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Abstract

Patents citations are a potentially powerful indicator of technological inno-
vation. Analysing the new IFS-Leverhulme database on over 200 major British
firms since 1968 we show that patents have an economically and statistically sig-
nificant impact on firm-level productivity and market value. We also find that
while patenting feeds into market values immediately it appears to have a slower
effect on productivity. This is potentially because of the need for costly investment
in new equipment, training and marketing required to embody patents into new
products and processes. This may generate valuable real options because patents
provide exclusive rights to develop new innovations, thereby enabling firms to de-
lay their investments. We find that higher market uncertainty, which increases the
value of real options, reduces the impact of new patents on productivity. These
real options effects have implications for the role of macro and micro stability in

the take up of new technologies and productivity growth.



1. Introduction

There is a consensus that technological advance is crucial in the “new economy”.
But measuring technology has always been one of the most perplexing problems
facing empirical economics. One tradition, epitomised by Solow (1957), is to
measure technology as a residual from a production function. The problem is
that the residual, no matter how cleverly constructed, is rather like a statistical
dust bin - holding a lot of trash as well as a few nuggets of gold. A second
tradition, which this paper follows, is to construct observable proxies for technical
change. The most popular measure of technology is research and development
expenditures (R&D). Unfortunately at the firm level there was no requirement to
report R&D expenditures in Britain before 1989, so this hampers the generation
of a long time series. Innovation counts have been frequently used in the UK, but
the best series for these ended in 1983 (see Pavitt, Robson and Townsend, 1987,
Blundell, Griffith and Van Reenen, 1999 and Geroski, 1990).

Counts of patents have also been a popular choice to proxy innovation. And
patents themselves contain a wealth of other information (e.g. Lerner, 2000). In
particular, the front of a patent details other patents which contributed to the
knowledge underlying the new patent. This information can be used in a variety
of different ways. We start off with the most obvious use. A patent which is
cited many times is more likely to be valuable than a patent which is rarely cited
(Griliches, 1990). Other researchers have used patent citations as a “paper flow”
to track the way knowledge spills over between organisations and areas (Jaffe,
Trajtenberg and Henderson, 1993; Jaffe and Trajtenberg, 1998) and this is a
route that we have pursued in complementary work.

We look at the impact of patents on two measures of company performance -
productivity and market value. Production functions are more easily interpretable
and comparable with other work. Market value is a more forward looking measure,
which has attractions for the analysis of an activity whose pay-off may not be for

many years in to the future. There is a small literature emerging on the impact



of patent citations on company performance, but all the existing work that we
know of is based on U.S. firms (e.g. Hall et al, 2000)*.

>From our preliminary work with the data it became apparent that while
patents have an immediate impact upon market values they take time to affect
productivity. One potential explanation is that the new products and processes
which are covered by the patents have to be embodied in new capital equipment
and training. Firms may also need to undertake expensive marketing and adver-
tising to promote their new products. As such, this will involve extensive sunk
cost investments - these capital, training and marketing outlays will be (at least
partially) irreversible. But since patents provide firms with the exclusive rights
to their new technologies they have the option to wait until making these sunk
costs investments. When market conditions are uncertain this will generate valu-
able real options. Therefore, by giving firms a legally protected right to delay
investing, patents provide an excellent test of the importance of real options.

We adapt the developing real options literature to explain the take up of new
products and processes covered by patents?. The theories developed in this paper
predict that higher market uncertainty will lead firms to be more cautious about
their investments. We use this theory to then derive empirical predictions on the
relationship between patents and uncertainty and empirically test them.

The structure of this paper is as follows. Section 2 describes the database
that we have constructed and some of its key features. Section 3 sketches some
simple models and the real options extensions that we use to estimate the effects
of patenting on company performance. Section 4 details the econometric results
and section 5 gives some concluding comments. In short, we find considerable
evidence of the importance of technology for firms’ productivity and stock market

performance. Higher uncertainty, as predicted, reduces this effect of patents on

IThere are, of course, several econometric studies of the impact of patent counts on British
firm performance (e.g. Bosworth et al, 2000).

2See, in particular, Dixit and Pindyck (1994), Eberly and Van Mieghern (1997), and Bloom
(2000).



productivity but appears to have no significant effect on market value.

2. Data

We combine three principle datasets in constructing the IFS-Leverhulme database.
Full details of the matching between the datasets is contained in the Appendix,
but we sketch the process here. The first dataset is the Case Western Patent data,
the second is the Datastream annual company accounting data, and the third is
the Datastream daily share returns data.

To construct the patents data base we used the computerised records of patents
granted in the U.S. between 1968 and 1996. This is the largest electronic patent
dataset in the world (the European Patent Office records begin only in 1976, and
the records are patchy until the mid 1980s). The data is held in Case Western and
we received considerable help from their staff in setting up the files. Practically
all major patents are taken out in the U.S., so we are screening out many low
value patents by following this strategy.

The second and third datasets contain the accounts and share returns of firms
listed on the London Stock Exchange. From the population of public firms we
selected those whose names began with the letters ‘A’ through ‘L’, which repre-
sents a random sample from the whole population. We also added in the top 100
R&D performing firms in the UK that were not already included in this list to
maximise the numbers of patents we could collect. Ideally we would have collected
information on all firms on the Stock Market, but the resource cost was too great.
For all of these 415 firms we used ‘Who Owns Whom’ from 1985 to find the names
of all subsidiaries®. We then used these subsidiary names to match to the Case

Western Dataset by name.

3There are many problems with only using one year of data to match in the corporate
structure. Clearly this changes over time, albeit slowly for most firms. The process of matching
is, however, extremely labour-intensive so it was only practical to perform it for one year. In
future work we intend to also do the matching for later and earlier years.



2.1. Patents and

Citation Data

The intersection of the two datasets gave us 236 firms who had taken out at

least one patent between 1968 and 1996. The total number of patents taken out

by this group over the entire period was 59,919, representing about 1% of the 6

million patents taken at the U.S. Patent Office. Table 1 below shows that most

of our group of UK firms are involved in only a modest amount of patenting with

about half the sample receiving more than 25 patents, while 12 firms received

over 1000 patents during the period. This concentration of innovative activity

within large firms (the 12 account for 72% of all patents in our data), reflects a

similar phenomena in R&D expenditure where the 12 largest enterprises account

for about 80% of all R&D expenditure.

Table 1: The distribution of firms by total patents 1968-1996

1 or more

10 or more | 25 or more | 100 or more

250 or more

1000 or more

Firms | 236

161 117 75

41

12

Table 2 reports the patenting activity of the twelve largest patenters. This

selection of firms reflects the strong performance of the chemicals, pharmaceuticals

and the defence engineering sectors in the UK.

Table 2: The Top 12 patenting firms

Firm No. Patents
ICI 8422
Shell 7200
Smithkline Beecham | 3672
BP 3632
BTR 3432
Lucas Industries 3119
GEC 3054
Hanson 2892
Unilever 2644
Siebe 1876
Rolls-Royce 1575
Glaxo Wellcome 1528




The patents are graphed by their year of application in Figure (5.1). The lesser
degree of patenting activity in the latter part of the period reflects truncation bias
(on the right) because we collect statistics on patents granted. Since there is a
delay between applying for and granting a patent of about two years, this leads to
a downward bias towards the end of the period. There is also a truncation on the
left of the graph as there may have been patents granted post 1968 which were
applied for pre-1968. These caveats apart, there is little discernible trend in the
total patents numbers granted to UK firms. There was some decline 1968-1983,
a pick-up 1983-1990 and then decline in the 1990s. Interestingly, this broadly
mirrors the growth rates in UK productivity.

We also have data on the citations made by any of the other 6 million patents
in the main data set to our sample of 59,919 patents. Citations can be taken as
an indicator of the technological value of a patent in that those patents which are
frequently cited are likely to be more innovative and technologically productive.
In Figure (5.2) we plot the histogram of the lag between a patent being taken
out and the subsequent citations to that patent. It is clear that citations tend
to happen relatively early on in a patent’s life when the patent is widely known
but technologically still innovative. Interestingly this citation lag still has not
completely tailed off even after 20 years. Figure (5.3) plots the histogram of the
number of cites per patent from which it is clear that many patents are never
cited at all, with a small tail of patents which are frequently cited. The five most
cited patents are tabulated in Table 3 below with their patenting topic, the year
they were granted and the number of cites made to them over the period 1976

until 1996.



Table 3: The Top Five Cited Patents

Company Patent Topic Grant Year | Cites 1976-96
Shell Synthetic Resins 1972 221

Grand Metropolitan | Microwave heating package | 1980 174

ICI Herbicide compositions 1977 130

Unilever Anticalculus composition 1977 97

British Oxygen Corp. | Pharmaceutical Drugs 1975 89

The total number of citations to our patents, dated by the application year of
the patent being cited, is plotted in Figure (5.4). Because data on citations is only
collected for patents granted after 1976 there is an early downward bias reflecting
the fact that for patents granted pre 1976 some of the initial citations data is
missing. The discussion in the paragraph above and Figure (5.2) suggests that
the loss of these early citations could lead to a serious downward bias for patents
taken out pre 1976 since for them this would represent a period of relatively high
citation activity. There is also a tail end bias as patents applied for towards the
end of the period will only be part of the way through their citations lifecycle,
and so will have been cited less often by 1996.

To deal with these biases we use a non-parametric series estimator based on a
full Fourier sine and cosine expansion. Following the approach in Hall et al (2000)
we assume that the total lifetime number of citations per year is constant through
out our sample. Therefore any observed changed in the observed aggregate ci-
tation levels is due to time varying levels of truncation bias. We assume that
this time varying truncation bias varies smoothly over time according to some
piecewise continuous function of time!. Our normalization estimator then uses a
Fourier expansion to fit a smooth curve to the observed time variation in aggregate

citation levels to non-parametrically estimate a truncation bias function.

4That our observed citation frequency is not smooth over time, even in our sample of almost
60,000 patents, is testament to the extreme skew of the citations data. In data sets such as these
which have large second moments the usual weak convergence of the empirical distributions
to their underlying distribution is extremely slow (see for example Billingsley, 1986), so that
smoothing is usually required.



A Fourier expansion was used because of its ability to approximate to an
arbitrary degree of accuracy any piecewise-continuous function (see Churchill and
Brown, 1987). We used the first four sine and four cosine terms for an expansion
with the base periodicity set at the total time observation period of 30 years’.
The smoothing property of our estimator can be seen in Figure (5.4) which plots
the actual citation frequency and our non-parametric functional estimator. This
functional estimator of the time varying citation bias is then inverted to re-weight
the citations per patent. This ensures that the normalized citations per patents
remain approximately constant over the period.

In calculating a patent based proxy for knowledge stocks it is also more sensible
to use a stock measure rather than a flow measure of knowledge as the benefits
from a patent are likely to persist into future years. We calculate a set of preferred

measures of the stock of patents through the perpetual inventory method so that
(Patent Stock); = (1 — §) x (Patent Stock);_; + Patents; (2.1)

where the knowledge depreciation rate, 6, is set to 30% as in, for example, Griliches
(1990). The first year is calculated by assuming a prior steady state growth of
patents of 5%. The same perpetual inventory method is used to calculate the
citation stock where the flow variable is the citation weighted number of patents.
The “5 year cite stock” uses only the first 5 years of citations (after an application)
to obtain a citation weighting but without any normalization. Since we select our
citation estimation period to run up to 1990 only whilst our citing data runs up
to 1996 this means we have 5 years of observations on citations for every patent
so that no truncation bias correction will be needed for this 5 year measure.
This reduction in the number of years for estimation thus allows us to compare
our normalized full citation weighted patent measure and the five year citation

measure.

SIncreasing the length of the base period or using the first three or five terms does not have
any significant impact on our results. This is because the first few terms of the Fourier expansion
drive the results, as noted for example, by Bertola and Caballero (1994) in a related application.



It is comforting that our three measure of the knowledge stock - the patent
stock, the citation weighted patent stock, and the 5 year citation weighted stock
- have a strong correlation as demonstrated in Table 4 below. This suggests that
whilst each should have its own merit in capturing various aspects of the knowledge

stock they proxy a similar measure of the technological innovation stock.

Table 4: Correlations Between Knowledge Stock Measures

Pat Stock | Cite Stock | 5 Year Cite Stock
Patent Stock 1 0.9871 0.9665
Cite Stock 1 0.9714
5 Year Cite Stock 1

2.2. Firm Level Accounting and Uncertainty Data

The company data is drawn from the Datastream on-line service and represents
the accounts of firms listed on the UK stock market. Our initial sample of 415
firms (those whose names began with A-L or were large R&D performers) % for
which we matched patent data was then cleaned for estimation. Cleaning involved
ensuring that there are no missing values on sales, capital or employment, deleting
firms with less than three consecutive observations, breaking the series for firms
whose accounting period fell outside 300 to 400 days due to changes in year end
timing, and excluding observations for firms where there are jumps of greater than
150% in any of the key variables (capital, labour, sales). After cleaning we were
left with a sample of 404 firms, to which 211 were matched as having patenting
subsidiaries (see the Data Appendix for details of this matching process)”.

Table 5 reports summary statistics for this set of 185 patenting firms. Because

these are quoted firms the median size is large with sales of about £360 million (in

1985 prices) and a work force of over eight thousand employees. From the last row

See the data appendix for more details on the selection of this sample.

"This is less than our group of 228 patenters because of both the loss of some firms due to
trimming and because of the loss of some years of observations for the remaining firms due to
the unavailability or poor quality of data on employment in the early1970s.



of the table it can also be seen that we generally have a long time series of data
on each firm - on average over 20 years for each firm. However, because of the
need to deal with the biases discussed above in patent and citation counts we only
use the data up to 1993 for raw patent numbers and 1990 for citations. Hence,
the average number of observations per firm is 19 and 16 for patents and citation
weighted patents, which still represents a relatively long time period per firm.
The patent numbers demonstrate the large variation in patenting per firm year
with some firms only taking out sporadic patents - as demonstrated by the zero
patent observations in Table 3 - and others taking out 409 patents in a single year
(ICI in 1974). The total cites number represents the normalized sum of citations

for all patents taken out in each firm year.

Table 5: Descriptive Stats. for the 185 Patenting Firms, 1969-1996.
median | mean | stan. dev. | min. | max
real capital (£m) 143 744 1,777 1.6 | 18,514
employment (1000s) 8,398 24,374 | 42,078 40 312,000
real sales (£m) 362 1,224 | 2,494 1.15 | 20,980
real market value (£m) | 153 740 1,766 0.29 | 19,468
patents 3 12.6 34 0 409
total cites 13.7 61.2 157 0 1808
patent stock 10 42.6 113 0 1218
cite stock 49.2 202 507 0 5157
5 year cite stock 26.2 1059 | 227 0 2919
uncertainty 1.39 1.47 0.42 0.60 | 6.6
observations per firm 22 20 7.6 3 29

Notes: Capital, sales and market value are all in 1985 £1,000,000s. ‘Patents’ is the total
number of patents per firm year whilst cites is the normalized total number of cites to a
firms patents per year. Uncertainty is the % standard deviation of daily share returns.
Sample covers years 1968-96.

In measuring uncertainty we have to capture measure firms uncertainty about
future prices, wages rates, exchange rates, technologies, consumer tastes and gov-

ernment policies. In an attempt to capture all factors in one scalar proxy for firm



level uncertainty we use the variance of the firm’s daily stock returns®, denoted
o?. In accordance with theories of real options this is a time invariant but firm
specific proxy for uncertainty”. This measure includes on a daily returns basis the
capital gain on the stock, dividend payments, rights issues, and stock dilutions.
Such a returns measure provides a forward looking proxy for the volatility of the
firm’s environment which is implicitly weighted in accordance with the impact
of these variables on profits. A stock returns-based measure of uncertainty is
also advantageous because the data is accurately reported at a sufficiently high
frequency to provide an extremely accurate measure. Our sampling size of 265
recordings per year for the 22 year life of our average firm therefore provides an

extremely low sampling variance'".

3. Models of Patents and Company Performance

We work with a simple Cobb-Douglas production function of the form

Q=AG*NPK" (3.1)

where Q is real sales, G is the knowledge stock, N is number of employees and K
is the capital stock and A is an efficiency parameter. Taking logs and introducing

subscripts for firm i at time ¢ we have

8This measure of uncertainty is also used by other papers in the literature on uncertainty
and investment, such as Leahy and Whited (1998).

9The real options literature, surveyed in Dixit and Pindyck (1994) for example, always as-
sumes a time invariant uncertainty measure. This drives us to choose a time invariant uncer-
tainty measure so that we can make a close link with the theoretical literature.

0For example, Andersen and Bollerslev (1998) use high frequency exchange rate data with
288 recordings per period and calculate the implied measurement errors are less than 2.5% of
the true volatility.

10



log Qi = log Ayt + alog Gy + Blog Ny + vlog Ky (3.2)

We parameterise efficiency, A, = exp(n; + 7 + vi), as a function of firm specific
fixed effects (n; ), time effects (1;) and a random stochastic term (v;). In our
empirical application we use patent stocks and citation-weighted patent stocks

(PAT) as empirical proxies of GG, the knowledge stock.

log Qix = alog PAT;; + 3log Ny + vlog Ky +1; + 7 + vy (3.3)

We estimate equation (3.3) by within groups (least squares dummy variables)
correcting the standard errors for heteroscedasticity.

Market value equations are less well established than production functions.
The standard approach pioneered by Griliches (1981) is based on a specification
of the form (see also Hall et al., 2000)

Vv G o~
log (%)Zt =0 (E) i+ T Ui (3.4)

it

where V' is the market value of the firm. The left hand side of equation (3.4)
is essentially Tobin’s average Q. Under perfect competition one would expect
this ratio to be equal to unity. The deviation of Tobin’s @ from unity is, in
this framework, driven by the fact that the firm possesses intangible (G) as well
as tangible (K) capital. ”New economy” firms with high levels of intangible
knowledge capital will have a much higher market value than one would expect if

we merely used their fixed capital stock.

11



3.1. Uncertainty and Real Options

The two models laid out above assume that the knowledge contained in patents
can be immediately be used and acted on by firms. Patents, however, represent
new products or process innovations whose introduction can involve sizeable in-
vestments in additional plant and equipment, hiring and retraining workers, and
advertising and marketing. Much of this expenditure will be irreversible - once
it is undertaken the initial costs will not be recoverable. Thus, when firms are
facing uncertain market conditions then they will posses patent real options'!.
These patent real options reflect the value a firm places on its ability to choose
the timing of its investment in its patented technologies when this involves sunk
costs.

A large theoretical literature has grown up from the seminal papers of Bertola
(1988), Pindyck (1988), and Dixit (1989) demonstrating the important role such
real options can play in firm’s optimal investment strategies, with real options
even able to account for more than half a firm’s value in uncertain market condi-
tions. As a result real options should play an important role in our approach to
modelling investment in innovation. This work emphasizes the role real options
play in retarding the response of firms to changing market conditions'?. When
market conditions are uncertain firms become reluctant to commit large sums to
new investment projects or dismantle old investment projects in case conditions

change. This leads to a ‘cautionary’ investment behaviour. This ‘cautionary’ ef-

1 Apart from partial irreversibility and market uncertainty, the third condition for the exis-
tence of real options - that firms can delay their actions - is clearly satisfied in this case where
patents give firms the exclusive rights to use their innovations.

12Gee, for example, the early work on threshold behaviour by Abel and Eberly (1996), Dixit
and Pindyck (1996), and Bloom (2000).

12



fect of real options in retarding the response to changing market conditions has
been confirmed empirically for physical investment by Guiso and Parigi (1999) in
a cross section of Italian firms, and by Bloom, Bond and Van Reenen (2001) in a
panel of UK firms.

The incorporation of new products and processes into a firm’s production
schedule will also be subject to precisely this kind of cautionary effect because
of the capital investment, training and marketing required. Hence, firms may
be reluctant to exploit these patents in uncertain market conditions when the
chances of making an expensive mistakes is high. Since patents provide firms with
the exclusive right to use their new innovations they have considerable ability to
delay their investments generating potentially substantial real options values.

To incorporate these real options effects we extend the concept of our knowl-
edge stock G into embedded knowledge, Gr and dis-embedded knowledge Gp,
where G = G+ Gp. Embedded knowledge represents those product and process
innovations which the firm has invested in. Dis-embedded knowledge, however,
represents the remaining ideas which the firm has under patent but has not yet
committed into actual production.

When conditions are highly uncertain the firm will be more cautious because
of the value of the real options associated with embedding new innovations into

production. To model this empirically we define A(0) = 222

Gi to be the elastic-
E

ity of embedded knowledge to total knowledge, where this ratio depends on the
uncertainty of a firms business conditions, . This elasticity of embedded to total

knowledge, A(c), will be a decreasing function of uncertainty. More uncertain

conditions will increase the cautionary effect of real options and lead to a slower

13



pass through of new innovations into the embedded knowledge stock'® - that is
OAN(o)/0o < 0.
Adapting our earlier production function to incorporate these real options

effects and using lower case to denote logs we can therefore write

q=a+agg+ Pn+~k (3.5)

where the embedded knowledge stock, gz, rather than the total knowledge stock,
g, is included in the firm’s production function. To evaluate the additional effects
of uncertainty on production we take a second order Taylor series expansion of
the logged production function in the total knowledge stock, g, and uncertainty
o. This can be used to predict the qualitative effects that uncertainty should play
in the adoption of new technologies.

Firstly, holding other factors constant greater levels of total knowledge will
lead to a greater level of productivity as some proportion of new innovations will

always become embedded in new products and processes'?

9 _ 998
Jg Jg
> 0

= a\(0) (3.6)

Secondly, this effect of new innovations on output will be falling in the level
of uncertainty because this reduces the rate of incorporation of new ideas into

production

13This is true both in the short run and the long run because innovation in general, and
patents specifically, generally have a falling private value over time. Hence, slow incorporation
reduces their overall value both in the short run and in the long run.

14We assume new innovations have an embodied value drawn from some distribution in which
the most valuable innovation will always be embodied.

14



%¢  9OXo)
8960 ¥ b0 (3.7)

< 0

Finally, the direct effect of uncertainty is ambiguous. While uncertainty reduces
the speed with which new firms embed new innovations into production there is
an ambiguous relationship between the absolute level of embedded innovations

and uncertainty!®

9¢ _ 995
Jo o

s 0

(3.8)

To empirically investigate these effects we include a direct uncertainty term and
an uncertainty patenting interaction term. The uncertainty patenting interaction
term will then pick up the negative cautionary effect of the term in equation (3.7)

Our estimating equation for the production function will take the form

log Qir = alog PAT;; + Blog N;: + vlog Ky + vo; + x|o; xlog PATy| +n; + 1+ vi

(3.9)
where the coefficients 1 and x will pick up the direct and interaction effects of
uncertainty. Note that we will not be able to separately identify the linear effect
of uncertainty from 7; in the specifications where the latter are treated as fixed

effects.

15While it is likely this sign is negative because greater uncertainty reduces the rate of adop-
tion of technology it may not reduce the absolute level of adopted technology.

15



A slower uptake of technologies due to real options should have a much less
dramatic effect on the forward looking market value measures. If the adoption of
new patented technologies is only delayed by real options effects, then as a forward
looking measure, market values should only display a limited response reflecting
the limited changes to the total expected discounted cash flow. Therefore, in our
empirical equation market value equation shown below, which includes uncertainty

interactions, we would expect a lesser and possibly

14 G G = =
log (?) =6 (?> + 0o+ ( |:0’1- * log (?) } + M + T + Vit (3.10)
it it i

insignificant point estimate on the interaction term (, while the sign of 6 will as

before remain ambiguous.
4. Results

Table 6 presents the results of estimating a standard production function on our
sample of firms. Column (1) has the OLS estimates of the production function
for our complete population of over 2,000 Datastream firms. As expected the
coefficients on capital and labour are both positive and significant at conventional
levels, and their sum is close to unity (suggesting constant returns in tangible
factors). In column (2) we undertake estimation with our preferred within groups
estimator which controls for time invariant difference between firms by including
firm dummies. Again the coefficients on capital and labour are positive and
significant, although slightly smaller than in column (1). Columns (3) compares
these within groups results from the whole Datastream sample to our sub-sample
of patenters. The higher point estimates on capital and lower point estimates

on labour imply that our sample of patenting firms are on average more capital

16



intensive than lower tech firms (as one would expect). In fact our patenting firms

have on average a 20% higher capital to labour ratio than non patenting firms.

Table 6: Basic Production Functions

Log Real Ouput | (1) (2) (3) (4) (5) (6) (7)
Firms All Patenters
Log Capital 0.330** | 0.289*** | 0.437*** | 0.439*** | 0.468*** | 0.471*** | 0.468***
(0.006) | (0.010) | (0.027) | (0.027) | (0.031) | (0.031) | (0.031)
Log Employment | 0.650*** | 0.606*** | 0.558*** | 0.554*** | 0.502*** | 0.491*** | 0.502***
(0.006) | (0.010) | (0.027) | (0.027) | (0.031) | (0.032) | (0.031)
Log Patent Stock 0.024** -0.012
(0.008) (0.018)
Log Cite Stock 0.030*** 0.039***
(0.007) (0.014)
Log 5 Year 0.031**
Cite Stock (0.007)
Firm Dummies no yes yes yes yes yes yes
Time Dummies yes yes yes yes yes yes yes
Adj. R-Squared | 0.901 0.989 0.992 0.992 0.992 0.992 0.992
No. Observations | 18,068 | 18,068 | 2219 2219 1896 1896 1896
No. Firms 2063 2063 211 211 189 189 189

NOTES: The dependent variable is ‘log real output’. Columns (1) and (2) presents
results using our complete Datastream population of all firms, Columns (3) to (7)
present the results for our sub-sample of firms with patents. The estimation period
covers 1968 until 1993 inclusive for columns (1) to (4), and 1968 until 1990 inclusive
for columns (4) to (7) which use the citation data. The *** denotes 1% significance, **
denotes 5% significance and * denotes 10% significance. Standard errors are robust to
heteroskedasticity.

The last four columns of Table 6 reports the results from including patents as
a proxy for knowledge in the production function. In column (4) we use patent
stocks, in column (5) citation weighted patent stocks and in column (6) the “five
year ahead” citation weighted patent stock measure. On all the alternative mea-

sures, patent stocks are significant at the 0.05 level with an elasticity of about

17




0.03. This suggests that a doubling of the patents stock would lead to a 3%
increase in total factor productivity. In column (7) we include both the patent
stock and the citation knowledge stock and find that patents are no longer signif-
icant. Thus, citations provide significant information over and above raw patents
numbers. This suggests citations could provide a valuable proxy for evaluating
knowledge stocks and tracing knowledge flows.

Table 7 reports the results of estimating the impact of patents on firm market
value using the conventional average Q specification described in equation (3.4).
In column (1) we use the patent stock measure, in column (2) our citation weighted
patents stock measure, and in column (3) the “five year ahead” measure and find
all three have significant explanatory power at the 5% level. The coefficient in
column (2) suggests, for example, that doubling the citation weighted patents
stock would increase the value of firms per unit of capital by about 43%. This
large estimate of the effect of cited patents on market values captures the market’s
expectation of the total discounted rents from patented innovations. These results
are larger than those reported for US firms by Hall et al. (2000) where they report
coefficients of 0.607 and 0.108 on (patent/capital stock) and (cite patent/capital
stock). This appears to be mainly because they chose a 15% rather than a 30%
depreciation rate on patents so that their patenting and citation stocks will be
6

approximately twice our size!’. Finally, in column (4) we again compare the

predictive power of patents and citation weighted patents and find that citations

16 Al our results are robust to using this alternative assumption on the knowledge depreciation
rate. For example, if we use a 15% rather than a 30% depreciation rate and re-estimate our
market value equations we obtain a coefficient (standard error) of 0.879 (0.327) and 0.246 (0.081)
on the (patent stock/capital stock) and (citation stock/capital stock) terms respectively. In our
productivity equations we obtain a coefficent (standard error) of 0.035 (0.013) and 0.028 (0.010)
on our patent stock and citation stock measures respectively.
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provide significant additional information over and above raw patents counts.
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Table 7: Market Value with Patents Measures
log(Vis/Kis—1) (1) (2) (3) (4)
Patent Stock/capital 1.620* -0.352

(0.537) (0.828)
Cites Stock/Capital 0.427***
(0.147)
5 Year Cite Stock/Capital 0.519** | 0.491**
(0.221) | (0.243)
Firm Dummies yes yes yes yes
Time Dummies yes yes yes yes
No. Observations 2053 1748 1748 1748
No. Firms 205 182 182 182

Notes: The dependent variable is ‘log (market value/lagged capital)”. The estimation
period covers 1969 until 1994 inclusive for column (1) and 1969 until 1990 inclusive for
columns (2) to (4) which use the citation data which is only available for this shorted
period. The *** denotes 1% significance, ** denotes 5% significance and * denotes 10%
significance. Standard errors corrected for arbitrary heteroskedasticity.

In Table 8 we conduct some robustness tests on our basic models. In columns
(1) and (2) we include both the patent stock and the lagged patent stocks mea-
sures. It is the lagged variable which is most informative in predicting productiv-
ity, suggesting that patented innovations take some time to enter the production
function. In the market value equation, however, the current value of patents
per unit capital has the larger coefficient (1.115) and is significant at the 15%
level, while the lagged value has a coefficient of (0.661) and is not significant at

1'7. This larger point estimate on the current value in the market value equa-

al
tion appears to reflect the forward looking nature of the market value measure. In
columns (3) and (4) we lag all our right hand side variables one period to control

for the possibility of endogeneity of our current explanatory variables. This does

17 Although individually insiginificant, the current and lagged values of they are jointly signif-
icant at the 1% level.
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not noticeably change our results with significant effects of patents on productiv-

ity and market values. We also re-run this specification with all our explanatory

variables lagged twice and again find our results looks very similar with a point

estimate (standard error) of 0.042 (0.013) on patents in the productivity equation

and of 1.01 (0.405) on (patents/capital) in the market value equation. We also

look for both structural breaks and a time varying coefficient on our patent mea-

sures and find no significant evidence for either, with our main results remaining

significant.
Table 8: Robustness Checks

0 @ ©) @

Real Sales | log(V;/Ki—1) | Real Sales | log(V; /K1)
Firms
Log Real Capital 0.468***

(0.028)
Lagged Log Real Capital 0.444**

(0.031)

Log Employment 0.541***

(0.028)
Lagged Log Employment 0.459***

(0.030)

Log Patent Stock -0.004

(0.011)
Lagged Patents Stock 0.029** 0.036***

(0.010) (0.010)
Patent Stock/Capital 1.155

(0.785)
Lagged Patent Stock/Capital 0.661 1.362**
(0.718) (0.525)

Firm Dummies yes yes yes yes
Time Dummies yes yes yes yes
No. Observations 2053 1975 2053 1975
No. Firms 205 182 205 182
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Notes: The dependent variable for the columns (1) and (3) is ‘log real sales’ and the
dependent variable for columns (2) and (4) is ‘log (market value/capital stock)” - both
are in 1985 prices. The estimation period covers 1968 until 1990 inclusive. The ***
denotes 1% significance, ** denotes 5% significance and * denotes 10% significance.
Standard errors corrected for arbitrary heteroskedasticity.

We also attempted to address any econometric concerns over the exogeneity
of our knowledge stock measures by directly using instrumental variable estima-
tors. However, with a total cross section of around 200 firms this could lead to
serious small sample bias for a generalised method of moments type estimator'®.
On the other hand the Anderson-Hsiao type estimator can have a poor empirical
performance because of the need to first difference the data which removes the
levels information. This causes problems for instrumenting highly autoregressive
series (like the patents stock) in a first differenced specification (see, for exam-
ple, Bond and Blundell, 1998). For this reason previous studies using patenting
data such as Hall et al. (2000) have focused on using OLS or within groups es-
timators. Because of these problems with IV estimation we only undertake some
exploratory robustness checks here in addition to those in columns (3) and (4)
of Table 8, using an estimator which is more appropriate in this long time series
setting. This estimator uses the levels information from a within groups estimator
but instruments with lagged explanatory variables to deal with any simultaneity

problems, and has been used for example, in Mark, MgGuire and Papke (2000)

18The GMM estimator is asymptotic in the cross section on a year by year basis so that it is
the yearly number of firms not the total number which is important.
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and Bloom, Griffith and Van Reenen (2001)7.

These instrumental variables point estimates are approximately similar to
those delivered in tables 6 to 8 but with much larger variances. The point es-
timates (standard errors) on the patenting stock and citation weighting patenting
stocks in the productivity equations are 0.048 (0.026) and 0.065 (0.035) respec-
tively, which are larger than those in the comparable columns (4) and (5) of
table 6, but are somewhat imprecisely estimated. For the market value speci-
fications the point estimates (standard errors) on the patenting stock and cita-
tion weighted patenting stocks are 2.474 (0.948) and 0.792 (0.293) respectively,
which are also somewhat larger than those presented in table 7 columns (1) and
(2), although again quite imprecisely estimated. We concluded that, if anything,
treating patents as exogenous causes an underestimation of their importance.

Finally, Table 9 reports our results from investigating the effects of uncertainty
on the productivity response to patenting. In column 1 the patenting uncertainty
interaction term takes the predicted negative sign in our productivity equation,
and is significant at the 5% level. The coefficient on the level of uncertainty (o;),
which is theoretically ambiguous, is also negative but not significant at the 5%
level. When we move to the within groups specification in column (2) by including

a full set of firm dummies we have to drop this firm specific uncertainty term o;

9To be precise, the data is transformed into orthogonal deviations, where the othogonal
deviations transformation of y; ¢, labelled y;,, has the form (see Arrelano and Bond, 1991)

T 1
" T—1t 2
Yie = (yi,t — Z yw) <T——t+1> fort=1,2.T -1

j=t+1

The instruments for labour, capital and patents are labour, capital and patents lagged two
and three years (also in orthogonal deviations). The instruments for (patents/capital) are also
(patents/capital) lagged two and three years (in orthogonal deviations).
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since this is collinear with the firm dummies. In column (2) we see that the
patenting interaction term is, as before, negative and significant at the 1% level.
The size of this interaction coefficient (-0.01) suggests that increasing a firm’s
uncertainty by one standard deviation (0.42) from the median level of uncertainty
(1.39) would reduce the elasticity of productivity with respect to patents from
0.024 to 0.199. Hence, for a one standard deviation increase in uncertainty the
patenting effect on productivity falls by about 20%, a moderate but not enormous
change.

In column (3) we investigate the levels and interaction effects of uncertainty on
the market value in an OLS equation. In line with our theoretical predictions the
interaction effect on market values is less significant and of a smaller magnitude
than the direct patenting effect. This is because market values are a forward
looking measure and so will only incorporate the effects of higher uncertainty
to the extent that it impact on total discounted cash flows. The levels effect of
uncertainty, however, is highly significant and negative suggesting some direct
effects of uncertainty on market values. This could possibly be through a real
options effect, which is theoretically ambiguous, or through some other channel
such as the greater discount rate associated with more uncertain shares?”. In
column (4) we include a full set of firm dummies to control for fixed differences
between firms. The uncertainty-patenting interaction term remains negative but
is now insignificant at conventional levels suggesting only a limited effect of slower

patent embodiment on the long term discounted cash flows.

20Gtrictly speaking the relationship between uncertainty and capital valuation implied by
theories such as the Capital Asset Pricing Model (CAPM) or the Consumption CAPM relies on
covariance (with the market) rather than variance concepts. Since covariances and variances
are likely to be positively linked, however, this negative statistical relationship between variance
and capital valuation is not surprising.
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Table 9: Real Options Effects of Uncertainty

(1)

(2)

(3)

(4)

Real Sales | Real Sales | log(Viy/Kii—1) | log(V;i/Kii—1)
Firms
Log Real Capital 0.451%* 0.446**

(0.015) (0.020)
Log Employment 0.517* 0.553***

(0.017) (0.016)
Log Patent Stock 0.025** 0.038***

(0.011) (0.008)
o;x Log Patent Stock -0.015* -0.010***

(0.006) (0.003)
Patent Stock/Capital 0.913* 1.743**

(0.338) (0.447)
o;x Patent Stock/Capital -0.265* -0.073
(0.159) (0.127)

o; -0.036 -0.297**

(0.024) (0.048)
Firm Dummies no yes no yes
Time Dummies yes yes yes yes
No. Observations 2053 2053 2037 2037
No. Firms 211 211 205 205

Notes: The dependent variable for the first two columns is ‘log real sales’ and the

dependent variable for the second two columns is ‘log real market value” - both are in

1985 prices. The estimation period covers 1968 until 1990 inclusive. The *** denotes

1% significance, ** denotes 5% significance and * denotes 10% significance. Standard
errors corrected for arbitrary heteroskedasticity.

To account for the possible effects of market-wide bubbles and fads we also

calculate a second measure of uncertainty, using the variance of the firm’s daily

share returns normalized by the return on the FTSE All-Share index. This mea-

sure eliminates common stock market volatility. Results using this normalized

measure are almost identical to those reported in table 9, and are available on

request from the authors.
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5. Conclusions

Patents citations are a potentially powerful indicator of technological innovation.
Our analysis of the new IFS-Leverhulme database on over 200 major British firms
since 1968 has uncovered some interesting results. First, we show that patents
have had an economically and statistically significant impact on firm-level pro-
ductivity and market value. For example, a doubling of the citation-weighted
patent stock increases total factor productivity by 3%. We find that citations are
more informative than the simple patent counts that have been used previously
in the literature. Secondly, we find that while patenting feeds into market values
immediately it appears to have a slower effect on productivity. Thirdly, we find
that higher market uncertainty, reduces the impact of new patents on productiv-
ity. This is consistent with a simple “real options” effect that has been found to
be important in the literature on tangible investment.

There are several future directions to take this stream of research. We have not
investigated the technological spillovers that have been a focus of attention in the
recent literature. Patent citations are a potentially useful source of information
in tracking the flows of knowledge across industries and countries and we intend
to use the citations data in combination with R&D to investigate spillovers. A
second area of interest is in probing the uncertainty results in more detail. If more
uncertain environments reduce the productivity benefits from patents then it is
likely that reductions in uncertainty (as is a focus of recent government policy to
reduce “boom and bust”) will have effects on firms incentives to innovate. A nat-
ural extension of this work is to augment the patenting equations with measures

of uncertainty to uncover the importance of volatility in affecting innovation.
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DATA APPENDIX

1. Selecting the sample of UK firms

To obtain a manageable sample of firms for the matching stage we took UK

firms from UK Datastream with names starting from A to L on which we also have

company ownership data from the Leverhulme Company Ownership project?!.

This set of firms was then supplemented by any other UK firms which we believed

was likely to be a significant innovator, as proxied by their appearance in the top

100 R&D spenders in the “UK R&D Scoreboard” (DTI, 1997). This resulted in

a final sample of 415 firms against which we attempted to match patenting data.

The ISIC breakdown of the selected firms is given in Table A1l below where it

can be seen that we have a mix of various sectors, but with a concentration in the

traditionally innovative chemicals, pharmaceuticals and engineering sectors.

Table Al: Industry Breakdown of Patenting Firms

ISIC
3100
3200
3400
3500
3600
3700
3800
3900
4000
5000
7200
689

2. Matching Up the Patent Data

Industry
Food and Beverages
Textiles and Apparel

Paper and Paper Products
Chemicals & Pharmaceuticals

Non-Metallic Minerals
Basic Metal Industries

Engineering & Metal Products

Other Manufacturing

Electricity, Gas and Water

Construction

Transport and Storage

Other Services

No. observations
216
55
49
409
143
93
793
111
10
20
11
267

21Gee, for example, Bond and Chennells (2000), for more details.
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The main patent data set contains information on over 6 million patents
granted between 1968 and 1996 by the United States Patent Office. This in-
formation includes indicators on the name of the inventor, the location at which
the patent was taken out and the patents which the patent cites itself. These
patents also have an assignee code which is an indicator matching up the patent
with the organisation which registered it, and there are about 140,000 different
patenting assignees. Since firms register patents under a variety of different as-
signee names, usually the parent name of the firm or one of their subsidiaries, it
is not possible to directly match up these assignees with the ultimate parent. For
example, Glaxo PLC.. has 354 patents listed directly under the assignee ” GLAXO
GROUP LIMITED”, 196 patents listed under the assignee ”GLAXO LABORA-
TORIES LIMITED”, and a further 80 patents listed under an assortment of other
assignee names such as "GLAXO INC” and "GLAXO CANADA”. Whilst the
linkage between the Glaxo parent group and its subsidiaries are obvious in this
case due to the common parent firms name in many other cases this link is less
clear. For example, one of the largest patenting firms in our group is ”BTR PLC”
whose three largest patenting assignees are called ”’DUNLOP LTD”, ”STEWART-
WARNER CORPORATION” and "BTR INDUSTRIES”, where only the third
assignee would show up under a direct computerised name search. Because of the
inadequacy of direct computerised name matching we had to undertake a careful
two stage process to try and match up all the assignees of our ultimate parent list
of UK quoted firms to our list of 140,000 patenting assignees. This was carried as

follows:

Stage 1
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We selected the larger assignees - deemed to be those with 10 or more patents
- which numbered about 12,000 out of the initial list of all 140,000 assignees and
accounted for 5.2 million (or 87%) of all of the 6 million patents and undertook
a manual match against these. This was an extremely lengthy procedure which
involved individually looking up each of these 12,000 assignees by turn in ”Who
Owns Whom 1985” to check whether its ultimate parent was a UK company. If
the ultimate parent was a UK company we then name checked this against our
sample of 415 quoted UK companies to see whether it was owned by a firm in
this group. If the assignees was owned by one of our 415 quoted UK companies

we then typed in the appropriate Dscode matching details.

Stage 2

For the remaining 128,000 assignees which had registered less than 10 patents
(and accounted for only 0.8 million patents) we had to rely on direct computerised
name matching by searching on key string words in the ultimate parent name
and then cross checking with ”Who Owns Whom” to ensure this was a correct
match. For example, string searching on Glaxo welcome revealed two additional
patenting assignees with less than 10 patents which would have been missed in the
first stage of matching- ”GLAXO CANADA, INC” with 2 patents and ” GLAXO
OPERATIONS UK LIMITED” with 3 patents. Whilst this procedure is less
desirable (we proportionally matched only a third as many assignees by computer
compared to by hand) it was the only feasible matching procedure. Since only
13% of the total patents stock number is contained in this longer list of small
firms the degree of omitted patenting should anyway not be great.

When this matching process was complete we aggregated the patenting infor-
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mation assignees up to their common parent company to yield firm level patent

statistics.

3. Extending the employment data series

There are two main problems with the UK employment series. First, employ-
ment information was only recorded for a sub-sample of Datastream firms prior
to 1982. For those firms where data was missing we matched in the information
from the EXSTAT database of company accounts which contains employment
data back to 1972. Secondly, prior to 1982 UK companies were required to report
their total UK labour force, but from 1982 onwards have been required to report
their global labour force, leading to a break in the series. Some firms report the
global employment series all the way through, but many report only UK employ-
ment before 1982. Since we have a long time series of patenting data pre 1982 we
have tried to bridge across this gap rather than drop the earlier data. To bridge
this gap we have use two methods. For firms who report both UK and global
labour force figures post 1982 we use the post-1982 UK/global ratio to extrapo-
late the pre-1982 global labour force based on the reported UK labour force. For
the remaining firms we assume that the growth in total labour force between 1981
and 1982 is equal to the average of the growth rates two years before and two
years after this split. This enables us to generate a forecasted 1982 UK labour
force figure, from which we can obtain an estimated UK/global labour force spilt
and extrapolate the global labour force pre-1982 using the reported UK labour
force. Since the mean (median) share of global employment based in the UK in

1982 is 0.87 based on those firms which report both figures?? the errors arising

22Because the more internationalised firms are more likely to continue reporting this
UK /global employment split this may actually underestimate the share of global employment
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from trying to extrapolate the global labour force from the UK labor force exer-
cise should not be great. However, to check the robustness of our results to this
we re-estimated all our regressions including a dummy variable for extrapolated

labour data and found no significant change in the estimated results.

based in the UK, so that its true average is probably greater than 0.87.
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