	in	the	process	or	the	accumulative	result,	is	quite	
independent	of	human	decision.	The	eventual	global	pattern	of	space	‘emerges’	
from	the	localised	step-by-step	process.	At	the	same	time,	processes	whose	rules	
are	similar	‘converge’	on	particular	global	types	which	may	vary	in	detail	but	at	least	
some	of	whose	most	general	properties	will	be	invariant	—	the	tendency	to	form	
long	sequences	with	few	branches,	the	tendency	to	generate	one-deep	dead	end	
spaces,	the	tendency	to	form	smaller	or	larger	rings	and	so	on.
	 This	combination	of	emergence	and	convergence	is	immensely	suggestive.	
It	appears	to	offer	a	natural	solution	to	the	apparent	paradox	we	noted	at	the	start	
of	this	chapter:	that	in	spite	of	the	vastness	of	the	combinatorial	field,	intuition	
suggested	relatively	few	ways	of	designing	space.	We	may	now	reformulate	this	
paradox	as	a	tentative	conclusion:	consistently	applied	and	simple	rules	arising	
from	what	is	and	is	not	an	intelligible	and	functionally	useful	spatial	move	create	
well-defined	pathways	through	the	combinatorial	field	which	converge	on	certain	
well-defined	global	spatial	types.	These	laws	of	‘emergence-convergence’	seem	
to	be	the	source	of	structure	in	the	field	of	architectural	possibility.	What	then	are	
these	laws	about?	I	propose	they	are	about	what	I	called	‘generic	function’,	that	is	
properties	of	spatial	arrangements	which	all,	or	at	least	most,	‘well-formed’	buildings	
and	built	environments	have	in	common,	because	they	arise	not	from	specific	
functional	requirement,	that	is,	specific	forms	of	occupation	and	specific	patterns	of	
movement	but	from	what	makes	it	possible	for	a	complex	to	support	any	complex	
of	occupation	or	any	pattern	of	movement.
	
The theory of generic function: intelligibility and functionality
The	first	aspect	of	generic	function	reflects	the	property	of	‘intelligibility’	which	
Steadman	suggests	might	be	one	of	the	critical	factors	restricting	architectural	
possibility.	In	Chapter	4	we	suggested	that	the	intelligibility	of	a	form	can	be	
measured	by	analysing	the	relation	between	how	a	complex	can	be	seen	from	its	
parts	and	what	it	is	like	in	an	overall	pattern,	that	is,	as	a	distribution	of	integration.	
This	was	expressed	by	a	scattergram	showing	the	degree	of	correlation	between	
the	connectivity	of	a	line,	which	is	a	local	property	of	the	line	and	can	be	seen	from	
the	line,	and	integration,	which	is	a	global	property	relating	the	line	to	the	system	as	
a	whole	and	which	cannot	therefore	be	seen	from	the	line.	How	might	this	concept	
relate	to	the	construction	of	spatial	patterns	by	physical	moves?	Visibility	is	in	fact	
interesting	since	it	behaves	in	a	similar	way	to	depth	under	partitioning.	For	linear	
cell	sequences	the	effect	of	bars	on	visibility	exactly	mirrors	depth	gain,	though	in	
a	reverse	direction:	visibility	lost	from	a	bar	is	exactly	half	the	depth	gain	from	the	
same	bar,	and	as	the	bar	moves	from	edge	to	centre	the	total	visibility	along	the	line	
decreases,	while	at	the	same	time	the	visibility	value	of	cells	along	that	line	become	
more	homogeneous,	eventually	becoming	the	same	with	a	central	bar.
	 In	our	two	complexes	then,	let	us	define	visibility	very	simply	as	the	number	
of	cells	that	can	be	seen	from	the	centre	of	each	cell.	These	visibility	values	are	set	
out	for	our	two	depth	maximising	and	minimising	complexes	in	figures	8.13c	and	d.	
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These	visibility	values	and	their	mean	index	the	visual	connectivity	of	the	complex.	
We	may	also	express	these	by	drawing	an	axial	map	of	the	fewest	lines	that	pass	
through	all	the	cells.	We	can	see	how	many	cells	each	line	passes	through,	and	
how	this	differs	from	one	complex	to	another.	We	can	if	we	wish	express	this	in	a	
summary	way	by	working	out	the	ratio	of	the	means	depths	for	each	cell	and	the	
mean	visibility	of	each	cell.	For	the	depth	minimising	form,	the	mean	depth	from	
cells	is	5.3,	and	the	mean	visibility	is	3.9.	We	might	call	this	a	.74	visibility	to	depth	
ratio.	In	the	depth	maximising	form,	the	mean	depth	is	11.9	while	the	mean	visibility	
is	2.8,	a	visibility	ratio	of	.24,	about	a	third	that	of	the	depth	minimising	form.	This	
seems	to	agree	quite	well	with	intuition.
	 This	shows	how	the	visibility	and	depth	properties	of	the	complex	relate	to	
each	other.	However,	we	may	learn	more	by	correlating	the	permeable	depth	figures	
for	cells	with	their	visibility	figures	and	expressing	the	relation	in	a	scattergram.	
The	better	the	values	correlate,	the	more	we	can	say	that	what	you	can	see	from	
the	constituent	cells	of	the	system	is	a	good	guide	to	the	global	pattern	of	depth	
in	the	complex	which	cannot	be	seen	from	a	cell,	but	which	must	be	learnt.	The	
correlation	thus	expresses	the	intelligibility	of	the	complex.	Figures	8.14a	and	b	are	
the	scatters	and	correlation	coefficients	for	our	two	cases,	showing	that	the	depth	
minimising	form	is	far	more	intelligible	than	the	depth	maximising	form.
This	formally	confirms	our	intuition	that	the	depth	maximising	form	is	hard	
to	understand,	in	spite	of	being	a	single	sequence,	because	the	sequence	is	
coiled	up	and	the	information	available	from	its	constituent	cells	is	too	poor	and	
undifferentiated	to	give	much	guidance	about	the	structure	of	the	complex	as	a	
whole	from	its	parts.	The	opposite	is	the	case	in	the	depth	minimising	complex.	
On	reflection,	we	can	see	that	this	will	always	tend	to	be	the	case	with	depth	
maximising	processes	since	the	partitioning	moves	that	maximise	depth	are	also	
those	which	also	maximally	restrict	visibility.
	 There	are	therefore,	as	Steadman	suggests,	fundamental	reasons	to	do	with	
the	nature	of	human	cognition	and	the	nature	of	spatial	complexes	which	will	bias	
the	selection	of	spatial	forms	away	from	depth	maximising	processes	and	in	the	
direction	of	depth	minimising	processes.	Through	this	objective	—	in	the	sense	that	
we	have	measured	as	a	property	of	objects	rather	than	as	a	property	of	minds	—	
property	of	intelligibility	then	we	can	see	one	aspect	of	generic	function	structuring	
the	pathways	from	combinatorial	possibility	to	the	architecturally	real.
	 There	are,	however,	further	reasons	why	depth	minimising	forms	will	
be	preferred	to	depth	maximising	forms	which	have	to	do	with	functionality.	
Functionality	we	define	as	the	ability	of	a	complex	to	accommodate	functions	in	
general,	and	therefore	potentially	a	range	of	different	functions,	rather	than	any	
specific	function.	Intuitively,	deep	tree-like	forms	such	as	the	depth	maximising	form	
seem	functionally	inflexible	and	unsuited	to	most	types	of	functional	pattern	while	
the	depth	minimising	form	seems	to	be	flexible	and	suited	to	a	rather	large	number	
of	possible	functions.	Can	this	be	formalised?
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It	is	useful	to	begin	by	considering	in	as	generic	a	way	as	possible	the	types	of	
human	behaviour	that	occur	in	buildings.	We	may	do	this	best	by	considering	
not	the	purpose	or	meaning	of	an	activity	but	simply	its	physical	and	spatial	
manifestation,	that	is,	what	can	actually	be	observed	about	human	activity	by,	say,	
an	extra-terrestrial	who	had	no	idea	what	was	going	on	and	could	only	record	
observations.	Generically,	such	an	observer	would	conclude,	two	kinds	of	thing	
happen	in	space:	occupation	and	movement.	Occupation	means	the	use	of	space	
for	activities	which	are	at	least	partly	and	often	largely	static,	such	as	conversing,	
meeting,	reading,	eating	or	sleeping,	or	at	most	involve	movement	which,	when	
traced	over	a	period,	remains	localised	within	the	occupied	space,	such	as	cooking	
or	working	at	a	laboratory	bench,	as	shown	in	figure	8.15.
	 Movement	we	can	define	not	as	the	small	local	movements	that	may	be	
associated	with	some	forms	of	occupation,	and	therefore	to	be	seen	as	aspects	of	
occupation,	but	movement	between	spaces	of	occupation,	or	movement	in	and	out	
of	a	complex	of	such	spaces.	Movement	is	primarily	about	the	relations	between	
spaces	rather	than	the	spaces	themselves,	in	contrast	to	occupation	which	makes	
use	of	the	spaces	themselves.	We	can	see	this	as	a	scale	difference.	Occupation	
uses	the	local	properties	of	specific	spaces,	movement	the	more	global	properties	
of	the	pattern	of	spaces.
	 There	is	also	a	difference	between	occupation	and	movement	in	the	spatial	
form	each	takes.	Because	spatial	occupation	is	static,	or	involves	only	localised	

Figure 8.15 (above)
Locally	convex	movement;	when	
small	movements	intersect	and	
form	a	local	convex	region.Locally convex movement;

when small movements intersect
and form a local convex region.

Globally linear movement;
when large scale movement
forms strings or rings of lines.

Figure 8.15

Figure 8.14

a. b.

Figure 8.15 (below)
Globally	linear	movement;		
when	large	scale	movement		
forms	strings	or	rings	of	lines.
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movement,	the	requirement	that	it	places	on	space	is	broadly	speaking	convex,	
even	when	this	involves	localised	movement	within	the	space.	In	particular,	any	
activity	that	involves	the	interaction	or	co-presence	of	several	people	is	by	definition	
likely	to	be	convex,	since	it	is	only	in	a	convex	space	that	each	person	can	be	
aware	of	all	the	others.	Movement,	on	the	other	hand,	is	essentially	linear,	and	
the	requirement	that	it	places	on	space	is	consequently	linear,	at	least	when	seen	
locally	in	its	relation	to	occupation.	There	must	be	clear	and	relatively	unimpeded	
lines	through	spaces	if	movement	is	to	be	intelligible	and	efficient.
	 Occupation	and	movement	then	make	requirements	of	space	that	are	
fundamentally	different	from	each	other	in	that	one	is	convex	and	the	other	linear.	
Because	this	is	so	there	is	an	extra	difficulty	in	combining	occupation	and	movement	
in	the	same	space.	There	will	always,	of	course,	be	practical	or	cultural	reasons	why	
different	forms	of	occupation	cannot	be	put	in	the	same	space	—	interference,	scaling	
of	spaces,	privacy	needs,	and	so	on	—	in	spite	of	the	fact	that	each	is	convex	and	
in	principle	could	be	spatially	juxtaposed	to	others.	But	to	assemble	movement	and	
forms	of	occupation	in	the	same	space	is	in	principle	more	difficult	because,	over	
and	above	functional	interference,	occupation	and	movement	have	fundamentally	

different	spatial	shapes.	The	interference	effect	from	occupation	to	occupation	and	
from	movement	to	movement	will	be	of	a	different	kind	to	that	from	occupation	to	
movement	because	the	spatial	requirements	are	more	difficult	to	reconcile.
	 Because	this	is	so,	it	is	common	to	find	that	the	relation	between	movement	
and	occupation	in	spatial	complexes	is	often	one	of	adjacency	rather	than	overlap,	
whether	this	occurs	in	spaces	which	are	fully	open	(as	for	example	when	we	have	
both	lines	of	movement	and	static	occupation	in	a	public	square),	or	fully	closed,	as	
when	we	have	rooms	adjacent	to	corridors,	or	one	is	open	and	the	other	closed,	
as	when	houses	align	streets.	In	each	case,	the	linearity	required	for	movement	is	

Figure 8.16

Figure 8.17

a. b. c.

a

c d

c

b

a

c

c c

d

d

5

2 3

6

9

11

10

7 8

4

1

1

2 6

5 7

8 4

3

ba

a. b.

1

2

3

4

5

b = 1082

a = 1102

6

7

8

Figure 8.16



Is architecture an ars combinatoria?250

The laws of the field	 	
	 	 	 	

Space	is	the	machine	|	Bill	Hillier	
	 	 	

Space	Syntax

achieved	by	designing	movement	to	occur	in	spaces	which	pass	immediately	by	
rather	than	through	occupation	spaces.
	 Now	let	us	consider	the	types	of	space	that	are	available	to	meet	the	
requirements	of	occupation	and	movement.	First	we	must	consider	the	most	basic	
topological	properties	as	embodied	in	the	graph	of	a	complex,	since	even	at	this	level	
topologically	different	types	of	space	have	quite	different	potentials	for	occupation		
and	movement.	Let	us	first	consider,	a	familiar	graph,	as	shown	in	8.16a,	b	and	c.
	 In	this	graph,	as	in	others,	the	spaces	that	make	up	the	graph	can	be	
divided	into	four	topological	types.	First,	there	are	spaces	with	a	single	link.	These	
are	by	definition	dead-end	spaces	through	which	no	movement	is	possible	to	
other	spaces.	Such	spaces	have	movement	only	to	and	from	themselves,	and	are	
therefore	in	their	topological	nature	occupation-only	spaces.	Examples	are	marked	
‘a’	in	figure	8.16a.	The	link	from	one-connected	spaces	to	the	rest	of	the	graph	is	
necessarily	a	cut	link,	meaning	that	its	elimination	must	split	the	graph	into	two,	in	
this	case	the	space	whose	link	has	been	cut	and	the	rest	of	the	graph.	Because	the	
cut	link	only	serves	a	single	space,	the	effect	of	cutting	makes	little	difference	to	the	
remainder	of	the	complex	beyond	minor	reductions	in	the	depth	of	the	rest	of	the	
complex	following	the	elimination	of	a	space.
	 Second,	there	are	spaces	with	more	than	one	link	but	which	form	part	
of	a	connected	sub-complex	in	which	the	number	of	links	is	one	less	than	the	
number	of	spaces,	that	is,	a	complex	which	has	the	topological	form	of	a	tree.	Such	
spaces	cannot	in	themselves	be	dead	end	spaces,	but	must	be	on	the	way	to	(and	
back	from)	at	least	one	dead	end	space.	All	links	to	spaces	in	such	complexes,	
regardless	of	the	number	of	links	to	each	space,	are	also	‘cut	links’	in	that	the	
elimination	of	any	one	link	has	the	effect	of	splitting	one	or	more	spaces	from	the	
rest	of	the	complex.	Such	spaces	are	marked	‘b’	in	figure	8.16a.	A	consequence	
of	the	definition	is	that	there	is	in	any	such	sub-complex	(or	complex)	exactly	one	
route	from	each	space	to	every	other	space,	however	large	the	sub-complex	and	
however	it	is	defined.	This	implies	that	movement	through	each	constituent	space	
will	only	be	to	or	from	a	specific	space	or	series	of	spaces.	This	in	turn	implies	that	
movement	from	origins	to	destinations	which	necessarily	pass	through	a	b-type	
space	must	also	return	to	the	origin	through	the	same	space.
	 Third,	there	are	spaces	with	more	than	one	link	which	form	part	of	a	
connected	sub-complex	which	contains	neither	type	a	nor	type	b	spaces,	and	in	
which	there	are	exactly	the	same	number	of	links	as	spaces.	Such	spaces	are	
marked	c	in	figure	8.16a.	The	definition	means	that	c-type	spaces	must	lie	on	a	
single	ring	(though	not	all	spaces	on	the	ring	will	be	c-type)	so	that	cutting	a	link	to	
a	c-type	space	will	automatically	reduce	the	ring	to	one	or	more	trees.	Movement	
from	a	c-type	space	through	a	neighbour	need	not	return	through	the	same	
neighbour	but	must	return	through	exactly	one	other	neighbour.
	 Finally	there	are	spaces	with	more	than	two	links	and	which	form	part	of	
complexes	which	contain	neither	a-	nor	b-type	spaces,	and	which	therefore	must	
contain	at	least	two	rings	which	have	at	least	one	space	in	common.	Such	spaces	
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must	lie	on	more	than	one	ring,	and	are	labelled	‘d’	in	figure	8.16a.	Movement	from	
d-type	spaces	through	a	neighbour	has	the	choice	of	returning	by	way	of	more	than	
one	other	neighbour.
	 We	may	also	define	subcomplexes	of	the	a-,	b-,	c-	or	d-type	as	the	space	of	
that	type	plus	all	the	spaces	by	reference	to	which	it	is	defined	as	a	space	of	that	
type,	even	though	some	of	those	spaces	may	belong	also	to	other	subcomplexes.	
(In	other	words,	a	subcomplex	of	a	given	type	is	a	complex	containing	at	least	one	
space	of	that	type.)	Looking	at	numbered	spaces	in	figure	8.16b,	we	can	then	say	
that	spaces	5	and	11	are	a-type	spaces,	and	that	the	sub-complex	formed	by	spaces	
2	and	5	and	that	formed	by	9	and	11	can	be	thought	of	as	a-type	subcomplexes.	
Space	9	is	a	b-type	space,	and	that	the	subcomplex	formed	by	spaces	6,	9	and	11	
can	be	seen	as	a	b-type	sub-complex.	Spaces	2,	6,	7,	8	and	10	are	c-type	spaces	
and	each	may	be	seen	as	forming	part	of	a	local	ring,	or	c-type	complex:	thus	2	and	
6	are	part	of	the	c-type	subcomplex	formed	by	spaces	1,	2,	6	and	3,	and	7,	8	and	
10	are	part	of	the	c-type	complex	formed	by	spaces	3,	7,	10,	8	and	4.	Space	3	and	
4	are	d-type	spaces	and	are	part	of	the	d-type	subcomplex	formed	by	spaces	1,	2,	
3,	4,	6,	7,	8	and	10.	Spaces	are,	in	effect,	unambiguously	defined	by	their	place	in	a	
complex,	but	this	does	not	mean	that	spaces	that	contribute	to	that	definition	do	not	
form	part	of	other	complexes.	For	example,	an	a-space	may	be	part	of	a	b-complex,	
or	a	c-space	may	be	part	of	a	d-complex	without	in	either	case	compromising	its	
unique	identity	as	an	a-	or	c-	type	space.
	 There	are	simple	and	fundamental	relationships	between	these	elementary	
topologies	and	the	depth	minimising	and	maximising	processes.	A	depth	minimising	
process	will	in	its	nature	tend	first	to	leave	long	lines	of	spaces	unimpeded	and	to	
preserve	their	connection	to	other	long	lines,	and	second	to	coil	contiguous	bars	
up	into	small,	one-deep	‘rooms’.	This	is	illustrated	in	figure	8.17a	where	the	first	
eight	bars	cut	the	shortest	lines,	to	create	rooms	at	either	end	and	potential	rooms	
in	the	centre.	The	dotted	bars	marked	‘a’	and	‘b’	represent	two	possible	choices	
at	this	point,	and	the	figure	on	the	right	side	shows	the	total	depth	in	the	system	
after	each.	The	analysis	shows	that	the	two	one-deep	rooms	add	far	less	depth	
than	one	two-deep	complex,	in	effect	because	the	two-deep	complex	is	created	
by	five	contiguous	bars,	whereas	the	one-deep	spaces	are	each	created	by	three	
contiguous	bars.	The	depth	minimising	process	thus	tends	to	create	a-type	spaces	
linked	by	global	c-	and	d-type	complexes,	as	was	the	case	in	the	6	x	6	example	in	
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figure	8.13b.	In	contrast,	the	depth	maximising	process,	as	shown	in	figure	8.17b	
for	example,	will	by	contiguously	barring	the	longest	available	lines,	create	b-type	
spaces	and	therefore	sequences	rather	than	a-type	spaces,	and	localise	c-	and	
d-complexes	at	the	earliest	possible	stage	of	generation,	and	with	a	configuration	
in	which	there	are	few	a-type	spaces,	and	these	at	the	end	of	long	sequences,	with	
any	rings	in	the	system	highly	localised.
	 In	other	words	depth	minimising	processes	will	tend	locally	to	a-type	
complexes	and	globally	to	d-type	complexes	(in	figure	8.13b	it	is	only	the	final	
24th	bar	that	reduces	a	strong	global	d-complex	to	a	global	c-complex),	while	
depth	maximising	processes	will	tend	globally	to	b-type	complexes	and	locally	to	
small	residual	c-type	complexes.	This	is	instructive	because	it	tells	us	how	these	
elementary	configurations	are	related	to	the	product	of	the	functionally	critical	
property	of	integration	in	spatial	complexes.	Essentially,	a-	and	d-type	spaces	
create	integration,	while	b-	and	c-type	spaces	create	segregation.	In	other	words,	
segregation	in	a	complex	is	created	almost	entirely	by	the	sequencing	of	spaces.
Since	this	is	not	obvious,	it	is	worth	illustrating.	In	figure	8.18	for	example,	in	the	
left	column,	we	increase	the	size	of	the	ring	from	8	to	12	spaces	and	the	i-value	
increases	(i.e.	becomes	less	integrated)	from	.4285	for	the	8-ring	to	.4545	for	the	Figure 8.18

Figure 8.18
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12-ring.	In	the	second	column,	we	add	a	single	a-type	space	to	each	c-type	space.	
Both	complexes	become	on	average	more	integrated,	but	the	12-ring	complex	
below	becomes	relatively	more	integrated	at	.2848	than	the	8-ring	complex	above	at	
.3048.	In	fact,	the	ring	spaces	in	the	12-ring	complex	are	slightly	less	integrated	at	
.2410	than	those	of	the	8-ring	complex	at	.2381,	but	the	a-type	space	of	the	12-ring	
complex	are	markedly	more	integrated	at	.3281	than	those	of	the	8-ring	complex	
at	.3714.	In	the	right	column,	we	link	two	a-spaces	to	each	c-space	and	the	pattern	
becomes	even	more	marked.	The	12-ring	complex	is	now	more	integrated	at	.2011	
than	the	8-ring	complex	at	.2200,	with	ring	spaces	at	.1630	compared	to	.1621,	but	
a-spaces	at	.2201	compared	to	.2490.
	 We	now	have	a	more	or	less	complete	account	of	the	relation	between	
generative	processes,	the	creation	of	different	types	of	local	and	global	space	
complexes,	and	the	construction	of	patterns	of	integration.	We	can	now	formulate	
the	question	at	the	centre	of	our	argument:	what	are	the	implications	of	these	
spatial	variations	for	occupation	and	movement,	that	is,	for	the	generic	functioning	
of	spatial	complexes?	In	exploring	this,	we	should	bear	in	mind	one	of	the	major	
findings	of	the	research	reported	in	Chapters	5	to	8:	that	the	more	movement	in	a	
complex	is	from	all	parts	to	all	other	parts,	then	the	more	the	pattern	of	movement	
in	a	complex	will	tend	to	follow	the	pattern	of	integration.
	 First	we	must	note	that	each	of	the	types	of	space	we	have	identified,	and	
the	type	of	complex	it	characterises,	has	generically	different	implications	for	space	
occupation	and	movement.	As	we	have	already	indicated,	a-type	spaces	do	not	have	
through	movement	at	all	and	therefore	do	raise	the	issue	of	relating	occupation	to	
movement	(other	than	movement	to	and	from	the	space	itself).	b-type	spaces	raise	
the	possibility	of	through	movement	but	also	control	it	strongly,	both	because	each	
route	through	a	b-type	space	is	unique	and	also	because	return	movement	must	pass	
through	the	same	space.	c-type	spaces	also	raise	the	possibility	of	through	movement	
while	also	constraining	it	to	specific	sequences	of	spaces,	though	without	the	same	
requirement	for	the	return	journey.	d-type	space	permits	movement,	but	with	much	
less	built-in	control	because	there	is	always	choice	of	routes	in	both	directions.
	 It	is	clear	then	that	b-type	and	to	a	lesser	extent	c-type	spaces	have	a	much	
more	determinative	relation	to	movement	than	either	a-type	or	d-type	spaces.	While	
the	a-type	does	not	allow	for	through	movement,	and	the	d-type	allows	choice	of	
movement,	the	b-type	and	the	c-type	permit	but	at	the	same	time	constrain	it	by	
requiring	it	to	pass	through	specific	sequences	of	spaces.	The	b-type	is	the	most	
constraining.	For	any	trip	from	an	origin	to	a	destination,	every	b-space	offers	
exactly	one	way	in	and	one	way	out	of	each	space	and	every	trip	in	a	b-complex	
must	pass	both	ways	through	exactly	the	same	sequence	of	spaces.	A	similar,	
though	weaker,	effect	is	found	for	c-spaces	and	c-complexes,	because	although	at	
the	level	of	the	ring	as	a	whole	there	will	be	a	choice	of	one	direction	or	another,	
trips	once	begun	must	use	a	single	sequence	of	spaces,	and	the	trip	therefore	
resembles	a	b-trip,	though	without	the	requirement	that	the	return	journey	repeat	the	
same	sequence	in	reverse.	This	effect	arises	from	the	simple	fact	that	b-	and	c-type	
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spaces	are	from	the	point	of	view	of	any	trip	that	passes	through	them,	effectively	
two-connected,	and	two	is	the	smallest	number	that	allows	entry	to	a	space	in	one	
direction	and	egress	in	another.	It	is	this	essential	two-connectedness	from	the	point	
of	view	of	trips,	that	gives	b	and	c-spaces	their	distinctive	characteristic	of	both	
permitting	and	constraining	movement.
	 Now	this	means	that	b-	and	c-type	spaces	raise	issues	for	the	relation	
between	occupation	and	movement	which	are	not	raised	either	by	one-connected	
or	more	than	two-connected	space,	in	that	they	require	the	resolution	of	the	
relation	between	occupation	and	through	movement	within	each	convex	space.	
This	has	a	powerful	effect	on	the	usability	of	spaces	and	space	complexes	of	
this	kind.	In	general,	it	can	only	occur	where	the	sequencing	of	spaces	reflects	a	
parallel	functional	sequencing	of	occupation	zones,	and	movement	is,	as	it	were,	
internalised	into	the	functional	complex	and	made	part	of	its	operation.
	 For	example	many	types	of	religious	building	use	exactly	this	spatial	property	
to	create	a	sequence	of	spaces	from	the	least	to	the	most	sacred,	each	space	having	
different	occupational	characteristics.	More	commonly,	we	find	the	phenomenon	
of	the	ante-room,	for	example	where	a	senior	person	in	an	organisation	places	a	
subordinate	in	a	space	which	controls	access	to	the	office.	In	domestic	space,	such	
interdependencies	are	quite	common.	Indeed,	the	domestic	dwelling	may	often	be	
characterised	as	a	pattern	of	such	interdependencies.	Figure	8.16,	for	example,	has	
a	maximally	simple	b-complex	(spaces	6,	9	and	11)	associated	with	male	working	
activity	and	a	near	maximally	simple	c-complex	(spaces	3,	7,	10,	8	and	4)	associated	
with	female	working	activity,	as	well	as	a	maximally	simple	a-complex	(spaces	2	and	
5)	associated	with	formal	reception	and	a	dominant	d-type	space	(space	3	—	the	salle	
commune)	in	which	all	everyday	living	functions,	including	informal	reception,	are	
concentrated	and	which	holds	the	whole	complex	together.	It	is	notable	that	if	this	
space	(space	3)	is	removed	from	the	complex,	as	in	figure	8.16c,	the	whole	complex	
is	reduced	to	a	single	sequence	with	a	single	one-deep	branch.9

	 In	general	we	can	say	that	the	sequencing	of	spaces	normally	occurs	when	
(and	perhaps	only	when)	there	are	culturally	or	practically	sanctioned	functional	
interdependencies	between	occupation	zones	which	require	movement	to	be	an	
essential	aspect	of	these	interdependencies	and	therefore	to	be	internalised	into	
a	local	functional	complex	of	spaces.10	Such	interdependencies	are	comparatively	
rare	and,	because	they	are	so,	where	they	do	occur	they	tend	to	be	highly	localised.	
There	are	simple	combinatorial	reasons	for	this.	If	interdependency	requiring	
internalisation	of	movement	into	a	functional	complex	is	unusual	for	pairs	of	
occupation	types,	it	is	even	more	unusual	for	triples,	even	more	for	quadruples,	and	
so	on.	This	is	why	it	tends	to	remain	localised.
	 It	follows	that	whereas	in	small	buildings,	such	functionally	interdependent	
complexes	can	form	a	significant	proportion	of	the	complex,	or	even	the	whole	
complex,	as	buildings	grow	large	and	acquire	more	and	more	occupation	spaces,	
those	that	have	the	necessary	interdependencies	that	require	spatial	sequencing	will	
become	a	diminishing	proportion	of	the	whole.	As	buildings	grow	therefore	more	
and	more	of	the	movement	will	not	be	of	the	kind	which	is	internal	to	the	functioning	
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of	a	local	subcomplex	but	will	occur	between	subcomplexes	which	are	functionally	
much	more	independent	of	each	other.
	 This	means	that	movement	will	be	less	‘programmed’,	that	is,	a	necessary	
aspect	of	interdependent	functions,	and	more	contingent,	or	‘unprogrammed’.11	
It	follows	that	the	pattern	of	movement	will	follow	from	two	things:	first	from	the	
way	in	which	the	various	occupation	spaces	are	disposed	in	the	spatial	complex,	
coupled	to	the	degree	to	which	each	acts	as	an	origin	and	a	destination	for	
movement	between	occupation	spaces;	second,	from	how	this	disposition	relates	
to	the	spatial	configuration	of	the	complex	itself.	The	more	movement	occurs	more	
or	less	randomly	from	all	locations	(or	even	all	parts	of	the	complex)	to	all	others,	
then	the	more	it	will	approximate	the	conditions	that	give	rise	to	‘natural	movement’,	
that	is	movement	through	spaces	generated	by	the	configuration	of	space	itself,	and	
the	more	movement	will	then	follow	the	pattern	of	integration	of	the	building.	The	
more	this	occurs,	the	more	movement	will	be	functionally	neutralised,	that	is,	it	will	
not	be	an	intrinsic	aspect	of	local	functional	complexes	determined	by	the	functional	
programme	of	the	building	but	as	a	global	emergent	phenomenon	generated	by	the	
structure	of	space	in	the	building	and	the	disposition	of	occupation	spaces	within	it.
	 Neutralised	movement	will	then	tend	to	follow	the	configurational	topologies	
that	generate	the	pattern	of	integration	in	a	building.	a-space	will	have	no	movement	
other	than	that	starting	and	finishing	in	them;	b-space	will	have	movement	only	to	the	
spaces	to	which	they	control	both	access	and	egress;	c-spaces	will	have	movement	
to	spaces	to	which	they	control	either	access	or	egress;	while	d-spaces	will	be	
natural	attractors	of	movement.	It	follows	that	just	as	a-spaces	are	the	most	suited	for	
occupation	because	they	are	least	suited	for	movement,	so	d-spaces	are	the	least	
suited	for	occupation,	because	they	are	the	most	suited	to	movement,	especially	
where	this	movement	is	from	all	locations	to	all	other	locations	in	the	complex.
	 It	follows	that	a	growing	spatial	complex	will	need	a	decreasing	proportion	
of	b-	and	c-complexes	since	these	will	only	be	needed	for	local	functionally	inter-
dependent	groups	of	occupation	spaces,	and	a	growing	proportion	of	a-type	and	d-type	
complexes.	In	such	complexes	there	will	be	a	natural	specialisation	of	spaces	into	
a-complexes	for	occupation	and	d-complexes	for	movement,	and	therefore	an	equally	
natural	tendency	towards	the	adjacency	relation	for	occupation	and	movement.
	 As	we	have	seen,	it	is	exactly	such	complexes	that	are	generated	by	depth	
minimising	processes.	Such	complexes	also	have	other	advantages.	First,	because	
the	mix	of	a-type	and	d-type	complexes	is	in	its	nature	the	most	integrated,	then	
journeys	from	all	spaces	to	all	others	will	be	on	average	topologically	(and	in	fact	
metrically)	shorter	than	for	any	other	type	of	complex.	Second,	such	complexes	
maximise	the	number	of	a-spaces	for	occupation	while	minimising	the	number	of	
spaces	in	the	d-complex	for	movement,	thus	making	the	relation	of	occupation	
and	movement	as	effort-efficient	as	possible.	Third,	the	more	this	is	the	case,	the	
more	movement	from	specific	origins	to	specific	destinations	in	the	complex	will	
overlap	and	create	a	global	pattern	of	co-presence	and	co-awareness	of	those	who	
are	not	brought	together	in	the	local	functional	subcomplexes	of	the	building.	In	
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other	words,	the	movement	pattern	brings	together	in	space	what	the	occupational	
requirement	of	the	complex	divides.	This	reflects	the	basic	fact	that	whereas	the	
overlap	of	occupation	type	in	the	same	space	is	likely	to	cause	interference	from	one	
to	the	other,	the	overlap	of	movement	in	situations	where	movement	is	functionally	
neutralised	creates	an	emergent	form	of	spatial	use	—	co-presence	through	movement	
—	which	is	essentially	all	of	the	same	type.	Overlap	is	therefore	not	likely	to	be	read	as	
interference.	On	the	contrary,	it	is	likely	to	be	read	as	a	benefit.
	 It	is	then	in	the	nature	of	things	that	spatial	complexes	of	this	type	will	
tend	to	become	dominant	as	buildings	grow	in	scale	and	occupational	complexity.	
This	type	of	configuration	arises	from	generic	function,	that	is,	from	the	fact	of	
occupation	and	the	fact	of	movement,	prior	to	any	consideration	of	the	specific	
functions	to	be	accommodated	in	the	building.	We	only	need	to	add	the	larger	open	
spaces	and	longer	linear	spaces	in	the	d-complex	in	accordance	with	the	principles	
we	have	established	to	optimise	the	relation	between	occupation	and	movement		
in	the	complexes.
	
So, is architecture an ars combinatoria?
We	have	now	answered	the	question	asked	at	the	beginning	of	the	chapter,	
and	embodied	in	the	two	prefatory	quotes.	No	theory	of	architecture	as	an	ars 
combinatoria	of	elements	and	relations	is	useful	because,	as	with	language,	it	is	
how	combinatorial	possibility	is	restricted	that	gives	rise	both	to	the	‘structure	of	
the	language’	and	to	the	‘elements’	of	which	the	language	is	composed.	The	vast	
majority	of	combinatorial	possibilities	are	as	irrelevant	to	that	language	as	random	
sequences	of	words	are	to	natural	language.	The	structure	of	the	language,	which	
eliminates	most	possibilities,	arises	not	from	basic	rules	for	combining	basic	
elements,	but	from	local	to	global	laws	from	physical	moves	to	spatial	configuration,	
which	give	rise	at	one	level	to	the	local	stabilities	we	call	elements	and	at	another	to	
the	higher	order	patterns	that	characterise	the	general	spatial	forms	of	buildings.
	 The	effects	of	understanding	how	restrictions	on	combinatorial	possibility	
create	the	‘language	of	space’	are	two.	First,	we	see	that	there	are	not	in	any	useful	
sense	basic	elements.	Elements	arise	from	local	spatial	strategies	that	realise	—	and	
must	then	be	taken	as	intending	to	realise	—	particular	local	to	global	spatial	ends.	
All	are	describable	as	spatial	phenomena	emergent	from	the	consistent	application	
of	rules	governing	either	the	completion	or	removal	of	a	single	type	of	fundamental	
spatio-physical	element:	the	permeable	partition.	It	is	the	record	of	this	consistent	
application	that	we	see	when	we	name	a	local	configuration	as	a	certain	kind	of	
element.	If	we	randomly	partition	a	complex,	as	in	the	four	examples	in	figure	8.19,	
we	do	not	find	such	consistencies,	and	we	are	not	therefore	inclined	to	identify	
elements.	We	should	properly	see	‘elements’	as	‘genotypes’,	that	is,	systems	of	
informational	abstractions	governing	objects	whose	phenotypes	are	endlessly	
varied.	It	is	only	in	this	way	that	we	can	reconcile	the	idea	of	a	well-formed	‘element’	
with	the	fact	that	such	elements	arise	from	and	are	given	by	configurational	
relations,	not	only	those	which	generate	their	intrinsic	form,	but	also	those	which	
define	their	embedding	in	the	system	as	a	whole.	In	one	sense	we	might	say	



Is architecture an ars combinatoria?257

The laws of the field	 	
	 	 	 	

Space	is	the	machine	|	Bill	Hillier	
	 	 	

Space	Syntax

that	we	have	reduced	the	apparent	fundamental	elements	of	spatial	complexes	
to	something	more	elementary:	a	small	family	of	local	physical	moves	which	by	
following	different	rules	produce	spatial	effects	in	the	complex.	But	in	a	more	
important	sense,	we	have	dissolved	the	element	into	two	sets	of	configurational	
laws:	the	laws	that	generate	the	element	itself,	and	those	that	generate	the	impact	
of	the	element	on	the	complex	as	a	whole.
	 Second,	we	see	that	it	is	not	useful	to	think	of	global	patterns	as	arising	
simply	from	relations	among	elements.	In	a	spatial	configuration,	every	local	move	
has	its	own	configurational	effect,	and	it	is	the	natural	laws	that	govern	these	local	
to	global	effects	that	govern	global	configuration.	It	follows	that	it	is	knowledge	of	
these	laws	that	we	require	for	a	theory	of	space,	not	knowledge	of	combinatorial	
possibility.	It	is	these	laws	that	give	rise	to	both	the	local	configurational	types	
we	are	tempted	to	call	elements	and	to	the	global	configurational	patterns	that	
commonly	characterise	buildings	as	a	whole.	We	can	thus	solve	the	apparent	
paradox	of	vast	combinatorial	possibility	and	a	few	basic	pattern	types.	It	is	the	
natural	local	to	global	laws	restricting	possibility	that	lead	space	to	converge	on	the	
pattern	types	that	we	find.
	 The	precise	form	of	these	laws	governing	the	relation	between	possible	

Figure 8.19

Figure 8.19
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spatial	configuration	and	generic	function	lies	in	the	fact	that	individual,	localised	
design	moves	—	say	making	a	partition,	or	eliminating	a	doorway	—	have	global	
configurational	effects,	that	is,	effects	on	the	overall	pattern	of	space.	These	global	
pattern	effects	of	local	moves	are	systematic,	so	that	different	types	of	move,	carried	
out	consistently,	will	give	rise	to	very	different	configurational	effects.	These	local	to	
global	laws	are	independent	of	human	volition,	and	as	such	must	be	regarded	as	
more	akin	to	natural	laws	than	contingent	matters	of	human	existence.	This	does	
not	imply	that	the	relationship	of	human	beings	to	space	is	governed	by	natural	
laws,	but	it	does	mean	that	the	passage	from	the	possible	to	the	actual	passes	
through	—	and	has	historically	passed	through	—	natural	laws	which	mediate	the	
relationship	of	human	beings	to	space.	The	built	forms	that	actually	exist,	and	have	
existed,	are	not,	as	they	are	often	taken	to	be,	simply	subsets	of	the	possible,	but	
variable	expressions	of	the	laws	that	govern	the	transition	from	the	possible	to	
the	real.	These	laws,	and	their	relation	to	generic	function,	are	therefore	the	true	
constraints	on	spatial	possibility	in	architecture	and	urban	design,	and	a	theory	of	
space	must	be	an	account	of	these	laws.
	 Does	this	mean	we	should	abandon	combinatorics	altogether?	We	should	
not.	Combinatoric	possibility	is	the	framework	within	which	architectural	actuality	
exists,	and	the	proper	form	of	a	theory	is	one	that	describes	how	possibility	
becomes	actuality.	We	are	now	in	a	position	to	suggest	the	general	framework	for	
such	a	theory.	The	huge	number	of	possible	spatial	arrangements,	we	suggest,	
pass	through	a	series	of	three	filters	before	they	become	real	buildings.	The	filters	
operate	at	different	levels,	but	all	have	to	do	with	the	human	purposes	for	which	we	
make	buildings;	that	is,	these	filters	are	functional	filters	of	possible	forms.
The	first	filter	is	the	most	general:	that	of	generic	function,	as	we	have	described	
above.	This	governs	the	properties	which	all	spatial	arrangements	must	have	in	
order	to	be	usable	and	intelligible	to	human	beings	at	all,	that	is,	in	order	for	human	
beings	to	be	able	to	occupy	space,	to	move	about	between	spaces	and	to	find	
buildings	intelligible.	The	second	filter	is	the	filter	of	cultural	intent.	This	refers	to	
the	way	in	which	buildings	tend	to	form	culturally	defined	types	so	that	buildings	
which	perform	the	same	culturally	defined	function	in	a	specific	time	and	space	
tend	to	have	at	least	some	common	spatial	properties.	We	may	call	this	filter	that	
of	the	cultural	genotype.	The	third	filter	is	the	level	of	the	specific	building,	where	
those	aspects	which	are	not	specified	by	the	cultural	genotype	can	vary	either	in	a	
structured	or	random	way,	giving	rise	to	individual	differences	in	buildings.	These	
three	functional	filters	are	not	independent	of	each	other,	but	work	in	succession.	
For	example,	all	level-two	cultural	genotypes	work	within	the	limits	set	by	the	
generic	function	filter	of	level-one.	Similarly,	level-three	filters	work	within	the	
constraints	set	at	level-two.
	 There	is,	however,	a	further	reason	why	we	should	not	abandon	
combinatorics.	Although	we	have	shown	in	this	chapter	that	the	combinatorial	study	
of	formal	and	spatial	possibility	in	architecture	cannot	in	itself	lead	to	the	theory	
of	architectural	possibility,	this	does	not	end	the	matter.	Although	the	theoretical	
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space	of	buildings	is	only	a	part	of	the	theoretical	space	of	spatial	combinatorics,	it	
nevertheless	is	a	part	of	that	field,	and	as	such	it	must	obeys	its	laws.	If	this	is	the	
case,	then	we	find	that	having	eliminated	combinatorics	as	a	theory	of	architecture,	
we	must	re-admit	it	as	meta-theory.
	 Let	us	argue	from	a	precise	example.	In	Chapter	2,	we	discussed	a	thought	
experiment	called	the	‘Ehrenfest	game’	as	a	model	for	the	concept	of	entropy.	In	
this	experiment,	100	numbered	balls	placed	in	one	jar	eventually	get	more	or	less	
evenly	distributed	between	two	jars	if	we	randomly	select	a	number	and	transfer	the	
corresponding	ball	from	whichever	jar	it	is	in	to	the	other.	This	happens	because	
the	half	and	half	state	is	the	most	probable	state	because	there	are	far	more	
microstates,	that	is,	actual	distributions	of	the	numbered	balls,	corresponding	to	
the	half	and	half	macrostate	(that	is	the	actual	number	of	balls	in	each)	than	to	
macrostates	in	which	the	balls	are	unevenly	distributed.	The	shifting	probabilities	of	
this	process	give	an	insight	into	the	formal	nature	of	‘entropy’.
	 Now	the	point	of	the	‘Ehrenfest	game’	is	that	it	is	a	useful	analogue	for	the	
physical	notion	of	‘entropy’,	as	found	for	example	in	mixing	gases.	It	is	relevant	
to	our	argument	because	we	can	use	the	Ehrenfest	model	to	explore	a	random	
partitioning	process,	and	in	doing	so	learn	important	lessons	about	partitioning	in	
general.	All	we	need	do	is	set	up	a	process	for	randomly	partitioning	our	spatial	
complex	by	numbering	our	60	partitions	in	the	6×6	complex	and	setting	up	the	
random	selector	to	select	a	number	between	1	and	60.	We	then	spin	the	pointer	
to	select	numbers	in	succession,	and	each	time	a	number	is	selected	go	to	the	
partition	with	that	number	and	change	its	state;	that	is,	open	a	doorway	in	a	
partition	without	one,	and	close	it	off	if	it	has	one.	What	happens?	Intuition	says	that	
the	process	will	eventually	settle	down	to	a	state	in	which	about	half	the	partitions	
have	doorways	and	half	do	not,	and	that	this	is	therefore	the	most	probable	state.	
We	already	know	that	this	is	the	state	where	there	are	the	maximum	possible	
number	of	different	arrangements.
	 We	may	show	this,	and	understand	its	relevance,	by	thinking	through	
carefully	what	will	happen	in	our	random	process.	The	first	time	a	number	is	
selected,	the	probability	of	opening	a	doorway	rather	than	closing	one	is	60/60,	or	
1,	meaning	certainty.	The	second	time,	there	is	a	1/60	chance	of	closing	the	same	
door	we	have	just	opened	(a	.0167	probability)	and	a	59/60	chance	of	opening	
another	(a	.9833	probability).	The	third	time,	there	is	a	2/58	chance	of	closing	one	
of	the	doors	we	have	just	opened	(or	a	.0345	probability),	and	a	58/60	chance	of	
opening	another	(a	.9667	probability).	Evidently	as	we	progress,	the	chances	of	
closing	a	door	rather	than	opening	another	begin	to	approach	each	other	until	when	
we	have	30	doorways	open	and	30	partitions	closed,	the	chances	are	exactly	equal.	
Opening	and	closing	doors	are	therefore	‘equiprobable’.
	 In	other	words,	we	have	the	same	type	of	combinatorics	for	a	partitioning	
process	as	we	do	for	an	Ehrenfest	game,	and	therefore	for	the	concept	of	entropy.	
This	conclusion	has	clear	architectural	implications.	For	example,	it	explains	that,	
as	we	have	already	noted,	there	are	far	more	partitioning	states	for	about	half	the	
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number	of	possible	partitions	than	there	are	for	smaller	or	larger	numbers.	There	
is	then	a	greater	range	of	states	for	partitioning	close	to	the	maximum	for	a	single	
complex	(as	in	the	depth	maximising	and	depth	minimising	examples)	and	it	is	also	
in	this	region	that	small	changes	to	a	partitioning	have	the	maximum	effect	on	the	
distribution	of	integration,	as	for	example	moving	a	single	partition	to	cut	a	large	
ring.	There	are	a	whole	family	of	such	and	similar	questions	which	arise	from	the	
basic	combinatorics	of	space,	even	though	buildings	occupy	only	a	small	part	of	the	
combinatorial	range.
	 The	laws	of	spatial	combinatorics	are	not	therefore	the	spatial	theory	of	
architecture	but	they	do	govern	it	and	constitute	the	meta-structure	within	which	
the	theoretical	space	of	real	architectural	possibility	exists.	Spatial	combinatorics	
is	therefore	the	meta-theory	of	architectural	space,	not	its	theory.	The	relationship	
is	exactly	analogous	to	that	between	the	mathematics	of	‘information	theory’	
and	the	science	of	linguistics.	The	mathematical	theory	of	communication	is	not	
itself	the	theory	of	language,	but	it	is	the	meta-theory	for	the	theory	of	language,	
because	it	is	the	framework	of	general	laws	within	which	linguistic	laws	come	into	
existence.	As	with	language,	mathematical	laws	of	combinatorics	are	everywhere	
present	in	architectural	possibility	because	they	are	the	framework	for	that	system	
of	possibility.	They	need	therefore	to	be	understood	as	a	pervasive,	containing	
framework	for	the	theory	of	architectural	space.
	 In	the	next	chapter	we	will	see	that	there	is	a	much	more	pervasive	sense	
in	which	combinatorics	is	the	meta-theory	of	architectural	possibility,	that	is,	when	
we	come	to	study	not	the	discrete	sets	of	possibilities	which	we	have	considered	
so	far,	but	when	we	look	at	aggregative	processes	of	the	kinds	that	prevail	in	urban	
systems	of	all	kinds,	and	in	building	complexes	as	they	become	large.	Here	we	will	
see	that,	as	discussed	briefly	in	Chapter	8,	combinatorial	probability	actually	plays	a	
constructive	role	in	architectural	morphogenesis.
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of	pre-delimited	signs	to	be	studied	according	to	their	meaning	and	arrangement’,	
p.104;	‘We	are	tempted	to	think	so	if	we	start	from	the	notion	that	the	units	to	
be	isolated	are	words…the	concrete	unit	must	be	sought	not	in	the	word,	but	
elsewhere’,	p.105;	and	‘Language,	in	a	manner	of	speaking,	is	a	type	of	algebra	
consisting	solely	of	complex	terms…language	is	a	form	not	a	substance…all	our	
incorrect	ways	of	naming	things	that	pertain	to	language	stem	from	the	involuntary	
supposition	that	the	linguistic	phenomenon	must	have	substance’,	p.122.
In	other	words,	each	kind	of	occupation	is	characterised	by	a	distinctive	local	
configuration,	dependent	for	their	integration	into	a	single	complex	on	the	spatio-
functionally	central	salle	commune.	It	is	the	fact	of	being	an	assemblage	of	
different	local	sub-complexes	into	a	single	configuration	that	makes	the	dwelling	
distinctive	as	a	building	type.	The	dwelling	is	not,	as	it	is	often	taken	to	be,	the	
simplest	building.	On	the	contrary,	seen	as	an	intricate	pattern	of	functional	
interdependencies	mapped	into	space,	it	may	well	be	the	most	complex.
In	buildings	where	the	organisation	of	a	specific	pattern	of	movement	is	a	dominant	
functional	requirement	we	can	expect	space	to	be	dominated	by	sequencing.	For	
example,	galleries	and	exhibition	complexes,	which	are	designed	explicitly	to	move	
people	through	the	complex	so	that	all	spaces	can	be	traversed	without	too	much	
repetition,	normally	have	a	high	proportion	of	c-type	sequenced	spaces,	giving	
their	justified	graphs	the	distinctive	form	of	a	number	of	deep,	intersecting	rings.	
This	is	not,	however,	a	clear	case.	If	we	examine	the	functional	microstructure	
of	gallery	spaces	we	find	that	the	lines	of	global	movement	pass	through	the	
sequenced	space	in	such	a	way	as	to	leave	the	viewing	zones	free	for	only	local	
convex	movement.	Locally	at	least,	the	relation	of	convex	and	linear	zones	is	one	of	
adjacency	rather	than	true	interpenetration.
Or,	as	discussed	in	Chapter	7,	will	follow	long	or	short	models.
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Cities as things made of space
In	the	previous	chapter	it	was	suggested	that	the	relation	between	human	beings	and	
space	was,	at	a	deep	level,	governed	by	two	kinds	of	law:	laws	of	spatial	emergence,	
by	which	the	larger-scale	configurational	properties	of	space	followed	as	a	necessary	
consequence	from	different	kinds	of	local	physical	intervention;	and	laws	of	‘generic	
function’,	by	which	constraints	were	placed	on	space	by	the	most	generic	aspects	
of	human	activity,	such	as	the	simple	facts	of	occupying	space	and	moving	between	
spaces.	In	this	chapter	we	argue	that,	to	a	significant	extent,	the	spatial	forms	of	cities	
are	expressions	of	these	laws,	and	that	if	we	wish	to	understand	them	we	must	learn	
to	see	them	as	‘things	made	of	space’,	governed	by	spatial	laws	whose	effects	but	
not	whose	nature	can	be	guided	by	human	agency.	One	implication	of	this	argument	
will	be	that	twentieth-century	design	(as	dicussed	in	Chapter	5)	has	often	used	spatial	
concepts	for	urban	and	housing	areas	which	fall	outside	the	scope	of	these	laws,	
creating	space	which	lacks	the	elementary	patterning	which	these	laws	have	normally	
imposed,	in	some	shape	or	form,	in	the	past.	If,	as	is	argued	here,	such	laws	exist,	
then	it	will	be	necessary	to	revise	current	concepts	of	the	well-ordered	city	back	in	the	
direction	implied	by	these	laws.
	 There	are,	however,	obvious	objections	to	the	idea	that	urban	forms	
evolve	according	to	general	laws.	The	most	obvious	is	that	cities	are	individuals,	
and	that	this	is	because	the	forms	they	take	are	influenced	by	factors	which	are	
quite	specific	to	the	time	and	place	in	which	they	grow	—	local	topographical	facts	
such	as	harbours,	rivers	and	hills,	particular	historical	events	such	as	trading	
developments,	population	movements	and	conquests	and	by	pre-existing	contextual	
conditions,	such	as	route	intersections	and	the	existence	of	exploitable	resources.	
Each	type	of	influence	might	be	expected	to	have	generically	similar	effects	on	
urban	form,	but	taken	together	it	is	highly	unlikely	that	any	two	cities	would	repeat	
the	same	grouping	or	sequencing	of	influences.	These	factors,	then,	in	spite	of	
initially	suggesting	bases	for	comparison,	tend	make	each	city	unique.	And	this,	of	
course,	is	how	we	experience	them.
	 A	second	objection	is	slightly	less	obvious,	and	a	little	contradictory	to	the	
first,	since	it	is	typological.	The	spatial	and	physical	development	of	cities	is	—	quite	
properly	—	held	to	be	a	reflection	of	the	social	and	economic	processes	which	
provide	the	reasons	for	their	existence.	Differences	in	these	processes	are	likely	to	
give	rise	to	differences	in	type	between	cities.	We	saw	a	clear	instance	of	this	in	
the	typological	contrast	drawn	in	Chapter	6	between	cities	of	production	and	cities	
of	social	reproduction.	Differences	in	spatial	and	physical	form	were	there	shown	
to	be	reflections	of	differences	in	the	essential	functions	of	those	cities.	Similarly,	
differences	in	the	physical	and	spatial	form	of	cities,	say,	to	the	north	and	south	of	
the	Mediterranean,	are	manifestly	connected	in	some	way	to	the	social	and	cultural	
idiosyncrasies	of	the	European	and	Islamic	traditions.	It	seems	then	to	be	specific	
social,	economic	and	cultural	processes,	rather	than	generic	spatial	laws,	that	are	
the	driving	forces	on	urban	form.
	

In dilating my surface I increased 
the possibilities of contact between 
me and the outside of me that was 
so precious, but as the zones of 
my body soaked in marine solution 
were extended, my volume also 
increased at the same time, and a 
more and more voluminous region 
within me became unreachable by 
the elements outside, it became 
arid, dull and the weight of this 
dry and torpid thickness I carried 
within me was the only shadow on 
my happiness — so perhaps I could 
say that I’m better off now than I 
was then, now that the layers of 
our former surface, then stretched 
on the outside, have been turned 
inside out like a glove, now that all 
the outside has turned inward, and 
enters and pervades us through 
filiform ramifications…
(Italo Calvino, Blood, Sea)
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Both	objections	seem	well-founded.	Seen	in	one	way,	cities	are	individuals;	seen	
in	another	another,	they	seem	to	be	types.	How	can	these	facts	be	reconciled	to	
the	idea	that	general	spatial	laws	might	play	a	role	in	their	spatial	evolution?	In	fact,	
there	is	no	incompatibility.	It	is	simply	a	matter	of	the	level	at	which	we	are	talking.	
The	influence	of	spatial	laws	on	cities	operates	not	at	the	level	of	the	individuality	of	
the	city,	nor	on	the	typology	of	the	city,	but	at	the	deeper	level	of	what	all	individual	
cities	and	types	of	city	have	in	common,	that	is,	what,	spatially,	makes	a	city	a	city.	
As	settlements	evolve	under	different	social	and	topographical	conditions,	they	
tend	to	conserve,	in	spite	of	the	influence	of	these	differences,	certain	properties	of	
spatial	configuration	‘nearly	invariant’.	By	‘nearly	invariant’,	we	simply	mean	that	the	
configurational	properties	we	find	fall	within	a	very	narrow	band	of	combinatorial	
possibility.	Without	knowledge	of	these	‘near	invariants’	we	cannot	easily	understand	
what	cities	are	in	principle,	before	we	consider	them	as	types	or	as	individuals.
	 What	are	these	‘near	invariants’?	Let	us	begin	by	looking	at	a	pair	of	
illustrative	axial	maps:	plate	2c-e,	which	is	part	of	London	as	it	is	now,	and	plate	
7,	which	is	the	central	part	of	Shiraz,	in	Iran,	as	it	was	prior	to	twentieth-century	
modernisation.	The	grids	have	clear	differences	in	character.	Line	structures	are	more	
complex	in	Shiraz,	and	are	in	fact	much	less	integrated	and	intelligible.	If	we	were	to	
examine	the	relation	of	lines	to	convex	elements,	we	would	find	that	in	London	lines	
tend	to	pass	through	more	convex	spaces	that	in	Shiraz.	Looking	at	the	integration	
core	structures,	we	also	find	differences.	Although	at	radius-n	(not	shown	in	the	case	
of	Shiraz),	both	have	strongly	centralised	cores,	linking	centre	towards	edge,	at	radius-
radius,	London	has	a	‘covering’	core,	linking	centre	to	edge	in	the	way	characteristic	
of	European	cities,	while	in	Shiraz	the	radius-radius	core	is	markedly	regionalised.	
These	differences	in	grid	structure	are	associated	with	well-known	behavioural	
differences,	for	example,	in	the	ways	in	which	inhabitants	relate	to	strangers	and	men	
to	women	in	Islamic	as	compared	to	European	cities.	We	can	call	these	associations	
of	urban	forms	and	social	behaviour	‘spatial	cultures’,	and	note	that	one	of	the	main	
tasks	of	a	theory	of	urban	form	would	be	to	explicate	them.
	 However,	as	can	be	seen	from	the	two	plates,	underlying	the	manifest	
spatial	differences	we	also	find	much	common	ground	in	the	urban	grids.	For	
example,	in	both	cases,	the	spaces	formed	by	the	buildings	tend	to	be	improbably	
linearised	in	at	least	three	senses.	At	the	smallest	scale,	we	find	that	buildings	are	
placed	next	to	and	opposite	each	other	to	form	spaces	which	stress	linearity	rather	
than,	for	example,	enclosure.	Second,	at	a	slightly	less	local	level,	lines	of	sight	
and	access	through	the	spaces	formed	by	buildings	tend	to	become	extended	into	
other	spaces	to	a	degree	that	is	unlikely	to	have	occurred	by	chance.	Third,	we	find	
that	some,	but	only	some,	of	the	linear	spaces	are	prioritised	to	form	larger	scale	
linear	continuities	in	the	urban	grids,	creating	a	more	global	movement	potential.	
These	properties	are	present	in	the	two	cases	to	different	degrees,	but	they	are	
nevertheless	present	in	both	cases.	They	will	be	found	to	be	present	in	some	
degree	in	most	settlements.
	 At	a	more	global	scale,	we	also	find	commonalities	across	the	two	cases,	
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which	are	also	‘near	invariants’	in	settlements	in	general.	Two	of	the	most	notable	
are	that	in	both	cases	we	will	find	a	well	formed	local	area	structure	of	some	kind	
coexisting	with	a	strong	global	structure.	Both	levels	of	structure	are	different	in	the	
two	cases,	but	each	case	does	have	both	levels	of	structure,	and	this	we	will	find	is	
generally	the	case	in	cities.	At	the	most	general	level	of	the	overall	shape	of	cities,	we	
also	find	‘near	invariants’.	One	of	the	most	significant	is	that	cities,	as	they	grow,	tend	
to	fill	out	in	all	directions	to	form	more	or	less	compact	shapes,	even	in	cases	where	
they	are	linear	in	the	early	stages.	The	‘deformed	grid’,	with	all	the	properties	we	have	
just	described,	seems	to	be	the	aptest	term	to	summarise	these,	and	other,	‘near	
invariants’	of	cities,	because,	however	much	urban	space	is	articulated	and	broken	
up,	buildings	are	still	in	general	aggregated	into	outwards	facing	islands	to	define	
intersecting	rings	of	space,	which	then	become	improbably	linearised	to	give	rise	to	
the	local	area	and	global	structures	that	are	found	by	configurational	analysis.
	 These	commonalities,	it	will	be	argued,	arise	from	what	spatial	cultures	have	
in	common,	that	is,	from	what	in	the	previous	chapter	was	called	generic	function.	
This,	it	will	be	recalled,	referred	not	to	the	different	activities	that	people	carry	out	in	
space,	but	to	aspects	of	human	occupancy	of	space	that	are	prior	to	any	of	these:	
that	to	occupy	space	means	to	be	aware	of	the	relationships	of	a	space	to	others,	
that	to	occupy	a	spatial	complex	means	to	move	about	in	it,	and	to	move	about	
depends	on	being	able	to	retain	an	intelligible	picture	of	the	complex.
	 Intelligibility	and	functionality,	defined	as	formal	properties	of	spatial	
complexes,	are	the	keys	to	‘generic	function’.	In	the	case	of	settlements,	generic	
function	refers	not	to	the	specificities	of	different	cultural,	social	and	economic	
forms,	but	to	what	these	forms	have	in	common	when	seen	from	a	spatial	
point	of	view.	The	deep	invariant	structure	of	urban	grids	is	generated,	it	will	be	
argued,	from	generic	function	creating	emergent	invariants,	while	the	typological	
differences	arise	from	cultural,	social	and	economic	differences,	and	individualities	
from	topographical	and	historical	specificities.	In	effect,	it	is	proposed	that	there	
exists	a	fundamental	settlement	process,	which	is	more	or	less	invariant	across	
cultures,	and	that	spatial	cultures	are	parameterisations	of	this	process	by,	for	
example,	creating	different	degrees	and	patterns	of	integration	and	intelligibility,	
and	different	degrees	of	local	and	global	organisation	to	the	overall	form.	Our	task	
here	is	to	show	what	this	fundamental	settlement	process	is	and	how	it	is	
a	product	of	generic	function	and	the	laws	of	spatial	emergence.
	 Before	we	embark	on	this,	we	must	first	be	clear	what	exactly	it	is	we	are	
seeking	to	explain.	It	is	clear	that	when	settlements	are	small,	they	can	take	a	
great	variety	of	forms.	It	is	also	clear	that	throughout	history	we	find	quite	radical	
experiments	in	urban	form,	for	example,	the	cities	which	we	examined	in	Chapter	6.	
However,	as	cities	become	large,	these	peculiarities	tend	to	be	eliminated,	and	grids	
become	much	more	like	each	other	in	certain	ways.	What	we	are	seeking	to	identify	
here	are	the	invariants	in	the	processes	by	which	large	cities	tend	to	grow	—	that	is,	
to	try	to	describe	the	main	lines	of	urban	evolution.	‘Strange’	cities	exist,	and	for	a	
while	even	grow	quite	large,	but	they	are	essentially	dead	ends	in	urban	evolution.	
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Their	principles	of	organisation	do	not	support	a	large	successor	family	of	cases	
and	types	across	the	range	of	urban	scales.
	 Because	they	operate	at	a	very	deep	level	and	govern	the	common	
structure	of	cities,	it	might	be	thought	that	the	fundamental	city	is	too	generalised	
to	be	of	real	interest.	This	is	not	the	case.	The	influence	of	spatial	laws	on	cities	
is	pervasive	as	well	as	deep.	It	effects	the	level	at	which	we	see	and	experience	
cities,	as	well	as	at	the	level	of	their	deep	structures.	In	order	to	understand	
individual	cities	and	types	of	cities	at	any	level	we	must	first	understand	exactly	
what	it	is	that	these	general	laws	have	contributed	to	their	form.	If	we	think	of	
cities	as	aggregates	of	cellular	elements	—	buildings	—	linked	by	space,	then	in	
the	language	of	the	previous	chapter,	spatial	laws	are	the	‘first	filter’	between	the	
boundless	morphological	possibility	for	such	aggregates	and	the	properties	of	the	
vanishingly	small	subset	we	call	cities.	Social	and	economic	processes	are	then	
the	second	filter,	guiding	the	basic	paths	of	evolution	this	way	or	that	to	give	rise	
to	recognisable	types.	Specific	local	conditions	in	time	and	space	are	then	the	third	
filter	through	which	the	city	acquires	its	eventual	individuality.
	 Our	task	in	understanding	the	fundamental	city	is	then	to	answer	two	
questions:	how	and	why	should	these	particular	invariants	emerge	from	a	spatial	
process	of	generation?	And	what	aspects	of	the	social	and	functional	processes	that	
drive	settlement	formation	guide	growing	cities	along	these	pathways?	The	answer	to	
both	questions	will	be	essentially	those	we	have	discussed	in	the	previous	chapter:	
laws	of	spatial	implication	from	local	physical	moves	to	overall	spatial	pattern	in	
cellular	aggregates	—	for	such	cities	are	—	these	being	driven	by	‘generic	function’,	in	
conjunction,	of	course,	with	prevailing	socio-economic	and	topographical	factors.
	
Two paradoxes
How	then	and	why	should	these	‘near	invariants’	emerge	in	a	process	of	successively	
placing	built	forms	in	a	growing	aggregate?	First,	we	must	be	aware	that	aggregative	
processes	are	themselves	subject	to	certain	laws	of	‘emergence’,	which	are	not	
insignificant	for	urban	growth.	For	example,	a	randomly	growing	aggregate	will,	if	free	
from	constraints,	tend	towards	a	circular	form	as	it	becomes	large,	simply	because	
this	is	more	probable	than	any	other	form.1	This	is	relevant	to	urban	growth	because	
a	circular	shape	is	also	the	most	integrating	shape,	and	this	means	that	to	the	extent	
that	trips	are	from	all	ponts	to	all	others,	then	mean	trip	length	will	be	minimised	in	a	
circular	form	—	that	is,	oddly,	in	the	form	that	grows	most	randomly.
	 Such	‘laws	of	emergence’	are	important	to	urban	growth.	But	far	more	
important	is	the	fact	that	some	of	the	most	elementary	laws	of	this	kind	affect	
urban	growth	not	simply	by	being	emergent	properties	of	the	growing	system,	
but	by	imposing	conflicting	tensions	on	the	system.	The	resolution	of	these	
then	becomes	the	prime	determinant	of	the	pathway	of	the	system.	The	laws	of	
emergence	operate,	in	effect,	as	paradoxes	which	must	be	resolved	by	the	growth	
process.	There	are	two	such	paradoxes.	The	first	can	be	called	the	paradox	of	
centrality,	the	second	the	paradox	of	visibility.
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The	paradox	of	centrality	takes	the	following	form.	In	a	circular	—	that	is,	most	
probable	—	aggregate,	integration	runs	from	centre	to	edge,	with	the	greatest	
integration	in	the	centre,	and	the	least	at	the	edge.	This	prioritises	the	centre	from	
the	point	of	view	of	known	effects	of	integration	on	the	functioning	of	a	spatial	
system.	For	example,	more	movement	along	shortest	paths	will	pass	through	the	
central	area	than	anywhere	else,	if	movement	is	from	all	points	to	all	other	points,	
or	if	origins	and	destinations	are	randomised.
	 However,	all	this	is	only	the	case	if	we	consider	the	urban	system	on	its	
own,	in	terms	of	its	interior	relations.	As	soon	as	we	consider	its	external	relations,	
say	to	other	settlements	in	the	region,	or	even	simply	to	the	space	outside	the	
system,	then	the	centre	to	edge	distribution	of	integration	no	longer	applies.	In	fact,	
the	more	integrating	the	form	—	that	is	the	more	it	approximates	the	circular	form	
—	then	the	more	its	most	integrated	internal	zone	is	maximally	segregated	from	the	
external	world,	and,	by	definition,	from	any	other	aggregates	that	are	to	be	found	
in	the	vicinity	of	the	system.	In	other	words,	maximising	internal	integration	also	
maximises	external	segregation.	This	is	the	‘paradox	of	centrality’.
	 Conversely,	as	we	move	from	a	circular	form	towards	the	most	linear	form,	
that	is	the	single	line	of	cells,	or	the	least	probable	shape	in	a	growing	aggregate,	
then	we	find	that	the	most	linear	form,	which	is	the	least	integrated	in	itself,	is	the	
most	integrated	to	the	outside	or	to	other	systems	in	the	region,	since	each	of	its	
constituent	cells	is	by	definition	directly	adjacent	to	the	space	outside	the	form.	In	
short,	the	circular	form	is	the	least	integrative	with	the	space	outside	the	form	for	
the	same	reason	that	it	is	the	most	internally	integrative:	it	has	the	least	peripheral	
cells	for	the	maximum	interior	cells.	The	converse	is	true	for	the	maximally	linear	
form	which	has	the	most	peripheral	cells	against	internal	cells.
	 Growing	urban	systems	must	respond	to	the	paradox	of	centrality,	because	
it	has	the	simple	consequence	that	if	you	try	to	maximise	internal	integration	
then	you	lose	external	integration	and	vice	versa,	and	urban	forms	seem	to	need	
both	internal	and	external	integration.	The	tension	between	internal	and	external	
integration	leads	settlements	to	evolve	in	ways	which	overcome	the	centrality	
paradox.	For	example,	the	tendency	for	a	growing	urban	system	to	increase	the	
length	of	certain	edge-to-centre	lines	in	proportion	to	the	growth	of	the	system	is	
one	response	to	this.	Exactly	why	this	should	be	the	case	leads	directly	to	our	
second	paradox,	which	we	will	call	the	paradox	of	visibility,	although	this	does	
not	quite	express	its	complex	nature,	since	it	arises	from	differences	between	the	
metric	and	visible	properties	of	space.
	 The	visibility	paradox	can	be	explained	very	simply.	If	we	arrange	elements	
in	a	single	line,	as	in	figure	9.1a	and	b	(the	corresponding	graph),	we	maximise	
the	metric	or	modular	depth	that	those	elements	can	have	from	each	other	in	any	
contiguous	arrangement.	The	more	elements	we	so	arrange,	the	greater	the	depth,	
and	the	worse	the	metric	trip	efficiency	of	the	form	if	movement	is	to	be	from	
all	points	to	all	others.	But	if	we	are	interested	not	in	movement,	but	in	visibility,	
then	we	find	the	contrary	effect.	Suppose,	for	example,	we	superimpose	a	line,	
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representing	a	line	of	sight,	on	our	linear	arrangement	of	elements,	as	in	figure	9.1c	
and	d.	The	visible	(as	opposed	to	metric)	integration	of	the	form	is	then	maximised	
because	all	cells	are	covered	by	a	single	line.	In	the	graph,	this	means	all	other	
elements	are	connected	to	the	graph	element	representing	the	line.	In	other	words,	
the	arrangement	of	elements	in	which	metric	segregation	is	maximised,	that	is,	the	
linear	shape,	is	also	the	arrangement	in	which	visual	integration	is	maximised.	For	
a	linear	shape	without	a	line	of	visibility,	mean	depth	increases	with	the	number	of	
cells,	but	with	the	superimposition	of	the	line	then,	however	long	the	line	of	cells,	
the	maximum	depth	in	the	system	will	be	2,	and	in	fact	the	mean	depth	of	
an	expanding	sequence	must	converge	on	a	limit	of	2.
	 In	an	important	sense,	then,	the	visual	integration	of	a	shape	behaves	in	
the	opposite	way	to	the	metric	integration.	This	will	also	apply	to	grids	made	up	of	
elements	and	superimposed	lines.	Holding	the	number	of	elements	steady	at	36,	
and	arranging	them	to	be	covered	first	by	a	6×6	grid	of	lines,	then	9×4,	then	12×3	
and	finally	18×2,	we	find	the	mean	depth	of	the	system	decreases	with	elongation.	
We	can	say	then	that	visual	integration	increases	with	increase	in	the	block	
shape	ratio,	that	is,	the	ratio	of	the	long	to	the	short	side,	as	in	the	figures	and	
scattergram	in	figure	9.1e.	This	is	the	opposite	of	the	effect	of	elongation	on	
a	shape	on	its	own,	without	superimposed	lines.
	 In	other	words,	when	considered	as	elements	in	a	visibility	field	the	
primitive	elements	representing	locations	in	the	form	have	the	contrary	integration	
behaviour	to	the	same	elements	considered	as	a	system	of	metric	distances.	If	
lines	are	superimposed	on	grids	of	elements,	then	the	more	elongated	the	grid,	the	
more	integrating;	the	opposite	of	the	case	for	arrangements	without	superimposed	
lines.	The	linear	form,	which	from	a	metric	point	of	view,	and	therefore	from	
the	point	of	view	of	movement	considered	as	energy	expenditure,	is	the	least	
integrated	form,	is	visually	the	most	integrated	form.	The	implication	is	obvious,	but	
fundamental.	If	we	arrange	a	series	of,	say,	urban	areas	in	a	line	we	maximise	the	
mean	trip	length	at	the	same	time	as	we	maximise	visibility.	The	same	principle	
governs	the	progressive	elongation	of	grids.
	 Urban	form	must	then	overcome	two	paradoxes.	First,	it	must	create	external	
integration	for	the	sake	of	relations	to	the	outside	world,	as	well	as	internal	integration,	
for	the	sake	of	relations	amongst	locations	within,	even	though	these	properties	are	
theoretically	opposed	to	each	other.	We	may	add	that	urban	form	must	acheive	this	at	
whatever	level	the	paradox	might	become	problematic.	That	is	likely	to	include	at	least	
a	local	and	a	global	level.	Second,	it	must	pursue	both	compactness	and	linearity,	the	
former	for	the	sake	of	trip	efficiency,	the	latter	for	the	sake	of	visibility	and	intelligibility.	
The	characteristic	‘near	invariants’	of	urban	grids	that	we	have	noted	are,	it	will	be	
argued,	essentially	responses,	at	different	levels,	to	these	two	paradoxes.
	 How	then	does	urban	form	resolve	these	paradoxes?	It	is	proposed	
here	that	two	paradoxes	set	the	questions	to	which	the	structured	grid,	whether	
‘deformed’	or	‘interrupted’,	give	us	the	answer.2	A	structured	grid	is	one	in	
which	integration	and	intelligibility	are	arranged	in	a	pattern	of	some	kind,	which	
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supports	functionality	and	intelligibility.	Essentially,	lines	and	areas	are	prioritised	
for	integration	and	intelligibility	to	varying	degrees	in	order	to	create	a	system	of	
differentiation,	and	it	is	this	differentiation	that	we	call	structure	in	the	system.	This	is	
why	integration	cores	and	area	scatters	are	such	fundamental	functional	properties	
in	urban	systems.	They	reflect	the	process	of	constructing	a	differentiated	structure	
in	the	system.	The	distribution	of	integration	in	an	urban	system,	together	with	its	
associated	built	form	and	land	use	patterns,	is	not	a	static	picture	of	the	current	
state	of	the	system,	but	a	kind	of	structural	record	of	the	historical	evolution	of	the	
system.	The	‘structural	inertia’	imposed	by	this	evolved	structure	is	of	course	also	
the	prime	constraint	on	the	future	evolution	of	the	system.
	 The	task	is	then	to	show	how	urban	form	comes	about	in	such	a	way	
as	to	resolve	the	two	paradoxes,	that	is,	to	show	how	the	structured	urban	grid	
is	discoverable	as	an	emergent	pattern	through	the	pursuit	of	more	elementary	
properties	of	space	arising	from	the	disposition	of	buildings.	This	poses	a	
methodological	difficulty.	All	the	spatial	analyses	we	have	made	in	this	book	so	far	
are	analyses	of	existing	complex	systems,	that	is,	systems	that	have	already	evolved	
or	already	been	constructed.	The	question	we	have	posed	about	urban	form	is	about	
the	construction	of	systems,	that	is,	how	systems	evolve	and	grow	in	what	is	initially	a	
void.	The	spatial	void	seems	to	be	structureless.	How	then	can	we	conceptualise	and	
analyse	aggregative	processes	which	are	initiated	and	evolved	in	a	spatial	void?
	 The	answer	is	simple,	and	will	lead	us	into	new	theoretical	territory.	Space	
is	not	a	structureless	void.	We	only	believe	it	is	by	using	an	implicit	analogy	with	
physical	systems.	What	we	call	structure	in	a	physical	system,	whether	artificial	or	
natural,	has	to	be	created	by	putting	elements	together	in	some	way.	Space	is	not	
like	this.	In	its	raw	state,	space	already	contains	all	spatial	structures	that	could	ever	
exist	in	that	space.	It	is	in	this	sense	that	space	is	the	opposite	of	‘things’.	Things	
only	have	their	own	properties.	Space	has	all	possible	properties.	When	we	intervene	
in	a	space	by	the	placing	of	physical	objects	we	do	not	create	spatial	structure,	but	
eliminate	it.	To	place	an	object	in	space	means	that	certain	lines	of	visibility	and	
movement	which	were	previously	available	are	no	longer	available.	When	we	talk	of	a	
structured	grid	in	a	city,	brought	about	by	the	placing	of	built	forms,	this	grid	already	
existed,	in	co-existence	with	all	other	possible	structures,	within	the	‘substrate’	space	
(that	is,	the	space	prior	to	our	intervention	in	it)	now	occupied	by	the	city,	before	the	
city	came	into	existence.	The	spatial	system	we	call	the	grid	was	not	created	by	
the	placing	of	built	forms.	Others	were	eliminated.	The	grid	was	constructed	in	an	
important	sense	negatively.	It	was	not	assembled	in	itself.	Its	existence	was	drawn	
attention	to	and	highlighted	by	the	elimination	of	other	‘virtual’	structures.
	 This	view	of	space	is	as	true	practically	as	it	is	philosophically.	A	dance	
sketches	out	a	possible	structure	of	space	within	an	infinite	set	of	possibilities.	
The	dance	is	an	exploration	—	a	celebration	perhaps	—	of	the	infinite	structurability	
of	space.	Any	open	space	is	a	space	in	which	no	possibilities	have	yet	been	
eliminated,	and	every	open	space	is	continually	structured	and	restructured	by	
the	human	activity	that	takes	place	in	it.	If	we	do	not	conceptualise	space	in	this	
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way	we	have	no	way	of	reconciling	human	freedom	and	the	human	structuring	of	
space.	Human	activity	is	never	actually	structured	by	space.	In	structuring	space	
by	physical	objects	we	suggest	possibilities	by	eliminating	others.	But	the	spaces	
in	the	interstices	of	physical	forms	are	still	‘open’.	Within	these	limits,	the	infinite	
structurability	of	space	still	prevails.	In	our	cells	we	may	dance.
	
All-line visibility maps
In	order	to	understand	how	the	placing	of	physical	objects	in	a	substrate	space	
creates	spatial	structure	by	elimination,	we	must	have	a	formal	conception	of	the	
substrate	space	as	containing	all	possibilities	prior	to	our	intervention	in	it.	In	view	
of	the	‘unreasonable	effectiveness’	of	line-based	analyses	in	understanding	the	
space	structure	of	cities,	suppose	then	that	we	regard	the	substrate	as	a	matrix	
of	infinitely	dense	lines	of	arbitrary	(or	infinite)	length	in	all	directions,	and	call	
it	the	‘line	substrate’.	An	object	placed	in	a	‘line	substrate’	will	block	some	lines	
and	leave	others	intact,	and	this	will	have	the	effect	of	creating	some	degree	of	
structure	in	the	line	substrate.
	 How	can	we	identify	and	measure	the	structure	in	the	line	substrate	
produced	by	an	object?	Clearly,	we	cannot	at	this	stage	use	the	‘axial	maps’,	which	
have	proved	so	useful	in	analysing	the	structure	of	real	cities,	since	we	cannot	yet	
draw	them.	A	single	object	placed	in	a	line	substrate	will	have	infinitely	many	lines	
incident	to	it,	and	also	infinitely	many	lines	tangent	to	it,	as	well	as	infinitely	many	
other	lines	in	its	immediate	vicinity.	Such	infinite	line	matrices	do	not	at	first	seem	
to	be	usefully	analysable.
	 However,	there	is	a	way	we	can	proceed	which	seems	to	lead	to	a	
fundamental	description	of	objects	and	sets	of	objects	in	terms	of	their	structuring	
effect	on	the	line	substrate.	Within	the	set	of	lines	which	pass	in	the	region	of	an	
object	—	let	us	think	of	it	as	a	simple	building	—	there	will	be	a	subset	which	are	as	
close	as	possible	to	the	object	but	which	are	unaffected	by	it.	These	will	be	the	
lines	that	are	tangent	to	the	vertices	of	the	object,	including	those	that	lie	along	any	
straight	surfaces.	A	slightly	smaller	subset	will	be	those	that	are	tangent	to	exactly	
one	vertex	of	an	object.	This	will	eliminate	those	that	actually	lie	along	a	face,	since	
such	a	line	would	necessarily	be	tangent	to	two	vertices,	one	at	each	end	of	the	
face,	but	include	those	which	are	as	close	to	the	face	as	we	wish	—	in	practical	
computing	terms,	as	close	as	a	single	pixel.
	 Defined	this	way,	each	vertex	still	has	a	infinite	set	of	lines	tangent	to	it,	
which	we	can	think	of	as	forming	an	open	fan	shape	around	that	vertex.	These	line	
sets	have	the	useful	property	of	defining	the	limits	of	the	object	in	the	substrate	
—	exactly	if	we	use	the	larger	subset,	to	within	one	pixel	if	we	use	the	smaller	
subset	—	without	making	use	either	of	the	lines	incident	to	the	object	or	those	in	the	
region	which	are	not	tangent	to	a	vertex.	The	tangent	subset	is,	in	a	useful	sense,	a	
well-defined	set	of	lines	selected,	and	in	that	sense	generated,	by	the	presence	of	
the	object.	We	have	at	least	simplified	the	situation	a	little.
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However,	as	soon	as	we	add	a	second	object	in	the	vicinity	of	the	first,	we	can	
define	a	new	subset:	that	of	the	lines	that	are	tangent	to	at	least	one	vertex	in	each	
object.	By	finding	each	line	tangent	to	a	vertex	on	one	object	which	is	also	tangent	
to	a	vertex	of	the	other,	then	continuing	that	line	till	it	is	stopped	by	being	incident	
either	to	a	further	object	or	to	any	boundary	which	we	decide	to	place	around	the	
region,	we	define	exactly	the	kind	of	line	matrix	that	was	demonstrated	in	Chapter	
3.	The	set	of	lines	is	in	effect	made	up	of	all	lines	drawn	tangent	to	vertices	that	can	
‘see’	each	other,	and	therefore	have	a	straight	line	drawn	tangent	to	them.	We	may	
call	this	the	‘all-line	map’	generated	jointly	by	the	vertices	of	the	two	objects	that	
can	see	each	other.	Like	any	other	connected	line	matrix,	such	‘all-line	maps’	can	
be	subject	to	integration	analysis.	If	we	do	so,	we	find	that	any	set	of	objects	will	
create	some	kind	of	structure.
	 We	can	now	use	this	as	a	general	method	for	analysing	the	effects	of	
objects	placed	in	a	line	substrate,	by	finding	all	lines	tangent	to	the	vertices	that	can	
see	each	other	for	all	objects	in	the	substrate,	then	subjecting	the	resulting	all-line	
map	of	those	objects	to	integration	analysis.	To	do	this	we	must	define	a	boundary	
to	the	system.	To	limit	the	effect	of	the	boundary	on	the	analysis	we	can	allow	the	
substrate	to	adapt	its	shape	to	form	a	more	or	less	regular	envelope	around	the	
group	of	objects.	By	proceeding	in	this	way,	a	structure	of	integration	is	created	in	
the	line	substrate	which	reflects	the	shapes	and	positions	of	the	objects	we	have	
placed	in	the	substrate	with	respect	to	each	other.	For	example,	in	plate	3a,	we	
have	found	the	all-line	map	created	by	a	number	of	objects	and	then	its	pattern	of	
integration.	It	is	reasonable	to	think	of	this	as	an	analysis	of	the	field	of	visibility	
created	by	the	placed	objects,	since	every	line	defines	a	limit	of	visibility	created	
conjointly	by	a	pair	of	vertices	from	a	pair	of	objects.
	 These	analysed	visibility	maps	are	quite	remarkable	entities,	and	appear	
to	synthesise	aspects	of	configurational	analysis	which	had	previously	seemed	
to	be	quite	independent	of	each	other.	For	example,	it	is	clear	that,	by	definition,	
axial	maps	are	subsets	of	the	lines	that	make	up	the	‘all-line’	visibility	map.	Visibility	
maps,	we	may	say,	‘contain’	axial	maps.	It	follows	that	they	will	also	contain	some	
account	of	the	global	structure	of	a	pattern	of	space	in	a	configuration	because	
axial	maps	do.	We	shall	see	shortly	that	this	is	the	case.
	 However,	we	also	find	that	visibility	maps	reproduce	some	aspects	of	the	
analysis	of	shapes	set	out	in	Chapter	3.	For	example,	if	we	construct	a	regular	
five-by-five	grid	of	blocks,	and	carry	out	an	all-line	analysis,	we	find	that	whereas	a	
simple	axial	map	would	give	each	line	the	same	integration	value	(because	all	are	
equally	connected	to	exactly	half	of	the	total)	the	integration	structure	in	the	all-line	
analysis	distributes	integration	from	edge	to	centre.	This	is	shown	in	plate	3b.	The	
central	bias	in	the	integration	core	arises	because	in	addition	to	the	global	structure	
of	lines,	as	would	be	found	in	the	axial	map	of	the	grid,	there	are	also	everywhere	
a	large	number	of	lines	of	every	length	specified	by	pairs	of	vertices	which	can	see	
each	other,	including	a	large	number	of	lines	only	a	little	longer	than	the	blocks	of	
built	form.	This	dense	matrix	of	short	lines	acts	as	through	it	were	a	tessellation,	
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and	not	only	distributes	integration	from	edge	to	centre	in	the	short	lines,	but	
also	necessarily	transmits	this	bias	to	the	longer	lines.	In	other	words,	the	all-line	
integration	analysis	reproduces	both	the	global	structure	of	the	form	through	its	long	
lines	which	are	equivalent	to	the	axial	map,	but	also	reflects	the	local	structure	of	
the	shape	as	would	be	found	in	the	tessellation.
	 All-line	visibility	maps	also	reproduce	some	of	the	conjoint	effects	of	
tessellations	plus	lines	noted	in	figure	9.1.	For	example,	if	we	take	36	blocks	and	
arrange	them	6×6,	9×4,	12×3	and	18×2	(calling	the	ratio	of	length	to	breadth	the	
‘block	shape	ratio’)	and	use	each	to	generate	all-line	visibility	analyses,	we	find	that	
as	the	arrangement	elongates	mean	depth	diminishes.	If	we	maintain	the	number	
of	blocks	constant,	the	mean	depth	in	the	all-line	map	is	minimised	by	reducing	
the	‘pile’	(that	is,	the	number	of	lines	of	blocks	in	the	arrangement):	a	2-pile	
arrangement	of	cells	has	less	depth	in	the	all-line	map	than	a	3-pile	arrangement,	
which	has	less	depth	than	a	4-pile	arrangement,	and	so	on	up	to	squareness.	
Greater	elongation	means	greater	integration.
	 On	closer	examination,	the	‘2-pile’	grid,	as	instanced	in	the	18x2	grid	of	figure	
9.1,	turns	out	to	be	even	more	interesting.	If,	instead	of	maintaining	the	number	of	
blocks	constant	and	rearranging	them	with	different	‘pile’	(that	is	into	the	4	pile	9×4,	
the	3	pile	12×3	and	so	on),	we	maintain	pile	constant	and	increase	the	number	of	
blocks,	then	we	find	that	mean	depth	increases	with	increasing	numbers	of	blocks,	
but	with	different	curves	for	different	piles.	For	example,	figure	9.2a	and	b	show	
respectively	the	growth	curves	for	mean	depth	in	1-pile	and	4-pile	arrangements	
with	increasing	numbers	of	blocks,	and	therefore	increasing	block	shape	ratio.	
Experimentation	with	larger	systems	so	far	suggests	that	mean	depth	continues	to	
increase	with	1-pile	and	4-pile,	at	least	up	to	the	scales	of	a	reasonable	city	system.	
Figure	9.2c,	however,	shows	a	quite	different	behaviour	for	2-pile	systems.	In	the	early	
stages	of	growth,	mean	depth	rises	rapidly,	and	continues,	slowing	rapidly	up	to	18	
blocks	(2×9).	With	20	(2×10)	or	more	blocks,	mean	depth	then	begins	to	decrease,	
and	continues	to	decrease	as	blocks	are	added,	at	least	up	to	the	normal	limits	of	
urban	possibility.	The	reason	why	2-pile	systems,	and	only	2-pile	systems,	behave	in	
this	unique	way	is	as	simple	as	it	is	fundamental.	Remembering	that	blocks	which	
are	aligned	do	not	see	each	other	through	intervening	blocks	(because	lines	tangent	
to	vertices	do	not	include	those	that	are	tangent	to	two	vertices	on	the	same	block,	
that	is	lines	which	lie	flat	on	the	face	of	a	block	are	excluded),	the	2-pile	system	is	
the	only	system	in	which	all	blocks	see	more	than	half	of	the	other	blocks.	In	all	other	
cases,	blocks	which	are	not	on	the	same	alignment	interfere	with	the	mutual	visibility	
of	at	least	some	of	the	blocks.	As	2-pile	systems	grow,	therefore,	the	privileged	
visibility	over	all	other	arrangements	increases.
	 2-pile	systems	therefore	have	a	unique	theoretical	status	among	block	
arrangements	as	far	as	the	degree	of	integration	in	the	all-line	map	is	concerned.	We	
should	not	then	be	surprised	that	it	corresponds	to	one	of	the	primary	spatial	types	
—	perhaps	the	primary	type	—	that	cities	offer.	Streets,	avenues,	alleys,	boulevards,	
roads	and	so	on	are	all	variants	on	the	fundamental	2-pile	linear	type.	It	is	at	least	a	
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suggestive	inference	that	these	unique	integration	possibilities	of	the	visibility	fields	
created	by	2-pile	systems	are	the	reason	for	this	privileged	typological	status.
	 A	related	interpretation	might	be	possible	for	that	other	dominant	urban	
spatial	type:	the	large	open	space	known	variously	as	the	‘piazza’,	‘place’	or	—	with	
inappropriate	geometricity	in	English	—	‘square’.	If	we	create	a	square	in	a	grid	—	say	
by	eliminating	the	central	four	blocks	in	a	6x6	grid,	as	in	plate	3c,	the	effect	is	to	
reduce	the	mean	depth	and	thus	increase	the	overall	integration	of	the	system.	
If	we	then	move	the	square	towards	the	corner,	as	in	plate	3d,	we	find	that	the	
mean	depth	of	the	system	is	still	reduced	compared	to	the	6×6	grid,	but	to	a	lesser	
degree	than	with	the	central	space.	In	other	words,	the	effects	are	exactly	what	
we	would	expect	from	the	principles	for	the	construction	of	integration	set	out	in	
the	last	chapter.	A	centrally	located	larger	space	integrates	more	than	one	that	is	
peripherally	located.	The	effects	of	replacing	the	open	spaces	with	equivalently	
shaped	blocks,	as	in	plate	3e	and	f,	are	also	exactly	what	would	be	expected.	A	
centrally	placed	block	reduces	integration	more	than	a	peripherally	placed	block.	
Replacing	square	spaces	and	blocks	with	linear	spaces	and	blocks	of	equivalent	
area	will	also	follow	these	principles.
	 In	other	words,	all-line	visibility	maps	reproduce	the	local	to	global	effects	
by	which	the	global	configurational	properties	of	spatial	complexes	were	shown	to	
arise	from	local	physical	moves.	We	may	therefore	pose	interesting	questions	such	
as:	what	local	physical	moves	give	rise	to	the	characteristic	structures	that	are	found	
in	the	various	types	of	urban	grids?	For	example,	begining	with	the	6×6	grid,	whose	
all-line	mean	depth	is	1.931,	in	plate	3g	a	double	sized	block	is	created	across	the	
centre	line	near	the	‘northern’	edge.	The	effect	is	to	reduce	the	integration	of	the	
central	line,	previously	(along	with	the	central	east-west	line)	the	most	integrating	
because	of	its	central	location.	Also	the	overall	mean	depth	of	the	system	increases	
to	1.949.	In	plate	3h,	the	block	is	brought	closer	to	the	centre.	The	effect	is	to	de-
integrate	the	central	north-south	line	even	more,	as	can	be	seen	from	the	deepening	
of	the	blue	to	the	north	and	south	of	the	block.	There	is	a	second	effect.	The	east-
west	central	lines	are	now	less	integrated	than	the	north-south	lines	adjacent	to	the	
double	block.	This	is	because	one	of	the	crucial	connections	that	gave	them	this	
value	—	the	north-south	central	line	—	has	been	blocked.	In	fact	this	effect	was	also	
present	in	plate	3g,	but	less	strongly,	so	that	it	did	not	reach	the	threshold	at	which	
the	colour	would	be	changed.	In	plate	3j	the	block	is	moved	away	from	the	central	
line	and	returned	to	the	northern	edge.	Comparing	with	plate	3g,	it	can	be	seen	that	
the	segregative	effect	is	less.	In	plate	3k,	the	block	is	moved	away	from	the	edge.	
The	segregative	effect	is	greater	than	for	plate	3j,	but	less	than	for	plate	3h.
	 It	is	clear	that	these	effects	follow	from	the	principles	set	out	in	the	previous	
chapter.	The	more	centrally	a	block	is	placed,	the	greater	the	‘depth	gain’	or	loss	of	
integration.	It	should	therefore	be	possible	to	explore	how	the	deployment	of	blocks	in	
general	create	differently	structured	grids.	For	example,	if	we	place	four	double-sized	
blocks	adjacent	to	the	centre	as	in	plate	3l,	we	immediately	create	a	kind	of	‘deformed	
wheel’	integration	structure,	with	hub,	spokes	and	a	rim	one	block	in	from	the	edge.	
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This	happens	because	the	double-sized	blocks	all	eliminate	connection	to	the	central	
lines,	which	are	naturally	prioritised	by	the	form,	and	make	the	‘rim’	lines,	which	
are	still	maximally	connected,	relatively	stronger	in	integration.	The	interstitial	zones	
defined	by	the	wheel	are	defined	by	the	rather	sharp	segregation	created	behind	
the	double	blocks	by	cutting	them	off	not	only	from	the	their	lateral	neighbour	zones,	
but	also	from	the	central	lines.	This	structure	is	therefore	characterised	by	diffusing	
integration	to	create	the	wheel,	and	rather	strongly	segregated	zones	close	to	the	
centre	of	the	form.	In	contrast,	plate	3m,	by	placing	the	blocks	away	from	the	central	
lines,	creates	stronger	integration	in	the	central	lines,	but	weaker	in	the	rim	lines.	The	
four	zones	adjacent	to	the	centre	are	still	marked	out	by	comparative	segregation,	but	
much	less	than	before	because	in	all	cases	direct	links	to	both	neighbour	zones	and	
the	central	lines	are	retained.	The	resulting	form	is	overall	more	integrated	than	the	
previous	case,	with	a	stronger	central	structure,	but	a	less	strong	zone	structure	and	
a	less	marked	deformed	wheel	effect.
	 In	each	case,	these	effects	are	expressions	of	the	principles	for	the	creation	
of	structure	in	spatial	complexes	set	out	in	the	previous	chapter.	They	show	that	
comparatively	simple	local	changes	in	a	spatial	complex	can	have	powerful	structural	
effects	on	the	configuration	of	the	whole.	Even	on	the	basis	of	what	we	know,	we	can	
suggest	generative	processes	which	either	minimise	or	maximise	integration	and,	it	
will	turn	out,	intelligibility	(as	defined	in	Chapter	3).	In	general,	loss	of	integration	and	
intelligibility	results	from	placing	blocks	so	that	they	bar	lines	generated	by	existing	
blocks	at	90	degrees.	The	most	general	form	of	this	would	seem	to	be	a	process	in	
which	we	locate	rectangular	blocks	in	non-contiguous	T-shapes,	as	in	plate	3n.	The	
non-contiguous	T	has	the	effect	that	both	lines	parallel	to	the	long	faces	of	existing	
blocks	are	inevitably	stopped	by	blocks	placed	in	the	vicinity,	and	lines	along	the	
surface	of	the	block	therefore	change	direction	at	90	degrees.	We	can	call	this	the	
90-degree	generator.	As	the	scattergram	shows,	the	aggregate	form	arising	from	the	
90-degree	generator	has	very	poor	intelligibility	and	it	is	clear	that	it	will	always	do	so	
if	applied	as	the	principal	generator	for	the	block	placing.	A	similar	90-degree	effect	
will	arise	in	a	square	block	process	by	similarly	placing	each	next	block	so	as	to	
block	the	face	line	on	at	least	one	existing	block.	In	order	to	make	this	process	work	
in	all	directions,	it	is	necessary	to	create	slightly	wider	spaces	near	the	corner	of	each	
block,	as	in	plate	3p,	in	which	the	loss	of	integration	and	intelligibility	is	even	greater	
than	to	the	rectangular	90-degree	process.
	 The	90-degree	process	depends	on	creating	the	90-degree	relation	at	the	
point	where	a	new	block	is	added	to	the	system.	Suppose	then	that	we	avoid	such	
relations	at	least	for	one	line	parallel	to	a	face	in	an	existing	block.	In	other	words,	
suppose	we	add	blocks	so	as	to	create	at	least	one	‘zero-degree’	relation	for	the	
new	block	(i.e.	continuing	the	line)	and	an	existing	block.	Plate	3q	is	an	example	of	
a	random	process	following	only	this	rule.	It	will	of	course	create	90-degree	relations	
as	well	as	zero-degree	relations,	simply	as	the	result	of	the	non-contiguous	L-
shape.	The	process	creates	a	number	of	lacunas,	and	lines	of	all	different	lengths.	
But	at	this	scale	the	outcome	has	a	fairly	strong	edge-to-centre	structure,	and	the	
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degree	of	integration	and	intelligibility	are	high.	We	can	then	add	to	this	process	
the	‘extension’	rule	from	the	previous	chapter	and	require	the	process	always	
to	conserve	the	zero-degree	relation	for	the	longest	line	available.	One	possible	
outcome	of	such	a	process	is	shown	in	plate	3r.	The	effect	of	introducing	the	
‘extension’	rule	by	which	the	longest	line	is	conserved	where	each	new	block	is	
added	is	to	create	not	only	a	much	stronger	structure,	but	also	a	structure	that	is	
much	more	differentiated	between	high	and	low	integration	than	before.	Overall	
integration	and	intelligibility	are	also	very	high.	We	can	now	see	that	the	pure	
orthogonal	grid	is	a	simple	extension	of	this	principle:	line	length	is	conserved	in		
all	directions	by	making	all-line	relations	along	faces	zero-degree	continuations.
	 However,	there	is	no	such	thing	in	reality	as	a	pure	grid,	if	for	no	other	
reason	than	because	certain	lines	will	be	spatially	privileged	at	the	expense	of	
others	by	being	continued	outside	the	settlement	into	the	routes	that	connect	
it	with	other	settlements,	while	other	lines	will	not.	In	practice	we	also	find	that	
geometrically	ordered	grids,	such	as	those	found	in	ancient	Greece	and	Rome,	
ancient	China	and	modern	America,	are	not	internally	uniform.	Sometimes	lines	in	
one	direction	are	privileged	at	the	expense	of	others	by	the	overall	shape	of	the	
settlement,	but,	more	commonly,	some	lines	are	internally	stopped	at	right	angles	by	
built	forms,	while	others	continue.	This	is	why	we	call	such	grids	‘interrupted	grids’,	
and	note	that	they	were	just	as	structured	as	‘deformed’	grids.
	 These	simple	cases	illustrate	the	kind	of	thing	we	need	to	know:	how	
spatial	structure	in	a	grid	arises	from	local	action	on	blocks.	One	whole	class	
of	grids	—	interrupted	grids	—	is	based	almost	entirely	on	what	we	have	so	far	
explored,	that	is	grid	shape	and	interruption.	We	can	have	the	outline	of	a	theory	of	
interrupted	grids	on	the	basis	of	the	methods	we	have	so	far	set	out.	However,	the	
commonest	kind	of	grid	is	not	interrupted	but	deformed.	The	difference	between	
the	two	is	easy	to	describe.	In	the	interrupted	grids	we	have	so	far	considered	all	
major	lines	—	that	is,	the	subset	of	the	all-line	map	that	constitutes	the	axial	map	
—	are	either	tangent	to	a	vertex	of	a	block	or	end	on	a	block	at	close	to	ninety	
degrees.	In	practical	terms	this	means	that	lines	either	continue	with	no	change	in	
direction,	or	compel	a	ninety-degree	change	in	direction.	We	could	call	such	grids	
zero-ninety	grids,	because	all	movements	proceed	with	a	zero-degree	change	in	
direction	or	a	ninety-degree	change	in	direction.	Deformed	grids	are,	quite	simply,	
grids	that	use	the	whole	range	in	between.
	 What	the	two	types	of	grid	have	in	common	is	that,	whatever	the	technique	
for	creating	angles	of	incidence	between	lines,	the	outcome	is	variation	in	the	
lengths	of	lines.	These	variations	are	one	of	the	means	by	which	structure	is	
created	in	the	urban	grid.	In	both	deformed	and	interrupted	grids,	this	structure	
most	commonly	arises	from	the	application	of	the	‘extension’	principle:	longer	
lines	tend	to	be	conserved	by	zero-	or	low-degree	line	relations,	allowing	ninety-	
or	high-degree	line	relations	to	occur	away	from	the	longer	lines.	This	is	why	in	
deformed	grids	we	typically	find	the	dominant	structure	is	made	of	sequences	of	
longer	lines	whose	intersections	are	low	degree,	and	shorter,	more	localised,	lines	
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whose	intersections	are	high	degree.	In	Chapter	4,	for	example,	we	found	that	in	
the	City	of	London,	there	was	a	pervasive	tendency	for	longer	lines	to	be	incident	
to	others	at	open	angles	while	the	more	localised	shorter	lines	tend	to	be	incident	
at,	or	close	to,	right	angles.	In	spite	of	other	differences,	similar	observations	can	be	
made	about	many	Arab	towns,	though	the	lines	that	intersect	at	open	angles	tend	
to	be	less	long,	and	less	differentiated	in	length	from	some	of	the	more	localised	
lines.	This	is	an	example	of	a	parametric	difference	expressing	cultural	variation	in	
the	fundamental	settlement	process.	We	should	also	note	of	course	that	this	relation	
was	exactly	inverted	in	the	‘strange	towns’	of	Chapter	6.	It	was	the	longest	lines	that	
ended	in	ninety-degree	relations	by	being	incident	to	major	public	buildings.
	 In	fact,	the	situation	is	slightly	more	subtle.	If	we	consider	the	structure	of	
the	grid	from	the	point	of	view	of	how	its	local	sub-areas	are	fitted	into	the	larger-
scale	grid	in	both	western	and	Arab	cities,	we	find	that	in	both	cases	this	relation	
is	most	often	formed	by	using	a	ninety-degree	relation	to	join	the	internal	streets	of	
the	local	area	to	the	larger-scale	grid.	However,	the	sub-area	line	that	links	to	the	
main	grid	at	ninety	degrees	will	itself	then	tend	to	avoid	ninety-degree	relations	as	it	
moves	into	the	heart	of	the	sub-area,	and	continue	out	in	another	direction.	In	other	
words,	the	lines	that	form	the	dominant	structure	in	sub-areas	follow	the	same	type	
of	logic	as	the	line	of	the	main	grid,	though	at	a	smaller	scale.	Linearity	is	being	
used	to	create	an	integration	core	linking	edge	to	centre	for	the	sub-areas	in	much	
the	same	way	as	the	larger-scale	grid	is	creating	it	for	the	town	as	a	whole.
	 The	pattern	of	angles	of	incidence	of	lines	created	by	different	ways	of	
placing	blocks	of	built	form,	and	particularly	the	variation	between	low-	and	high-
degree	angles	of	incidence	in	deformed	grids,	and	zero-	and	ninety-degree	angles	
of	incidence	in	interrupted	grids,	therefore	seem	critical	to	our	understanding	of	how	
real	urban	structures	are	put	together	as	spatial	systems.	Since	most	large	cities	
are	deformed	grids,	and	there	is	reason	for	believing	that	the	structure	of	deformed	
grids	is	in	some	senses	more	complex	and	subtle	than	interrupted	grids,	we	must	
now	explore	the	implication	of	what	we	have	learned	for	deformed	grids.

How emergence overcomes indeterminacy to create local order
If	we	are	to	begin	without	the	assumption	of	an	underlying	grid,	to	guide	the	placing	
of	blocks,	then	we	must	first	show	how	local	order	arises	in	a	growing	agregate	in	
the	first	place.	By	local	order,	we	mean	constant	relations	between	one	block	and	
its	neighbours.	This	excursion	will	lead	us	to	a	conclusion	of	as	much	theoretical	
as	practical	importance.	The	reason	we	find	urban	systems	invariably	display	local	
as	well	as	global	order,	is	that	without	local	order	there	is	indeterminacy	in	the	
emergent	structure.	Very	small	changes	in	the	positioning	and	shape	of	objects	can	
lead	to	a	radical	difference	in	the	structure	of	integration	in	the	all-line	map	created	
by	those	objects.	For	this	reason,	large-scale	layouts	cannot	be	constructed	on	
the	basis	of	local	indeterminacy,	and	this	is	why	we	invariably	find	local	as	well	
as	global	order	in	urban	systems.	The	role	of	local	rule	following	is	to	make	the	
emergence	of	local	structure	predictable.	These	local	‘emergences’	then	stabilise	
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the	situation	enough	to	permit	the	emergence	of	more	global	order	‘on	their	back’,	
as	it	were.	This	is	why	we	find,	at	smallest	urban	scale,	‘near	invariants’	in	the	form	
of	continuous	definition	of	local	external	spaces	by	building	entrances,	and	the	
local	linearisation	of	built	forms.	Local	order	in	this	sense	will	be	seen	to	be	the	
necessary	foundation	of	global	urban	form.	Without	it,	the	local	system	cannot	be	
stabilised	sufficiently	to	allow	global	patterns	to	be	constructed.
	 We	must	begin	by	considering	the	most	elementary	relations	in	a	system,	
beginning	with	one	object	in	the	vicinity	of	another.	Plate	4a,	b	and	c	shows	a	
series	of	possible	cases	which	are	then	subjected	to	all-line	analysis.	As	we	can	
see,	in	each	case	the	precise	pattern	of	integration	is	different,	depending	on	the	
shapes	of	the	objects	and	their	positions	with	respect	to	each	other.	But	there	is	
also	an	invariant	effect.	Regardless	of	the	shape	or	relative	locations	of	the	cells,	
all	the	pairs	of	objects	create	a	focus	of	integration	between	them	in	the	all-line	
map.	Further	experiment	would	show,	and	reflection	confirm,	that	given	any	pair	
of	objects	in	a	substrate	then,	other	things	being	equal,	integration	will	tend	to	be	
drawn	to	the	region	jointly	defined	between	them.	This	means	also	that	each	object	
is	adjacent	to	a	shared	set	of	integrating	lines,	and	therefore	potentially	permeable	
to	it,	in	the	direction	of	the	other	object.	This	is	an	instance	of	what	we	mean	by	an	
invariant.	It	is	a	structural	condition	that	is	always	the	case	even	under	considerable	
and	geometric	variation.	It	is	also	an	emergent	effect,	in	that	it	was	not	defined	
in	the	initial	rule	which	placed	the	second	object,	but	emerged	from	this	placing	
wherever	it	occurred.	In	this	particular	case,	the	invariant	emergent	effect	gives	a	
meaning	to	the	spatial	concept	of	‘betweenness’.
	 As	soon	as	we	begin	to	consider	systems	with	more	than	two	objects,	
however,	we	lose	this	invariance	in	the	emergent	outcome	and	instead	discover	a	
profound	problem	which	seems	initially	completely	incompatible	with	the	idea	of	a	
local	order:	that	of	indeterminacy	in	the	emergent	outcome.	As	soon	as	we	have	
a	third	object,	we	find	that	structures	emergent	from	analysis	of	the	all-line	maps	
arising	from	those	objects	are	highly	unpredictable	and	subject	to	great	variation	
in	outcomes	with	very	small	changes	in	the	shape	and	positioning	of	any	of	the	
objects.	Fortunately,	it	is	in	finding	the	answer	to	this	problem	that	we	will	be	able	
to	set	the	foundations	for	a	full	theoretical	understanding	of	settlement	space.	Only	
by	placing	and	orienting	objects	in	certain	ways	in	relation	to	each	other	can	local	
indeterminacy	be	overcome	and	local	order	created	in	the	evolving	system.
	 Suppose	then	we	add	a	third	object	to	the	pairs	we	have	already	
considered,	as	in	plate	4d	and	e.	It	seems	there	is	no	reliably	emergent	pattern.	On	
the	contrary,	the	structure	changes	from	4d	to	e	following	very	minor	changes	in	
the	locations	of	the	blocks.	Plate	4f	and	g	show	the	same	effect	in	a	much	more	
complex	system.	The	only	difference	between	the	two	is	a	change	in	the	size	—	but	
not	the	shape	or	position	—	of	one	of	the	objects,	yet	the	outcome	in	the	all-line	map	
is	quite	different.	Further	experimentation	will	show	that	this	is	always	the	case.	
There	is	of	course	a	local	determinism	operating.	But	it	is	so	dependent	on	very	
small	changes	in	the	shape	and	positioning	of	objects	that	it	is	virtually	impossible	
to	predict	without	this	very	detailed	knowledge.
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Now	everything	that	has	been	learned	about	real	spatial	systems	in	the	earlier	
chapters	of	this	book	suggests	that	structural	indeterminacy	in	spatial	patterns	is	the	
last	thing	we	expect	to	find.	On	the	contrary,	we	have	found	that	spatial	systems	of	
all	kinds	and	at	all	levels	tend	to	organise	themselves	according	to	certain	genotypes,	
that	is,	common	patterns	that	often	cross	seemingly	quite	different	cases.	It	is	clear	
that	such	systems	are	not	indeterminate.	Nor	are	they	altered	in	their	structure	by	
minor	changes.	On	the	contrary,	their	structures	are	highly	robust,	and	can	usually	
absorb	quite	significant	modifications	without	undergoing	great	changes	in	structure.	
In	this	sense,	we	can	say	that	real	systems	have	a	great	deal	of	redundancy.	This	
redundancy,	and	the	consequent	robustness	in	the	structural	outcome,	can	only	arise	
from	consistencies	of	some	kind	in	the	way	that	objects	are	placed,	that	is	from	a	
local	rule	following	behaviour	in	the	placing	of	objects.	Since	we	have	seen	that	real	
systems	seem	to	follow	rules	about	local	linearity	of	built	forms,	and	the	relation	of	
lines	to	entrances,	we	should	first	consider	the	structural	effects	of	these.
	 Suppose	then	that	we	align	a	series	of	blocks,	as	in	plate	4h.	Now	there	
is	an	emergent	invariant.	Integration	in	the	all-line	map	will	align	itself	one	side	or	
other	of	the	alignment	of	cells.	On	reflection,	it	is	evident	that	this	must	always	be	
so.	Integration	must	always	be	dominated	by	the	outer	vertices	that	can	see	each	
other.	However,	which	side	is	selected	is	still	highly	indeterminate.	It	depends	on	
quite	minor	differences	in	the	nature	of	the	cell	surfaces,	and	the	inter-relations	
of	these	differences	on	either	side	of	the	alignment.	Plate	4i,	for	example,	shows	
a	slight	realignment	of	the	same	blocks	as	in	h,	in	that	the	positions	of	the	three	
internal	blocks	are	rearranged.	The	effect	is	that	the	dominant	lines	of	integration	
shift	from	one	face	of	the	alignment	to	the	other.	The	reasons	for	these	differences	
can	always	be	traced,	but	they	are	often	quite	hard	to	find.	In	this	case	it	depends	
on	the	relative	length	of	the	longest	alignments	along	the	face,	and	this	depends	
on	very	small	differences	in	the	degree	to	which	blocks	protrude.	The	all-line	
integration	analysis	of	the	system	is	therefore	not	yet	robust.	We	have	solved	half	
the	problem.	We	know	we	will	find	a	linear	pattern	of	integration	in	the	all-line	map.	
But	we	do	not	yet	know	where	it	will	be.
	 One	way	of	making	the	outcome	determinate	will	of	course	be	to	align	the	
objects	perfectly	and	standardise	their	shape.	If	we	do	this,	then	integration	will	
distribute	itself	equally	on	both	sides	of	the	alignment.	However,	there	is	a	second	
factor	that	can	bring	redundancy	into	the	alignment,	one	which	does	not	require	us	
to	attain	geometrical	perfection,	and	that	is	the	relation	of	external	space	to	building	
entrances.	If	we	model	even	a	single	cell	not	simply	as	a	convex	object,	but	as	a	
building-like	entity	with	an	interior	and	an	entrance	(and	creating	a	finite	substrate	
mirroring	the	shape	of	the	built	form)	then	we	find	that	this	on	its	own	will	have	the	
immediate	—	and	on	reflection	obvious	—	effect	of	bringing	integration	onto	lines	
passing	the	entrance,	as	in	plate	5a.	In	other	words,	the	effect	on	the	all-line	map	
of	considering	internal	as	well	as	external	space,	as	related	through	the	entrance,	
is	to	integrate	the	area	outside	the	entrance	to	the	building	in	a	direction	orthogonal	
to	the	orientation	of	the	entrance.	It	would	not	stretch	things	too	far	to	suggest	that	
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the	effect	of	even	one	such	building	with	entrance	is	to	create	a	local	spatial	pattern	
which	is	already	street-like.	It	is	easy	to	see	that	this	is	a	necessary	emergent	effect.	
Other	things	being	equal,	the	relation	to	the	interior	of	the	‘building’	will	always	
create	an	extra	degree	of	integration	in	the	local	all-line	map,	and	in	the	absence	of	
other	influences,	this	relation	will	dominate	the	structure	of	integration.
	 Now	it	is	clear	that	if	we	both	align	cells	with	interiors	and	face	their	
entrances	more	or	less	in	the	same	direction,	then	integration	in	the	resultant	all-line	
map	will	powerfully	and	reliably	follow	the	line	orthogonal	to	(and	therefore	linking)	
the	alignment	of	entrances,	as	in	plate	5b.	We	are	in	effect	using	the	alignment	
and	the	entrance	effect	to	reinforce	each	other,	and	so	create	redundancy	in	the	
resulting	structure.	This	effect	will	be	lost	if	we	face	a	pair	of	cells	in	opposite	
directions,	as	in	plate	5c,	or	place	one	behind	the	other,	as	in	plate	5d.	Stabilisation	
requires	alignment	and	entrances	to	coincide	in	creating	the	same	effect.
	 We	now	see	that	these	two	most	localised	invariants	in	urban	form,	the	
relation	of	space	to	entrances	and	the	local	alignment	of	forms,	together	reliably	
create	exactly	the	emergent	local	structure	in	the	substrate	that	we	have	observed	
to	be	the	case.	Cell	alignment	‘means’	the	creation	of	a	linear	integration	structure	
along	the	surfaces	of	aligned	cells;	entrance	orientation	specifies	on	which	side	this	
is	to	occur.	In	the	absence	of	one	or	other	we	will	not	find	the	invariant	pattern	we	
have	noted.	The	two	together	have	the	effect	of	eliminating	local	indeterminacy	in	
the	form,	and	creating	a	robust	emergent	pattern	of	integration	in	the	aggregate.
	 There	is,	moreover,	a	second	way	in	which	an	emergent	pattern	of	
integration	can	be	stabilised	in	a	small	aggregate:	by	creating	a	second	alignment	
of	cells	more	or	less	parallel	to	an	existing	alignment.	This	second	alignment	does	
not	have	to	be	complete,	but	the	more	complete	it	is	the	more	it	will	eliminate	
indeterminacy	in	the	resulting	pattern	of	integration	in	the	all-line	analysis.	In	the	
two	cases	in	plate	5e	and	5f,	for	example,	quite	minor	changes	in	the	shape	and	
alignment	of	cells	—	the	lower	left	cell	in	f	has	been	moved	slightly	to	the	left	of	its	
position	in	e	—	is	enough	to	realign	the	dominant	line	of	integration	from	left	right	to	
diagonally	top	down.	However,	if,	as	in	plate	5g,	we	add	a	third	cell	on	the	second	
line,	it	is	very	hard	to	find	an	arrangement	of	the	cells	or	shape	change	which	
does	not	lead	to	the	main	axes	of	integration	running	left	to	right	between	the	two	
alignments.	The	pattern	of	integration	has	again	become	robust.	It	is	not	likely	to	
change	under	small	variations	in	the	shape	and	position	of	cells.
	 There	are	then	three	ways	in	which	the	local	indeterminacy	of	integration	
patterns	can	be	overcome	in	small	cellular	aggregates.	One	is	alignment	of	the	
cells.	The	second	is	alignment	of	entrances.	The	third	is	parallel	alignments.	What	
we	find	in	real	settlements	is	that	all	three	are	used	to	reinforce	each	other.	It	seems	
an	unavoidable	inference	that,	at	this	localised	level,	settlements	pursue	integration	
in	the	emergent	structure	by	using	all	three	ways	of	achieving	it	to	reinforce	each	
other.	In	other	words,	even	at	the	most	localised	level	we	find	that	settlements	
exploit	emegent	laws	of	space.	We	can	then	be	quite	precise	as	to	the	respective	
roles	of	human	agency	and	objective	laws.	The	human	agency	is	in	the	physical	
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shaping,	locating	and	orientation	of	built	forms.	The	laws	are	in	the	emergent	
spatial	effects	consequent	on	those	physical	decisions.	Built	forms,	we	may	say,	
are	shaped,	located	and	oriented	by	human	agency,	but	in	the	light	of	laws	which	
control	their	effects.
	
The laws of growth
If	this	is	so	at	the	most	localised	level,	what	of	the	higher	levels	of	area	and	
global	structure?	Here	we	must	remind	ourselves	of	the	contrary	influences	of	two	
underlying	principles:	linearity	integrates	the	visibility	field,	compactness	integrates	
the	movement	field.	Urban	form,	we	proposed,	reconciled	these	two	imperatives	
of	growing	systems	through	‘deformed’	or	‘interrupted’	grids,	both	of	which	tend	
to	maximise	linearity	without	losing	compactness.	We	shall	see	now	that	this	
principle	can	be	seen	to	operate	at	every	level	of	the	evolution	of	urban	form,	right	
down	to	the	level	of	certain	very	small	settlements	whose	layout	seems	to	contain	
the	very	seeds	of	urban	form.
	 In	The Social Logic of Space3	it	was	shown	that	the	basic	topological	forms	
of	certain	small	and	apparently	haphazard	settlement	forms,	in	which	irregular	ring	
streets	with	occasional	larger	spaces	like	beads	on	a	string	—	hence	the	‘beady	ring’	
—	could	be	generated	by	‘restricted	random’	cell	growth	processes	in	which	cells	with	
entrance	and	spaces	outside	the	entrance	were	aggregated	randomly,	subject	only	to	
the	rules	that	each	cell	joined	its	open	space	onto	the	open	space	of	a	cell	already	
in	the	complex,	and	that	joining	cells	by	their	vertices	was	forbidden	(since	joining	
buildings	at	the	corner	is	never	found	in	practice).	Plate	6a	shows	an	example.
	 It	was	also	suggested	that	many	settlements	which	began	with	this	type	
of	process	progressively	introduced	‘globalising’	rules	as	they	grew	larger.	These	
globalising	rules	took	the	form	of	longer	axial	lines	in	some	parts	of	the	complex,	
and	larger	convex	spaces,	usually	with	some	well-defined	relation	between	the	
two.	The	effect	of	globalising	rules	was	that	certain	key	properties,	such	as	the	
axial	depth	from	the	outside	to	the	heart	of	the	settlement,	tended	to	remain	fairly	
constant.	Such	contents	tended	to	create	a	structure	more	or	less	on	the	scale	of	
the	settlement	as	it	grew.	Analysis	then	showed4	that	the	effect	of	these	rules	was	
to	maintain	both	the	intelligibility	and	the	functionality	of	the	settlement,	to	maintain	
a	strong	relation	between	the	different	parts	of	the	settlement	and	between	the	
settlement	and	the	outside	world.
	 In	these	‘beady	ring’	forms,	two	key	local	spatial	characteristics	were	noted,	
which	then	tended	to	be	conserved	under	expansion.	First,	virtually	all	local	‘convex’	
spaces,	however	small	or	narrow	were	‘constituted’	by	entrances.	Second,	these	
convex	elements	tended	to	be	linked	by	lines	of	sight	and	access.	Since	we	knew	
that	both	of	these	arise	as	emergents	from	the	conservation	of	integration	in	the	
form,	it	seems	reasonable	to	believe	that	we	now	have	a	theory	for	these	local	
aspects	of	the	form.	But	what	of	the	globalising	processes?	
	 We	should	note	that	beady	rings	already	resemble	urban	systems	in	ways	
which	are	significant	for	urban	structures.	First,	the	distribution	of	integration	in	the	
open	space	is	not	undifferentiated,	but	biased	strongly	towards	certain	lines	and	
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certain	locations.	Second,	the	lines	that	are	prioritised	tend	to	be	among	those	that	
link	the	settlement	to	its	exterior.	Theoretically,	of	course,	this	is	likely	to	be	the	case,	
because	in	any	small	collection	of	objects,	the	lines	which	are	wholly	internal	(in	that	
both	ends	stop	on	built	forms),	are	likely	to	be	shorter	than	lines	which	connect	the	
interior	to	the	exterior.	This	is	particularly	significant,	since	it	seems	to	contain	the	
seeds	of	a	key	aspect	of	urban	structures:	that	is	the	tendency	for	the	integration	
core	to	link	at	least	some	key	internal	areas	to	the	periphery	of	the	settlement.
	 To	explore	how	this	becomes	a	key	factor	in	settlement	growth,	we	must	
bring	into	place	the	‘four	principles’	set	out	in	the	previous	chapter,	and	reinterpret	
them	for	the	aggregative	process	in	which	built	forms	progressively	construct	
patterns	of	open	space.	The	reader	will	recall	that	the	four	principles	were	centrality: 
blocks	placed	more	centrally	on	a	line	create	more	depth	gain	—	that	is	reduce	
integration	—	than	peripherally	placed	blocks,	and	vice	versa	for	the	creation	of	open	
space	by	block	removal;	extension:	the	longer	the	line	on	which	we	define	centrality,	
the	greater	the	depth	gain	from	the	block,	and	vice	versa	for	space;	contiguity: 
contiguous	blocks	create	more	depth	gain	than	non-contiguous	blocks,	and	vice	
versa	for	space;	and	linearity:	linearly	arranged	contiguous	blocks	create	more	
depth	gain	than	coiled	or	partially	coiled	blocks.
	 Seen	from	the	point	of	view	of	the	line	structures	that	are	created	by	block	
aggregation	processes,	the	four	principles	begin	to	look	much	simpler.	The	centrality	
principle	and	the	extension	principle	can	be	expressed	as	a	single	principle:	
maximise	the	length	of	the	longest	available	line.	If	there	is	a	choice	about	placing	a	
building	to	block	a	longer	or	shorter	line,	block	the	shorter	line.	This	does	not	quite	
work	in	a	void,	since	too	many	lines	are	infinite,	but	it	would	be	progressively	more	
and	more	possible	to	make	such	discriminations	as	an	aggregate	becomes	more	
complex.	The	effect	of	this	rule	would	be	always	to	conserve	the	longest	existing	
lines	in	the	growing	aggregate	and	gradually	evolve	these	lines	into	yet	longer	lines.	
A	similar	simplification	is	possible	for	the	principles	of	contiguity	and	linearity	when	
considered	from	the	point	of	view	of	line	creation.	Both	imply	the	minimisation	of	
deflection	from	linearity.	Placing	objects	contiguously	will	clearly	increase	deflection,	
and	so	will	the	linear	placing	of	objects,	rather	than	in	a	‘coiled	up’	form.
	 We	might	then	transcribe	the	four	principles	into	a	simpler	form	which	
runs	something	like:	select	longest	lines	for	maximum	linearity,	and	on	others	
(where	maximum	linearity	is	by	definition	not	being	conserved)	keep	deflection	to	
the	minimum.	We	can	easily	see	how	such	a	rule,	operating	in	the	context	of	the	
need	to	resolve	the	paradox	between	compact	metric	integration	and	linear	visual	
integration	would	lead	naturally	to	the	structural	bias	we	find	in	the	beady-ring	form.	
Is	is	less	obvious,	but	nonetheless	the	case,	that	it	can	also	lead	to	the	much	more	
complex	structural	biases	in	larger	urban	grids	that	we	identify	as	‘integration	cores’.	
In	due	course,	we	will	also	see	that	it	can	in	itself	lead	naturally	to	the	commonest	
kinds	of	local	area	structure	that	we	find	in	larger	cities.
	 How	then	and	why	do	these	global	properties	of	urban	systems	arise?	
Considering	the	earliest	stages	of	growth	in	deformed	grids,	beginning	with	the	
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the	hypothetical	‘beady-ring’	settlement	of	plate	6b,	with	its	all-line	analysis	and	
intelligibility	scattergram	below.	The	integration	core	links	edge	to	centre	and	the	
scattergram	shows	that	the	intelligibility	is	high	(from	which	we	may	be	sure	that	
the	correlation	of	local	and	global	interaction	will	be	even	higher).	Now	we	know	
that	in	any	such	system	the	longest	available	lines	are	unlikely	to	be	those	that	
make	interior	connections,	since	these	by	definition	stop	on	buildings	at	each	end,	
but	will	be	among	those	that	link	interior	to	exterior.	Suppose	then	that	we	simply	
follow	the	rule	of	placing	new	blocks	so	as	to	extend	longest	lines.	A	possible	
outcome	after	a	while	would	be	as	in	plate	6c.
	 This	is	a	fairly	common	form	of	development,	but	as	a	principle	to	guide	
the	evolution	of	larger	systems	it	is	insufficient,	since	the	effect	is	to	create	lacunas	
in	the	form	and	make	it	non-compact.	We	also	find,	on	analysis,	that	the	core	
becomes	focused	very	strongly	in	the	centre,	with	edges	that	become	very	weak.	
This	is	what	we	would	expect,	since	it	is	the	lack	of	compact	development	in	all	
directions	that	led	to	the	lack	of	structure	at	the	edges.	We	also	find	intelligibility,	as	
shown	in	the	scattergram,	beginning	to	break	down	in	the	more	integrated	areas,	
reflecting	the	independence	of	growth	along	different	alignments.	In	fact	we	find	this	
type	of	development	is	quite	common	in	small-scale	settlements,	but	is	rarely	found	
in	larger	ones.	Morphologically,	there	seem	to	be	sound	reasons	for	this	limitation.	
None	of	the	properties	we	have	come	to	expect	in	growing	systems	are	conserved	
beyond	a	certain	stage	in	this	type	of	development.
	 Let	us	then	experiment	by	expanding	the	hypothetical	settlement	compactly.	
We	will	explore	two	possibilities.	In	the	first,	we	pursue	our	dual	rule	of	optimising	
the	linear	extension	of	existing	longest	lines,	and	avoiding	undue	linear	deflection	in	
the	remainder	of	the	system.	In	the	second,	we	reverse	the	first	principle,	and	block	
longest	lines	at	ninety	degrees	with	blocks	that	also	cause	substantial	deflection	of	
lines	elsewhere	in	the	system.	Plate	6d	shows	two	possible	outcomes	after	a	further	
ring	of	growth	complete	with	all-line	analyses	and	intelligibility	scattergrams.	In	the	
first	outcome,	the	integration	core	continues	to	link	centre	to	edge,	and	maintain	
overall	integration	and	intelligibility	in	the	system.	In	the	second,	chicanes	on	all	
lines	from	centre	to	edge	mean	that	these	lines	become	hard	to	differentiate	from	
other	lines.	The	result	is	a	much	more	centralised	core,	which	no	longer	covers	
the	diameter	of	the	system.	The	overall	degree	of	integration	and	intelligibility	are	
accordingly	substantially	less	than	in	the	first	case.	If	we	then	continue	the	same	
pair	processes	as	in	plate	6e	and	f,	we	find	similar	outcomes,	though	with	the	
additional	effect	that	the	integration	core	in	6f	has	now	split	into	two.	The	levels	of	
both	integration	and	intelligibility	are	significantly	lower	in	6f	than	6e.
	 These	are	of	course	considerable	simplifications	of	real	urban	growth	
processes,	but	they	serve	to	illustrate	a	fundamental	principle:	that	given	that	
we	follow	the	rules	of	local	alignment	of	built	forms	and	entrances	to	stabilise	
integration	in	the	local	system,	then	simply	following	the	rule	of	selecting	the	longest	
lines	for	extending	linearity,	and	keeping	deflection	to	a	reasonably	low	level	in	the	
rest	of	the	system,	will	in	itself	tend	to	create	an	integration	core	that	links	centre	to	
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periphery	in	several	directions.	This	not	only	tends	to	solve	the	paradox	of	linearity	
and	compactness,	by	creating	spaces	that	link	centre	to	edge,	but	also	creates	a	
system	which	is	internally	integrated,	and	intelligible.	Thus	the	paradox	of	centrality	
is	overcome,	at	least	from	the	point	of	view	of	visibility	and	intelligibility.	All	this	
happens	because	the	integration	core	structures	the	settlement	in	such	a	way	as	
both	to	integrate	the	settlement	internally	while	at	the	same	time	integrating	it	to	its	
exterior.	In	other	words,	the	combined	‘centrality’	and	‘extension’	principles	—	simply	
by	being	applied	in	a	growing	system	—	have	the	effect	of	overcoming	the	centrality	
paradox	by	exploiting	the	visibility	paradox.	In	this	sense	at	least	we	can	say	that	
some	of	the	key	invariants	of	global	order	in	the	fundamental	settlement	process	are	
simply	products	of	generic	function	applied	to	growing	systems	in	the	light	of	the	
paradoxes	of	growth	in	such	systems.
	 One	question	then	remains.	How	do	local	area	structures	arise?	Let	us	then	
pick	up	the	story	of	the	expanding	deformed	grid	that	we	left	at	plate	6e.	We	know	
that	systems	can	evolve	a	centre-to-edge	integration	core	which	will	guarantee	certain	
key	system	properties	under	growth.	However,	as	the	system	grows	farther,	it	will	
generate	more	and	more	the	structural	problem	we	saw	in	Plate	6c:	as	the	lines	that	
form	the	integration	core	drive	outwards,	they	tend	to	become	farther	and	farther	
apart	creating	larger	and	larger	lacunas	in	the	system.	As	the	system	grows,	this	
problem	must	become	more	acute.	The	scale	of	the	lacunas	means	that	it	cannot	be	
solved	by	simply	avoiding	overly	deflecting	lines.	There	must	be	structure	within	the	
lacunas	just	as	previously	there	was	a	need	for	structure	in	the	main	settlement	as	
it	grew.	The	structure,	we	might	say,	that	resolves	the	centrality	paradox	at	the	level	
of	the	whole	settlement	recreates	it	as	a	more	localised	problem,	by	partly	enclosing	
areas	that	must	by	filled	in	with	built	forms	if	the	compactness	rule	is	to	be	retained.	It	
follows	that	structure	must	evolve	to	overcome	this	problem.
	 All	we	need	to	specify	is	the	continuation	of	the	process	we	have	already	
described	for	the	growing	centre	into	the	lacunas	between	the	radials.	Since	built	
forms	will	already	exist	at	the	edge,	the	process	must	begin	there.	A	process	of	
placing	blocks	in	order	to	maximise	the	longest	lines	created	by	the	built	forms	will	
first	tend	to	create	a	linear	space	penetrating	the	lacuna	laterally,	so	that	in	spite	
of	the	fact	that	the	process	has	begun	at	the	edges	of	the	lacuna,	a	structure	will	
be	created	which	is	dominated	by	edge-to-centre	lines	in	at	least	two	and	possibly	
more	directions.	The	interstices	will	then	be	filled	with	blocks	that	avoid	overly	
deflecting	linearity,	and	these	will	then	form	the	less	integrated	zones	within	the	
sub-area.	Because	initially	the	conditions	of	this	local	process	are	structured	from	
the	periphery,	the	conditions	for	radial	growth	do	not	exist	here.	On	the	contrary,	
the	initial	moves	in	the	system	under	these	more	structured	conditions	necessarily	
begin	to	sketch	a	more	orthogonal	grid.	Accordingly,	we	tend	to	find	a	greater	
tendency	towards	orthogonal	order	in	these	interstitial	areas	than	in	the	initial	urban	
form.	It	is	literally	suggested	by	the	process	itself.
	 In	cases	where	this	process	subsumes	an	earlier	settlement	—	say	
an	existing	village	—	then	this	may	initially	be	the	natural	magnet	for	the	lines	
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penetrating	the	lacuna	from	the	edge.	This	will	tend	to	form	a	local	deformation	
of	the	grid	evolving	in	the	lacuna.	It	is	exactly	such	a	process	that	gave	rise	to	
London’s	‘urban	villages’.	These	are	invariably	the	foci	of	the	integration	core	of	
local	deformed	grids	which,	like	other	London	areas,	take	the	form	of	a	‘deformed	
wheel’	(that	is,	an	integration	core	with	a	hub,	spokes	and	a	rim,	with	quiet	areas	
in	the	interstitial	zones)	in	which	the	periphery,	instead	of	being	the	space	outside	
the	settlement,	is	formed	by	the	radials	of	the	larger-scale	urban	process.	It	is	this	
process	that	gives	rise	to	the	fact	that	in	cities	like	London	the	‘deformed	wheel’	
structure	is	repeated	twice,	once	at	the	level	of	the	whole	city	and	once	at	the	level	
of	the	local	area.	It	is	also	this	that	gives	rise	to	the	geometry	of	the	local	and	larger-
scale	organisation	of	the	city	that	we	noted	earlier	in	this	chapter,	in	which	length	of	
line	and	angle	of	incidence	were	the	key	variables.
	 Not	all	cities,	of	course,	have	this	kind	of	local	area	structure.	But	this	is	the	
difficult	case.	London	embodies	the	continuation	of	the	operation	of	generic	function,	
and	the	spatial	processes	to	which	it	gives	rise,	into	the	local	area	structure	of	the	
growing	city.	It	is	this	that	makes	London,	in	spite	of	initial	appearances,	such	a	
paradigmatic	case	of	the	well-structured	city.	Perhaps	because	throughout	its	history	
planning	intervention	was	of	the	most	parsimonious	kind,	the	greatest	latitude	was	
created	for	the	fundamental	settlement	process	to	evolve	in	one	of	its	purest	forms.
	 It	is	this	that	gives	London	its	unique	theoretical	interest.	Other	cities	
have	very	different	ways	of	constructing	their	local	area	structures,	but	they	are	
more	structured,	that	is,	they	are	a	product	more	of	cultural	parametrisation	of	the	
fundamental	process	than	of	the	fundamental	process	itself.	In	Shiraz,	for	example,	
local	area	structures	are	much	more	axially	broken	up	than	London,	but	they	are	
also	smaller	and	less	complex	as	areas.	Most	local	areas	in	Shiraz	are	made	up	
of	sequences	of	right-angle	lines	connecting	in	one,	two,	three	or	four	places	to	
the	dominant	structure	of	the	integration	core.	Their	relation	is	predominantly	to	the	
outside,	and	that	relation	is	constructed	by	simple,	but	deep,	sequences	of	lines.	
We	do	not	therefore	find	that	the	correlation	of	radius-3	and	radius-n	integration	
gives	the	structure	of	the	local	area.	We	do	find,	however	(as	shown	by	Kayvan	
Karimi,	a	doctoral	student	at	UCL),	that	the	the	correlation	of	radius-6	and	radius	
-n	integration	does	capture	this	structure,	as	shown	in	the	two	cases	picked	out	
in	plate	7.	We	also	find	a	geometric	correlation	to	these	properties:	each	line	that	
forms	part	of	a	local	area	belongs	entirely	to	that	area.	No	line	which	is	internal	to	
an	area	also	crosses	a	core	line	and	becomes	part	also	of	another	local	area.	Local	
areas	in	Shiraz	are,	we	might	say,	linearly	discrete.	This	was	much	less	the	case	
in	London	where	at	least	some	lines	which	were	part	of	local	areas	also	continued	
into	neighbouring	areas.	As	we	have	found	before,	configuration	of	properties	are	
constructed	eventually	out	of	the	line	geometry	constructed	by	blocks	of	built	form.
	 Shiraz	is	a	fairly	extreme	case,	where	local	structures	are	small,	segregated	
and	highly	dependent	on	the	global	structure	of	the	settlement.	At	the	opposite	
extreme	we	find	cities	like	Chicago,	where	the	high	mean	average	length	of	line	and	
the	fact	that	some	cross	the	entire	system	mean	that	integration	is	very	high.	There	
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is	then,	in	the	settlement	as	a	whole,	a	high	correlation	between	connectivity	and	
integration,	and	a fortiori	a	high	correlation	between	local	and	global	integration.	In	
Chicago	there	is	very	little	tendency	for	whole	lines	to	be	confined	to	any	plausible	
sub-area	in	the	city.	On	the	contrary,	a	major	characteristic	of	the	structure	of	the	
city	is	that	all	areas	are	made	up	of	lines	that	include	many	that	are	global	lines	
in	the	system.	But	this	does	not	mean	that	there	is	no	local	area	structure.	On	
the	contrary,	if	we	select	for	areas	all	lines	within	that	area	and	those	which	pass	
through	the	area,	we	find	reproduced	at	the	local	level	even	stronger	correlation	
between	connectivity	and	integration	than	prevails	for	the	system	as	a	whole.	In	
other	words,	the	local	area	structure	of	the	city	is	characterised	in	the	case	of	
Chicago	by	the	correlation	between	connectivity	(that	is,	radius-1	integration)	and	
radius-n	integration,	in	London	by	the	correlation	between	radius-3	and	radius-n	
integration	and	in	Shiraz	by	the	correlation	of	radius-6	and	radius-n	integration.	This	
then	is	a	parameter	by	which	each	city	adapts	the	fundamental	settlement	process	
to	its	own	structural	needs.
	 However,	all	of	the	invariants	that	were	specified	in	the	original	description	
of	cities	hold	in	all	three	of	these	cases.	Not	only	do	we	find	these	deep	structures	
in	common,	but	also	a	common	geometrical	language	of	line	length	and	angles	of	
incidence	through	which	not	only	these	structures,	but	also	the	parameterisations	
through	which	cultures	identify	themselves	in	spatial	form,	are	realised.	It	is	the	
existence	of	this	common	geometric	language	which	permits	both	invariants	and	
cultural	parameterisations	to	proceed	side	by	side.	At	the	deepest	level	of	what	all	
cultures	share	—	that	is,	of	what	is	common	spatially	to	humankind	–is	the	geometric	
language	that	we	all	speak.
	
	 	
Notes
This	was	explored	in	the	early	seventies	by	Daniel	Richardson	in	‘Random	growth	in	
a	tessellation’,	Journal of the Cambridge Philosophical Society,	74,	1973,	pp.	515–28.
The	difference	between	a	‘deformed’	and	‘interrupted’	grid	is	that	the	controlled	
irregularity	of	the	former	comes	about	essentially	through	geometric	deformation	of	
the	line	structure,	in	the	manner	of	European	cities,	while	that	of	the	latter	comes	
about	by	placing	buildings	and	other	facilities	to	‘interrupt’	some	lines	rather	than	
others,	in	the	manner	of	Graeco-Roman	or	American	grids.	Both	usually	achieve	
the	result	of	a	well-defined	pattern	of	integration	in	the	axial	map	of	the	city.	For	a	
further	discussion,	see	below.
See	B.	Hillier	&	J.	Hanson,	The Social Logic of Space,		
Cambridge	University	Press,	1984,	Chapter	2.
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