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Despite the merits of rectangular 
dissections as models of smaller 
plans, there is an increasing 
proportion of ‘theoretical 
possibilities’ for larger dissections 
which nevertheless become rather 
unlike the plans of buildings, 
and hence begin to lose their 
practical interest. Such dissections 
consist, certainly, of rectangular 
components corresponding 
to rooms, packed together in 
different configurations. But 
these configurations are not at 
all probable architecturally, in 
ways which are hard to pinpoint 
precisely, but are no less real 
for that. It is something to do 
with such facts as that real 
buildings tend to have limited 
depth, because of the needs of 
daylighting and natural ventilation, 
so that when large they become 
organised into regular patterns of 
wings and courts. Or that rooms 
are set along relatively simple and 
coherent circulations systems 
consisting of a few branching 
corridors which extend along the 
buildings’ whole length. There 
are many dissections which 
are made up, by contrast, of a 
deep maze like agglomeration 
of overlapping rectangles, many 
of them completely internal and 
through which any linking pattern 
of circulation routes would be 
circuitous and confusing. If we 
could capture properties like these 
in explicit geometrical measures, 
then we might be able to limit the 
study of dissections, for example, 
to a much reduced class of 
arrangements which would all  
be ‘building-like’ in some well 
defined sense. Steadman, 1983
 
The deepest root of the  
trouble lies elsewhere: a field of 
possibilities open into infinity has 
been mistaken for a closed realm 
of things existing in themselves
Herman Weyl

Endless corridors and infinite courts
No idea in the theory of architecture is more seductive than that architecture is an 
ars combinatoria — a combinatorial art: the idea that the whole field of architectural 
possibility might be made transparent by identifying a set of basic elements and a 
set of rules for combining them so that the application of one to the other would 
generate the architectural forms which exist, and open up possibilities that might 
exist and be consistent with those that do. By showing architectural forms to be a 
system of transformations in this way, the elements and rules would be held to be 
a theory of architectural form — the system of invariants that underlie the variety to 
be found in the real world. The best-known statement of this hope is that of William 
Lethaby when he calls for ‘a true science of architecture, a sort of architectural 
biology which shall investigate the unit cell and all possibilities of combination’.1

	 At first sight, this seems promising. Most buildings seem to be made up from 
a rather small list of spatial elements such as rooms, courts and corridors, which 
vary in size and shape but which are usually found in fairly familiar arrangements: 
corridors have rooms off them, courts have rooms around them, rooms may connect 
only with these or may also connect directly to each other to form sequences, and so 
on. Similarly, the aggregates of buildings we call villages, towns and cities seem to be 
constructed from a similarly small and geometrically well-defined lexicon of streets, 
alleys, squares, and so on. With such an encouraging start, we might hope with a little 
mental effort to arrive at an enumeration of the combinatoric possibilities in the form 
of a list of elements and the possible relationships they can enter into so that we can 
build a reasoned picture of the passage from the simplest and smallest cases to the 
largest and most complex.
	 Unfortunately, such optimism rarely survives the examination of real 
cases. If, for example, we consider the cross-national and cross-temporal sample 
of 177 building plans brought together in Martin Hellick’s ‘Varieties of Human 
Habitation’,2 we may well feel inclined to confirm at a very broad level — and with 
great geometric variation — the idea that there are certain recurrent spatial types 
such as rooms, courts and corridors, but we also note the prodigious variations 
of overall layout which seem to be consistent with each. The historical record 
of actual buildings and how they have evolved suggests that most buildings are 
morphologically unique, and it is far from obvious how any combinatorial approach 
could reduce them to a list of types.
	 Even if we isolate the problem of spatial relations from that of shape and 
size by, for example, analysing plans as graphs, then we still find cornucopian 
variety rather than simple typology. For example, a recent study of over 500 English 
vernacular houses built between 1843 and 1930 reveals exactly six pairs of duplicate 
graphs, even though the sample was taken from a single country during a period 
where some typological continuity could be expected.3 Plans seem to be individual, 
often with family resemblances or common local configurations, but rarely 
consistent enough or clear enough to suggest a simple division into types.
	 Theoretical investigations of architectural possibility have led to an even 
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greater pessimism. For example, studies which have attempted to enumerate 
architectural possibility, even within artificially constrained systems such as the 
dissection of rectangles into patterns of room adjacencies,4 have invariably shown 
that at an early stage in the enumeration the number of possibilities quickly outstrips 
the number of conceivable cases, and a combinatorial explosion of such violence 
is encountered as to exclude any practical possibility of continuing from smaller 
to larger systems. Thus Steadman concludes in his review of modern attempts at 
the systematic enumeration of building plans that ‘…for values of n (the number of 
cells in a rectangular “dissection”) much greater than 10, the extent of combinatorial 
variety becomes so great that a complete enumeration is of little practical purpose; 
and indeed that for values of n not much larger than this, enumeration itself 
becomes a practical impossibility’.5

	 There are in fact strong a priori grounds for Steadman’s caution. Although 
by circumscribing what we mean by a building in unlifelike ways, for example, by 
dealing only with rectangular envelopes, or by standardising the size and shape 
of spaces, one can place limits on combinatorial possibility to the point where 
we can in principle count numbers of possible arrangements, however large, the 
more constraints one places on the combinatoric system, the less we seem able 
to account for the variety which actually exists. But if we relax these constraints, 
it is far from obvious that there are any numerical limits at all on architectural 
possibility. For example, if we require all cells to be the same size then no cell can 
be adjacent to more than six others. But if we allow cells to vary in size and shape 
as much as necessary, then we may construct a corridor so that arbitrarily many 
cells are directly adjacent to it, or a court so that arbitrarily many cells are around it. 
Endless corridors and infinite courts must surely lead us to abandon simple cellular 
enumeration as a route to a combinatoric theory of spatial possibility in architecture.
	
P-complexes in a-complexes
There is in any case a further profound problem in the understanding of buildings 
as cellular dissections or aggregations. An arrangement of adjacent cells, whether 
arrived at by aggregation or subdivision, is not a building until a pattern of 
permeability from one cell to the other is created within it. For example, figure 8.1a 
shows a single adjacency complex, which we may call an a-complex, in which 
figures 8.1b and 8.1c inscribe different permeability complexes, or p-complexes. For 
clarity, the p-complexes of b and c are also shown as graphs in 8.1d and e.
	 Evidently, the two will be spatially very different buildings, even though the a–
complexes are identical and each p-complex has exactly the same number of open 
and closed partitions. Over and above the question then, of how many a-complexes 
there are, we must therefore also ask how many p-complexes are possible within 
a given a-complex. We then find a second combinatorial explosion within the first: 
of possible p-complexes within a given a-complex. Although an a-complex whose 
graph is a tree (see Chapter 1) can only have one single p-structure inscribed 
within it (and then only if we disregard connections to the outside) as soon as this 
constraint is relaxed we begin to find the second combinatorial explosion: that of 



Is architecture an ars combinatoria?218

The laws of the field	 	
	 	 	 	

Space is the machine | Bill Hillier	
	 	 	

Space Syntax

b.

h.

a. c.

Figure 8.1

d. e.

f. g.

Figure 8.1



Is architecture an ars combinatoria?219

The laws of the field	 	
	 	 	 	

Space is the machine | Bill Hillier	
	 	 	

Space Syntax

the possible p-complexes within each a-complex.
	 Suppose, for example, that we start with a version of the 6×6 a-complex 
shown in figure 8.1a, in which each cell is demarcated from its neighbour by a two-
thirds partition with a central doorway, as in figure 8.1f and g. Obviously, every time 
we close — or subsequently open — a doorway we will change the spatial pattern 
of the p-complex. The question is, how many ways are there of inscribing different 
p-complexes in this a-complex by closing and opening doors? We may work it out 
by simple combinatorial procedure. First we note that a regular n × m adjacency 
complex will always have (m(n–1)+(n(m–1)) internal partitions between cells, giving 
(6(6–1)+(6(6–1)) = 60 in this case. This means that the first time we select a door to 
close we will be making a choice out of 60 possibilities. The second will be out of 
59, so there are 609, or 3540 possibilities for the first two doors. However half of 
these will be duplicates, since they differ only in the order in which the doorways 
were opened, so we need to divide our total by the number of ways there are of 
sequencing two events i.e. 60×59/1×2, or 1770. The third doorway will be chosen 
out of 58 remaining possibilities, so there will be 60×59×58 or 205320 possible 
combinations of three, but the number of duplicates of each will also increase to the 
number of different ways there are of ordering three events, that is 1×2×3 (= 6), so 
the total of different combinations for three doorways is 60×59×58/1×2×3 or 34220.
	 The total number of combinations for n doorways, will then be 60×59×58…× 
(60–n)/1 × 2× 3×…×n, or in general, n(n–1)(n–2)...(n–m)/m! In other words the 
number of duplicates increases factorially rising from 1, while the number of total 
possibilities is multiplied by one less each time. This means that as soon as m 
reaches n/2, then the number begins to diminish by exactly the same number that 
it previously expanded. The numbers in effect pass each other half way, so that 
there are the maximum number of different ways of arranging 30 partitions in 60 
possible locations, but this number diminishes to 1 by the time we are opening the 
60th doorway, just as it was when we opened the first doorway. These calculations 
reflect a simple intuitive fact, that once we have placed half the partitions, then what 
we are really choosing from then on is which to leave open, a smaller number than 
the partitions we have so far placed. When we have placed 59 partitions, there is 
only one location in which we can place the 60th, and this is why if we carry out the 
calculation at this point it will give a value of 1.
	 What exactly are the numbers we are talking about? The procedure we have 
outlined can in fact be expressed more simply in a well-known combinatorial formula 
which can be applied in any situation where we are assigning a given number of 
entities to a given number of possible assignments. If the number of doorways is d, 
and the number of partitions p, then the formula p!/d!(p–d)! will give us the number 
of possibilities which we have just worked out. With p=60, the highest value that the 
formula can yield will be when d is half the possible number, that is 60/2×30, and the 
result of the calculation 60!/(30!(60 — 30)!) is 118,264,581,600,000,000  (a hundred and 
eighteen thousand trillion). The second highest value, 114,449,595, 100,000,000, will be 
when d is 29 or 31, the next, 103,719, 935,500,000,000, when d is 28 or 32, and so on, 
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and the lowest, 1, when d is 0 or 60, and the second lowest, 60, when d is 1 or 59.
These kinds of numbers of possibilities, though quite modest by combinatoric 
standards, are almost impossible to grasp. To give an intuitive idea of the scale 
of possibilities we are dealing with in the modest complex, we might perhaps 
compare our maximum number of possible p-graphs for this comparatively small 
a-graph with another 18-digit number: the number of seconds believed to have 
passed since the big bang (provided it occurred 15 billion years ago), that is about 
441,504,000,000,000,000. This means that if a computer had begun at the moment of 
the big bang to draw up all these possible configurations of doorways for this one 
modest adjacency complex, then it would have had to work at an average of one 
every four seconds to be finishing now. If we printed out the results on A4 sheets, 
and set them side by side, they would reach from Earth to the nearest star and back, 
or 141,255 times to the sun and back, or just short of a billion times round the world.
	 There are a number of ways of reducing these vast numbers. For example, 
each p-complex will have as many duplicates as there are symmetries in the 
system. We can therefore reduce all our totals by this factor. We may also decide 
that we are only interested in those p-complexes which form a single building, that 
is a complex in which each cell is accessible from all others without going outside 
the building. The maximum number of doors that can be closed without necessarily 
splitting the complex into two or more sub-complexes will always be (n-1)(m-1), or 
25 in this case. No way is known of calculating how many of the p-complexes with 
25 or less partitions will be single buildings, but, in any case, the realism of this 
restriction is doubtful because we have not so far taken any account of permeability 
to the exterior of the form, and in any case, a complex split into two is still a 
building complex and may be found in reality.
	 More substantively, we might explore the effects on imposing Steadman’s 
‘light and air’ restrictions on the form. Here we find they are far less powerful than 
we might think in restricting p-complexes. For example, we may approximate a form 
in which each cell has direct access to light and air by making an internal courtyard 
as in figure 8.1h give or take a little shifting of partitions to allow the inner corner 
cells direct access to the courtyard. Combinatorially, this has the effect of reducing 
the number of internal partitions by 4 to 56, and the maximum number that may be 
closed without splitting the building by 1 to 24. The number of p-complexes that can 
be inscribed within the a-complex is therefore still in the thousands of trillions.
	 We will find this is generally the case. The imposition of the requirement 
that each cell should have direct access to outside light and air makes relatively 
little impact on the number of p-complexes that are possible, the more so since 
direct access to external light and air will also mean an extra possible permeability 
in the system which we have not so far taken account of. It is clear that although 
light and air are inevitably powerful factors in influencing the a-complex, they place 
relatively little restriction on the possible p-complexes. We might even venture a 
generalisation. ‘Bodily’ factors like light and air have their effect on buildings by 
influencing the a-complex, but do not affect the p-complex which is determined, 
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as we have seen in previous chapters, and as we will see more generally below, 
largely by the psycho-social factors which govern spatial configuration.
	 If we see buildings, as we must, as both physical and spatial forms, that is 
as a-complexes with p-complexes inscribed within them, then we must conclude 
that buildings as a combinatorial system take the form of one combinatorial 
explosion within another with neither being usefully countable except under 
the imposition of highly artificial constraints. Is the combinatoric question about 
architecture then misconceived? If it is, how then should we account for the fact 
that there do seem to be rather few basic ways of ordering space in buildings. What 
we must do, I suggest, is rephrase the question. Architecture is not a combinatorial 
system tout court any more than a language is a combinatorial system made up 
of words and rules of combination. In language, most — almost all in combinatorial 
terms — of the grammatically correct sequences of words of a language have no 
meaning, and are not in that sense legitimate sentences in the language. It is how 
(and why) these combinatoric possibilities are restricted that is the structure of the 
language. So with architecture. Most combinatorial possibilities are not buildings. 
The question is why not? How is the combinatorial field restricted and structured so 
as to give rise to the forms that exist and others that might legitimately exist? It is 
this that will be the theory of architectural form — the laws that restrict and structure 
the field of possibility, not the combinatorial laws of possibility themselves.
	 How then should we seek to understand these restrictions that structure 
the field of architectural possibility? There are a number of important clues. First, 
as the results reported in Chapter 4–8 show, the configurational properties of 
space, that is of the p-complex, are the most powerful links between the forms of 
built environments and how they function. It is a reasonable conjecture from these 
results, and their generality, that, in the evolution of the forms of buildings, factors 
affected the p-complex may dominate those affecting the a-complex. Bodily factors 
affecting the a-complex may create certain limits within which p-complexes evolve, 
but buildings are eventually structured by factors which affect the evolution of the 
p-complex, because it is the p-complex that relates to the functional differences 
between kinds of buildings.
	 Second, the properties of p-complexes that influence and are influenced by 
function tend to be global, or at least globally related, configurational properties, such 
as integration, that is, properties which reflect the relations of each space to many, 
even all, others. For example, the average quantity of movement along a particular line 
is determined not so much by the local properties of that space through which the 
line passes considered as an element in isolation, but by how that line is positioned 
in relation to the global pattern of space created by the street system of which it is a 
part (see Chapter 4). In general we may say that configuration takes priority over the 
intrinsic properties of the spatial element in relating form to function.
	 These conclusions may be drawn as generalisations from the study of 
a range of different types of building and settlement. However, there is a further, 
more general, conclusion that may be drawn from these studies which has a direct 
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and powerful bearing on our present concerns. If we consider the range of cases 
studied as instances of real p-complexes within the total realm of the possible, we 
find that as complexes become larger they occupy a smaller and smaller part of the 
total range of possibility from the point of view of the total spatial integration of the 
complex, crowding more and more at the integrating end of possibility as complexes 
grow. For example, the recent doctoral study of over 500 English houses from the 
mid ninteenth to early twentieth century already referred to6 with a mean size of 23.6 
cells, has found most of the houses lie within the most integrating 30 per cent of the 
range of possibility and all within 50 per cent. Analysis of large numbers of buildings 
over a number of years suggest that at around 150 cells, virtually all buildings will be 
within the shallowest 20 per cent of the range of possibility, and most much below 
it, at 300 cells, nearly all will be within the bottom 10 per cent, and at around 500 
most will be within the bottom 5 per cent. It is clear that as buildings grow, they use 
less and less of the range of possible p-complexes. The same is true of axial maps 
of settlements.7

	 In short, the most significant properties of p-complexes seem to be related 
to the degree and distribution of spatial integration — that is, the topological depth 
of each space from all others — in the complex. It follows that if we can understand 
theoretically how these characteristic properties of integration are created, then we 
will have made some significant progress towards understanding how architectural 
possibility becomes architectural actuality. How then does integration arise in a p-
complex in different degrees and with different distributions? The simple fact is that 
the properties of any p-complex, however large, are constructed only by way of a 
large number of localised physical decisions: the placing of partitions, the opening 
of doors, the alignment of boundaries, and so on. What we need to understand in 
the first instance is how the global configurational properties of p-complexes space 
are affected by these various types of local physical change. It will turn out that 
the critical matter is that every local physical move in architecture has well-defined 
global spatial effects in the p-complex, including effects on the pattern and quantity 
of integration. It is the systematic nature of these effects by which local physical 
moves lead to global spatial effects that are the key to how combinatorial possibility 
in architecture is restricted to the architecturally probable, since these are in effect 
the laws by which the pattern and degree of integration in a complex is constructed.
	 Once we understand the systematic nature of these laws, we will be led to 
doubt the usefulness, and even the validity of the combinatorial theory of architecture 
in two quite fundamental ways. First, we will doubt the usefulness of the idea 
of spatial ‘elements’, because each apparent spatial element acquires its most 
significant properties from its configurational relations rather than from its intrinsic 
properties. Even apparently intrinsic properties such as size, shape and degree of 
boundedness will be shown to be fundamentally configurational properties with global 
implications for the p-complex as a whole. In effect, we will find that configuration 
is dominant over the element to the point where we must conclude that the idea of 
an element is more misleading than it is useful.8 Spatial elements, we will show, are 
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properly seen not as free-standing ‘elements’, with intrinsic properties, waiting to be 
brought into combination with others to create complexes of such properties, but 
as local spatial strategies to create global configurational effects according to well-
defined laws by which local moves induce global changes in spatial configurations.
	 The second source of doubt will follow from the first: it is not combinatorics 
per se which create complexes but the local to global laws which restrict 
combinatorics from the vast field of architectural possibility to certain well-
defined pathways of architectural probability. The theory we are seeking lies not 
in understanding either the theoretically possible or the real in isolation, but in 
understanding how the theoretically possible becomes the real. We will suggest 
that the passage from possibility to actuality is governed by laws of a very specific 
kind, namely laws which govern the relation between spatial configuration and what 
I will call ‘generic function’. Generic function refers not to the different activities that 
people carry out in buildings or the different functional programmes that building 
of different kinds accommodate, but to aspects of human occupancy of buildings 
that are prior to any of these: that to occupy space means to be aware of the 
relationships of space to others, that to occupy a building means to move about in 
it, and to move about in a building depends on being able to retain an intelligible 
picture of it. Intelligibility and functionality defined as formal properties of spatial 
complexes are the key ‘generic functions’, and as such the key structures which 
restrict the field of combinatorial possibility and give rise to the architecturally real.
	
The construction of integration
Let us begin with figure 8.1f, a 6×6 half-partitioned a-complex with an isomorphic 
p-complex inscribed within it, that is, all partitions are permeable. What we are 
interested in is how the key global configurational property of integration is affected 
by closing and opening the central sections of the partitions. To make the process 
as transparent as possible, instead of using i-values, we will use the total depth 
counts from each cell from which the i-value is calculated. Half-partitions may 
be turned into full partitions by adding ‘bars’, in which case the cells either side 
become separated from each other, without direct connection. Half-partitions 
can also be eliminated, in which case the two cells become a single space. If all 
partitions to a cell are barred, then that cell becomes a block in the system.
	 Now as we already know from the analysis of shape in Chapter 3, the p-
complex of figure 8.1f will already have a distribution of i-values, which we can show 
in figure 8.2a as total depth values, that is, the total depth of each cell from all the 
others, with the sum, 5040, shown below the figure. It is important for our analysis 
that we understand exactly how these differences arise, since all is not quite as it 
seems. We will, it turns out, need to make a distinction between the shape of the 
complex and the boundary of the complex. At first sight, it is clear that the differences 
between the cells are due to the relation of the cell to the boundary of the complex. 
Corner cells have most depth, centre edge rather less, then less towards the centre. 
If we change the shape of the aggregate, say into a 12 x 3 rectangle, as in figure 
8.2b then all the individual cell total depths will change, as will the total depth for the 
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aggregate as a whole (6330) reflecting the changing relations of cells to the boundary.
However, if we eliminate the boundary by wrapping either of the two aggregates 
first round a cylinder so that left joined to right, and then into a torus so that top 
joined to bottom, then the total depths for all cells in each aggregate would be the 
same, since starting from each and counting outwards until we have covered all the 
cells, we will never encounter a boundary and so will find the same pattern of depth 
from each cell. The total depths of the cells would in fact be equal to the minimum 
depth of the cells in the bounded aggregate, that is the group of four at the centre 
of the square form, whose value is 108, and the pair at the centre of the rectangular 
form, whose depth is 132. However, this implies that in spite of the removal of the 
boundaries, these differences between the square and rectangular shapes still 
survive. These differences in total depth values are it seems the product of the 
shape of the aggregate but not of its boundary.
	 This can be demonstrated by a simple thought experiment. Take a cellular 
aggregate, say the six by six square and wrap it onto a torus, thus removing the 
boundary. Select any ‘root’ cell and construct a justified graph — that is a graph in 
which levels of depth of nodes from an initial node are aligned above a selected root 

Figure 8.2

Figure 8.3

Figure 8.2

72

12

48

24

0

36

80

48

80

24

40

12

40

12

52

24

76

48

36 12 0 0 12 36

36 12 0 0 12 36

48 24 12 12 24 48

72 48 36 36 48 72

82

48

50

24

38

12

38

12

50

24

74

48

36 12 0 0 12 36

36 12 0 0 12 36

48 24 12 12 24 48

72 48 36 36 48 72

90

102

0

1272 48

60 36

30

18

18

6

144

222

234

132

144204 180

192 168

162

150

150

138

234 204 180 162 150 144

132

144 150

138

150

162

150

162

180

168

180

204

192

204

222

234

234

180

156

144

156

132

120

144

120

108

180

180

180

156

144

156

144

156

144120 108

132 120

156 144

144

120

108

108

120

144

156

132

120

120

132

156

total depth = 5040

c.

a. b.

d.

total depth = 6330

a. b.



Is architecture an ars combinatoria?225

The laws of the field	 	
	 	 	 	

Space is the machine | Bill Hillier	
	 	 	

Space Syntax

node in a series of layers representing depth — in which all cells sharing a doorway 
with the root are the first layer, all those sharing a doorway to a first layer cell are the 
second layer, and so on. When the graph reaches any cell adjacent to the boundary 
in the original bounded aggregate in the plane, any next, deeper cell with which a cell 
in the justified graph shares a doorway will already be in another branch of the graph. 
Thus the justified graph finds the limits of the original shape of the aggregate, even 
though the boundary has been eliminated by wrapping on the torus.
	 It follows that the uniform depth value that will be found in any shape 
on a torus will reflect the shape and will be equal to the minimum depth of the 
original aggregate in the plane. This will be 108 for the square form and 132 for the 
rectangle. A depth of 108 per cell (three times the number of cells in the complex) 
can therefore be said to be the depth due to the square form having a square shape 
and 132 the depth due to the rectangular form having a rectangular shape. When 
dealing with a standard shape therefore we may, if we wish, eliminate this amount 
of depth from each cell, and deal only with the depth due to the boundary. These 
remaining depths are shown for the 6 x 6 square and the 12×3 rectangle in figures 
8.2c and d. These boundary related depths are due to the fact that the aggregate 
boundary is barred from its surrounding region. If we were to open all cells to the 
outside by opening the boundary, and treating the outside region as an element in 
the system to be included in depth calculations, then clearly the depth values would 
all change, particularly if we counted the outer region as a single space, in which 
case cells close to the boundary would have less depth than cells at the centre. 
This alerts us to the fact that in considering the barring — that is the conversion of 
half partitions into full partitions — in a cellular aggregate, the boundary is itself an 
initial partitioning, and like any other partitioning it has effects on the distribution of 

depth in the aggregate. Bearing this in mind, we may now return to the plane, and 
hold shape and boundary steady by considering only the square form, in order to 
explore the depth effects of adding further barrings within the aggregate.
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It is obvious that further internal barring will increase the total depth for at least 
some cells, since it will have the effect of making certain trips from cell to cell 
longer. It is perhaps less obvious that the quantity, as well as the distribution, of 
extra depth created by bars will vary with the location of the bar in relation to the 
boundary. For example, if we place a bar in the leftmost horizontal location in the 
top line of cells in figure 8.1, as in figure 8.3a, the total depth in the aggregate will be 
increased from 5040 to 5060, an additional 20 steps of depth, while if we place the 
bar one to the right, as in figure 8.3b, then the increase in total depth will be from 
5040 to 5072, an additional 32 steps.
	 How does this happen? First, all the ‘depth gain’ in figures 8.3a and b is on 
the line in which the bar is located. On reflection, this must be the case. Depth gain 
happens when a shortest route from one cell to another requires a detour to an 
adjacent line. Evidently, any other destination on that adjacent line or on any other line 
will not require any modification to the shortest path, unless that line is itself barred. 
Depth gain for single bar must then be confined to the line on which the bar occurs. 
But placing the bar at different points on the line changes the pattern of depth gain for 
the cells along the line. Each cell gains depth equal to twice the number of cells from 
which it is linearly barred, because each trip from a cell to such cells requires a two-
cell detour via an adjacent line. Evidently this will be two way, and the sum of depths 
on the two sides of a single bar will thus always be the same. It follows that the 
depth gain values of individual cells will become more similar to each other as the bar 
moves from edge to centre, becoming identical when the bar is central. It also follows 
that the total depth gain from a bar will be maximised when the bar is at or near the 
centre of the line, and will be minimised at the edge. This is illustrated for edge to 
centre bars on a 6-cell line in figure 8.4 a, b c, and d.
	 The fact that an edge location for a partition minimises depth gain but 
maximises the differences between cells, while a central location maximises 
depth gain but minimises differences, is a highly significant property. It means that 
decisions about where to place a bar, or block a doorway, have implications for 
the system beyond the immediate region of the bar. If we define a ‘local physical 
decision’ as a decision about a particular bar within a system, and a ‘global 
spatial effect’ as the outcome of that decision for the system as a whole, it is clear 
that local decisions do have quite systematic global effects. In these cases, the 
systematic effects follow what we might call the ‘principle of centrality’.
	 It might be useful to think of such ‘local-to-global’ effects as ‘design 
principles’, that is, as rules from which we can forecast the global effect of a local 
barring decision by recognising what kind of barring we are making. In this case 
the design principles are two: that the depth gain from a bar is minimised when the 
bar is placed at the edge and maximised when placed at the centre; and that edge 
bars make for greater depth gain differences between some cells and others, while 
central partitions equalise depth gain.
	 Similar principles govern local-to-global effects when we add a second 
bar in different locations as in figure 8.4e-j. Depth gains for each cell are equal to 
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twice the number of cells on the far side of the nearest bar. For each cell, bars 
other than the nearest on either side do not affect depth since once a detour to 
an adjacent line has been made, then it can be continued without further detour 
to reach other cells on the original line, provided of course there is no bar on the 
adjacent line (see below). Figure 8.4k–p then shows that depth effects of three to 
five bars are governed in the same way, ending with the fully barred line in which 
each cell gains depth equal to twice the number of other cells in the line. These 
examples illustrate a second principle: that once a line is barred, then depth gain 
from the next bar will be minimised by placing it within the shortest remaining line 
of cells, and maximised by placing it in the longest. We can call this the ‘principle 
of extension’: barring longer lines creates more depth gain than barring shorter 
lines. Within each line, of course, the principle of centrality continues to hold, and 
the distribution of depth gains in the various cases in figure 8.4 follow these both 
in the principle of extension and the principle of centrality. Thus taking figures 8.4g 
and j, each has a bar in the second position in from the left, but g then has its 
second bar immediately adjacent in the third position in from the left, while j has its 
second bar two positions away, equidistant from the right boundary of the complex. 
This is why g has less depth gain than j in spite of its second bar being in a more 
central location in the complex as a whole, because, given the first bar, what counts 
is the position of the next bar in the longest remaining lines, and in j the bar is 
placed centrally on that line. This shows an important implication of the principles 
of centrality and extension: when applied together to maximise depth gain, they 
generate an even distribution of bars, in which each bar is as far as possible from 
all others; while if applied to minimise depth gain, bars becomes clustered as close 
as possible to each other along lines.
	 Suppose now that instead of locating the second bar on the same line 
we locate it on an adjacent line. Figure 8.5a–j shows the sequence of possibilities 
for the location of the second bar, omitting, for the time being (but see below) the 
case where we join bars contiguously in a line. When barred lines are adjacent, 
then for each line, the depth gain is greater than for each bar alone, but the effect 
disappears when the two barred lines are not adjacent, as in the final two cases, 
k and l. The effect is identical if the two bars are on adjacent lines away from the 
edge. These effects are best accounted for by seeing each barring of two adjacent 
lines as dividing the pair of lines into an ‘inner zone’, where there is only one bar to 
circumvent in each direction, and two ‘outer zones’ from which two bars must be 
circumvented to go from one to the other. The conjoint effect is entirely due to the 
outer zones, in that to go from one outer zone to the other, there is a further bar to 
circumvent once a detour to the adjacent line is taken to circumvent the first bar. 
Depth gain for a cell is therefore equal to twice the number of cells that lie beyond 
bars on either line. Thus the value of twelve in the leftmost example in the top row 
is the product of twice the five cells on the far side of the bar in the top row, plus 
twice the single cell on the far side once you move from the top to the second row. 
Similarly, the total depth of two for each of the cells to the right of the bar in the top 
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row reflects the fact that only one cell is on the far side of the bar in the top row, 
and none are in the second row. This calculation of depth gain will work for any 
number of rows of cells, providing that the bars are non-contiguous. Non-contiguity 
of bars means that there is always a ‘way through’ for a shortest path.
	 If we then add a third (non-contiguous) bar on a third line, then there are two 
alternative possibilities. If the three bars are in echelon, as in figure 8.5m, then ‘outer 
zone’ cells on all three lines will gain depth additively equal to twice the number of 
cells in all the opposite outer zones. This is because when the bars are in echelon, 
then every detour to an adjacent barred line means that the bar on that line is still 
beyond where you are on that line, so a further detour is necessary. Inner zone cells 
gain only twice the number of cells in the outer zones of their own lines.
	 If the bars are not in echelon, as in figure 8.5n, then the gain will only be as 
from a pair of adjacent lines since the bar on the central line must be so placed as 
to allow a ‘way through’. The central line will, however, gain depth from its relation 
to both adjacent lines, and can be counted first in a pair with one, then with the 
other. If four non-contiguous bars are on four adjacent lines, then the depth gain 
is according to whether trios of lines are in echelon or not, and so on. If there are 
two or more bars on the same line, then the calculations will be according to the 
formula already outlined. If one of the adjacent lines is an edge line, then likewise, 
this can be calculated according to the formula already explained.
	 These are the possible non-contiguous barrings on the same general 
alignment (i.e in this case all are horizontal). What about the addition of a second 
(or more) non-contiguous bar on the orthogonal alignment, as in figure 8.6a? We 
already know the effect of the second bar on its own line. Does it have an effect 
on the line of the first bar? The answer is that is does not and cannot, provided it 
is non-contiguous, because while it is non-contiguous there will always be a ‘way 
through’ for shortest paths from cells on other alignments. Depth gain resulting from 
a bar on a certain alignment can never be increased by a bar orthogonal to that 
alignment, while the bars are non-contiguous.
	 What then are the effects of contiguous bars? There are two kinds: linearly 
contiguous bars, in which two or more partitions form a single continuous line; 
and orthogonally contiguous bars, in which two or more bars form a right-angle 
connection. Within each we can distinguish contiguous bars which link with another 
bar at one end, and those which link at both ends. First let us look at the right 
angle, or L-shaped, case for the single connected bar. Figures 8.6b–e show the 
depth gain pattern for the simplest case, a two bar L-shape, located at four different 
positions. The first thing we note is that in all cases the depth gains on ‘either side’ 
of the L are in total equal, though very differently distributed. In 8.6b, where the L 
faces into the top left corner, the depth gain forms a very high peak within the L, 
which is made up of two elements: first, the depth gains along each of the lines of 
cells partitioned by the bar, of the kind we have seen already; and second by the 
conjoint effect of the two bars forming the L, in creating a ‘shadow’ of cells, each 
with a depth gain of 2, which mirror the L shape on the outside diagonal to it. This 
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is a phenomenon we have not see before, since with non-contiguous bars all depth 
gains can be accounted for by the effects of individual bars.
	 As the L-shaped bar is moved from top left towards the bottom right, while 
maintaining its orientation, as in 8.6c,d and e, we find that although the individual 
effects of each of the constituent bars making up the L remains consistent with the 
effects so far noted, the conjoint ‘shadow’ effect diminishes, because there is less 
and less scope for the ‘shadow’ as the L moves towards the bottom right and the L 
shape follows, rather than inverts, the L formed by the corner of the outer boundary. 
We see then that in this case the effect of moving the L from the centre towards 
the corner will be to diminish depth gain, as expected, as the L moves towards a 
corner from which the L faces outwards, but to increase it as the L moves towards Figure 8.6

Figure 8.6
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a corner where the L faces inwards towards the corner.
	 At first sight, this seems to contradict the principle that edge partitions 
cause less depth gain and central partitions more. In fact, what we have is a 
stronger instance of the effect noted in figure 8.4a, where the most peripherally 
located partition created the least depth gain overall but the greatest depth gain 
for the single cell. The depth gain was focused, as it were, in a single cell. In 8.6b, 
the depth gain is even more powerfully focussed in a single cell, both because 
it focusses both the gain from the two bars making up the L, but also from the 
‘shadow’. In other words what counts as the ‘other side’ of the partition is expanded 
by forming contiguous partition into an ‘enclosure’. Enclosure, we might say, means 
‘enclosure with respect to what’. The greater the area ‘with respect to which’ an 
‘inside’ region is enclosed, then the greater the enclosure effect by the focussing of 
depth gain. This is, in effect, a generalisation of the ‘principle of extension’ by which 
greater overall depth gain arises from the greater scope of the effect of the partition. 
In figure 8.6b, this extension on the ‘other side’ of the enclosure includes the area 
between the two alignments affected by the partition, and this increases 
its extension.
	 This effect will increase if we add new contiguous bars to the original 
L-shape. Figure 8.6f for example shows the depth gain pattern for an L-shape 
whose arms are twice as long as in the previous figure. The depth gain pattern is 
similar to that for single L-shapes, but even more extreme. Figures 8.6g–j break this 
down by taking each of the cells on the open side of the barring and showing the 
shadow due to that cell. This is calculated by taking each open side cell in turn and 
calculating the detour value for each shadow cell. The shadow shown in figure 8.6f 
evidently, is the sum of these sub-shadows of figure 8.6g–k, plus those of the four 
cells on the ‘open’ side of the L (which are not shown).
	 Next consider the linear contiguity of bars. Figure 8.7a–g shows a series 
of cases in which bars are first extended linearly to double unit length and moved 
across from edge to centre, and then triple unit length. Depth gains are larger even 
than for L-shaped bars, and the rate of gain increases, not only as the line of bars 
is moved from edge to centre, but also, even more dramatically, as the number of 
bars formed into a continuous line is increased. For example, the depth gain from a 
single edge bar is 20, rising to 36 as the bar moves to the centre, but if we expand 
the bar linearly to a pair, the gain is 180 and if we add a third then the gain is 504. 
This reflects a simple fact that to detour round one bar — say an edge bar — to a cell 
that was initially adjacent requires a 2 cell detour. However, if a second bar is added 
in line, then the detour will be 5 cells, and if a third is added, the detour will be 7 
cells, and so on. The contiguous line of bars is the most effective way of increasing 
depth in the system, first because it is the most economical way of constructing an 
object requiring the longest detour from cells on either side to the other and second 
because the longer the bar the more it has the effect of increasing the number of 
cells on either side of it, that is, it has the effect of barring the whole aggregate. 
Evidently, this ‘whole object barring’ will have more depth gain to the degree that the 
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object is barred into two equal numbers of cells. Thus in figure 8.7g the long central 
bar comes as close as possible to dividing the whole object into two equal parts.
Figure 8.7h–j then demonstrates the effect of linearity on three contiguous bars. In 
all three, at least two bars are located in the second position from the edge. In 8.7h, 
the bars are formed into a U-shape giving a total depth gain of 124, 28 more than 
would be gained by the lines independently if they were non-contiguous, and with 
a very strong peak inside the enclosure. In figure 8.7i, which is a three-bar L-shape, 
the total depth gain is 200, 104 more than the lines would have independently, and 
with a less strong peak within the enclosure. In 8.7j, the total gain is 336, 240 more 
than for the lines independently, and with a much more even spread of values, 
without any single peak. These differences thus arise simply from the shape formed 
by the three contiguous lines. The principle is that the more we coil up bars, and 
create a concentrated peak of depth gain within the coiled up bars, then the less 
the overall depth gain. Depth gain in the whole system is maximised when bars are 
maximally uncoiled and construct a maximally linear ‘island’ of bars. Since the U-
shape of 8.7h approximates a ‘room’, we can say that the most integration efficient 
way of arranging three contiguous bars is to form them into ‘rooms’. Such ‘rooms’ 
will not only have the least depth gain effect on the spatial complex, but will also 
maximise the difference between the depth-gain of a single space (i.e. the ‘room’) 
and that in the other spaces of the system. This is the phenomenon we first noted 
for edge partitions in figure 8.4.
	 Now if we reflect on figure 8.7j, we can see that all the depth gain apart from 
that due to the individual bars is to the central bar and to the fact that it connects two 
ways to form the line of three. This means that if we start from a situation in which we 
have the two outer bars, then the addition of the single bar connecting the two outer 
bars into a line in itself adds a depth gain of 272. This double connecting of bars to 
form a line is the most powerful possible move in creating additional depth, not least 
because it must necessarily have the effect of eliminating a ring from the system.
	 We may summarise all these effects in terms of four broad principles 
governing the depth gain effects of bars: the principle of centrality: more centrally 
placed bars create more depth gain than peripherally placed bars; the principle 
of extension: the more extended the system by which we define centrality (i.e. 
the length of lines orthogonal to the bar) then the greater the depth gain from the 
bar; the principle of contiguity: contiguous bars create more depth gain than non-
contiguous bars or blocks; and the principle of linearity: linearly arranged contiguous 
bars create more depth gain than coiled or partially coiled bars. All four principles 
govern local-to-global effects in that each individual local physical move has quite 
specific global effects on the spatial configuration as a whole. At the same time 
these effects are dependent on the number and disposition of bars and blocks 
that already exist in the system. The four principles allow us to keep track of the 
complex inter-relationships between what is already in the system and the global 
consequences of new moves. We may therefore expect to be able to construct 
processes in which different sequences of barring moves will give rise to different 
global configurational properties.
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Elementary objects as configurational strategies
We will see shortly that this is the case. But first we must show that the same 
principles that govern the opening and closing of partitions, also govern all other 
types of spatial moves which affect integration such as the creating of corridors, 
courts or wells, and even changes in the shape of the envelope of the complex. Let 
us first consider wells. Wells are zones within a complex which are inaccessible from 
the complex and therefore not part of the spatial structure of the complex. They act in 
effect as blocks in the system of permeability. We will see that the effects of blocks of 
different shapes and in different locations have configurational effects on the whole 
system which follow exactly the same principles as those for bars.
	 First, let us conceptualise blocks in terms of the barring system we have 
so far discussed. A block is an arrangement of bars we have so far disallowed, 
that is, an arrangement of four or more bars in such a way as to form a complete 

Figure 8.8
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enclosure, so that one or more spaces is completely separated from the rest 
of the spatial system, and effectively eliminated from it. A block is in effect the 
elimination of one or more cells from the spatial system. Three possible cases of 
single cell elimination are shown in figure 8.8a, b and c with the resulting depth 
gains. Because the block bars lines in two directions all that happens is that the 
pattern of depth gain resulting from the blocks follows the edge to centre rules, as 
for bars. There will not, for example, also be ‘shadow’ effects, as with L-shaped 
bars, because the relation between the enclosed space and those on the other side 
of the L-shape, which created the ‘shadow’ has been eliminated by the complete 
closing off of the block. We must note of course that the depth gains figures 
are less than for a simple barring, but this is simply because one cell has been 
eliminated from the system. We may if we wish correct this by substituting i-values 
for depth gains, since these adjust depth according to the total number of cells in 
the system, but at this stage it is simpler to simply record the depth gains and note 
the effect of the elimination of a cell.
	 Figure 8.8d–g then shows four possible shapes and locations for blocks 
of four cells, together with the depth gains for each cell and the total depth gain 
indicated bottom right of the complex. As we would expect from the study of bars, 
the compact 2×2 block has much less depth gain than either of the linear 4×1 forms, 
and the linear forms have higher depth gains in central locations than peripheral 
locations (as would compact blocks). We may note that, as we may infer from bars, 
the depth gain effects from changes of shape are much greater than those from 
changes of location. But also of course the locational effects of high depth gain 
shapes — that is linear shapes — are much greater than the locational effects of low 
depth gain — or compact — shapes.
	 It is clear that in this way we can calculate the depth gain effect of any 
internal block of any shape and that it will always follow the general principles we 
have established for bars. However, there is another important consequence of this, 
namely that we can also make parallel calculation for blocks placed at the edge of 
the complex. The reason this is important is that such peripherally located blocks are 
not ‘wells’ which by definition are internal to the complex, but changes in the shape 
of the envelope of the complex. It is clear from this that we may treat changes in the 
external shape of the complex in exactly the same way as interior ‘holes’ within the 
complex. Since we have already shown that such ‘holes’ are special cases of barring, 
then there is a remarkable unification here. From the point of view of the construction 
of integration — which we already know to be the chief spatial correlate of function 
within the complex — it seems that partitions within the complex are the same kind 
of thing as changes to the shape of the complex, whether these are internal, as with 
wells, or external, as with changes in the envelope shape.
	 We will now show that the creation of larger spaces within a complex such 
as courts and corridors can also be brought within the scope of this synthesis and 
be shown to be the same kind of phenomenon and subject to the same laws. First, 
we must conceptualise what we mean by the creation of larger spaces in terms of 
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a barring process. Larger open spaces in the complex are created by eliminating 
the existing two-thirds partitions instead of completing the partition, and in effect 
turn two neighbouring spaces into what would then be identified as a single space. 
Figure 8.9a–d does this so as to substitute open spaces for the blocks shown in the 
previous cases, and gives the consequent depth loss (that is, integration gain) for 
each cell. The depth loss for the larger space is calculated by substituting the new 
value for the whole space for each of the values in the original form and adding 
them together. Total depth loss for each form is shown below the figure.
	 The first point to be noted is that the depth loss for a shape of a given size 
is a constant, regardless of location in the configuration. This is because from the 
point of view of the large space, the effect of substituting a single space for two or 
more spaces is to change the relations of those spaces with each other — that is 
to eliminate a certain number of steps of depth — but not to change the relations of 
those spaces to the larger system. However, although the depth loss for the larger 
space is constant, its effects on the rest of the system are not. In fact they vary in 
exactly the opposite way to the blocks. Whereas peripherally located blocks add 
less depth to the system than centrally placed blocks, peripherally placed open 
spaces eliminate less depth than centrally placed spaces; and a linear arrangement 
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of cells into a single space has a greater depth loss (more integrating) effect than 
a square arrangement, and this effect is greater when the linear space is placed 
centrally than when it is placed peripherally.
	 The first four complexes of figure 8.10 show the same cases but marking 
each space with its total depth from the rest of the system rather than its depth 
loss. Here what we note is that identical larger spaces in different locations will 
have different total depths reflecting their location in the complex. It is only the 
depth loss from making two or more spaces into one that is identical, not the 
depth values of the location of these spaces in the complex. Thus we can see that 
a centrally placed open ‘square’ is more integrating (i.e. has less total depth) in 
itself than a peripherally placed one, and that a linear form will be more integrating 
than a compact form. These effects are of course exactly the inverse of those of 
blocks, and we may therefore say that they are governed by the same laws. In the 
two final examples in figure 8.10 the four open cells are arranged as two two-cell 
spaces rather than a single four-cell space and show another inverse principle: that 
contiguously joined spaces will always create more integration than a comparable 
number of discrete spaces.

Figure 8.10
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Thus the four principles of centrality, extension, contiguity and linearity which 
governed the depth gain effects of bars and blocks also govern the depth effects on 
the global system of creating larger open spaces, though in the contrary direction. 
More centrality for larger spaces means more integration, more extended lines from 
larger spaces means more integration, more continuity of larger spaces means 
more integration and more linearity of larger spaces means more integration. A 
useful bonus is that in the case of larger spaces we can actually see that the effects 
are not within the spaces themselves but are to do with the effect of the spaces on 
the remainder of the system.
	 We can now draw a significant conclusion. Not only partitions, internal 
walls and external shape changes but also rooms and larger linear or compact 
open spaces such as corridors and courts have all been shown to be describable 
in the same formal terms and therefore to be, in a useful sense, the same kind of 
thing. This has the important implication that we will always be able to calculate the 
effects of any spatial move in any system in a consistent way, and indeed to be able 
to predict its general effects from knowledge of principle. This allows us to move 
from a static analysis of the global implications of local changes in system to the 
study of dynamic spatial processes in which each local move seeks, for example, 
to maximise or minimise one or other type of outcome. When we do this we will 
find out that both the local configurations we call elements and the global patterns 
of the spatial complex as a whole are best seen as emergent phenomena from the 
consistent application of certain types of spatial move. We will call these dynamic 
experiments ‘barring processes’.
	
Barring processes
For example, we may explore barring processes which operate in a consistent 
way, say to maximise or minimise depth gain, and see what kind of cellular 
configurations result. In making these experimental simulations, it is clear that we 
are not imagining that we are simulating a process of building that could ever have 
occurred. It is unrealistic to imagine that a builder would know in advance the depth 
gain consequences of different types of barring. However, it is entirely possible that 
within a building tradition, a series of experiments in creating cellular arrangements 
would lead to a form of learning of exactly the kind we are interested in: that certain 
types of local move will have global consequences for the pattern as a whole which 
are either functionally beneficial or not. We may then imagine that our experiments 
are concerned not with simulating a one-off process of building a particular building, 
but of trying to capture the evolutionary logic of a trial-and-error process of gradually 
learning the global consequences of different types of local barring moves. In this 
sense, our experiments are about how design principles might be learnt rather than 
how particular buildings might be built.
	 First some definitions. We define a barring move as the placing of a single 
bar whose only known (or, on the evolutionary scale, discovered) consequence is 
its depth gain for the system as a whole. A barring manoeuvre is then a planned 
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series of two or more moves where the depth gain effect of the whole series is 
taken into account, rather than simply the individual moves. Manoeuvres may be 
2-deep, 3-deep, and so on according to the number of moves they contain. Moves 
are by definition 1-deep manoeuvres. A move may be made in the knowledge that 
one move eliminates more of a certain type of possibility than another. For example, 
a bar placed away from the boundary eliminates two possible locations for non-
contiguous bars, whereas a bar contiguous with the boundary eliminates only one. 
This is important, since the location of one bar will often affect where the next 
can go, and it will turn out that in some processes in the 6 x 6 complex non-edge 
bars exhaust non-contiguous bars within about fourteen steps, whereas with edge 
bars it is twenty, and this makes a significant difference to a process. We allow 
this knowledge within moves, because it can be seen immediately and locally as a 
consequence of the move, provided the principles are understood.
	 Both moves and manoeuvres thus have foresight about depth gain, but only 
manoeuvres have foresight about future moves. A random barring process is one in 
which barring moves are made independently of each other and without regard for 
depth gain or any other consequence. We might say then that in describing moves 
and manoeuvres we are describing the degree to which a process is governed by 
forethought. At the opposite extreme from the random process, it follows, there will 
be the process governed by an n-deep manoeuvre, where n is the number of bar 
locations available, meaning that the whole set of bars is thought out in advance, 
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and each takes into account the known future positions of all others.
	 Let us now consider different types of barring process. Figure 8.11a–d 
sets out a barring process of 24 bars, numbered in order of placement in which 
each move is designed to maximise depth gain. We choose 24 because 25 is the 
maximum that can be placed without dividing the aggregate into discontinuous 
zones (that is, in effect, into two buildings), and one less means that one ‘ring’ will 
remain in the circulation system (that is, one cycle in its graph), so that if there is a 
process which maximises some property of this ring then we might find out what it 
is. Bars are numbered in order of placing, and we will now review this ordering.
	 To maximise depth gain, our first bar — bar 1 — must be placed exactly to 
bisect a line of cells. It does not matter which we select, since the effect of all such 
bisections will be equivalent. But bar 2 must take into account the location of the first, 
since depth gain will be maximal only if it is linearly contiguous with it. The same 
principle governs the location of the bars 3, 4 and 5. After five moves therefore we 
must have a long central bar reaching to one edge, and we have in fact created the 
form shown in 8.7g, which is the most depth gain efficient way of using fewest bars 
to ‘nearly divide’ the aggregate into two. Thus we have arrived at a significant global 
outcome for the object as a whole, even though we have at each stage only followed 
a purely local rule. Although individual moves had a certain degree of choice, the 
configurational outcome as a whole, we can see, was quite deterministic.
	 Since the next move cannot continue on the central bar line without cutting 
the aggregate into two, we must look around for the next depth maximising move. 
We know we must bisect the longest sequence of cells, and if possible our bar 
must be contiguous with bars already placed. To identify the longest sequence, 
we must recognise that the barring so far has effectively changed the shape of 
the complex. We could, for example, cut the complex down the line of the central 
partition and treat it almost as two complexes. As a result, there is now a longest 
sequence of cells running around both sides of the central partition which does not 
form a single line, but it does constitute the longest sequence of shortest available 
routes in the complex. It is by partitioning this line close to its centre that we will 
maximise depth gain, that means placing the bar at right angles to the partitioning 
line at its base in one of the two possible locations. The next bar must then take 
account of which has been selected, and in fact extend that bar. The next two must 
repeat the same move on the other side, thus taking us up the ninth bar in the 
figure. The same principle can then be applied to the next sequence of bars, and 
in fact all we must do to complete the process is to continue applying the same 
principle in new situations as they arise from the barring process. By bar 24, the 
pattern is as shown in the final form in figure 8.11d.
	 Looking at the final form, we first confirm that once a 25th bar is added no 
further bar could be added without splitting the aggregate into two. We also note 
that the configuration of space created by the barring is, excepting the small ring 
that would be eliminated by bar 25, a single ‘unilinear’ sequence of cells, that is, the 
form with the maximum possible depth from all points to all others. By maximising 
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depth gain at every stage of the process we arrive, perhaps not surprisingly, at a 
form which globally maximises depth gain. We also note, that by applying simple 
rules to the barring process, we have converted a process which theoretically could 
lead to an astronomical number of possible global forms, to one which leads almost 
deterministically to a specific form.
	 Figure 8.12a–d now illustrates the contrary process in which each move 
minimises depth gain, again with numbering in the order of the moves. Bar 1 must 
be at the edge of a line of cells, and to minimise the loss of non-contiguous bar 
locations it should also be on one of the outermost lines of cells. Once we have 
bar 1, the following moves to minimise depth gain must continue to bar the already 
barred line, since this line is now shorter than any other line, and to do so each 
time as close to the edge of the remaining cell sequence as possible. As before, 
then, bars 1 — 5 are forced, and lead to a very specific overall pattern. A similar 
procedure is then forced on other edge lines, obviously omitting bars which would 
form a right angle with existing bars, since this would split the system into two. Bars 
1–16 therefore continue this process until the possibilities are exhausted.
	 The next move must be non-contiguous and must be as near the edge 
as possible. Several identical possibilities exist, so we select 17. 18 and 19 must 
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continue to bar the same line, leaving only one of two possible identical further non-
contiguous moves. We select 20. Now no more non-contiguous moves are available, 
so we must select contiguous moves with the least depth gain. The best turns out 
to be that rebarring the already barred line on which 20 lies has the least depth 
gain, in spite of the fact that it creates a three-sided enclosure. But the next move 
cannot create the same pattern to the right, since this will also create a double line 
block as well as a three-sided enclosure. Barring the open line at 22 has less depth 
gain than barring the adjacent line to the right, at which point 23 becomes optimal. 
The final bar must then be on one of five still open lines, the four comprising the 
‘ring’, and the one passing through the centre. Cutting the ring creates much more 
depth gain than cutting the centre line, because it creates a block in the system 
that is four cells deep from the boundary. Of the possible locations on the centre 
line, the central location has less depth gain because the location one to the right 
creates a two-deep enclosure, which creates more extra depth than the difference 
between the centre and one-from-centre location.
	 The depth minimising process has thus given rise to a form which is as 
striking as the depth maximising process: a ring of open cells accessing outer 
and inner groups of one-deep cells. We have only to convert the doors in the ring 
to full width permeabilities to create a fundamental building form: the ring corridor 
accessing separate ‘rooms’ on either side. This has happened because the depth 
gain minimising strategy tends to two kinds of linearity: a linearity in dividing lines 
of cells up into separate single cells; and a linearity in creating the open cell 
sequences that provide access to these cells. Aficionados of Ockam’s razor will 
note that both these contrary effects follow from the single rule that bars should 
always be placed so as to bar the shortest line of cells available as near the edge 
as possible. This means that once a line has been divided, then it minimises depth 
gain to divide it again, since, other things being equal, the remainder of an already 
barred line will always be shorter than an unbarred line. Figures 8.13a and b show 
typical forms from the two processes, together with depth values for each cell. In 
fact, the two forms shown in Figures 8.1b and c. The total depth for the near depth 
maximising process is 15320 while that for the depth minimising process is little 
more than a third as much at 5824. These differences are all the more remarkable in 
view of the fact that each form has exactly the same number of partitions. The only 
difference is the way the partitions are arranged.
	 But in spite of their differences, each of the forms generated seems in its 
way quite fundamental. The depth maximising form is close to being a unilinear 
sequence, that is the form with the maximum possible depth from all cells. The 
depth minimising form approximates if not a bush, then at least a bush like 
arrangement built on a ring. We have arrived at these forms by constraining the 
combinatorial process down certain pathways by some quite simple rules. These 
have created well defined outcomes through morphological processes which are 
objective in the sense that although the selection and implementation of rules 
is a human decision, the local to global morphological effects of these rules, 
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whether for the individual move in the process or the accumulative result, is quite 
independent of human decision. The eventual global pattern of space ‘emerges’ 
from the localised step-by-step process. At the same time, processes whose rules 
are similar ‘converge’ on particular global types which may vary in detail but at least 
some of whose most general properties will be invariant — the tendency to form 
long sequences with few branches, the tendency to generate one-deep dead end 
spaces, the tendency to form smaller or larger rings and so on.
	 This combination of emergence and convergence is immensely suggestive. 
It appears to offer a natural solution to the apparent paradox we noted at the start 
of this chapter: that in spite of the vastness of the combinatorial field, intuition 
suggested relatively few ways of designing space. We may now reformulate this 
paradox as a tentative conclusion: consistently applied and simple rules arising 
from what is and is not an intelligible and functionally useful spatial move create 
well-defined pathways through the combinatorial field which converge on certain 
well-defined global spatial types. These laws of ‘emergence-convergence’ seem 
to be the source of structure in the field of architectural possibility. What then are 
these laws about? I propose they are about what I called ‘generic function’, that is 
properties of spatial arrangements which all, or at least most, ‘well-formed’ buildings 
and built environments have in common, because they arise not from specific 
functional requirement, that is, specific forms of occupation and specific patterns of 
movement but from what makes it possible for a complex to support any complex 
of occupation or any pattern of movement.
	
The theory of generic function: intelligibility and functionality
The first aspect of generic function reflects the property of ‘intelligibility’ which 
Steadman suggests might be one of the critical factors restricting architectural 
possibility. In Chapter 4 we suggested that the intelligibility of a form can be 
measured by analysing the relation between how a complex can be seen from its 
parts and what it is like in an overall pattern, that is, as a distribution of integration. 
This was expressed by a scattergram showing the degree of correlation between 
the connectivity of a line, which is a local property of the line and can be seen from 
the line, and integration, which is a global property relating the line to the system as 
a whole and which cannot therefore be seen from the line. How might this concept 
relate to the construction of spatial patterns by physical moves? Visibility is in fact 
interesting since it behaves in a similar way to depth under partitioning. For linear 
cell sequences the effect of bars on visibility exactly mirrors depth gain, though in 
a reverse direction: visibility lost from a bar is exactly half the depth gain from the 
same bar, and as the bar moves from edge to centre the total visibility along the line 
decreases, while at the same time the visibility value of cells along that line become 
more homogeneous, eventually becoming the same with a central bar.
	 In our two complexes then, let us define visibility very simply as the number 
of cells that can be seen from the centre of each cell. These visibility values are set 
out for our two depth maximising and minimising complexes in figures 8.13c and d. 
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These visibility values and their mean index the visual connectivity of the complex. 
We may also express these by drawing an axial map of the fewest lines that pass 
through all the cells. We can see how many cells each line passes through, and 
how this differs from one complex to another. We can if we wish express this in a 
summary way by working out the ratio of the means depths for each cell and the 
mean visibility of each cell. For the depth minimising form, the mean depth from 
cells is 5.3, and the mean visibility is 3.9. We might call this a .74 visibility to depth 
ratio. In the depth maximising form, the mean depth is 11.9 while the mean visibility 
is 2.8, a visibility ratio of .24, about a third that of the depth minimising form. This 
seems to agree quite well with intuition.
	 This shows how the visibility and depth properties of the complex relate to 
each other. However, we may learn more by correlating the permeable depth figures 
for cells with their visibility figures and expressing the relation in a scattergram. 
The better the values correlate, the more we can say that what you can see from 
the constituent cells of the system is a good guide to the global pattern of depth 
in the complex which cannot be seen from a cell, but which must be learnt. The 
correlation thus expresses the intelligibility of the complex. Figures 8.14a and b are 
the scatters and correlation coefficients for our two cases, showing that the depth 
minimising form is far more intelligible than the depth maximising form.
This formally confirms our intuition that the depth maximising form is hard 
to understand, in spite of being a single sequence, because the sequence is 
coiled up and the information available from its constituent cells is too poor and 
undifferentiated to give much guidance about the structure of the complex as a 
whole from its parts. The opposite is the case in the depth minimising complex. 
On reflection, we can see that this will always tend to be the case with depth 
maximising processes since the partitioning moves that maximise depth are also 
those which also maximally restrict visibility.
	 There are therefore, as Steadman suggests, fundamental reasons to do with 
the nature of human cognition and the nature of spatial complexes which will bias 
the selection of spatial forms away from depth maximising processes and in the 
direction of depth minimising processes. Through this objective — in the sense that 
we have measured as a property of objects rather than as a property of minds — 
property of intelligibility then we can see one aspect of generic function structuring 
the pathways from combinatorial possibility to the architecturally real.
	 There are, however, further reasons why depth minimising forms will 
be preferred to depth maximising forms which have to do with functionality. 
Functionality we define as the ability of a complex to accommodate functions in 
general, and therefore potentially a range of different functions, rather than any 
specific function. Intuitively, deep tree-like forms such as the depth maximising form 
seem functionally inflexible and unsuited to most types of functional pattern while 
the depth minimising form seems to be flexible and suited to a rather large number 
of possible functions. Can this be formalised?
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It is useful to begin by considering in as generic a way as possible the types of 
human behaviour that occur in buildings. We may do this best by considering 
not the purpose or meaning of an activity but simply its physical and spatial 
manifestation, that is, what can actually be observed about human activity by, say, 
an extra-terrestrial who had no idea what was going on and could only record 
observations. Generically, such an observer would conclude, two kinds of thing 
happen in space: occupation and movement. Occupation means the use of space 
for activities which are at least partly and often largely static, such as conversing, 
meeting, reading, eating or sleeping, or at most involve movement which, when 
traced over a period, remains localised within the occupied space, such as cooking 
or working at a laboratory bench, as shown in figure 8.15.
	 Movement we can define not as the small local movements that may be 
associated with some forms of occupation, and therefore to be seen as aspects of 
occupation, but movement between spaces of occupation, or movement in and out 
of a complex of such spaces. Movement is primarily about the relations between 
spaces rather than the spaces themselves, in contrast to occupation which makes 
use of the spaces themselves. We can see this as a scale difference. Occupation 
uses the local properties of specific spaces, movement the more global properties 
of the pattern of spaces.
	 There is also a difference between occupation and movement in the spatial 
form each takes. Because spatial occupation is static, or involves only localised 

Figure 8.15 (above)
Locally convex movement; when 
small movements intersect and 
form a local convex region.Locally convex movement;

when small movements intersect
and form a local convex region.

Globally linear movement;
when large scale movement
forms strings or rings of lines.
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Globally linear movement; 	
when large scale movement 	
forms strings or rings of lines.
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movement, the requirement that it places on space is broadly speaking convex, 
even when this involves localised movement within the space. In particular, any 
activity that involves the interaction or co-presence of several people is by definition 
likely to be convex, since it is only in a convex space that each person can be 
aware of all the others. Movement, on the other hand, is essentially linear, and 
the requirement that it places on space is consequently linear, at least when seen 
locally in its relation to occupation. There must be clear and relatively unimpeded 
lines through spaces if movement is to be intelligible and efficient.
	 Occupation and movement then make requirements of space that are 
fundamentally different from each other in that one is convex and the other linear. 
Because this is so there is an extra difficulty in combining occupation and movement 
in the same space. There will always, of course, be practical or cultural reasons why 
different forms of occupation cannot be put in the same space — interference, scaling 
of spaces, privacy needs, and so on — in spite of the fact that each is convex and 
in principle could be spatially juxtaposed to others. But to assemble movement and 
forms of occupation in the same space is in principle more difficult because, over 
and above functional interference, occupation and movement have fundamentally 

different spatial shapes. The interference effect from occupation to occupation and 
from movement to movement will be of a different kind to that from occupation to 
movement because the spatial requirements are more difficult to reconcile.
	 Because this is so, it is common to find that the relation between movement 
and occupation in spatial complexes is often one of adjacency rather than overlap, 
whether this occurs in spaces which are fully open (as for example when we have 
both lines of movement and static occupation in a public square), or fully closed, as 
when we have rooms adjacent to corridors, or one is open and the other closed, 
as when houses align streets. In each case, the linearity required for movement is 
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achieved by designing movement to occur in spaces which pass immediately by 
rather than through occupation spaces.
	 Now let us consider the types of space that are available to meet the 
requirements of occupation and movement. First we must consider the most basic 
topological properties as embodied in the graph of a complex, since even at this level 
topologically different types of space have quite different potentials for occupation 	
and movement. Let us first consider, a familiar graph, as shown in 8.16a, b and c.
	 In this graph, as in others, the spaces that make up the graph can be 
divided into four topological types. First, there are spaces with a single link. These 
are by definition dead-end spaces through which no movement is possible to 
other spaces. Such spaces have movement only to and from themselves, and are 
therefore in their topological nature occupation-only spaces. Examples are marked 
‘a’ in figure 8.16a. The link from one-connected spaces to the rest of the graph is 
necessarily a cut link, meaning that its elimination must split the graph into two, in 
this case the space whose link has been cut and the rest of the graph. Because the 
cut link only serves a single space, the effect of cutting makes little difference to the 
remainder of the complex beyond minor reductions in the depth of the rest of the 
complex following the elimination of a space.
	 Second, there are spaces with more than one link but which form part 
of a connected sub-complex in which the number of links is one less than the 
number of spaces, that is, a complex which has the topological form of a tree. Such 
spaces cannot in themselves be dead end spaces, but must be on the way to (and 
back from) at least one dead end space. All links to spaces in such complexes, 
regardless of the number of links to each space, are also ‘cut links’ in that the 
elimination of any one link has the effect of splitting one or more spaces from the 
rest of the complex. Such spaces are marked ‘b’ in figure 8.16a. A consequence 
of the definition is that there is in any such sub-complex (or complex) exactly one 
route from each space to every other space, however large the sub-complex and 
however it is defined. This implies that movement through each constituent space 
will only be to or from a specific space or series of spaces. This in turn implies that 
movement from origins to destinations which necessarily pass through a b-type 
space must also return to the origin through the same space.
	 Third, there are spaces with more than one link which form part of a 
connected sub-complex which contains neither type a nor type b spaces, and in 
which there are exactly the same number of links as spaces. Such spaces are 
marked c in figure 8.16a. The definition means that c-type spaces must lie on a 
single ring (though not all spaces on the ring will be c-type) so that cutting a link to 
a c-type space will automatically reduce the ring to one or more trees. Movement 
from a c-type space through a neighbour need not return through the same 
neighbour but must return through exactly one other neighbour.
	 Finally there are spaces with more than two links and which form part of 
complexes which contain neither a- nor b-type spaces, and which therefore must 
contain at least two rings which have at least one space in common. Such spaces 
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must lie on more than one ring, and are labelled ‘d’ in figure 8.16a. Movement from 
d-type spaces through a neighbour has the choice of returning by way of more than 
one other neighbour.
	 We may also define subcomplexes of the a-, b-, c- or d-type as the space of 
that type plus all the spaces by reference to which it is defined as a space of that 
type, even though some of those spaces may belong also to other subcomplexes. 
(In other words, a subcomplex of a given type is a complex containing at least one 
space of that type.) Looking at numbered spaces in figure 8.16b, we can then say 
that spaces 5 and 11 are a-type spaces, and that the sub-complex formed by spaces 
2 and 5 and that formed by 9 and 11 can be thought of as a-type subcomplexes. 
Space 9 is a b-type space, and that the subcomplex formed by spaces 6, 9 and 11 
can be seen as a b-type sub-complex. Spaces 2, 6, 7, 8 and 10 are c-type spaces 
and each may be seen as forming part of a local ring, or c-type complex: thus 2 and 
6 are part of the c-type subcomplex formed by spaces 1, 2, 6 and 3, and 7, 8 and 
10 are part of the c-type complex formed by spaces 3, 7, 10, 8 and 4. Space 3 and 
4 are d-type spaces and are part of the d-type subcomplex formed by spaces 1, 2, 
3, 4, 6, 7, 8 and 10. Spaces are, in effect, unambiguously defined by their place in a 
complex, but this does not mean that spaces that contribute to that definition do not 
form part of other complexes. For example, an a-space may be part of a b-complex, 
or a c-space may be part of a d-complex without in either case compromising its 
unique identity as an a- or c- type space.
	 There are simple and fundamental relationships between these elementary 
topologies and the depth minimising and maximising processes. A depth minimising 
process will in its nature tend first to leave long lines of spaces unimpeded and to 
preserve their connection to other long lines, and second to coil contiguous bars 
up into small, one-deep ‘rooms’. This is illustrated in figure 8.17a where the first 
eight bars cut the shortest lines, to create rooms at either end and potential rooms 
in the centre. The dotted bars marked ‘a’ and ‘b’ represent two possible choices 
at this point, and the figure on the right side shows the total depth in the system 
after each. The analysis shows that the two one-deep rooms add far less depth 
than one two-deep complex, in effect because the two-deep complex is created 
by five contiguous bars, whereas the one-deep spaces are each created by three 
contiguous bars. The depth minimising process thus tends to create a-type spaces 
linked by global c- and d-type complexes, as was the case in the 6 x 6 example in 
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figure 8.13b. In contrast, the depth maximising process, as shown in figure 8.17b 
for example, will by contiguously barring the longest available lines, create b-type 
spaces and therefore sequences rather than a-type spaces, and localise c- and 
d-complexes at the earliest possible stage of generation, and with a configuration 
in which there are few a-type spaces, and these at the end of long sequences, with 
any rings in the system highly localised.
	 In other words depth minimising processes will tend locally to a-type 
complexes and globally to d-type complexes (in figure 8.13b it is only the final 
24th bar that reduces a strong global d-complex to a global c-complex), while 
depth maximising processes will tend globally to b-type complexes and locally to 
small residual c-type complexes. This is instructive because it tells us how these 
elementary configurations are related to the product of the functionally critical 
property of integration in spatial complexes. Essentially, a- and d-type spaces 
create integration, while b- and c-type spaces create segregation. In other words, 
segregation in a complex is created almost entirely by the sequencing of spaces.
Since this is not obvious, it is worth illustrating. In figure 8.18 for example, in the 
left column, we increase the size of the ring from 8 to 12 spaces and the i-value 
increases (i.e. becomes less integrated) from .4285 for the 8-ring to .4545 for the Figure 8.18

Figure 8.18
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12-ring. In the second column, we add a single a-type space to each c-type space. 
Both complexes become on average more integrated, but the 12-ring complex 
below becomes relatively more integrated at .2848 than the 8-ring complex above at 
.3048. In fact, the ring spaces in the 12-ring complex are slightly less integrated at 
.2410 than those of the 8-ring complex at .2381, but the a-type space of the 12-ring 
complex are markedly more integrated at .3281 than those of the 8-ring complex 
at .3714. In the right column, we link two a-spaces to each c-space and the pattern 
becomes even more marked. The 12-ring complex is now more integrated at .2011 
than the 8-ring complex at .2200, with ring spaces at .1630 compared to .1621, but 
a-spaces at .2201 compared to .2490.
	 We now have a more or less complete account of the relation between 
generative processes, the creation of different types of local and global space 
complexes, and the construction of patterns of integration. We can now formulate 
the question at the centre of our argument: what are the implications of these 
spatial variations for occupation and movement, that is, for the generic functioning 
of spatial complexes? In exploring this, we should bear in mind one of the major 
findings of the research reported in Chapters 5 to 8: that the more movement in a 
complex is from all parts to all other parts, then the more the pattern of movement 
in a complex will tend to follow the pattern of integration.
	 First we must note that each of the types of space we have identified, and 
the type of complex it characterises, has generically different implications for space 
occupation and movement. As we have already indicated, a-type spaces do not have 
through movement at all and therefore do raise the issue of relating occupation to 
movement (other than movement to and from the space itself). b-type spaces raise 
the possibility of through movement but also control it strongly, both because each 
route through a b-type space is unique and also because return movement must pass 
through the same space. c-type spaces also raise the possibility of through movement 
while also constraining it to specific sequences of spaces, though without the same 
requirement for the return journey. d-type space permits movement, but with much 
less built-in control because there is always choice of routes in both directions.
	 It is clear then that b-type and to a lesser extent c-type spaces have a much 
more determinative relation to movement than either a-type or d-type spaces. While 
the a-type does not allow for through movement, and the d-type allows choice of 
movement, the b-type and the c-type permit but at the same time constrain it by 
requiring it to pass through specific sequences of spaces. The b-type is the most 
constraining. For any trip from an origin to a destination, every b-space offers 
exactly one way in and one way out of each space and every trip in a b-complex 
must pass both ways through exactly the same sequence of spaces. A similar, 
though weaker, effect is found for c-spaces and c-complexes, because although at 
the level of the ring as a whole there will be a choice of one direction or another, 
trips once begun must use a single sequence of spaces, and the trip therefore 
resembles a b-trip, though without the requirement that the return journey repeat the 
same sequence in reverse. This effect arises from the simple fact that b- and c-type 
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spaces are from the point of view of any trip that passes through them, effectively 
two-connected, and two is the smallest number that allows entry to a space in one 
direction and egress in another. It is this essential two-connectedness from the point 
of view of trips, that gives b and c-spaces their distinctive characteristic of both 
permitting and constraining movement.
	 Now this means that b- and c-type spaces raise issues for the relation 
between occupation and movement which are not raised either by one-connected 
or more than two-connected space, in that they require the resolution of the 
relation between occupation and through movement within each convex space. 
This has a powerful effect on the usability of spaces and space complexes of 
this kind. In general, it can only occur where the sequencing of spaces reflects a 
parallel functional sequencing of occupation zones, and movement is, as it were, 
internalised into the functional complex and made part of its operation.
	 For example many types of religious building use exactly this spatial property 
to create a sequence of spaces from the least to the most sacred, each space having 
different occupational characteristics. More commonly, we find the phenomenon 
of the ante-room, for example where a senior person in an organisation places a 
subordinate in a space which controls access to the office. In domestic space, such 
interdependencies are quite common. Indeed, the domestic dwelling may often be 
characterised as a pattern of such interdependencies. Figure 8.16, for example, has 
a maximally simple b-complex (spaces 6, 9 and 11) associated with male working 
activity and a near maximally simple c-complex (spaces 3, 7, 10, 8 and 4) associated 
with female working activity, as well as a maximally simple a-complex (spaces 2 and 
5) associated with formal reception and a dominant d-type space (space 3 — the salle 
commune) in which all everyday living functions, including informal reception, are 
concentrated and which holds the whole complex together. It is notable that if this 
space (space 3) is removed from the complex, as in figure 8.16c, the whole complex 
is reduced to a single sequence with a single one-deep branch.9

	 In general we can say that the sequencing of spaces normally occurs when 
(and perhaps only when) there are culturally or practically sanctioned functional 
interdependencies between occupation zones which require movement to be an 
essential aspect of these interdependencies and therefore to be internalised into 
a local functional complex of spaces.10 Such interdependencies are comparatively 
rare and, because they are so, where they do occur they tend to be highly localised. 
There are simple combinatorial reasons for this. If interdependency requiring 
internalisation of movement into a functional complex is unusual for pairs of 
occupation types, it is even more unusual for triples, even more for quadruples, and 
so on. This is why it tends to remain localised.
	 It follows that whereas in small buildings, such functionally interdependent 
complexes can form a significant proportion of the complex, or even the whole 
complex, as buildings grow large and acquire more and more occupation spaces, 
those that have the necessary interdependencies that require spatial sequencing will 
become a diminishing proportion of the whole. As buildings grow therefore more 
and more of the movement will not be of the kind which is internal to the functioning 
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of a local subcomplex but will occur between subcomplexes which are functionally 
much more independent of each other.
	 This means that movement will be less ‘programmed’, that is, a necessary 
aspect of interdependent functions, and more contingent, or ‘unprogrammed’.11 
It follows that the pattern of movement will follow from two things: first from the 
way in which the various occupation spaces are disposed in the spatial complex, 
coupled to the degree to which each acts as an origin and a destination for 
movement between occupation spaces; second, from how this disposition relates 
to the spatial configuration of the complex itself. The more movement occurs more 
or less randomly from all locations (or even all parts of the complex) to all others, 
then the more it will approximate the conditions that give rise to ‘natural movement’, 
that is movement through spaces generated by the configuration of space itself, and 
the more movement will then follow the pattern of integration of the building. The 
more this occurs, the more movement will be functionally neutralised, that is, it will 
not be an intrinsic aspect of local functional complexes determined by the functional 
programme of the building but as a global emergent phenomenon generated by the 
structure of space in the building and the disposition of occupation spaces within it.
	 Neutralised movement will then tend to follow the configurational topologies 
that generate the pattern of integration in a building. a-space will have no movement 
other than that starting and finishing in them; b-space will have movement only to the 
spaces to which they control both access and egress; c-spaces will have movement 
to spaces to which they control either access or egress; while d-spaces will be 
natural attractors of movement. It follows that just as a-spaces are the most suited for 
occupation because they are least suited for movement, so d-spaces are the least 
suited for occupation, because they are the most suited to movement, especially 
where this movement is from all locations to all other locations in the complex.
	 It follows that a growing spatial complex will need a decreasing proportion 
of b- and c-complexes since these will only be needed for local functionally inter-
dependent groups of occupation spaces, and a growing proportion of a-type and d-type 
complexes. In such complexes there will be a natural specialisation of spaces into 
a-complexes for occupation and d-complexes for movement, and therefore an equally 
natural tendency towards the adjacency relation for occupation and movement.
	 As we have seen, it is exactly such complexes that are generated by depth 
minimising processes. Such complexes also have other advantages. First, because 
the mix of a-type and d-type complexes is in its nature the most integrated, then 
journeys from all spaces to all others will be on average topologically (and in fact 
metrically) shorter than for any other type of complex. Second, such complexes 
maximise the number of a-spaces for occupation while minimising the number of 
spaces in the d-complex for movement, thus making the relation of occupation 
and movement as effort-efficient as possible. Third, the more this is the case, the 
more movement from specific origins to specific destinations in the complex will 
overlap and create a global pattern of co-presence and co-awareness of those who 
are not brought together in the local functional subcomplexes of the building. In 
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other words, the movement pattern brings together in space what the occupational 
requirement of the complex divides. This reflects the basic fact that whereas the 
overlap of occupation type in the same space is likely to cause interference from one 
to the other, the overlap of movement in situations where movement is functionally 
neutralised creates an emergent form of spatial use — co-presence through movement 
— which is essentially all of the same type. Overlap is therefore not likely to be read as 
interference. On the contrary, it is likely to be read as a benefit.
	 It is then in the nature of things that spatial complexes of this type will 
tend to become dominant as buildings grow in scale and occupational complexity. 
This type of configuration arises from generic function, that is, from the fact of 
occupation and the fact of movement, prior to any consideration of the specific 
functions to be accommodated in the building. We only need to add the larger open 
spaces and longer linear spaces in the d-complex in accordance with the principles 
we have established to optimise the relation between occupation and movement 	
in the complexes.
	
So, is architecture an ars combinatoria?
We have now answered the question asked at the beginning of the chapter, 
and embodied in the two prefatory quotes. No theory of architecture as an ars 
combinatoria of elements and relations is useful because, as with language, it is 
how combinatorial possibility is restricted that gives rise both to the ‘structure of 
the language’ and to the ‘elements’ of which the language is composed. The vast 
majority of combinatorial possibilities are as irrelevant to that language as random 
sequences of words are to natural language. The structure of the language, which 
eliminates most possibilities, arises not from basic rules for combining basic 
elements, but from local to global laws from physical moves to spatial configuration, 
which give rise at one level to the local stabilities we call elements and at another to 
the higher order patterns that characterise the general spatial forms of buildings.
	 The effects of understanding how restrictions on combinatorial possibility 
create the ‘language of space’ are two. First, we see that there are not in any useful 
sense basic elements. Elements arise from local spatial strategies that realise — and 
must then be taken as intending to realise — particular local to global spatial ends. 
All are describable as spatial phenomena emergent from the consistent application 
of rules governing either the completion or removal of a single type of fundamental 
spatio-physical element: the permeable partition. It is the record of this consistent 
application that we see when we name a local configuration as a certain kind of 
element. If we randomly partition a complex, as in the four examples in figure 8.19, 
we do not find such consistencies, and we are not therefore inclined to identify 
elements. We should properly see ‘elements’ as ‘genotypes’, that is, systems of 
informational abstractions governing objects whose phenotypes are endlessly 
varied. It is only in this way that we can reconcile the idea of a well-formed ‘element’ 
with the fact that such elements arise from and are given by configurational 
relations, not only those which generate their intrinsic form, but also those which 
define their embedding in the system as a whole. In one sense we might say 
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that we have reduced the apparent fundamental elements of spatial complexes 
to something more elementary: a small family of local physical moves which by 
following different rules produce spatial effects in the complex. But in a more 
important sense, we have dissolved the element into two sets of configurational 
laws: the laws that generate the element itself, and those that generate the impact 
of the element on the complex as a whole.
	 Second, we see that it is not useful to think of global patterns as arising 
simply from relations among elements. In a spatial configuration, every local move 
has its own configurational effect, and it is the natural laws that govern these local 
to global effects that govern global configuration. It follows that it is knowledge of 
these laws that we require for a theory of space, not knowledge of combinatorial 
possibility. It is these laws that give rise to both the local configurational types 
we are tempted to call elements and to the global configurational patterns that 
commonly characterise buildings as a whole. We can thus solve the apparent 
paradox of vast combinatorial possibility and a few basic pattern types. It is the 
natural local to global laws restricting possibility that lead space to converge on the 
pattern types that we find.
	 The precise form of these laws governing the relation between possible 

Figure 8.19

Figure 8.19
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spatial configuration and generic function lies in the fact that individual, localised 
design moves — say making a partition, or eliminating a doorway — have global 
configurational effects, that is, effects on the overall pattern of space. These global 
pattern effects of local moves are systematic, so that different types of move, carried 
out consistently, will give rise to very different configurational effects. These local to 
global laws are independent of human volition, and as such must be regarded as 
more akin to natural laws than contingent matters of human existence. This does 
not imply that the relationship of human beings to space is governed by natural 
laws, but it does mean that the passage from the possible to the actual passes 
through — and has historically passed through — natural laws which mediate the 
relationship of human beings to space. The built forms that actually exist, and have 
existed, are not, as they are often taken to be, simply subsets of the possible, but 
variable expressions of the laws that govern the transition from the possible to 
the real. These laws, and their relation to generic function, are therefore the true 
constraints on spatial possibility in architecture and urban design, and a theory of 
space must be an account of these laws.
	 Does this mean we should abandon combinatorics altogether? We should 
not. Combinatoric possibility is the framework within which architectural actuality 
exists, and the proper form of a theory is one that describes how possibility 
becomes actuality. We are now in a position to suggest the general framework for 
such a theory. The huge number of possible spatial arrangements, we suggest, 
pass through a series of three filters before they become real buildings. The filters 
operate at different levels, but all have to do with the human purposes for which we 
make buildings; that is, these filters are functional filters of possible forms.
The first filter is the most general: that of generic function, as we have described 
above. This governs the properties which all spatial arrangements must have in 
order to be usable and intelligible to human beings at all, that is, in order for human 
beings to be able to occupy space, to move about between spaces and to find 
buildings intelligible. The second filter is the filter of cultural intent. This refers to 
the way in which buildings tend to form culturally defined types so that buildings 
which perform the same culturally defined function in a specific time and space 
tend to have at least some common spatial properties. We may call this filter that 
of the cultural genotype. The third filter is the level of the specific building, where 
those aspects which are not specified by the cultural genotype can vary either in a 
structured or random way, giving rise to individual differences in buildings. These 
three functional filters are not independent of each other, but work in succession. 
For example, all level-two cultural genotypes work within the limits set by the 
generic function filter of level-one. Similarly, level-three filters work within the 
constraints set at level-two.
	 There is, however, a further reason why we should not abandon 
combinatorics. Although we have shown in this chapter that the combinatorial study 
of formal and spatial possibility in architecture cannot in itself lead to the theory 
of architectural possibility, this does not end the matter. Although the theoretical 
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space of buildings is only a part of the theoretical space of spatial combinatorics, it 
nevertheless is a part of that field, and as such it must obeys its laws. If this is the 
case, then we find that having eliminated combinatorics as a theory of architecture, 
we must re-admit it as meta-theory.
	 Let us argue from a precise example. In Chapter 2, we discussed a thought 
experiment called the ‘Ehrenfest game’ as a model for the concept of entropy. In 
this experiment, 100 numbered balls placed in one jar eventually get more or less 
evenly distributed between two jars if we randomly select a number and transfer the 
corresponding ball from whichever jar it is in to the other. This happens because 
the half and half state is the most probable state because there are far more 
microstates, that is, actual distributions of the numbered balls, corresponding to 
the half and half macrostate (that is the actual number of balls in each) than to 
macrostates in which the balls are unevenly distributed. The shifting probabilities of 
this process give an insight into the formal nature of ‘entropy’.
	 Now the point of the ‘Ehrenfest game’ is that it is a useful analogue for the 
physical notion of ‘entropy’, as found for example in mixing gases. It is relevant 
to our argument because we can use the Ehrenfest model to explore a random 
partitioning process, and in doing so learn important lessons about partitioning in 
general. All we need do is set up a process for randomly partitioning our spatial 
complex by numbering our 60 partitions in the 6×6 complex and setting up the 
random selector to select a number between 1 and 60. We then spin the pointer 
to select numbers in succession, and each time a number is selected go to the 
partition with that number and change its state; that is, open a doorway in a 
partition without one, and close it off if it has one. What happens? Intuition says that 
the process will eventually settle down to a state in which about half the partitions 
have doorways and half do not, and that this is therefore the most probable state. 
We already know that this is the state where there are the maximum possible 
number of different arrangements.
	 We may show this, and understand its relevance, by thinking through 
carefully what will happen in our random process. The first time a number is 
selected, the probability of opening a doorway rather than closing one is 60/60, or 
1, meaning certainty. The second time, there is a 1/60 chance of closing the same 
door we have just opened (a .0167 probability) and a 59/60 chance of opening 
another (a .9833 probability). The third time, there is a 2/58 chance of closing one 
of the doors we have just opened (or a .0345 probability), and a 58/60 chance of 
opening another (a .9667 probability). Evidently as we progress, the chances of 
closing a door rather than opening another begin to approach each other until when 
we have 30 doorways open and 30 partitions closed, the chances are exactly equal. 
Opening and closing doors are therefore ‘equiprobable’.
	 In other words, we have the same type of combinatorics for a partitioning 
process as we do for an Ehrenfest game, and therefore for the concept of entropy. 
This conclusion has clear architectural implications. For example, it explains that, 
as we have already noted, there are far more partitioning states for about half the 
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number of possible partitions than there are for smaller or larger numbers. There 
is then a greater range of states for partitioning close to the maximum for a single 
complex (as in the depth maximising and depth minimising examples) and it is also 
in this region that small changes to a partitioning have the maximum effect on the 
distribution of integration, as for example moving a single partition to cut a large 
ring. There are a whole family of such and similar questions which arise from the 
basic combinatorics of space, even though buildings occupy only a small part of the 
combinatorial range.
	 The laws of spatial combinatorics are not therefore the spatial theory of 
architecture but they do govern it and constitute the meta-structure within which 
the theoretical space of real architectural possibility exists. Spatial combinatorics 
is therefore the meta-theory of architectural space, not its theory. The relationship 
is exactly analogous to that between the mathematics of ‘information theory’ 
and the science of linguistics. The mathematical theory of communication is not 
itself the theory of language, but it is the meta-theory for the theory of language, 
because it is the framework of general laws within which linguistic laws come into 
existence. As with language, mathematical laws of combinatorics are everywhere 
present in architectural possibility because they are the framework for that system 
of possibility. They need therefore to be understood as a pervasive, containing 
framework for the theory of architectural space.
	 In the next chapter we will see that there is a much more pervasive sense 
in which combinatorics is the meta-theory of architectural possibility, that is, when 
we come to study not the discrete sets of possibilities which we have considered 
so far, but when we look at aggregative processes of the kinds that prevail in urban 
systems of all kinds, and in building complexes as they become large. Here we will 
see that, as discussed briefly in Chapter 8, combinatorial probability actually plays a 
constructive role in architectural morphogenesis.
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of pre-delimited signs to be studied according to their meaning and arrangement’, 
p.104; ‘We are tempted to think so if we start from the notion that the units to 
be isolated are words…the concrete unit must be sought not in the word, but 
elsewhere’, p.105; and ‘Language, in a manner of speaking, is a type of algebra 
consisting solely of complex terms…language is a form not a substance…all our 
incorrect ways of naming things that pertain to language stem from the involuntary 
supposition that the linguistic phenomenon must have substance’, p.122.
In other words, each kind of occupation is characterised by a distinctive local 
configuration, dependent for their integration into a single complex on the spatio-
functionally central salle commune. It is the fact of being an assemblage of 
different local sub-complexes into a single configuration that makes the dwelling 
distinctive as a building type. The dwelling is not, as it is often taken to be, the 
simplest building. On the contrary, seen as an intricate pattern of functional 
interdependencies mapped into space, it may well be the most complex.
In buildings where the organisation of a specific pattern of movement is a dominant 
functional requirement we can expect space to be dominated by sequencing. For 
example, galleries and exhibition complexes, which are designed explicitly to move 
people through the complex so that all spaces can be traversed without too much 
repetition, normally have a high proportion of c-type sequenced spaces, giving 
their justified graphs the distinctive form of a number of deep, intersecting rings. 
This is not, however, a clear case. If we examine the functional microstructure 
of gallery spaces we find that the lines of global movement pass through the 
sequenced space in such a way as to leave the viewing zones free for only local 
convex movement. Locally at least, the relation of convex and linear zones is one of 
adjacency rather than true interpenetration.
Or, as discussed in Chapter 7, will follow long or short models.
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Cities as things made of space
In the previous chapter it was suggested that the relation between human beings and 
space was, at a deep level, governed by two kinds of law: laws of spatial emergence, 
by which the larger-scale configurational properties of space followed as a necessary 
consequence from different kinds of local physical intervention; and laws of ‘generic 
function’, by which constraints were placed on space by the most generic aspects 
of human activity, such as the simple facts of occupying space and moving between 
spaces. In this chapter we argue that, to a significant extent, the spatial forms of cities 
are expressions of these laws, and that if we wish to understand them we must learn 
to see them as ‘things made of space’, governed by spatial laws whose effects but 
not whose nature can be guided by human agency. One implication of this argument 
will be that twentieth-century design (as dicussed in Chapter 5) has often used spatial 
concepts for urban and housing areas which fall outside the scope of these laws, 
creating space which lacks the elementary patterning which these laws have normally 
imposed, in some shape or form, in the past. If, as is argued here, such laws exist, 
then it will be necessary to revise current concepts of the well-ordered city back in the 
direction implied by these laws.
	 There are, however, obvious objections to the idea that urban forms 
evolve according to general laws. The most obvious is that cities are individuals, 
and that this is because the forms they take are influenced by factors which are 
quite specific to the time and place in which they grow — local topographical facts 
such as harbours, rivers and hills, particular historical events such as trading 
developments, population movements and conquests and by pre-existing contextual 
conditions, such as route intersections and the existence of exploitable resources. 
Each type of influence might be expected to have generically similar effects on 
urban form, but taken together it is highly unlikely that any two cities would repeat 
the same grouping or sequencing of influences. These factors, then, in spite of 
initially suggesting bases for comparison, tend make each city unique. And this, of 
course, is how we experience them.
	 A second objection is slightly less obvious, and a little contradictory to the 
first, since it is typological. The spatial and physical development of cities is — quite 
properly — held to be a reflection of the social and economic processes which 
provide the reasons for their existence. Differences in these processes are likely to 
give rise to differences in type between cities. We saw a clear instance of this in 
the typological contrast drawn in Chapter 6 between cities of production and cities 
of social reproduction. Differences in spatial and physical form were there shown 
to be reflections of differences in the essential functions of those cities. Similarly, 
differences in the physical and spatial form of cities, say, to the north and south of 
the Mediterranean, are manifestly connected in some way to the social and cultural 
idiosyncrasies of the European and Islamic traditions. It seems then to be specific 
social, economic and cultural processes, rather than generic spatial laws, that are 
the driving forces on urban form.
	

In dilating my surface I increased 
the possibilities of contact between 
me and the outside of me that was 
so precious, but as the zones of 
my body soaked in marine solution 
were extended, my volume also 
increased at the same time, and a 
more and more voluminous region 
within me became unreachable by 
the elements outside, it became 
arid, dull and the weight of this 
dry and torpid thickness I carried 
within me was the only shadow on 
my happiness — so perhaps I could 
say that I’m better off now than I 
was then, now that the layers of 
our former surface, then stretched 
on the outside, have been turned 
inside out like a glove, now that all 
the outside has turned inward, and 
enters and pervades us through 
filiform ramifications…
(Italo Calvino, Blood, Sea)
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Both objections seem well-founded. Seen in one way, cities are individuals; seen 
in another another, they seem to be types. How can these facts be reconciled to 
the idea that general spatial laws might play a role in their spatial evolution? In fact, 
there is no incompatibility. It is simply a matter of the level at which we are talking. 
The influence of spatial laws on cities operates not at the level of the individuality of 
the city, nor on the typology of the city, but at the deeper level of what all individual 
cities and types of city have in common, that is, what, spatially, makes a city a city. 
As settlements evolve under different social and topographical conditions, they 
tend to conserve, in spite of the influence of these differences, certain properties of 
spatial configuration ‘nearly invariant’. By ‘nearly invariant’, we simply mean that the 
configurational properties we find fall within a very narrow band of combinatorial 
possibility. Without knowledge of these ‘near invariants’ we cannot easily understand 
what cities are in principle, before we consider them as types or as individuals.
	 What are these ‘near invariants’? Let us begin by looking at a pair of 
illustrative axial maps: plate 2c-e, which is part of London as it is now, and plate 
7, which is the central part of Shiraz, in Iran, as it was prior to twentieth-century 
modernisation. The grids have clear differences in character. Line structures are more 
complex in Shiraz, and are in fact much less integrated and intelligible. If we were to 
examine the relation of lines to convex elements, we would find that in London lines 
tend to pass through more convex spaces that in Shiraz. Looking at the integration 
core structures, we also find differences. Although at radius-n (not shown in the case 
of Shiraz), both have strongly centralised cores, linking centre towards edge, at radius-
radius, London has a ‘covering’ core, linking centre to edge in the way characteristic 
of European cities, while in Shiraz the radius-radius core is markedly regionalised. 
These differences in grid structure are associated with well-known behavioural 
differences, for example, in the ways in which inhabitants relate to strangers and men 
to women in Islamic as compared to European cities. We can call these associations 
of urban forms and social behaviour ‘spatial cultures’, and note that one of the main 
tasks of a theory of urban form would be to explicate them.
	 However, as can be seen from the two plates, underlying the manifest 
spatial differences we also find much common ground in the urban grids. For 
example, in both cases, the spaces formed by the buildings tend to be improbably 
linearised in at least three senses. At the smallest scale, we find that buildings are 
placed next to and opposite each other to form spaces which stress linearity rather 
than, for example, enclosure. Second, at a slightly less local level, lines of sight 
and access through the spaces formed by buildings tend to become extended into 
other spaces to a degree that is unlikely to have occurred by chance. Third, we find 
that some, but only some, of the linear spaces are prioritised to form larger scale 
linear continuities in the urban grids, creating a more global movement potential. 
These properties are present in the two cases to different degrees, but they are 
nevertheless present in both cases. They will be found to be present in some 
degree in most settlements.
	 At a more global scale, we also find commonalities across the two cases, 
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which are also ‘near invariants’ in settlements in general. Two of the most notable 
are that in both cases we will find a well formed local area structure of some kind 
coexisting with a strong global structure. Both levels of structure are different in the 
two cases, but each case does have both levels of structure, and this we will find is 
generally the case in cities. At the most general level of the overall shape of cities, we 
also find ‘near invariants’. One of the most significant is that cities, as they grow, tend 
to fill out in all directions to form more or less compact shapes, even in cases where 
they are linear in the early stages. The ‘deformed grid’, with all the properties we have 
just described, seems to be the aptest term to summarise these, and other, ‘near 
invariants’ of cities, because, however much urban space is articulated and broken 
up, buildings are still in general aggregated into outwards facing islands to define 
intersecting rings of space, which then become improbably linearised to give rise to 
the local area and global structures that are found by configurational analysis.
	 These commonalities, it will be argued, arise from what spatial cultures have 
in common, that is, from what in the previous chapter was called generic function. 
This, it will be recalled, referred not to the different activities that people carry out in 
space, but to aspects of human occupancy of space that are prior to any of these: 
that to occupy space means to be aware of the relationships of a space to others, 
that to occupy a spatial complex means to move about in it, and to move about 
depends on being able to retain an intelligible picture of the complex.
	 Intelligibility and functionality, defined as formal properties of spatial 
complexes, are the keys to ‘generic function’. In the case of settlements, generic 
function refers not to the specificities of different cultural, social and economic 
forms, but to what these forms have in common when seen from a spatial 
point of view. The deep invariant structure of urban grids is generated, it will be 
argued, from generic function creating emergent invariants, while the typological 
differences arise from cultural, social and economic differences, and individualities 
from topographical and historical specificities. In effect, it is proposed that there 
exists a fundamental settlement process, which is more or less invariant across 
cultures, and that spatial cultures are parameterisations of this process by, for 
example, creating different degrees and patterns of integration and intelligibility, 
and different degrees of local and global organisation to the overall form. Our task 
here is to show what this fundamental settlement process is and how it is 
a product of generic function and the laws of spatial emergence.
	 Before we embark on this, we must first be clear what exactly it is we are 
seeking to explain. It is clear that when settlements are small, they can take a 
great variety of forms. It is also clear that throughout history we find quite radical 
experiments in urban form, for example, the cities which we examined in Chapter 6. 
However, as cities become large, these peculiarities tend to be eliminated, and grids 
become much more like each other in certain ways. What we are seeking to identify 
here are the invariants in the processes by which large cities tend to grow — that is, 
to try to describe the main lines of urban evolution. ‘Strange’ cities exist, and for a 
while even grow quite large, but they are essentially dead ends in urban evolution. 
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Their principles of organisation do not support a large successor family of cases 
and types across the range of urban scales.
	 Because they operate at a very deep level and govern the common 
structure of cities, it might be thought that the fundamental city is too generalised 
to be of real interest. This is not the case. The influence of spatial laws on cities 
is pervasive as well as deep. It effects the level at which we see and experience 
cities, as well as at the level of their deep structures. In order to understand 
individual cities and types of cities at any level we must first understand exactly 
what it is that these general laws have contributed to their form. If we think of 
cities as aggregates of cellular elements — buildings — linked by space, then in 
the language of the previous chapter, spatial laws are the ‘first filter’ between the 
boundless morphological possibility for such aggregates and the properties of the 
vanishingly small subset we call cities. Social and economic processes are then 
the second filter, guiding the basic paths of evolution this way or that to give rise 
to recognisable types. Specific local conditions in time and space are then the third 
filter through which the city acquires its eventual individuality.
	 Our task in understanding the fundamental city is then to answer two 
questions: how and why should these particular invariants emerge from a spatial 
process of generation? And what aspects of the social and functional processes that 
drive settlement formation guide growing cities along these pathways? The answer to 
both questions will be essentially those we have discussed in the previous chapter: 
laws of spatial implication from local physical moves to overall spatial pattern in 
cellular aggregates — for such cities are — these being driven by ‘generic function’, in 
conjunction, of course, with prevailing socio-economic and topographical factors.
	
Two paradoxes
How then and why should these ‘near invariants’ emerge in a process of successively 
placing built forms in a growing aggregate? First, we must be aware that aggregative 
processes are themselves subject to certain laws of ‘emergence’, which are not 
insignificant for urban growth. For example, a randomly growing aggregate will, if free 
from constraints, tend towards a circular form as it becomes large, simply because 
this is more probable than any other form.1 This is relevant to urban growth because 
a circular shape is also the most integrating shape, and this means that to the extent 
that trips are from all ponts to all others, then mean trip length will be minimised in a 
circular form — that is, oddly, in the form that grows most randomly.
	 Such ‘laws of emergence’ are important to urban growth. But far more 
important is the fact that some of the most elementary laws of this kind affect 
urban growth not simply by being emergent properties of the growing system, 
but by imposing conflicting tensions on the system. The resolution of these 
then becomes the prime determinant of the pathway of the system. The laws of 
emergence operate, in effect, as paradoxes which must be resolved by the growth 
process. There are two such paradoxes. The first can be called the paradox of 
centrality, the second the paradox of visibility.
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The paradox of centrality takes the following form. In a circular — that is, most 
probable — aggregate, integration runs from centre to edge, with the greatest 
integration in the centre, and the least at the edge. This prioritises the centre from 
the point of view of known effects of integration on the functioning of a spatial 
system. For example, more movement along shortest paths will pass through the 
central area than anywhere else, if movement is from all points to all other points, 
or if origins and destinations are randomised.
	 However, all this is only the case if we consider the urban system on its 
own, in terms of its interior relations. As soon as we consider its external relations, 
say to other settlements in the region, or even simply to the space outside the 
system, then the centre to edge distribution of integration no longer applies. In fact, 
the more integrating the form — that is the more it approximates the circular form 
— then the more its most integrated internal zone is maximally segregated from the 
external world, and, by definition, from any other aggregates that are to be found 
in the vicinity of the system. In other words, maximising internal integration also 
maximises external segregation. This is the ‘paradox of centrality’.
	 Conversely, as we move from a circular form towards the most linear form, 
that is the single line of cells, or the least probable shape in a growing aggregate, 
then we find that the most linear form, which is the least integrated in itself, is the 
most integrated to the outside or to other systems in the region, since each of its 
constituent cells is by definition directly adjacent to the space outside the form. In 
short, the circular form is the least integrative with the space outside the form for 
the same reason that it is the most internally integrative: it has the least peripheral 
cells for the maximum interior cells. The converse is true for the maximally linear 
form which has the most peripheral cells against internal cells.
	 Growing urban systems must respond to the paradox of centrality, because 
it has the simple consequence that if you try to maximise internal integration 
then you lose external integration and vice versa, and urban forms seem to need 
both internal and external integration. The tension between internal and external 
integration leads settlements to evolve in ways which overcome the centrality 
paradox. For example, the tendency for a growing urban system to increase the 
length of certain edge-to-centre lines in proportion to the growth of the system is 
one response to this. Exactly why this should be the case leads directly to our 
second paradox, which we will call the paradox of visibility, although this does 
not quite express its complex nature, since it arises from differences between the 
metric and visible properties of space.
	 The visibility paradox can be explained very simply. If we arrange elements 
in a single line, as in figure 9.1a and b (the corresponding graph), we maximise 
the metric or modular depth that those elements can have from each other in any 
contiguous arrangement. The more elements we so arrange, the greater the depth, 
and the worse the metric trip efficiency of the form if movement is to be from 
all points to all others. But if we are interested not in movement, but in visibility, 
then we find the contrary effect. Suppose, for example, we superimpose a line, 
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representing a line of sight, on our linear arrangement of elements, as in figure 9.1c 
and d. The visible (as opposed to metric) integration of the form is then maximised 
because all cells are covered by a single line. In the graph, this means all other 
elements are connected to the graph element representing the line. In other words, 
the arrangement of elements in which metric segregation is maximised, that is, the 
linear shape, is also the arrangement in which visual integration is maximised. For 
a linear shape without a line of visibility, mean depth increases with the number of 
cells, but with the superimposition of the line then, however long the line of cells, 
the maximum depth in the system will be 2, and in fact the mean depth of 
an expanding sequence must converge on a limit of 2.
	 In an important sense, then, the visual integration of a shape behaves in 
the opposite way to the metric integration. This will also apply to grids made up of 
elements and superimposed lines. Holding the number of elements steady at 36, 
and arranging them to be covered first by a 6×6 grid of lines, then 9×4, then 12×3 
and finally 18×2, we find the mean depth of the system decreases with elongation. 
We can say then that visual integration increases with increase in the block 
shape ratio, that is, the ratio of the long to the short side, as in the figures and 
scattergram in figure 9.1e. This is the opposite of the effect of elongation on 
a shape on its own, without superimposed lines.
	 In other words, when considered as elements in a visibility field the 
primitive elements representing locations in the form have the contrary integration 
behaviour to the same elements considered as a system of metric distances. If 
lines are superimposed on grids of elements, then the more elongated the grid, the 
more integrating; the opposite of the case for arrangements without superimposed 
lines. The linear form, which from a metric point of view, and therefore from 
the point of view of movement considered as energy expenditure, is the least 
integrated form, is visually the most integrated form. The implication is obvious, but 
fundamental. If we arrange a series of, say, urban areas in a line we maximise the 
mean trip length at the same time as we maximise visibility. The same principle 
governs the progressive elongation of grids.
	 Urban form must then overcome two paradoxes. First, it must create external 
integration for the sake of relations to the outside world, as well as internal integration, 
for the sake of relations amongst locations within, even though these properties are 
theoretically opposed to each other. We may add that urban form must acheive this at 
whatever level the paradox might become problematic. That is likely to include at least 
a local and a global level. Second, it must pursue both compactness and linearity, the 
former for the sake of trip efficiency, the latter for the sake of visibility and intelligibility. 
The characteristic ‘near invariants’ of urban grids that we have noted are, it will be 
argued, essentially responses, at different levels, to these two paradoxes.
	 How then does urban form resolve these paradoxes? It is proposed 
here that two paradoxes set the questions to which the structured grid, whether 
‘deformed’ or ‘interrupted’, give us the answer.2 A structured grid is one in 
which integration and intelligibility are arranged in a pattern of some kind, which 



The fundamental city269

The laws of the field	 	
	 	 	 	

Space is the machine | Bill Hillier	
	 	 	

Space Syntax

supports functionality and intelligibility. Essentially, lines and areas are prioritised 
for integration and intelligibility to varying degrees in order to create a system of 
differentiation, and it is this differentiation that we call structure in the system. This is 
why integration cores and area scatters are such fundamental functional properties 
in urban systems. They reflect the process of constructing a differentiated structure 
in the system. The distribution of integration in an urban system, together with its 
associated built form and land use patterns, is not a static picture of the current 
state of the system, but a kind of structural record of the historical evolution of the 
system. The ‘structural inertia’ imposed by this evolved structure is of course also 
the prime constraint on the future evolution of the system.
	 The task is then to show how urban form comes about in such a way 
as to resolve the two paradoxes, that is, to show how the structured urban grid 
is discoverable as an emergent pattern through the pursuit of more elementary 
properties of space arising from the disposition of buildings. This poses a 
methodological difficulty. All the spatial analyses we have made in this book so far 
are analyses of existing complex systems, that is, systems that have already evolved 
or already been constructed. The question we have posed about urban form is about 
the construction of systems, that is, how systems evolve and grow in what is initially a 
void. The spatial void seems to be structureless. How then can we conceptualise and 
analyse aggregative processes which are initiated and evolved in a spatial void?
	 The answer is simple, and will lead us into new theoretical territory. Space 
is not a structureless void. We only believe it is by using an implicit analogy with 
physical systems. What we call structure in a physical system, whether artificial or 
natural, has to be created by putting elements together in some way. Space is not 
like this. In its raw state, space already contains all spatial structures that could ever 
exist in that space. It is in this sense that space is the opposite of ‘things’. Things 
only have their own properties. Space has all possible properties. When we intervene 
in a space by the placing of physical objects we do not create spatial structure, but 
eliminate it. To place an object in space means that certain lines of visibility and 
movement which were previously available are no longer available. When we talk of a 
structured grid in a city, brought about by the placing of built forms, this grid already 
existed, in co-existence with all other possible structures, within the ‘substrate’ space 
(that is, the space prior to our intervention in it) now occupied by the city, before the 
city came into existence. The spatial system we call the grid was not created by 
the placing of built forms. Others were eliminated. The grid was constructed in an 
important sense negatively. It was not assembled in itself. Its existence was drawn 
attention to and highlighted by the elimination of other ‘virtual’ structures.
	 This view of space is as true practically as it is philosophically. A dance 
sketches out a possible structure of space within an infinite set of possibilities. 
The dance is an exploration — a celebration perhaps — of the infinite structurability 
of space. Any open space is a space in which no possibilities have yet been 
eliminated, and every open space is continually structured and restructured by 
the human activity that takes place in it. If we do not conceptualise space in this 
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way we have no way of reconciling human freedom and the human structuring of 
space. Human activity is never actually structured by space. In structuring space 
by physical objects we suggest possibilities by eliminating others. But the spaces 
in the interstices of physical forms are still ‘open’. Within these limits, the infinite 
structurability of space still prevails. In our cells we may dance.
	
All-line visibility maps
In order to understand how the placing of physical objects in a substrate space 
creates spatial structure by elimination, we must have a formal conception of the 
substrate space as containing all possibilities prior to our intervention in it. In view 
of the ‘unreasonable effectiveness’ of line-based analyses in understanding the 
space structure of cities, suppose then that we regard the substrate as a matrix 
of infinitely dense lines of arbitrary (or infinite) length in all directions, and call 
it the ‘line substrate’. An object placed in a ‘line substrate’ will block some lines 
and leave others intact, and this will have the effect of creating some degree of 
structure in the line substrate.
	 How can we identify and measure the structure in the line substrate 
produced by an object? Clearly, we cannot at this stage use the ‘axial maps’, which 
have proved so useful in analysing the structure of real cities, since we cannot yet 
draw them. A single object placed in a line substrate will have infinitely many lines 
incident to it, and also infinitely many lines tangent to it, as well as infinitely many 
other lines in its immediate vicinity. Such infinite line matrices do not at first seem 
to be usefully analysable.
	 However, there is a way we can proceed which seems to lead to a 
fundamental description of objects and sets of objects in terms of their structuring 
effect on the line substrate. Within the set of lines which pass in the region of an 
object — let us think of it as a simple building — there will be a subset which are as 
close as possible to the object but which are unaffected by it. These will be the 
lines that are tangent to the vertices of the object, including those that lie along any 
straight surfaces. A slightly smaller subset will be those that are tangent to exactly 
one vertex of an object. This will eliminate those that actually lie along a face, since 
such a line would necessarily be tangent to two vertices, one at each end of the 
face, but include those which are as close to the face as we wish — in practical 
computing terms, as close as a single pixel.
	 Defined this way, each vertex still has a infinite set of lines tangent to it, 
which we can think of as forming an open fan shape around that vertex. These line 
sets have the useful property of defining the limits of the object in the substrate 
— exactly if we use the larger subset, to within one pixel if we use the smaller 
subset — without making use either of the lines incident to the object or those in the 
region which are not tangent to a vertex. The tangent subset is, in a useful sense, a 
well-defined set of lines selected, and in that sense generated, by the presence of 
the object. We have at least simplified the situation a little.
	



The fundamental city271

The laws of the field	 	
	 	 	 	

Space is the machine | Bill Hillier	
	 	 	

Space Syntax

However, as soon as we add a second object in the vicinity of the first, we can 
define a new subset: that of the lines that are tangent to at least one vertex in each 
object. By finding each line tangent to a vertex on one object which is also tangent 
to a vertex of the other, then continuing that line till it is stopped by being incident 
either to a further object or to any boundary which we decide to place around the 
region, we define exactly the kind of line matrix that was demonstrated in Chapter 
3. The set of lines is in effect made up of all lines drawn tangent to vertices that can 
‘see’ each other, and therefore have a straight line drawn tangent to them. We may 
call this the ‘all-line map’ generated jointly by the vertices of the two objects that 
can see each other. Like any other connected line matrix, such ‘all-line maps’ can 
be subject to integration analysis. If we do so, we find that any set of objects will 
create some kind of structure.
	 We can now use this as a general method for analysing the effects of 
objects placed in a line substrate, by finding all lines tangent to the vertices that can 
see each other for all objects in the substrate, then subjecting the resulting all-line 
map of those objects to integration analysis. To do this we must define a boundary 
to the system. To limit the effect of the boundary on the analysis we can allow the 
substrate to adapt its shape to form a more or less regular envelope around the 
group of objects. By proceeding in this way, a structure of integration is created in 
the line substrate which reflects the shapes and positions of the objects we have 
placed in the substrate with respect to each other. For example, in plate 3a, we 
have found the all-line map created by a number of objects and then its pattern of 
integration. It is reasonable to think of this as an analysis of the field of visibility 
created by the placed objects, since every line defines a limit of visibility created 
conjointly by a pair of vertices from a pair of objects.
	 These analysed visibility maps are quite remarkable entities, and appear 
to synthesise aspects of configurational analysis which had previously seemed 
to be quite independent of each other. For example, it is clear that, by definition, 
axial maps are subsets of the lines that make up the ‘all-line’ visibility map. Visibility 
maps, we may say, ‘contain’ axial maps. It follows that they will also contain some 
account of the global structure of a pattern of space in a configuration because 
axial maps do. We shall see shortly that this is the case.
	 However, we also find that visibility maps reproduce some aspects of the 
analysis of shapes set out in Chapter 3. For example, if we construct a regular 
five-by-five grid of blocks, and carry out an all-line analysis, we find that whereas a 
simple axial map would give each line the same integration value (because all are 
equally connected to exactly half of the total) the integration structure in the all-line 
analysis distributes integration from edge to centre. This is shown in plate 3b. The 
central bias in the integration core arises because in addition to the global structure 
of lines, as would be found in the axial map of the grid, there are also everywhere 
a large number of lines of every length specified by pairs of vertices which can see 
each other, including a large number of lines only a little longer than the blocks of 
built form. This dense matrix of short lines acts as through it were a tessellation, 
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and not only distributes integration from edge to centre in the short lines, but 
also necessarily transmits this bias to the longer lines. In other words, the all-line 
integration analysis reproduces both the global structure of the form through its long 
lines which are equivalent to the axial map, but also reflects the local structure of 
the shape as would be found in the tessellation.
	 All-line visibility maps also reproduce some of the conjoint effects of 
tessellations plus lines noted in figure 9.1. For example, if we take 36 blocks and 
arrange them 6×6, 9×4, 12×3 and 18×2 (calling the ratio of length to breadth the 
‘block shape ratio’) and use each to generate all-line visibility analyses, we find that 
as the arrangement elongates mean depth diminishes. If we maintain the number 
of blocks constant, the mean depth in the all-line map is minimised by reducing 
the ‘pile’ (that is, the number of lines of blocks in the arrangement): a 2-pile 
arrangement of cells has less depth in the all-line map than a 3-pile arrangement, 
which has less depth than a 4-pile arrangement, and so on up to squareness. 
Greater elongation means greater integration.
	 On closer examination, the ‘2-pile’ grid, as instanced in the 18x2 grid of figure 
9.1, turns out to be even more interesting. If, instead of maintaining the number of 
blocks constant and rearranging them with different ‘pile’ (that is into the 4 pile 9×4, 
the 3 pile 12×3 and so on), we maintain pile constant and increase the number of 
blocks, then we find that mean depth increases with increasing numbers of blocks, 
but with different curves for different piles. For example, figure 9.2a and b show 
respectively the growth curves for mean depth in 1-pile and 4-pile arrangements 
with increasing numbers of blocks, and therefore increasing block shape ratio. 
Experimentation with larger systems so far suggests that mean depth continues to 
increase with 1-pile and 4-pile, at least up to the scales of a reasonable city system. 
Figure 9.2c, however, shows a quite different behaviour for 2-pile systems. In the early 
stages of growth, mean depth rises rapidly, and continues, slowing rapidly up to 18 
blocks (2×9). With 20 (2×10) or more blocks, mean depth then begins to decrease, 
and continues to decrease as blocks are added, at least up to the normal limits of 
urban possibility. The reason why 2-pile systems, and only 2-pile systems, behave in 
this unique way is as simple as it is fundamental. Remembering that blocks which 
are aligned do not see each other through intervening blocks (because lines tangent 
to vertices do not include those that are tangent to two vertices on the same block, 
that is lines which lie flat on the face of a block are excluded), the 2-pile system is 
the only system in which all blocks see more than half of the other blocks. In all other 
cases, blocks which are not on the same alignment interfere with the mutual visibility 
of at least some of the blocks. As 2-pile systems grow, therefore, the privileged 
visibility over all other arrangements increases.
	 2-pile systems therefore have a unique theoretical status among block 
arrangements as far as the degree of integration in the all-line map is concerned. We 
should not then be surprised that it corresponds to one of the primary spatial types 
— perhaps the primary type — that cities offer. Streets, avenues, alleys, boulevards, 
roads and so on are all variants on the fundamental 2-pile linear type. It is at least a 
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suggestive inference that these unique integration possibilities of the visibility fields 
created by 2-pile systems are the reason for this privileged typological status.
	 A related interpretation might be possible for that other dominant urban 
spatial type: the large open space known variously as the ‘piazza’, ‘place’ or — with 
inappropriate geometricity in English — ‘square’. If we create a square in a grid — say 
by eliminating the central four blocks in a 6x6 grid, as in plate 3c, the effect is to 
reduce the mean depth and thus increase the overall integration of the system. 
If we then move the square towards the corner, as in plate 3d, we find that the 
mean depth of the system is still reduced compared to the 6×6 grid, but to a lesser 
degree than with the central space. In other words, the effects are exactly what 
we would expect from the principles for the construction of integration set out in 
the last chapter. A centrally located larger space integrates more than one that is 
peripherally located. The effects of replacing the open spaces with equivalently 
shaped blocks, as in plate 3e and f, are also exactly what would be expected. A 
centrally placed block reduces integration more than a peripherally placed block. 
Replacing square spaces and blocks with linear spaces and blocks of equivalent 
area will also follow these principles.
	 In other words, all-line visibility maps reproduce the local to global effects 
by which the global configurational properties of spatial complexes were shown to 
arise from local physical moves. We may therefore pose interesting questions such 
as: what local physical moves give rise to the characteristic structures that are found 
in the various types of urban grids? For example, begining with the 6×6 grid, whose 
all-line mean depth is 1.931, in plate 3g a double sized block is created across the 
centre line near the ‘northern’ edge. The effect is to reduce the integration of the 
central line, previously (along with the central east-west line) the most integrating 
because of its central location. Also the overall mean depth of the system increases 
to 1.949. In plate 3h, the block is brought closer to the centre. The effect is to de-
integrate the central north-south line even more, as can be seen from the deepening 
of the blue to the north and south of the block. There is a second effect. The east-
west central lines are now less integrated than the north-south lines adjacent to the 
double block. This is because one of the crucial connections that gave them this 
value — the north-south central line — has been blocked. In fact this effect was also 
present in plate 3g, but less strongly, so that it did not reach the threshold at which 
the colour would be changed. In plate 3j the block is moved away from the central 
line and returned to the northern edge. Comparing with plate 3g, it can be seen that 
the segregative effect is less. In plate 3k, the block is moved away from the edge. 
The segregative effect is greater than for plate 3j, but less than for plate 3h.
	 It is clear that these effects follow from the principles set out in the previous 
chapter. The more centrally a block is placed, the greater the ‘depth gain’ or loss of 
integration. It should therefore be possible to explore how the deployment of blocks in 
general create differently structured grids. For example, if we place four double-sized 
blocks adjacent to the centre as in plate 3l, we immediately create a kind of ‘deformed 
wheel’ integration structure, with hub, spokes and a rim one block in from the edge. 
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This happens because the double-sized blocks all eliminate connection to the central 
lines, which are naturally prioritised by the form, and make the ‘rim’ lines, which 
are still maximally connected, relatively stronger in integration. The interstitial zones 
defined by the wheel are defined by the rather sharp segregation created behind 
the double blocks by cutting them off not only from the their lateral neighbour zones, 
but also from the central lines. This structure is therefore characterised by diffusing 
integration to create the wheel, and rather strongly segregated zones close to the 
centre of the form. In contrast, plate 3m, by placing the blocks away from the central 
lines, creates stronger integration in the central lines, but weaker in the rim lines. The 
four zones adjacent to the centre are still marked out by comparative segregation, but 
much less than before because in all cases direct links to both neighbour zones and 
the central lines are retained. The resulting form is overall more integrated than the 
previous case, with a stronger central structure, but a less strong zone structure and 
a less marked deformed wheel effect.
	 In each case, these effects are expressions of the principles for the creation 
of structure in spatial complexes set out in the previous chapter. They show that 
comparatively simple local changes in a spatial complex can have powerful structural 
effects on the configuration of the whole. Even on the basis of what we know, we can 
suggest generative processes which either minimise or maximise integration and, it 
will turn out, intelligibility (as defined in Chapter 3). In general, loss of integration and 
intelligibility results from placing blocks so that they bar lines generated by existing 
blocks at 90 degrees. The most general form of this would seem to be a process in 
which we locate rectangular blocks in non-contiguous T-shapes, as in plate 3n. The 
non-contiguous T has the effect that both lines parallel to the long faces of existing 
blocks are inevitably stopped by blocks placed in the vicinity, and lines along the 
surface of the block therefore change direction at 90 degrees. We can call this the 
90-degree generator. As the scattergram shows, the aggregate form arising from the 
90-degree generator has very poor intelligibility and it is clear that it will always do so 
if applied as the principal generator for the block placing. A similar 90-degree effect 
will arise in a square block process by similarly placing each next block so as to 
block the face line on at least one existing block. In order to make this process work 
in all directions, it is necessary to create slightly wider spaces near the corner of each 
block, as in plate 3p, in which the loss of integration and intelligibility is even greater 
than to the rectangular 90-degree process.
	 The 90-degree process depends on creating the 90-degree relation at the 
point where a new block is added to the system. Suppose then that we avoid such 
relations at least for one line parallel to a face in an existing block. In other words, 
suppose we add blocks so as to create at least one ‘zero-degree’ relation for the 
new block (i.e. continuing the line) and an existing block. Plate 3q is an example of 
a random process following only this rule. It will of course create 90-degree relations 
as well as zero-degree relations, simply as the result of the non-contiguous L-
shape. The process creates a number of lacunas, and lines of all different lengths. 
But at this scale the outcome has a fairly strong edge-to-centre structure, and the 
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degree of integration and intelligibility are high. We can then add to this process 
the ‘extension’ rule from the previous chapter and require the process always 
to conserve the zero-degree relation for the longest line available. One possible 
outcome of such a process is shown in plate 3r. The effect of introducing the 
‘extension’ rule by which the longest line is conserved where each new block is 
added is to create not only a much stronger structure, but also a structure that is 
much more differentiated between high and low integration than before. Overall 
integration and intelligibility are also very high. We can now see that the pure 
orthogonal grid is a simple extension of this principle: line length is conserved in 	
all directions by making all-line relations along faces zero-degree continuations.
	 However, there is no such thing in reality as a pure grid, if for no other 
reason than because certain lines will be spatially privileged at the expense of 
others by being continued outside the settlement into the routes that connect 
it with other settlements, while other lines will not. In practice we also find that 
geometrically ordered grids, such as those found in ancient Greece and Rome, 
ancient China and modern America, are not internally uniform. Sometimes lines in 
one direction are privileged at the expense of others by the overall shape of the 
settlement, but, more commonly, some lines are internally stopped at right angles by 
built forms, while others continue. This is why we call such grids ‘interrupted grids’, 
and note that they were just as structured as ‘deformed’ grids.
	 These simple cases illustrate the kind of thing we need to know: how 
spatial structure in a grid arises from local action on blocks. One whole class 
of grids — interrupted grids — is based almost entirely on what we have so far 
explored, that is grid shape and interruption. We can have the outline of a theory of 
interrupted grids on the basis of the methods we have so far set out. However, the 
commonest kind of grid is not interrupted but deformed. The difference between 
the two is easy to describe. In the interrupted grids we have so far considered all 
major lines — that is, the subset of the all-line map that constitutes the axial map 
— are either tangent to a vertex of a block or end on a block at close to ninety 
degrees. In practical terms this means that lines either continue with no change in 
direction, or compel a ninety-degree change in direction. We could call such grids 
zero-ninety grids, because all movements proceed with a zero-degree change in 
direction or a ninety-degree change in direction. Deformed grids are, quite simply, 
grids that use the whole range in between.
	 What the two types of grid have in common is that, whatever the technique 
for creating angles of incidence between lines, the outcome is variation in the 
lengths of lines. These variations are one of the means by which structure is 
created in the urban grid. In both deformed and interrupted grids, this structure 
most commonly arises from the application of the ‘extension’ principle: longer 
lines tend to be conserved by zero- or low-degree line relations, allowing ninety- 
or high-degree line relations to occur away from the longer lines. This is why in 
deformed grids we typically find the dominant structure is made of sequences of 
longer lines whose intersections are low degree, and shorter, more localised, lines 
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whose intersections are high degree. In Chapter 4, for example, we found that in 
the City of London, there was a pervasive tendency for longer lines to be incident 
to others at open angles while the more localised shorter lines tend to be incident 
at, or close to, right angles. In spite of other differences, similar observations can be 
made about many Arab towns, though the lines that intersect at open angles tend 
to be less long, and less differentiated in length from some of the more localised 
lines. This is an example of a parametric difference expressing cultural variation in 
the fundamental settlement process. We should also note of course that this relation 
was exactly inverted in the ‘strange towns’ of Chapter 6. It was the longest lines that 
ended in ninety-degree relations by being incident to major public buildings.
	 In fact, the situation is slightly more subtle. If we consider the structure of 
the grid from the point of view of how its local sub-areas are fitted into the larger-
scale grid in both western and Arab cities, we find that in both cases this relation 
is most often formed by using a ninety-degree relation to join the internal streets of 
the local area to the larger-scale grid. However, the sub-area line that links to the 
main grid at ninety degrees will itself then tend to avoid ninety-degree relations as it 
moves into the heart of the sub-area, and continue out in another direction. In other 
words, the lines that form the dominant structure in sub-areas follow the same type 
of logic as the line of the main grid, though at a smaller scale. Linearity is being 
used to create an integration core linking edge to centre for the sub-areas in much 
the same way as the larger-scale grid is creating it for the town as a whole.
	 The pattern of angles of incidence of lines created by different ways of 
placing blocks of built form, and particularly the variation between low- and high-
degree angles of incidence in deformed grids, and zero- and ninety-degree angles 
of incidence in interrupted grids, therefore seem critical to our understanding of how 
real urban structures are put together as spatial systems. Since most large cities 
are deformed grids, and there is reason for believing that the structure of deformed 
grids is in some senses more complex and subtle than interrupted grids, we must 
now explore the implication of what we have learned for deformed grids.

How emergence overcomes indeterminacy to create local order
If we are to begin without the assumption of an underlying grid, to guide the placing 
of blocks, then we must first show how local order arises in a growing agregate in 
the first place. By local order, we mean constant relations between one block and 
its neighbours. This excursion will lead us to a conclusion of as much theoretical 
as practical importance. The reason we find urban systems invariably display local 
as well as global order, is that without local order there is indeterminacy in the 
emergent structure. Very small changes in the positioning and shape of objects can 
lead to a radical difference in the structure of integration in the all-line map created 
by those objects. For this reason, large-scale layouts cannot be constructed on 
the basis of local indeterminacy, and this is why we invariably find local as well 
as global order in urban systems. The role of local rule following is to make the 
emergence of local structure predictable. These local ‘emergences’ then stabilise 
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the situation enough to permit the emergence of more global order ‘on their back’, 
as it were. This is why we find, at smallest urban scale, ‘near invariants’ in the form 
of continuous definition of local external spaces by building entrances, and the 
local linearisation of built forms. Local order in this sense will be seen to be the 
necessary foundation of global urban form. Without it, the local system cannot be 
stabilised sufficiently to allow global patterns to be constructed.
	 We must begin by considering the most elementary relations in a system, 
beginning with one object in the vicinity of another. Plate 4a, b and c shows a 
series of possible cases which are then subjected to all-line analysis. As we can 
see, in each case the precise pattern of integration is different, depending on the 
shapes of the objects and their positions with respect to each other. But there is 
also an invariant effect. Regardless of the shape or relative locations of the cells, 
all the pairs of objects create a focus of integration between them in the all-line 
map. Further experiment would show, and reflection confirm, that given any pair 
of objects in a substrate then, other things being equal, integration will tend to be 
drawn to the region jointly defined between them. This means also that each object 
is adjacent to a shared set of integrating lines, and therefore potentially permeable 
to it, in the direction of the other object. This is an instance of what we mean by an 
invariant. It is a structural condition that is always the case even under considerable 
and geometric variation. It is also an emergent effect, in that it was not defined 
in the initial rule which placed the second object, but emerged from this placing 
wherever it occurred. In this particular case, the invariant emergent effect gives a 
meaning to the spatial concept of ‘betweenness’.
	 As soon as we begin to consider systems with more than two objects, 
however, we lose this invariance in the emergent outcome and instead discover a 
profound problem which seems initially completely incompatible with the idea of a 
local order: that of indeterminacy in the emergent outcome. As soon as we have 
a third object, we find that structures emergent from analysis of the all-line maps 
arising from those objects are highly unpredictable and subject to great variation 
in outcomes with very small changes in the shape and positioning of any of the 
objects. Fortunately, it is in finding the answer to this problem that we will be able 
to set the foundations for a full theoretical understanding of settlement space. Only 
by placing and orienting objects in certain ways in relation to each other can local 
indeterminacy be overcome and local order created in the evolving system.
	 Suppose then we add a third object to the pairs we have already 
considered, as in plate 4d and e. It seems there is no reliably emergent pattern. On 
the contrary, the structure changes from 4d to e following very minor changes in 
the locations of the blocks. Plate 4f and g show the same effect in a much more 
complex system. The only difference between the two is a change in the size — but 
not the shape or position — of one of the objects, yet the outcome in the all-line map 
is quite different. Further experimentation will show that this is always the case. 
There is of course a local determinism operating. But it is so dependent on very 
small changes in the shape and positioning of objects that it is virtually impossible 
to predict without this very detailed knowledge.
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Now everything that has been learned about real spatial systems in the earlier 
chapters of this book suggests that structural indeterminacy in spatial patterns is the 
last thing we expect to find. On the contrary, we have found that spatial systems of 
all kinds and at all levels tend to organise themselves according to certain genotypes, 
that is, common patterns that often cross seemingly quite different cases. It is clear 
that such systems are not indeterminate. Nor are they altered in their structure by 
minor changes. On the contrary, their structures are highly robust, and can usually 
absorb quite significant modifications without undergoing great changes in structure. 
In this sense, we can say that real systems have a great deal of redundancy. This 
redundancy, and the consequent robustness in the structural outcome, can only arise 
from consistencies of some kind in the way that objects are placed, that is from a 
local rule following behaviour in the placing of objects. Since we have seen that real 
systems seem to follow rules about local linearity of built forms, and the relation of 
lines to entrances, we should first consider the structural effects of these.
	 Suppose then that we align a series of blocks, as in plate 4h. Now there 
is an emergent invariant. Integration in the all-line map will align itself one side or 
other of the alignment of cells. On reflection, it is evident that this must always be 
so. Integration must always be dominated by the outer vertices that can see each 
other. However, which side is selected is still highly indeterminate. It depends on 
quite minor differences in the nature of the cell surfaces, and the inter-relations 
of these differences on either side of the alignment. Plate 4i, for example, shows 
a slight realignment of the same blocks as in h, in that the positions of the three 
internal blocks are rearranged. The effect is that the dominant lines of integration 
shift from one face of the alignment to the other. The reasons for these differences 
can always be traced, but they are often quite hard to find. In this case it depends 
on the relative length of the longest alignments along the face, and this depends 
on very small differences in the degree to which blocks protrude. The all-line 
integration analysis of the system is therefore not yet robust. We have solved half 
the problem. We know we will find a linear pattern of integration in the all-line map. 
But we do not yet know where it will be.
	 One way of making the outcome determinate will of course be to align the 
objects perfectly and standardise their shape. If we do this, then integration will 
distribute itself equally on both sides of the alignment. However, there is a second 
factor that can bring redundancy into the alignment, one which does not require us 
to attain geometrical perfection, and that is the relation of external space to building 
entrances. If we model even a single cell not simply as a convex object, but as a 
building-like entity with an interior and an entrance (and creating a finite substrate 
mirroring the shape of the built form) then we find that this on its own will have the 
immediate — and on reflection obvious — effect of bringing integration onto lines 
passing the entrance, as in plate 5a. In other words, the effect on the all-line map 
of considering internal as well as external space, as related through the entrance, 
is to integrate the area outside the entrance to the building in a direction orthogonal 
to the orientation of the entrance. It would not stretch things too far to suggest that 
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the effect of even one such building with entrance is to create a local spatial pattern 
which is already street-like. It is easy to see that this is a necessary emergent effect. 
Other things being equal, the relation to the interior of the ‘building’ will always 
create an extra degree of integration in the local all-line map, and in the absence of 
other influences, this relation will dominate the structure of integration.
	 Now it is clear that if we both align cells with interiors and face their 
entrances more or less in the same direction, then integration in the resultant all-line 
map will powerfully and reliably follow the line orthogonal to (and therefore linking) 
the alignment of entrances, as in plate 5b. We are in effect using the alignment 
and the entrance effect to reinforce each other, and so create redundancy in the 
resulting structure. This effect will be lost if we face a pair of cells in opposite 
directions, as in plate 5c, or place one behind the other, as in plate 5d. Stabilisation 
requires alignment and entrances to coincide in creating the same effect.
	 We now see that these two most localised invariants in urban form, the 
relation of space to entrances and the local alignment of forms, together reliably 
create exactly the emergent local structure in the substrate that we have observed 
to be the case. Cell alignment ‘means’ the creation of a linear integration structure 
along the surfaces of aligned cells; entrance orientation specifies on which side this 
is to occur. In the absence of one or other we will not find the invariant pattern we 
have noted. The two together have the effect of eliminating local indeterminacy in 
the form, and creating a robust emergent pattern of integration in the aggregate.
	 There is, moreover, a second way in which an emergent pattern of 
integration can be stabilised in a small aggregate: by creating a second alignment 
of cells more or less parallel to an existing alignment. This second alignment does 
not have to be complete, but the more complete it is the more it will eliminate 
indeterminacy in the resulting pattern of integration in the all-line analysis. In the 
two cases in plate 5e and 5f, for example, quite minor changes in the shape and 
alignment of cells — the lower left cell in f has been moved slightly to the left of its 
position in e — is enough to realign the dominant line of integration from left right to 
diagonally top down. However, if, as in plate 5g, we add a third cell on the second 
line, it is very hard to find an arrangement of the cells or shape change which 
does not lead to the main axes of integration running left to right between the two 
alignments. The pattern of integration has again become robust. It is not likely to 
change under small variations in the shape and position of cells.
	 There are then three ways in which the local indeterminacy of integration 
patterns can be overcome in small cellular aggregates. One is alignment of the 
cells. The second is alignment of entrances. The third is parallel alignments. What 
we find in real settlements is that all three are used to reinforce each other. It seems 
an unavoidable inference that, at this localised level, settlements pursue integration 
in the emergent structure by using all three ways of achieving it to reinforce each 
other. In other words, even at the most localised level we find that settlements 
exploit emegent laws of space. We can then be quite precise as to the respective 
roles of human agency and objective laws. The human agency is in the physical 
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shaping, locating and orientation of built forms. The laws are in the emergent 
spatial effects consequent on those physical decisions. Built forms, we may say, 
are shaped, located and oriented by human agency, but in the light of laws which 
control their effects.
	
The laws of growth
If this is so at the most localised level, what of the higher levels of area and 
global structure? Here we must remind ourselves of the contrary influences of two 
underlying principles: linearity integrates the visibility field, compactness integrates 
the movement field. Urban form, we proposed, reconciled these two imperatives 
of growing systems through ‘deformed’ or ‘interrupted’ grids, both of which tend 
to maximise linearity without losing compactness. We shall see now that this 
principle can be seen to operate at every level of the evolution of urban form, right 
down to the level of certain very small settlements whose layout seems to contain 
the very seeds of urban form.
	 In The Social Logic of Space3 it was shown that the basic topological forms 
of certain small and apparently haphazard settlement forms, in which irregular ring 
streets with occasional larger spaces like beads on a string — hence the ‘beady ring’ 
— could be generated by ‘restricted random’ cell growth processes in which cells with 
entrance and spaces outside the entrance were aggregated randomly, subject only to 
the rules that each cell joined its open space onto the open space of a cell already 
in the complex, and that joining cells by their vertices was forbidden (since joining 
buildings at the corner is never found in practice). Plate 6a shows an example.
	 It was also suggested that many settlements which began with this type 
of process progressively introduced ‘globalising’ rules as they grew larger. These 
globalising rules took the form of longer axial lines in some parts of the complex, 
and larger convex spaces, usually with some well-defined relation between the 
two. The effect of globalising rules was that certain key properties, such as the 
axial depth from the outside to the heart of the settlement, tended to remain fairly 
constant. Such contents tended to create a structure more or less on the scale of 
the settlement as it grew. Analysis then showed4 that the effect of these rules was 
to maintain both the intelligibility and the functionality of the settlement, to maintain 
a strong relation between the different parts of the settlement and between the 
settlement and the outside world.
	 In these ‘beady ring’ forms, two key local spatial characteristics were noted, 
which then tended to be conserved under expansion. First, virtually all local ‘convex’ 
spaces, however small or narrow were ‘constituted’ by entrances. Second, these 
convex elements tended to be linked by lines of sight and access. Since we knew 
that both of these arise as emergents from the conservation of integration in the 
form, it seems reasonable to believe that we now have a theory for these local 
aspects of the form. But what of the globalising processes? 
	 We should note that beady rings already resemble urban systems in ways 
which are significant for urban structures. First, the distribution of integration in the 
open space is not undifferentiated, but biased strongly towards certain lines and 
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certain locations. Second, the lines that are prioritised tend to be among those that 
link the settlement to its exterior. Theoretically, of course, this is likely to be the case, 
because in any small collection of objects, the lines which are wholly internal (in that 
both ends stop on built forms), are likely to be shorter than lines which connect the 
interior to the exterior. This is particularly significant, since it seems to contain the 
seeds of a key aspect of urban structures: that is the tendency for the integration 
core to link at least some key internal areas to the periphery of the settlement.
	 To explore how this becomes a key factor in settlement growth, we must 
bring into place the ‘four principles’ set out in the previous chapter, and reinterpret 
them for the aggregative process in which built forms progressively construct 
patterns of open space. The reader will recall that the four principles were centrality: 
blocks placed more centrally on a line create more depth gain — that is reduce 
integration — than peripherally placed blocks, and vice versa for the creation of open 
space by block removal; extension: the longer the line on which we define centrality, 
the greater the depth gain from the block, and vice versa for space; contiguity: 
contiguous blocks create more depth gain than non-contiguous blocks, and vice 
versa for space; and linearity: linearly arranged contiguous blocks create more 
depth gain than coiled or partially coiled blocks.
	 Seen from the point of view of the line structures that are created by block 
aggregation processes, the four principles begin to look much simpler. The centrality 
principle and the extension principle can be expressed as a single principle: 
maximise the length of the longest available line. If there is a choice about placing a 
building to block a longer or shorter line, block the shorter line. This does not quite 
work in a void, since too many lines are infinite, but it would be progressively more 
and more possible to make such discriminations as an aggregate becomes more 
complex. The effect of this rule would be always to conserve the longest existing 
lines in the growing aggregate and gradually evolve these lines into yet longer lines. 
A similar simplification is possible for the principles of contiguity and linearity when 
considered from the point of view of line creation. Both imply the minimisation of 
deflection from linearity. Placing objects contiguously will clearly increase deflection, 
and so will the linear placing of objects, rather than in a ‘coiled up’ form.
	 We might then transcribe the four principles into a simpler form which 
runs something like: select longest lines for maximum linearity, and on others 
(where maximum linearity is by definition not being conserved) keep deflection to 
the minimum. We can easily see how such a rule, operating in the context of the 
need to resolve the paradox between compact metric integration and linear visual 
integration would lead naturally to the structural bias we find in the beady-ring form. 
Is is less obvious, but nonetheless the case, that it can also lead to the much more 
complex structural biases in larger urban grids that we identify as ‘integration cores’. 
In due course, we will also see that it can in itself lead naturally to the commonest 
kinds of local area structure that we find in larger cities.
	 How then and why do these global properties of urban systems arise? 
Considering the earliest stages of growth in deformed grids, beginning with the 
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the hypothetical ‘beady-ring’ settlement of plate 6b, with its all-line analysis and 
intelligibility scattergram below. The integration core links edge to centre and the 
scattergram shows that the intelligibility is high (from which we may be sure that 
the correlation of local and global interaction will be even higher). Now we know 
that in any such system the longest available lines are unlikely to be those that 
make interior connections, since these by definition stop on buildings at each end, 
but will be among those that link interior to exterior. Suppose then that we simply 
follow the rule of placing new blocks so as to extend longest lines. A possible 
outcome after a while would be as in plate 6c.
	 This is a fairly common form of development, but as a principle to guide 
the evolution of larger systems it is insufficient, since the effect is to create lacunas 
in the form and make it non-compact. We also find, on analysis, that the core 
becomes focused very strongly in the centre, with edges that become very weak. 
This is what we would expect, since it is the lack of compact development in all 
directions that led to the lack of structure at the edges. We also find intelligibility, as 
shown in the scattergram, beginning to break down in the more integrated areas, 
reflecting the independence of growth along different alignments. In fact we find this 
type of development is quite common in small-scale settlements, but is rarely found 
in larger ones. Morphologically, there seem to be sound reasons for this limitation. 
None of the properties we have come to expect in growing systems are conserved 
beyond a certain stage in this type of development.
	 Let us then experiment by expanding the hypothetical settlement compactly. 
We will explore two possibilities. In the first, we pursue our dual rule of optimising 
the linear extension of existing longest lines, and avoiding undue linear deflection in 
the remainder of the system. In the second, we reverse the first principle, and block 
longest lines at ninety degrees with blocks that also cause substantial deflection of 
lines elsewhere in the system. Plate 6d shows two possible outcomes after a further 
ring of growth complete with all-line analyses and intelligibility scattergrams. In the 
first outcome, the integration core continues to link centre to edge, and maintain 
overall integration and intelligibility in the system. In the second, chicanes on all 
lines from centre to edge mean that these lines become hard to differentiate from 
other lines. The result is a much more centralised core, which no longer covers 
the diameter of the system. The overall degree of integration and intelligibility are 
accordingly substantially less than in the first case. If we then continue the same 
pair processes as in plate 6e and f, we find similar outcomes, though with the 
additional effect that the integration core in 6f has now split into two. The levels of 
both integration and intelligibility are significantly lower in 6f than 6e.
	 These are of course considerable simplifications of real urban growth 
processes, but they serve to illustrate a fundamental principle: that given that 
we follow the rules of local alignment of built forms and entrances to stabilise 
integration in the local system, then simply following the rule of selecting the longest 
lines for extending linearity, and keeping deflection to a reasonably low level in the 
rest of the system, will in itself tend to create an integration core that links centre to 
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periphery in several directions. This not only tends to solve the paradox of linearity 
and compactness, by creating spaces that link centre to edge, but also creates a 
system which is internally integrated, and intelligible. Thus the paradox of centrality 
is overcome, at least from the point of view of visibility and intelligibility. All this 
happens because the integration core structures the settlement in such a way as 
both to integrate the settlement internally while at the same time integrating it to its 
exterior. In other words, the combined ‘centrality’ and ‘extension’ principles — simply 
by being applied in a growing system — have the effect of overcoming the centrality 
paradox by exploiting the visibility paradox. In this sense at least we can say that 
some of the key invariants of global order in the fundamental settlement process are 
simply products of generic function applied to growing systems in the light of the 
paradoxes of growth in such systems.
	 One question then remains. How do local area structures arise? Let us then 
pick up the story of the expanding deformed grid that we left at plate 6e. We know 
that systems can evolve a centre-to-edge integration core which will guarantee certain 
key system properties under growth. However, as the system grows farther, it will 
generate more and more the structural problem we saw in Plate 6c: as the lines that 
form the integration core drive outwards, they tend to become farther and farther 
apart creating larger and larger lacunas in the system. As the system grows, this 
problem must become more acute. The scale of the lacunas means that it cannot be 
solved by simply avoiding overly deflecting lines. There must be structure within the 
lacunas just as previously there was a need for structure in the main settlement as 
it grew. The structure, we might say, that resolves the centrality paradox at the level 
of the whole settlement recreates it as a more localised problem, by partly enclosing 
areas that must by filled in with built forms if the compactness rule is to be retained. It 
follows that structure must evolve to overcome this problem.
	 All we need to specify is the continuation of the process we have already 
described for the growing centre into the lacunas between the radials. Since built 
forms will already exist at the edge, the process must begin there. A process of 
placing blocks in order to maximise the longest lines created by the built forms will 
first tend to create a linear space penetrating the lacuna laterally, so that in spite 
of the fact that the process has begun at the edges of the lacuna, a structure will 
be created which is dominated by edge-to-centre lines in at least two and possibly 
more directions. The interstices will then be filled with blocks that avoid overly 
deflecting linearity, and these will then form the less integrated zones within the 
sub-area. Because initially the conditions of this local process are structured from 
the periphery, the conditions for radial growth do not exist here. On the contrary, 
the initial moves in the system under these more structured conditions necessarily 
begin to sketch a more orthogonal grid. Accordingly, we tend to find a greater 
tendency towards orthogonal order in these interstitial areas than in the initial urban 
form. It is literally suggested by the process itself.
	 In cases where this process subsumes an earlier settlement — say 
an existing village — then this may initially be the natural magnet for the lines 
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penetrating the lacuna from the edge. This will tend to form a local deformation 
of the grid evolving in the lacuna. It is exactly such a process that gave rise to 
London’s ‘urban villages’. These are invariably the foci of the integration core of 
local deformed grids which, like other London areas, take the form of a ‘deformed 
wheel’ (that is, an integration core with a hub, spokes and a rim, with quiet areas 
in the interstitial zones) in which the periphery, instead of being the space outside 
the settlement, is formed by the radials of the larger-scale urban process. It is this 
process that gives rise to the fact that in cities like London the ‘deformed wheel’ 
structure is repeated twice, once at the level of the whole city and once at the level 
of the local area. It is also this that gives rise to the geometry of the local and larger-
scale organisation of the city that we noted earlier in this chapter, in which length of 
line and angle of incidence were the key variables.
	 Not all cities, of course, have this kind of local area structure. But this is the 
difficult case. London embodies the continuation of the operation of generic function, 
and the spatial processes to which it gives rise, into the local area structure of the 
growing city. It is this that makes London, in spite of initial appearances, such a 
paradigmatic case of the well-structured city. Perhaps because throughout its history 
planning intervention was of the most parsimonious kind, the greatest latitude was 
created for the fundamental settlement process to evolve in one of its purest forms.
	 It is this that gives London its unique theoretical interest. Other cities 
have very different ways of constructing their local area structures, but they are 
more structured, that is, they are a product more of cultural parametrisation of the 
fundamental process than of the fundamental process itself. In Shiraz, for example, 
local area structures are much more axially broken up than London, but they are 
also smaller and less complex as areas. Most local areas in Shiraz are made up 
of sequences of right-angle lines connecting in one, two, three or four places to 
the dominant structure of the integration core. Their relation is predominantly to the 
outside, and that relation is constructed by simple, but deep, sequences of lines. 
We do not therefore find that the correlation of radius-3 and radius-n integration 
gives the structure of the local area. We do find, however (as shown by Kayvan 
Karimi, a doctoral student at UCL), that the the correlation of radius-6 and radius 
-n integration does capture this structure, as shown in the two cases picked out 
in plate 7. We also find a geometric correlation to these properties: each line that 
forms part of a local area belongs entirely to that area. No line which is internal to 
an area also crosses a core line and becomes part also of another local area. Local 
areas in Shiraz are, we might say, linearly discrete. This was much less the case 
in London where at least some lines which were part of local areas also continued 
into neighbouring areas. As we have found before, configuration of properties are 
constructed eventually out of the line geometry constructed by blocks of built form.
	 Shiraz is a fairly extreme case, where local structures are small, segregated 
and highly dependent on the global structure of the settlement. At the opposite 
extreme we find cities like Chicago, where the high mean average length of line and 
the fact that some cross the entire system mean that integration is very high. There 
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is then, in the settlement as a whole, a high correlation between connectivity and 
integration, and a fortiori a high correlation between local and global integration. In 
Chicago there is very little tendency for whole lines to be confined to any plausible 
sub-area in the city. On the contrary, a major characteristic of the structure of the 
city is that all areas are made up of lines that include many that are global lines 
in the system. But this does not mean that there is no local area structure. On 
the contrary, if we select for areas all lines within that area and those which pass 
through the area, we find reproduced at the local level even stronger correlation 
between connectivity and integration than prevails for the system as a whole. In 
other words, the local area structure of the city is characterised in the case of 
Chicago by the correlation between connectivity (that is, radius-1 integration) and 
radius-n integration, in London by the correlation between radius-3 and radius-n 
integration and in Shiraz by the correlation of radius-6 and radius-n integration. This 
then is a parameter by which each city adapts the fundamental settlement process 
to its own structural needs.
	 However, all of the invariants that were specified in the original description 
of cities hold in all three of these cases. Not only do we find these deep structures 
in common, but also a common geometrical language of line length and angles of 
incidence through which not only these structures, but also the parameterisations 
through which cultures identify themselves in spatial form, are realised. It is the 
existence of this common geometric language which permits both invariants and 
cultural parameterisations to proceed side by side. At the deepest level of what all 
cultures share — that is, of what is common spatially to humankind –is the geometric 
language that we all speak.
	
	 	
Notes
This was explored in the early seventies by Daniel Richardson in ‘Random growth in 
a tessellation’, Journal of the Cambridge Philosophical Society, 74, 1973, pp. 515–28.
The difference between a ‘deformed’ and ‘interrupted’ grid is that the controlled 
irregularity of the former comes about essentially through geometric deformation of 
the line structure, in the manner of European cities, while that of the latter comes 
about by placing buildings and other facilities to ‘interrupt’ some lines rather than 
others, in the manner of Graeco-Roman or American grids. Both usually achieve 
the result of a well-defined pattern of integration in the axial map of the city. For a 
further discussion, see below.
See B. Hillier & J. Hanson, The Social Logic of Space, 	
Cambridge University Press, 1984, Chapter 2.
B. Hillier et al. ‘Creating life: or, does architecture determine anything?’, 	
Architecture & Behaviour, vol. 3, no. 3, Special Issue on Space Syntax 	
research, Editions de la Tour, 1987.
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