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Abstract

In this paper, we propose a general framework for sparse semi-supervised learning, which concerns
using a small portion of unlabeled data and a few labeled datato represent target functions and thus
has the merit of accelerating function evaluations when predicting the output of a new example.
This framework makes use of Fenchel-Legendre conjugates torewrite a convex insensitive loss
involving a regularization with unlabeled data, and is applicable to a family of semi-supervised
learning methods such as multi-view co-regularized least squares and single-view Laplacian sup-
port vector machines (SVMs). As an instantiation of this framework, we propose sparse multi-view
SVMs which use a squaredε-insensitive loss. The resultant optimization is an inf-sup problem and
the optimal solutions have arguably saddle-point properties. We present a globally optimal iterative
algorithm to optimize the problem. We give the margin bound on the generalization error of the
sparse multi-view SVMs, and derive the empirical Rademacher complexity for the induced func-
tion class. Experiments on artificial and real-world data show their effectiveness. We further give a
sequential training approach to show their possibility andpotential for uses in large-scale problems
and provide encouraging experimental results indicating the efficacy of the margin bound and em-
pirical Rademacher complexity on characterizing the rolesof unlabeled data for semi-supervised
learning.

Keywords: semi-supervised learning, Fenchel-Legendre conjugate, representer theorem, multi-
view regularization, support vector machine, statisticallearning theory

1. Introduction

Semi-supervised learning, considering how to estimate a target function from a few labeled exam-
ples and a large quantity of unlabeled examples, is one of currently active research directions. If the
unlabeled data are properly used, it can get a superior performance over the counterpart supervised
learning approaches. For an overview of semi-supervised learning methods, refer to Chapelle et al.
(2006) and Zhu (2008).

Although semi-supervised learning was largely motivated by different real-world applications
where obtaining labels is expensive or time-consuming, a lot of theoretical outcomes have also been
accomplished. Typical applications of semi-supervised learning include natural image classification
and text classification, where it is inexpensive to collect large numbers ofimages and texts by
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automatic programs, but needs a high cost to label them manually. Theoretical results on semi-
supervised learning include PAC-analysis (Balcan and Blum, 2005), manifold regularization (Belkin
et al., 2006), and multi-view regularization theories (Sindhwani and Rosenberg, 2008), etc.

Among the methods proposed for semi-supervised learning, a family of them, for example,
Laplacian regularized least squares (RLS), Laplacian support vector machines (SVMs), Co-RLS,
Co-Laplacian RLS, Co-Laplacian SVMs, and manifold co-regularization (Belkin et al., 2006; Sind-
hwani et al., 2005; Sindhwani and Rosenberg, 2008), make use of thefollowing representer theorem
(Kimeldorf and Wahba, 1971) to represent the target function in a reproducing kernel Hilbert space
(RKHS).

Theorem 1 (Representer theorem)LetH be an RKHS with kernel k: X ×X → R. Fix any func-
tion V : Rn → R and any nondecreasing functionΨ : R → R. Define

J( f ) =V( f (x1), ..., f (xn))+Ψ(‖ f‖2),

and linear spaceL = span{k(x1, ·), ...,k(xn, ·)}. Then for any f∈H we have J( fL)≤ J( f ) with fL
being the projection of f ontoL in the following form

fL =
n

∑
i=1

αik(xi , ·).

Thus if J∗ = minf J( f ) exists, this minimum is attained for some f∈ L . Moreover, ifΨ is strictly
increasing, each minimizer of J( f ) overH must be contained inL .

Generally, in the objective functionJ( f ) of these semi-supervised learning methods, labeled
examples are used to calculate an empirical loss of the target function and simultaneously unlabeled
examples are used for some regularization purpose. By the representertheorem, the target function
would involve kernel evaluations on all the labeled and unlabeled examples.This is computationally
undesirable, because for semi-supervised learning usually a considerably large number of unlabeled
examples are available. Consequently, sparsity in the number of unlabeled data used to represent
target functions is crucial, which constitutes the focus of this paper.

However, little work has been done on this theme. In particular, there is no unified framework
proposed yet to deal with this sparsity concern. While the sparse Laplacian core vector machines
(Tsang and Kwok, 2007) touched this problem, it has a complicated optimizationand is not generic
enough to generalize to other similar semi-supervised learning methods. In contrast with this, the
technique developed in this paper, based on Fenchel-Legendre conjugates, is computationally sim-
ple and widely applicable.

As far as multi-view learning is concerned there has been work that introduces sparsity of the
unlabeled data into the representation of the classifiers (Szedmak and Shawe-Taylor, 2007). This
builds on the ideas developed for two view learning known as the SVM-2K (Farquhar et al., 2006).
The approach adopted is the use of anε-insensitive loss function for the similarity constraint be-
tween the two functions from two views. Unfortunately the resulting optimization issomewhat
unmanageable and only scales to small-scale data sets despite interesting theoretical bounds that
show the improvement gained using the unlabeled data.

The work by Szedmak and Shawe-Taylor (2007) forms the starting point for the current paper
which aims to develop related methods that are possible to be scaled to very large data sets. Our
approach is to go back to considerl2 loss between the outputs of the classifiers arising from two
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views and shows that this problem can be solved implicitly with variables only indexed by the la-
beled data. To compute the value of this function on new data would still requirea non-sparse dual
representation in terms of the unlabeled data. However, we show that through optimizing weights of
the unlabeled data the solution of thel2 problem converges to the solution of anε-insensitive prob-
lem ensuring that we subsequently obtain sparsity in the unlabeled data. Furthermore, we develop
the generalization analysis of Szedmak and Shawe-Taylor (2007) to this case giving computable
expressions for the corresponding empirical Rademacher complexity.

To show the application of Fenchel-Legendre conjugates, in Section 2 we propose a novel sparse
semi-supervised learning approach: sparse multi-view SVMs, where the conjugate functions play
a central role in reformulating the optimization problem. The dual optimization of a subroutine of
the sparse multi-view SVMs is converted to a quadratic programming problem in Section 3 whose
scale only depends on the number of labeled examples, indicating the advantages of using conjugate
functions. The generalization error of the sparse multi-view SVMs is givenin Section 4 in terms
of Rademacher complexity theory, followed by a derivation of empirical Rademacher complexity
of the class of functions induced by this new method in Section 5. Section 6 reports experimental
results of the sparse multi-view SVMs, comparisons with related methods, and the possibility and
potential for large-scale applications through sequential training. Extensions of the use of conju-
gate functions to a general convex loss and other related semi-supervised learning approaches are
discussed in Section 7. Finally, Section 8 concludes this paper.

2. Sparse Multi-view SVMs

Multi-view semi-supervised learning, an important branch of semi-supervised learning, combines
different sets of properties of an example to learn a target function. These different sets of prop-
erties are often referred to as views. Typical applications of multi-view learning are web-page cat-
egorization and content-based multimedia information retrieval. In web-page categorization, each
web-page can be simultaneously described by disparate properties suchas main text, inbound and
outbound hyper-links. In content-based multimedia information retrieval, a multimedia segment
can include both audio and video components. For such scenarios learning with multiple views is
usually very beneficial. Even for problems with no natural multiple views, artificially generated
views can still work favorably (Nigam and Ghani, 2000).

A useful assumption for multi-view learning is that features from each view are sufficient to train
a good learner (Blum and Mitchell, 1998; Balcan et al., 2005; Farquhar et al., 2006). Making good
use of this assumption through collaborative training or regularization between views can remove
many false hypotheses from the hypothesis space, and thus facilitates effective learning.

For multi-view learning, an inputx consists of multiple components from different views, for
example,x = (x1, . . . ,xm) for an m-view representation. A functionf j defined on viewj only
depends onx j , that is f j(x) := f j(x j). Suppose we have a set ofℓ labeled examples{(xi ,yi)}ℓi=1
with yi ∈ {1,−1}, and a set ofu unlabeled examples{xi}ℓ+u

i=ℓ+1. The objective function of our sparse
multi-view SVMs in the case of two views is given as follows, which can be readily extended to
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more than two views.

min
f1∈H1, f2∈H2

1
2ℓ

ℓ

∑
i=1

[(1−yi f1(xi))++(1−yi f2(xi))+]+

γn(‖ f1‖2+‖ f2‖2)+ γv

ℓ+u

∑
i=1

(| f1(xi)− f2(xi)|− ε)2
+, (1)

where nonnegative scalarsγn,γv are respectively norm regularization and multi-view regularization
coefficients, and the last term is anε-insensitive loss between two views with function(·)+ :=
max(0, ·) being the hinge loss. The final classifier for predicting the label of a new example is

fc(x) = sgn

(

f1(x)+ f2(x)
2

)

. (2)

In the rest of this section, we will show that the use of theε-insensitive loss indeed enforces
sparsity, and Fenchel-Legendre conjugates can be adopted to reformulate the optimization problem.
We also show the saddle-point properties for optimal solutions and give a (globally optimal) iterative
optimization algorithm.

2.1 Sparsity

In order to show the role of theε-insensitive loss for sparsity pursuit, here we representf1(x) and
f2(x) in feature spaces as

f1(x) = w⊤
1 φ1(x)+b1, f2(x) = w⊤

2 φ2(x)+b2,

whereφi(x) (i = 1,2) is the image ofx in feature spaces. Problem (1) can be rewritten as

min
w1,w2,ξ1,ξ2,b1,b2

P0 =
1
2ℓ

ℓ

∑
i=1

(ξi
1+ξi

2)+ γn(‖w1‖2+‖w2‖2)+

γv

ℓ+u

∑
i=1

(|w⊤
1 φ1(xi)+b1−w⊤

2 φ2(xi)−b2|− ε)2
+

s.t.







yi(w⊤
1 φ1(xi)+b1)≥ 1−ξi

1,
yi(w⊤

2 φ2(xi)+b2)≥ 1−ξi
2,

ξi
1, ξi

2 ≥ 0, i = 1, . . . , ℓ ,

whereξ1 := [ξ1
1, . . . ,ξℓ1] andξ2 := [ξ1

2, . . . ,ξℓ2].
The Lagrangian is

L = P0−
ℓ

∑
i=1

[λi
1(yi(w⊤

1 φ1(xi)+b1)−1+ξi
1)+

λi
2(yi(w⊤

2 φ2(xi)+b2)−1+ξi
2)+νi

1ξi
1+νi

2ξi
2],

whereλi
1,λ

i
2,ν

i
1,ν

i
2 ≥ 0 (i = 1, . . . , ℓ) are Lagrange multipliers.

Supposew1∗, w2∗ are the optimal solutions. By the KKT conditions, the optimal solutionsw1∗
should satisfy ∂L

∂w1∗
= 0. Therefore, we get

w1∗ =− γv

γn

ℓ+u

∑
i=1

(|w⊤
1 φ1(xi)+b1−w⊤

2 φ2(xi)−b2|− ε)+φ̃i +
1

2γn

ℓ

∑
i=1

λi
1yiφ1(xi),
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where we suppose the derivative exists everywhere andφ̃i := sgn{w⊤
1 φ1(xi) + b1 − w⊤

2 φ2(xi)−
b2}φ1(xi). Now we can assess the sparsity of problem (1). From the above equation, w1∗ is the
linear combination of labeled examples withλi

1 > 0, and those unlabeled examples on which the
difference of predictions from two views exceedsε. In this sense, we can get sparse solutions by
providing a non-zeroε. Similar analysis applies tow2∗. Therefore, functionf (x) is sparse in the
number of used unlabeled examples. This analysis on sparsity is also well justified by the represen-
ter theorem.

2.2 Reformulation Using Conjugate Functions

Defineti := [ f1(xi)− f2(xi)]
2. Then theε-insensitive loss term can be written as

fε(t) =
ℓ+u

∑
i=1

(
√

ti − ε)2
+, (3)

where vectort := [t1, . . . , tℓ+u]
⊤. We give a theorem affirming the convexity of functionfε(t).

Theorem 2 Function fε(t) defined by (3) is convex.

Proof First, we show thatfε(ti) := (
√

ti − ε)2
+ with a convex domain[0,+∞) is convex. When

ti ∈ (ε2,+∞), the second derivative∇2 fε(ti) = 1
2εt−3/2

i ≥ 0. Thus, functionfε(ti) is convex for
ti ∈ (ε2,+∞). Moreover, the value of functionfε(ti) for ti ∈ (ε2,+∞) is larger than 0 which is the
value of fε(ti) for ti ∈ [0,ε2], and functionfε(ti) with domain[0,+∞) is continuous atε2. Hence,
fε(ti) is convex on the domain[0,+∞).

Then, being a nonnegative weighted sum of convex functions,fε(t) is indeed convex.

Define conjugate vectorz= [z1, . . . ,zℓ+u]
⊤ with entries being conjugate variables. The Fenchel-

Legendre conjugate (which is also often called convex conjugate or conjugate function)f ∗ε (z) is

f ∗ε (z) = sup
t∈dom fε

(t⊤z− fε(t)) = sup
t

ℓ+u

∑
i=1

[ziti − (
√

ti − ε)2
+] =

ℓ+u

∑
i=1

sup
ti
[ziti − (

√
ti − ε)2

+].

The domain of the conjugate function consists ofz∈ Rℓ+u for which the supremum is finite (i.e.,
bounded above) (Boyd and Vandenberghe, 2004). Define

f ∗ε (zi) = sup
ti
[ziti − (

√
ti − ε)2

+]. (4)

Then, f ∗ε (z) = ∑ℓ+u
i=1 f ∗ε (zi). As a pointwise supremum of a family of affine functions,f ∗ε (zi) is

convex. Being a nonnegative weighted sum of convex functions,f ∗ε (z) is also convex. Below we
derive the formulation off ∗ε (zi).

Theorem 3 Function f∗ε (zi) defined by (4) has the following form

f ∗ε (zi) =

{

ziε2

1−zi
, for 0< zi < 1

0, for zi ≤ 0 .
(5)
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Proof By definition, we have

f ∗ε (zi) = max
ti

{

sup
0≤ti≤ε2

ziti , sup
ti>ε2

[ziti − (
√

ti − ε)2]

}

. (6)

The value of function sup0≤ti≤ε2 ziti is simple to characterize. We now characterize the second term
supti>ε2[ziti − (

√
ti − ε)2] = supti>ε2(ziti − ti − ε2+2ε

√
ti). For 0< zi < 1, we let the first derivative

equal to zero to find the supremum. Forzi ≤ 0 or zi ≥ 1 the derivative does not exist and thus we
use function values at end points to find the supremum. As a result, we have

sup
ti>ε2

[ziti − (
√

ti − ε)2] =











ziε2

1−zi
, for 0< zi < 1

ziε2, for zi ≤ 0
+∞, for zi ≥ 1 .

According to (6) and further removing the range wheref ∗ε (zi) is unbounded above, we reach the
conjugate given in (5).

Now the Fenchel-Legendre conjugatef ∗ε (z) can be represented by∑ℓ+u
i=1 f ∗ε (zi), which is also

well justified by the following theorem.

Theorem 4 (Boyd and Vandenberghe, 2004)If ϕ(u,v) = ϕ1(u)+ϕ2(v), whereϕ1 andϕ2 are in-
dependent convex functions (independent means they are functions ofdifferent variables) with con-
jugatesϕ∗

1 andϕ∗
2, respectively, then

ϕ∗(ω,z) = ϕ∗
1(ω)+ϕ∗

2(z).

A nice property of the conjugate function is on the conjugate of the conjugate, which is central
to the reformulation of our optimization problem. This property is stated by Lemma 5.

Lemma 5 (Rifkin and Lippert, 2007) If function f is closed, convex, and proper, then the conju-
gate function of the conjugate is itself, that is, f∗∗ = f , where we have defined function f is closed
if its epigraph is closed, and f is proper ifdom f 6= /0 and f >−∞.

It is true that functionfε(t) is closed and proper. Moreover, we have proved the convexity of
fε(t) in Theorem 2. Therefore, we can use Lemma 5 to get the following equality

fε(t) = sup
z
(z⊤t− f ∗ε (z)). (7)

That is
ℓ+u

∑
i=1

(
√

ti − ε)2
+ = sup

z
(z⊤t− f ∗ε (z)) = sup

z

ℓ+u

∑
i=1

[ziti − f ∗ε (zi)].

By (7), we have

ℓ+u

∑
i=1

(| f1(xi)− f2(xi)|− ε)2
+ =

ℓ+u

∑
i=1

(
√

ti − ε)2
+ = sup

z

ℓ+u

∑
i=1

[ziti − f ∗ε (zi)].
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Therefore, the objective function for sparse multi-view SVMs becomes

min
f1∈H1, f2∈H2

1
2ℓ

ℓ

∑
i=1

[(1−yi f1(xi))++(1−yi f2(xi))+]+

γn(‖ f1‖2+‖ f2‖2)+ γvsup
z

ℓ+u

∑
i=1

{zi [ f1(xi)− f2(xi)]
2− f ∗ε (zi)}. (8)

As an application of Theorem 1, the solution to problem (8) has the following form

f1(x) =
ℓ+u

∑
i=1

αi
1k1(xi ,x), f2(x) =

ℓ+u

∑
i=1

αi
2k2(xi ,x). (9)

Applying the reproducing properties of kernels, we get

‖ f1‖2 = α⊤
1 K1α1, ‖ f2‖2 = α⊤

2 K2α2,

whereK1 andK2 are(ℓ+u)× (ℓ+u) Gram matrices from two viewsV 1 andV 2, respectively, and
vectorα1 = (α1

1, ...,α
ℓ+u
1 )⊤, α2 = (α1

2, ...,α
ℓ+u
2 )⊤. Moreover, we have

f1 = K1α1, f2 = K2α2,

with f1 := ( f1(x1), ..., f1(xℓ+u))
⊤, f2 := ( f2(x1), ..., f2(xℓ+u))

⊤. Define diagonal matrix
U = diag(z1, . . . ,zℓ+u) with every element taking values in the range[0,1). Problem (8) can be
reformulated as

min
α1,α2,ξ1,ξ2,b1,b2

sup
z

1
2ℓ

ℓ

∑
i=1

(ξi
1+ξi

2)+ γn(α⊤
1 K1α1+α⊤

2 K2α2)+

γv[(K1α1−K2α2)
⊤U(K1α1−K2α2)−

ℓ+u

∑
i=1

f ∗ε (zi)]

s.t.











yi(∑ℓ+u
j=1 α j

1k1(x j ,xi)+b1)≥ 1−ξi
1,

yi(∑ℓ+u
j=1 α j

2k2(x j ,xi)+b2)≥ 1−ξi
2,

ξi
1, ξi

2 ≥ 0, i = 1, . . . , ℓ .

(10)

2.3 Saddle-Point Property

We present a theorem concerning the convexity and concavity of optimization problem (10).

Theorem 6 The objective function in problem (10) is convex with respect toα1,α2, ξ1, ξ2, b1, and
b2, and concave with respect to z.

Proof First, we show the convexity. The standard form of this optimization problem is

min
α1,α2,ξ1,ξ2,b1,b2

sup
z

1
2ℓ

ℓ

∑
i=1

(ξi
1+ξi

2)+ γn(α⊤
1 K1α1+α⊤

2 K2α2)+

γv[(K1α1−K2α2)
⊤U(K1α1−K2α2)−

ℓ+u

∑
i=1

f ∗ε (zi)]

s.t.











−yi(∑ℓ+u
j=1 α j

1k1(x j ,xi)+b1)+1−ξi
1 ≤ 0,

−yi(∑ℓ+u
j=1 α j

2k2(x j ,xi)+b2)+1−ξi
2 ≤ 0,

−ξi
1, −ξi

2 ≤ 0, i = 1, . . . , ℓ .
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This problem involves one objective function and three sets of inequality constraint functions (on the
left hand side of each inequality). Clearly, the domain of each objective and constraint function is a
convex set. Now it suffices to prove the convexity of this problem by assessing the convexity of these
functions. As all constraint functions are affine, they are convex. Then, we use the second-order
condition, positive semidefinite property of a function’s Hessian or second derivative to judge the
convexity of the objective function (Boyd and Vandenberghe, 2004).According to this condition,
the first two items of the objective function are clear to be convex. The third part can be rewritten as

(K1α1−K2α2)
⊤U(K1α1−K2α2) = ‖U1/2( K1 −K2

)

(

α1

α2

)

‖2,

which is a convex function‖ · ‖2 composed with an affine mapping and thus also convex (Boyd
and Vandenberghe, 2004). Being a nonnegative weighted sums of convex functions, the objective
function is therefore convex with respect toα1,α2,ξ1,ξ2,b1,b2.

Then, we show the concavity using (8). Asf ∗ε (zi) is convex,zi [ f1(xi)− f2(xi)]
2− f ∗ε (zi) is con-

cave with respect tozi . The concavity of∑ℓ+u
i=1{zi [ f1(xi)− f2(xi)]

2− f ∗ε (zi)} follows from the fact
that a nonnegative weighted sum of concave functions is concave (Boyd and Vandenberghe, 2004).
Hence, the objective function in problem (10) is concave with respect toz.

Let θ denote the parametersα1,α2,ξ1,ξ2,b1,b2. We can simply denote the above optimization
problem as

inf
θ

sup
z

f (θ,z) (11)

associated with constraints on the labeled examples, wheref (θ,z) is convex with respect toθ, and
concave with respect toz. We give the following theorem on the equivalence of swapping the
infimum and supremum for our optimization problem and include a proof for completeness.

Theorem 7 (Boyd and Vandenberghe, 2004)If f (θ,z) with domainΘ and Z is convex with re-
spect toθ ∈ Θ, and concave with respect toz ∈ Z, the following equality holds

inf
θ

sup
z

f (θ,z) = sup
z

inf
θ

f (θ,z)

under some slight assumptions.

Proof The idea is first to represent the left-hand side as a value of a convex function, and then
show that the conjugate of its conjugate is equal to the right-hand side when the same input value is
plugged in Boyd and Vandenberghe (2004).

The left-hand side can be expressed asp(0), where

p(u) = inf
θ

sup
z
[ f (θ,z)+u⊤z] .

It is not difficult to show thatp is a convex function. Being a pointwise supremum of convex
function f (θ,z)+u⊤z, supz[ f (θ,z)+u⊤z] is a convex function of(θ,u). Because supz[ f (θ,z)+u⊤z]
is convex with respect to(θ,u), we havep(u) is convex.

The Fenchel-Legendre conjugate ofp(u) is

p∗(v) = sup
u
[u⊤v− inf

θ
sup

z
( f (θ,z)+u⊤z)] ,
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which would be+∞ if z 6= v. Therefore,

p∗(v) =
{

− infθ f (θ,v), for v ∈ Z
+∞, otherwise.

The conjugate ofp∗(z) is given by

p∗∗(u) = sup
z∈Z

(u⊤z− p∗(z)) = sup
z∈Z

(u⊤z+ inf
θ

f (θ,z)) = sup
z

inf
θ
[ f (θ,z)+u⊤z] .

Suppose 0∈ domp(u) and p(u) is closed and proper. Then by Lemma 5 we havep(0) = p∗∗(0)
which completes the proof.

Now we give a theorem showing that the optimal pairθ̃, z̃ is a saddle-point.

Theorem 8 If the following equality holds for function f(θ,z)

inf
θ

sup
z

f (θ,z) = sup
z

inf
θ

f (θ,z) = f (θ̃, z̃) ,

then the optimal pair̃θ, z̃ forms a saddle-point.

Proof From the given equality, we have

inf
θ

sup
z

f (θ,z) = sup
z

f (θ̃,z) = f (θ̃, z̃) ,

and
sup

z
inf

θ
f (θ,z) = inf

θ
f (θ, z̃) = f (θ̃, z̃) ,

Therefore,
f (θ̃,z)≤ f (θ̃, z̃)≤ f (θ, z̃),

which indeed satisfies the definition of a saddle-point. The proof is completed.

2.4 Iterative Optimization Algorithm

To solve the optimization problem supz infθ f (θ,z) which is respectively concave and convex with
respect tozandθ, we give an algorithm with guaranteed convergence by the following theorem.

Theorem 9 Given an initial valuez0 for z, solveinfθ f (θ,z0) and obtain the global optimal pointθ0.
Then we findargmaxz f (θ0,z) to getz1 from which we can getθ1 as a result of optimizeinfθ f (θ,z1).
Repeat this process until a convergence point(θ̂, ẑ) is reached. Supposẽθ, z̃ is a saddle point. We
have f(θ̂, ẑ) = f (θ̃, z̃). That is, we got the optimal values of the objective function. If f is strictly
concave and strictly convex with respect to the variables, we further haveθ̂ = θ̃ and ẑ = z̃.

Proof According to the properties of functionf and the algorithm procedure, we know that the
convergence point is a saddle point. Thus, we have

f (θ̃, ẑ)≥ f (θ̂, ẑ)≥ f (θ̂, z̃) .
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By the saddle-point property of(θ̃, z̃), we have

f (θ̃, z̃)≥ f (θ̃, ẑ) ,

and

f (θ̃, z̃)≤ f (θ̂, z̃) .

Therefore, the above inequalities should hold with equalities and we havef (θ̃, z̃) = f (θ̂, ẑ). Fur-
thermore, iff is strictly concave and strictly convex with respect to the variables, it is true that θ̂ = θ̃
andẑ= z̃.

On solving argmaxz f (θ,z) required in Theorem 9, we can maximize the term related toz,
namelyz⊤t− f ∗ε (z) = ∑ℓ+u

i=1 [ziti − f ∗ε (zi)]. For this purpose, we have the following theorem.

Theorem 10

sup
zi∈dom f ∗ε (zi)

[ziti − f ∗ε (zi)] = (
√

ti − ε)2
+,

and

arg sup
zi∈dom f ∗ε (zi)

[ziti − f ∗ε (zi)] =

{

1− ε√
ti
, for ti > ε2

0, for 0≤ ti ≤ ε2 .

Without loss of generality, we can confine the range of zi to [0,1).

Proof We have

sup
zi∈dom f ∗ε (zi)

[ziti − f ∗ε (zi)] = max
zi

{ sup
0<zi<1

ziti −
ziε2

1−zi
,sup
zi≤0

ziti} .

The first supremum can be solved by setting the derivative with respect tozi to zero. We have

sup
0<zi<1

ziti −
ziε2

1−zi
= (

√
ti − ε)2

whereti > ε2, and the supremum is attained withzi = 1− ε√
ti
.

Whenti < 0, supzi≤0ziti is unbounded above. When 0≤ ti ≤ ε2, supzi≤0ziti = 0 with the supre-

mum attained atzi = 0. Therefore, maxzi{sup0<zi<1ziti − ziε2

1−zi
,supzi≤0ziti} = (

√
ti − ε)2

+ with the
supremum attained whenzi ∈ [0,1), which completes the proof.

For sparsity pursuit, during each iteration we remove those unlabeled examples whose cor-
respondingzi ’s are zero. By the representer theorem, this would not influence the value of the
objective function. For Theorem 9, this means that the element ofzwhose values are zero in the last
iteration will remain zero for the next iteration. When there are no unlabeled examples eligible for
elimination, the iteration will terminate and the convergence point(θ̂, ẑ) is reached.
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3. Dual Optimization

According to the iterative optimization algorithm, when optimizing problem (10), westart from an
initial valuez0 and then solveθ0. In this section, we show how to solve this subroutine with fixedz.

Now the optimization problem is equivalent to

min
α1,α2,ξ1,ξ2,b1,b2

F0 =
1
2ℓ

ℓ

∑
i=1

(ξi
1+ξi

2)+ γn(α⊤
1 K1α1+α⊤

2 K2α2)+

γv(K1α1−K2α2)
⊤U(K1α1−K2α2)

s.t.











yi(∑ℓ+u
j=1 α j

1k1(x j ,xi)+b1)≥ 1−ξi
1,

yi(∑ℓ+u
j=1 α j

2k2(x j ,xi)+b2)≥ 1−ξi
2,

ξi
1, ξi

2 ≥ 0, i = 1, . . . , ℓ .

(12)

3.1 Lagrange Dual Function

We will solve problem (12) through optimizing its dual problem which is simpler to solve. Now we
derive its Lagrange dual function.

Supposeλi
1,λ

i
2,ν

i
1,ν

i
2 ≥ 0 (i = 1, . . . , ℓ) be the Lagrange multipliers associated with the in-

equality constraints. Defineλ j = [λ1
j , . . . ,λℓ

j ]
⊤ andν j = [ν1

j , . . . ,νℓ
j ]
⊤ ( j = 1,2). The Lagrangian

L(α1,α2,ξ1,ξ2,b1,b2,λ1,λ2,ν1,ν2) can be written as

L = F0−
ℓ

∑
i=1

[λi
1(yi(

ℓ+u

∑
j=1

α j
1k1(x j ,xi)+b1)−1+ξi

1)+

λi
2(yi(

ℓ+u

∑
j=1

α j
2k2(x j ,xi)+b2)−1+ξi

2)+νi
1ξi

1+νi
2ξi

2].

Note that

(K1α1−K2α2)
⊤U(K1α1−K2α2)

= α⊤
1 K1UK1α1−2α⊤

1 K1UK2α2+α⊤
2 K2UK2α2.

To obtain the Lagrangian dual function,L has to be minimized with respect to the primal
variablesα1,α2,ξ1,ξ2,b1,b2. To eliminate these variables, we compute the corresponding partial
derivatives and set them to 0, obtaining the following conditions

2J1α1−2γvK1UK2α2 = Λ1, (13)

2J2α2−2γvK2UK1α1 = Λ2, (14)

λi
1+νi

1 =
1
2ℓ

, (15)

λi
2+νi

2 =
1
2ℓ

, (16)

ℓ

∑
i=1

λi
1yi = 0,

ℓ

∑
i=1

λi
2yi = 0, (17)
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where

J1 := γnK1+ γvK1UK1,

J2 := γnK2+ γvK2UK2,

Λ1 :=
ℓ

∑
i=1

λi
1yiK1(:, i),

Λ2 :=
ℓ

∑
i=1

λi
2yiK2(:, i),

with K1(:, i) andK2(:, i) being theith column of the corresponding Gram matrices.
Substituting (13)∼(17) intoL results in the following expression of the Lagrangian dual function

gL(λ1,λ2,ν1,ν2)

gL = γn(α⊤
1 K1α1+α⊤

2 K2α2)+ γv(α⊤
1 K1UK1α1−2α⊤

1 K1UK2α2+

α⊤
2 K2UK2α2)−α⊤

1 Λ1−α⊤
2 Λ2+

ℓ

∑
i=1

(λi
1+λi

2)

=
1
2

α⊤
1 Λ1+

1
2

α⊤
2 Λ2−α⊤

1 Λ1−α⊤
2 Λ2+

ℓ

∑
i=1

(λi
1+λi

2)

= −1
2

α⊤
1 Λ1−

1
2

α⊤
2 Λ2+

ℓ

∑
i=1

(λi
1+λi

2). (18)

We obtain the following from (13) and (14)

α1 =
1
2

J−1
1 (Λ1+2γvK1UK2α2) (19)

α2 =
1
2

J−1
2 (Λ2+2γvK2UK1α1). (20)

From (13) and (20), we have

(2J1−2γ2
vK1UK2J−1

2 K2UK1)α1 = Λ1+ γvK1UK2J−1
2 Λ2.

DefineM1 = 2J1 − 2γ2
vK1UK2J−1

2 K2UK1. Suppose the above linear system is well-posed (if ill-
posed we can employ approximate numerical analysis techniques). We get

α1 = M−1
1 (Λ1+ γvK1UK2J−1

2 Λ2).

From (14) and (19), we have

(2J2−2γ2
vK2UK1J−1

1 K1UK2)α2 = Λ2+ γvK2UK1J−1
1 Λ1.

DefineM2 = 2J2−2γ2
vK2UK1J−1

1 K1UK2. Thus we get

α2 = M−1
2 (Λ2+ γvK2UK1J−1

1 Λ1).
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Now with α1 andα2 substituted into (18), the Lagrange dual functiongL(λ1,λ2,ν1,ν2) is

gL = inf
α1,α2,ξ1,ξ2,b1,b2

L =−1
2

α⊤
1 Λ1−

1
2

α⊤
2 Λ2+

ℓ

∑
i=1

(λi
1+λi

2)

= −1
2
(Λ1+ γvK1UK2J−1

2 Λ2)
⊤M−1

1 Λ1−
1
2
(Λ2+

γvK2UK1J−1
1 Λ1)

⊤M−1
2 Λ2+

ℓ

∑
i=1

(λi
1+λi

2).

3.2 Solving the Dual Problem

The Lagrange dual problem is given by

max
λ1,λ2

gL

s.t.















0≤ λi
1 ≤ 1

2ℓ , i = 1, . . . , ℓ
0≤ λi

2 ≤ 1
2ℓ , i = 1, . . . , ℓ

∑ℓ
i=1 λi

1yi = 0,
∑ℓ

i=1 λi
2yi = 0.

As Lagrange dual functions are always concave (Boyd and Vandenberghe, 2004), we can formulate
the above problem as a convex optimization problem

min
λ1,λ2

−gL

s.t.















0≤ λi
1 ≤ 1

2ℓ , i = 1, . . . , ℓ
0≤ λi

2 ≤ 1
2ℓ , i = 1, . . . , ℓ

∑ℓ
i=1 λi

1yi = 0,
∑ℓ

i=1 λi
2yi = 0.

(21)

Define matrixY = diag(y1, . . . ,yℓ). Then,Λ1 = Kℓ1Yλ1 andΛ2 = Kℓ2Yλ2 with Kℓ1 = K1(:,1 : ℓ)
andKℓ2 = K2(:,1 : ℓ). We have

−gL =
1
2
(Λ1+ γvK1UK2J−1

2 Λ2)
⊤M−1

1 Λ1+
1
2
(Λ2+

γvK2UK1J−1
1 Λ1)

⊤M−1
2 Λ2−

ℓ

∑
i=1

(λi
1+λi

2)

=
1
2
(λ⊤

1 λ⊤
2 )

(

A B
C D

)(

λ1

λ2

)

−1⊤(λ1+λ2),

where

A := YK⊤
ℓ1M−1

1 Kℓ1Y,

B := γvYK⊤
ℓ1J−1

1 K1UK2M−1
2 Kℓ2Y,

C := γvYK⊤
ℓ2J−1

2 K2UK1M−1
1 Kℓ1Y,

D := YK⊤
ℓ2M−1

2 Kℓ2Y,
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and1= (1, . . . ,1(ℓ))
⊤.

SubstitutingM1 andM2 into the expressions ofB andC, we can prove thatB=C⊤. In addition,

because of the convexity of function−g, we affirm that matrix

(

A B
C D

)

is positive semi-definite.

Hence, the optimization problem in (21) can be rewritten as

min
λ1,λ2

1
2
(λ⊤

1 λ⊤
2 )

(

A B
C D

)(

λ1

λ2

)

−1⊤(λ1+λ2)

s.t.















0� λ1 � 1
2l 1,

0� λ2 � 1
2l 1,

λ⊤
1 y = 0,

λ⊤
2 y = 0,

wherey = (y1, . . . ,yℓ)⊤. After solving this problem using standard software, we then obtainνi
1 and

νi
2 by (15) and (16).

We now state the advantages of optimizing this dual problem over optimizing the primal prob-
lem (12):

• Less optimization variables as for typical semi-supervised learningℓ≪ u, and

• Simpler constraint functions.

The solution of bias termsb1 andb2 can be obtained through support vectors. Due to KKT
conditions, the following equalities hold

λi
1(yi(

ℓ+u

∑
j=1

α j
1k1(x j ,xi)+b1)−1+ξi

1) = 0,

λi
2(yi(

ℓ+u

∑
j=1

α j
2k2(x j ,xi)+b2)−1+ξi

2) = 0,

νi
1ξi

1 = 0,

νi
2ξi

2 = 0, i = 1, . . . , ℓ.

For support vectorsxi , we haveνi
j > 0 (and thusξi

j = 0) andλi
j > 0 ( j = 1,2). Therefore, we can

resolve the bias terms by averagingyi(∑ℓ+u
j=1 α j

1k1(x j ,xi) + b1)− 1 = 0 andyi(∑ℓ+u
j=1 α j

2k2(x j ,xi) +
b2)−1= 0 over all support vectors.

3.3 Advantages of Using Conjugate Functions

In this subsection, we show the direct optimization of problem (1) without the use of conjugate
functions is of large scale and time-consuming, which justifies the advantagesof using conjugate
functions.
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The primal problem can be rewritten as

min
α1,α2,ξ1,ξ2,b1,b2,δi

D0 =
1
2ℓ

ℓ

∑
i=1

(ξi
1+ξi

2)+ γn(α⊤
1 K1α1+α⊤

2 K2α2)+ γv

ℓ+u

∑
i=1

δ2
i

s.t.



























yi(∑ℓ+u
j=1 α j

1k1(x j ,xi)+b1)≥ 1−ξi
1, i = 1, . . . , ℓ ,

yi(∑ℓ+u
j=1 α j

2k2(x j ,xi)+b2)≥ 1−ξi
2, i = 1, . . . , ℓ ,

ξi
1, ξi

2 ≥ 0, i = 1, . . . , ℓ ,
(∑ℓ+u

j=1 α j
1k1(x j ,xi)+b1)− (∑l+u

j=1 α j
2k2(x j ,xi)+b2)≥−δi − ε, i = 1, . . . , ℓ+u ,

(∑ℓ+u
j=1 α j

1k1(x j ,xi)+b1)− (∑l+u
j=1 α j

2k2(x j ,xi)+b2)≤ δi + ε, i = 1, . . . , ℓ+u ,

(22)

whereyi ∈ {1,−1}, γn,γv ≥ 0.

We will solve problem (22) through optimizing its dual problem which can be simpler to solve.
Supposeλi

1,λ
i
2,ν

i
1,ν

i
2≥0 (i =1, . . . , ℓ) andµi

1,µ
i
2 (i =1, . . . , ℓ+u) are the Lagrange multipliers asso-

ciated with the inequality constraints of problem (22). Defineδ= [δ1, . . . ,δℓ+u]
⊤, λ j = [λ1

j , . . . ,λℓ
j ]
⊤,

ν j = [ν1
j , . . . ,νℓ

j ]
⊤, and µj = [µ1

j , . . . ,µ
ℓ+u
j ]⊤ ( j = 1,2). The Lagrangian

L(α1,α2,ξ1,ξ2,b1,b2,δ,λ1,λ2,ν1,ν2,µ1,µ2) can be written as

L = D0−
ℓ

∑
i=1

[λi
1(yi(

ℓ+u

∑
j=1

α j
1k1(x j ,xi)+b1)−1+ξi

1)+

λi
2(yi(

ℓ+u

∑
j=1

α j
2k2(x j ,xi)+b2)−1+ξi

2)+νi
1ξi

1+νi
2ξi

2]−

ℓ+u

∑
i=1

µi
1[
ℓ+u

∑
j=1

α j
1k1(x j ,xi)+b1−

ℓ+u

∑
j=1

α j
2k2(x j ,xi)−b2+δi + ε]+

ℓ+u

∑
i=1

µi
2[
ℓ+u

∑
j=1

α j
1k1(x j ,xi)+b1−

ℓ+u

∑
j=1

α j
2k2(x j ,xi)−b2−δi − ε].

To obtain the Lagrangian dual function,L has to be minimized with respect to the primal vari-
ablesα1,α2,ξ1,ξ2,b1,b2,δ. To eliminate these variables, we compute the corresponding partial
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derivatives and set them to 0, obtaining the following conditions

2γnK1α1 =
ℓ

∑
i=1

λi
1yiK1(:, i)+

ℓ+u

∑
i=1

(µi
1−µi

2)K1(:, i),

2γnK2α2 =
ℓ

∑
i=1

λi
2yiK2(:, i)−

ℓ+u

∑
i=1

(µi
1−µi

2)K2(:, i),

λi
1+νi

1 =
1
2ℓ

, i = 1, . . . , ℓ

λi
2+νi

2 =
1
2ℓ

, i = 1, . . . , ℓ

−
ℓ

∑
i=1

λi
1yi −

ℓ+u

∑
i=1

µi
1+

ℓ+u

∑
i=1

µi
2 = 0,

−
ℓ

∑
i=1

λi
2yi +

ℓ+u

∑
i=1

µi
1−

ℓ+u

∑
i=1

µi
2 = 0,

2γvδi −µi
1−µi

2 = 0, i = 1, . . . , ℓ+u.

Substituting these equations into the Lagrangian as what was done in Section 3.1, it is clear that
finally L is a quadratic function involvingλ1,λ2,µ1,µ2. The dual optimization problem would be a
quadratic optimization involving 2ℓ+2(ℓ+u) parameters. Now we see this direct optimization is
indeed of large-scale and time-consuming.

4. Generalization Error

In this section, we analyze the generalization performance of the sparse multi-view SVMs making
use of Rademacher complexity theory and the margin bound.

4.1 Rademacher Complexity Theory

Important background on Rademacher complexity theory (Bartlett and Mendelson, 2002; Shawe-
Taylor and Cristianini, 2004) is introduced below.

Definition 11 For a sample S= {x1, . . . ,xℓ} generated by a distributionD on a setX and a real-
valued function classF with domainX , the empirical Rademacher complexity ofF is the random
variable

R̂ℓ(F ) = Eσ

[

sup
f∈F

∣

∣

∣

∣

∣

2
ℓ

ℓ

∑
i=1

σi f (xi)

∥

∥

∥

∥

∥

x1, . . . ,xℓ

]

,

whereσ = {σ1, . . . ,σℓ} are independent uniform{±1}-valued (Rademacher) random variables.
The Rademacher complexity ofF is

Rℓ(F ) = ES[R̂ℓ(F )] = ESσ

[

sup
f∈F

∣

∣

∣

∣

∣

2
ℓ

ℓ

∑
i=1

σi f (xi)

∣

∣

∣

∣

∣

]

.

Lemma 12 Fix δ ∈ (0,1) and letF be a class of functions mapping from an input spaceX̃ (X̃ =
X ×Y or X̃ =X ) to [0,1]. Let(x̃i)

ℓ
i=1 be drawn independently according to a probability distribution
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D. Then with probability at least1−δ over random draws of samples of sizeℓ, every f∈F satisfies

ED [ f (x̃)] ≤ Ê[ f (x̃)]+Rℓ(F )+

√

ln(2/δ)
2ℓ

≤ Ê[ f (x̃)]+ R̂ℓ(F )+3

√

ln(2/δ)
2ℓ

,

whereÊ[ f (x̃)] is the empirical error averaged on theℓ examples.

4.2 Margin Bound for Sparse Multi-view SVMs

By (2), the prediction function of the sparse multi-view SVMs is derived from the average of pre-
dictions from two views. Define the soft prediction function as

g(x) =
1
2
( f1(x)+ f2(x)).

We obtain the following margin bound regarding the generalization error of sparse multi-view
SVMs. This bound is widely applicable to multi-view SVMs, for example, Szedmakand Shawe-
Taylor (2007) independently provided a similar bound for the SVM-2K method.

Theorem 13 Fix δ ∈ (0,1) and letF be the class of functions mapping from̃X = X ×Y to R given
by f̃ (x,y) =−yg(x) where g= 1

2( f1+ f2) ∈ G and f̃ ∈ F . Let S= {(x1,y1), · · · ,(xℓ,yℓ)} be drawn
independently according to a probability distributionD. Then with probability at least1− δ over
samples of sizeℓ, every g∈ G satisfies

PD(y 6= sgn(g(x)))≤ 1
2ℓ

ℓ

∑
i=1

(ξi
1+ξi

2)+2R̂ℓ(G)+3

√

ln(2/δ)
2ℓ

,

whereξi
1 := (1−yi f1(xi))+, ξi

2 := (1−yi f2(xi))+. Function yi f1(xi) and yi f2(xi) are called margins.

Proof Let H(·) be the Heaviside function that returns 1 if its argument is greater than 0 and zero
otherwise. We have

PD(y 6= sgn(g(x))) = ED [H(−yg(x))]. (23)

Consider a loss functionA : R → [0,1], given by

A(a) =







1, if a≥ 0;
1+a, if −1≤ a≤ 0;
0, otherwise.

By Lemma 12 and since functionA −1 dominatesH −1, we have (Shawe-Taylor and Cristianini,
2004)

ED [H( f̃ (x,y))−1]≤ ED [A( f̃ (x,y))−1]

≤ Ê[A( f̃ (x,y))−1]+ R̂ℓ((A−1)◦F )+3

√

ln(2/δ)
2ℓ

.
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Therefore,

ED [H( f̃ (x,y))]≤ Ê[A( f̃ (x,y))]+ R̂ℓ((A−1)◦F )+3

√

ln(2/δ)
2ℓ

.

In addition, we have

Ê[A( f̃ (x,y))] ≤ 1
ℓ

ℓ

∑
i=1

(1−yig(xi))+

=
1
2ℓ

ℓ

∑
i=1

(1−yi f1(xi)+1−yi f2(xi))+

≤ 1
2ℓ

ℓ

∑
i=1

[(1−yi f1(xi))++(1−yi f2(xi))+]

=
1
2ℓ

ℓ

∑
i=1

(ξi
1+ξi

2),

whereξi
1 denotes the amount by which functionf1 fails to achieve margin 1 for(xi ,yi) andξi

2 applies
similarly to function f2.

Since(A−1)(0) = 0, we can apply the Lipschitz condition (Bartlett and Mendelson, 2002) of
function(A−1) to get

R̂ℓ((A−1)◦F )≤ 2R̂ℓ(F ).

It remains to bound the empirical Rademacher complexity of the classF .
With yi ∈ {1,−1}, we have

R̂ℓ(F ) = Eσ[sup
f∈F

|2
ℓ

ℓ

∑
i=1

σi f̃ (xi ,yi)|]

= Eσ[sup
g∈G

|2
ℓ

ℓ

∑
i=1

σiyig(xi)|]

= Eσ[sup
g∈G

|2
ℓ

ℓ

∑
i=1

σig(xi)|]

= R̂ℓ(G). (24)

Finally, combining (23)∼(24) completes the proof.

5. Empirical Rademacher Complexity

Our optimization algorithm iteratively updatesz to solveθ. In this section, we first derive the
empirical Rademacher complexity ofR̂ℓ(G) for the function class induced after one iteration with
an initially fixed z, and then give its formulation applicable for any number of subsequent itera-
tions including the termination case. This Rademacher complexity is crucial for Theorem 13 when
analyzing the performance of the corresponding classifiers obtained byour iterative optimization
algorithm. Specifically, for the empirical Rademacher complexity we give the following theorem

2440



SPARSESEMI-SUPERVISEDLEARNING USING CONJUGATEFUNCTIONS

Theorem 14 SupposeS = 1
γn
(K1ℓK

−1
1 K⊤

1ℓ+K2ℓK
−1
2 K⊤

2ℓ), Θ= 1
γn

U1/2
u (K1uK−1

1 K⊤
1u+K2uK−1

2 K⊤
2u)U

1/2
u ,

J = 1
γn

U1/2
u (K1uK−1

1 K⊤
1ℓ −K2uK−1

2 K⊤
2ℓ), where K1ℓ and K2ℓ are respectively the firstℓ rows of the

Gram matrices K1 and K2, K1u and K2u are respectively the last u rows of matrix K1 and K2, and
Uu is the diagonal matrix including the last u diagonal elements (initially fixed zℓ+1, . . . ,zℓ+u) of U.
Then the empirical Rademacher complexityR̂ℓ(G) is bounded asU√

2ℓ
≤ R̂ℓ(G) ≤ U

ℓ , whereU2 =

tr(S)− γvtr(J⊤(I + γvΘ)−1J ) for the first iteration of sparse multi-view SVMs, andU2 = tr(S) for
subsequent iterations.

The remainder of this section before Section 5.4 completes the proof of this theorem, which was
partially inspired by Rosenberg and Bartlett (2007) for analyzing co-regularized least squares.

We use problem (8) to reason aboutR̂ℓ(G). As a result of fixedz, we can removef ∗ε (zi) without
loss of generality to resolvef1 and f2. It is true that the loss function̂L : H 1×H 2 → [0,∞) with
L̂ := 1

2ℓ ∑ℓ
i=1[(1−yi f1(xi))++(1−yi f2(xi))+] satisfies

L̂(0,0) = 1.

Let Q( f1, f2) denote the objective function in (8) withf ∗ε (zi) removed. Substituting in the trivial
predictorsf1 ≡ 0 and f2 ≡ 0 gives the following upper bound

min
f1, f2∈H 1×H 2

Q( f1, f2)≤ Q(0,0) = L̂(0,0) = 1.

Since all terms ofQ( f1, f2) are nonnegative, we conclude that any( f ∗1 , f ∗2 ) minimizingQ( f1, f2)
is contained in

Ĥ = {( f1, f2) : γn(‖ f1‖2+‖ f2‖2)+ γv

ℓ+u

∑
i=ℓ+1

zi [ f1(xi)− f2(xi)]
2 ≤ 1}. (25)

Therefore, the final predictor is chosen from the function class

G = {x→ 1
2
[ f1(x)+ f2(x)] : ( f1, f2) ∈ Ĥ }.

The complexityR̂ℓ(G) is

R̂ℓ(G) = Eσ

[

sup
( f1, f2)∈Ĥ

∣

∣

∣

∣

∣

1
ℓ

ℓ

∑
i=1

σi( f1(xi)+ f2(xi))

∣

∣

∣

∣

∣

]

. (26)

As it only depends on the values of functionf1(·) and f2(·) on theℓ labeled examples, by the repro-
ducing kernel property which says the projection of functionf onto a closed subspace containing
k(x, ·) has the same value atx as f itself does (Rosenberg and Bartlett, 2007) we can restrict the
function classĤ to the span of labeled and unlabeled data and thus write it as

Ĥ = {( f1, f2) : γn(α⊤
1 K1α1+α⊤

2 K2α2)+

γv(K1uα1−K2uα2)
⊤Uu(K1uα1−K2uα2)≤ 1}

= {( f1, f2) : (α⊤
1 α⊤

2 )N

(

α1

α2

)

≤ 1},

whereK1u andK2u are respectively the lastu rows of matrixK1 andK2, Uu is the diagonal matrix
including the lastu diagonal elements ofU , and

N := γn

(

K1 0
0 K2

)

+ γv

(

K⊤
1u

−K⊤
2u

)

Uu(K1u −K2u). (27)
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5.1 Evaluating the Supremum in Euclidean Space

Since( f1, f2) ∈ Ĥ implies (− f1,− f2) ∈ Ĥ , we can drop the absolute sign in (26). Now we can
write

R̂ℓ(G) =
1
ℓ
Eσ sup

α1,α2∈R ℓ+u

{σ⊤K1ℓα1+σ⊤K2ℓα2 : (α⊤
1 α⊤

2 )N

(

α1

α2

)

≤ 1}

=
1
ℓ
Eσ sup

α1,α2∈R ℓ+u

{σ⊤(K1ℓ K2ℓ)

(

α1

α2

)

: (α⊤
1 α⊤

2 )N

(

α1

α2

)

≤ 1}, (28)

whereK1ℓ,K2ℓ represent the firstℓ rows of the Gram matricesK1 andK2, respectively.
For a symmetric positive definite matrixM, it is simple to show that (Rosenberg and Bartlett,

2007)
sup

α:α⊤Mα≤1
v⊤α = ‖M−1/2v‖.

Without loss of generality, suppose positive semi-definite matrixN in (28) is positive definite and
thus has full rank. IfN does not have full rank, we can use subspace decomposition to rewriteR̂ℓ(G)
to obtain a similar representation. Thus, we can evaluate the supremum as described above to get

R̂ℓ(G) =
1
ℓ
Eσ‖N−1/2

(

K⊤
1ℓ

K⊤
2ℓ

)

σ‖.

5.2 BoundingR̂ℓ(G) above and below

We make use of the Kahane-Khintchine inequality (Latala and Oleszkiewicz, 1994), stated here for
convenience, to bound̂Rℓ(G).

Lemma 15 For any vectorsa1, · · · ,an in a Hilbert space and independent Rademacher random
variablesσ1, · · · ,σn, we have

1
2
E‖

n

∑
i=1

σiai‖2 ≤ (E‖
n

∑
i=1

σiai‖)2 ≤ E‖
n

∑
i=1

σiai‖2.

By Lemma 15 we have
U√
2ℓ

≤ R̂ℓ(G)≤ U

ℓ
, (29)

where

U2 = Eσ‖N−1/2
(

K⊤
1ℓ

K⊤
2ℓ

)

σ‖2

= Eσtr[(K1ℓ K2ℓ)N
−1
(

K⊤
1ℓ

K⊤
2ℓ

)

σσ⊤]

= tr[(K1ℓ K2ℓ)N
−1
(

K⊤
1ℓ

K⊤
2ℓ

)

].

Recall that

N = γn

(

K1 0
0 K2

)

+ γv

(

K⊤
1u

−K⊤
2u

)

Uu(K1u −K2u).
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Define

Σ = γn

(

K1 0
0 K2

)

, R=

(

K⊤
1u

−K⊤
2u

)

U1/2
u .

Using the Sherman-Morrison-Woodbury formula (Golub and Loan, 1996), we expandN−1 as

N−1 = Σ−1− γvΣ−1R(I + γvR
⊤Σ−1R)−1R⊤Σ−1.

DefineΩ = (K1ℓ K2ℓ). We get

U2 = tr(ΩΣ−1Ω⊤)− γvtr[ΩΣ−1R(I + γvR
⊤Σ−1R)−1R⊤Σ−1Ω⊤].

Define

S = ΩΣ−1Ω⊤ =
1
γn
(K1ℓK

−1
1 K⊤

1ℓ+K2ℓK
−1
2 K⊤

2ℓ),

Θ = R⊤Σ−1R=
1
γn

U1/2
u (K1uK−1

1 K⊤
1u+K2uK−1

2 K⊤
2u)U

1/2
u ,

J = R⊤Σ−1Ω⊤ =
1
γn

U1/2
u (K1uK−1

1 K⊤
1ℓ−K2uK−1

2 K⊤
2ℓ). (30)

Putting expressions together, we get

U2 = tr(S)− γvtr(J
⊤(I + γvΘ)−1J ). (31)

5.2.1 REGULARIZATION TERM ANALYSIS

From (29) and (31), it is clear to see the roles the regularization parameters γn andγv play in the
empirical Rademacher complexitŷRl (G).

The amount of reduction in the Rademacher complexity brought byγv is

∆(γv) = γvtr(J
⊤(I + γvΘ)−1J ).

This term has the property shown by the following lemma given by Rosenbergand Bartlett (2007)
when analyzing co-regularized least squares. Here the meanings ofJ and Θ are different from
Rosenberg and Bartlett (2007).

Lemma 16 (Rosenberg and Bartlett, 2007)∆(0)= 0, ∆(γv) is nondecreasing onγv ≥ 0, and given
that Θ is positive definite, we have

lim
γv→∞

∆(γv) = tr(J⊤Θ−1J ).

5.3 Extending to Iterative Optimization

As our sparse multi-view SVMs employ an iterative optimization procedure for sparsity pursuit, the
former outcome for empirical Rademacher complexity would not apply if we usemore than one
iteration to updatez. However, we can extend the former analysis to suit this case.
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Recall thatzi ∈ [0,1) (i = ℓ+1, . . . , ℓ+u) andUu = diag(zℓ+1, . . . ,zℓ+u). During iterations, it is
possible thatUu becomes a zero matrix or other arbitrary matrix with diagonal elements in the range
[0,1). In any case, the resultant function class can be covered by

Ĥ = {( f1, f2) : γn(‖ f1‖2+‖ f2‖2)≤ 1},

which is obtained by omitting the term containingzi in (25). Following a similar derivation, the
matrixN in (27) would be

N = γn

(

K1 0
0 K2

)

.

Finally, we can obtain a bound on the empirical Rademacher complexityR̂l (G) identical to (29) but
nowU2 = tr(S) with S defined in (30). The proof of Theorem 14 is completed.

5.4 Examining R̂l (G)

Here, we examine the rolêRl (G) plays in the margin bound. SinceK1ℓ andK2ℓ are the firstℓ rows
of K1 andK2, the formulation oftr(S) can be simplified as

tr(S) =
1
γn

tr(K1ℓK
−1
1 K⊤

1ℓ+K2ℓK
−1
2 K⊤

2ℓ) =
1
γn

ℓ

∑
i=1

(K1(i, i)+K2(i, i)). (32)

Now, we see that for iterative optimization of sparse multi-view SVMs, the empirical Rademacher
complexityR̂l (G) with U2 = tr(S) only depends on theℓ labeled examples and the chosen kernel
functions. Consequently, the margin bound does not rely on the unlabeledtraining sets. In this case
the margin bound is quite straightforward to reason.

If we do not use iterative optimization, the empirical Rademacher complexityR̂l (G) will involve
other two termsΘ andJ . By a similar technique as in (32), we can show thatΘ only depends
on the unlabeled data and the kernel functions, whileJ encodes the interaction between labeled
and unlabeled data. As a result, the margin bound relies on both labeled and unlabeled data. For
this case, we will give an evaluation of the margin bound with different sizesof unlabeled sets in
Section 6.4.

6. Experiments

We performed experiments on artificial data and real-world data to evaluate the proposed sparse
multi-view SVMs (SpMvSVMs). For SpMvSVMs withε > 0, the entries ofz were fixed as 1 for
labeled data and initialized as 0.995 for unlabeled data. The termination condition for iterative
optimization is either no unlabeled examples can be removed or the maximum iteration number sur-
passes 50. Comparisons are made with supervised SVMs, and the unsupervised SVM-2K method.
Each accuracy/error reported in this paper is an averaged accuracy/error value over ten random splits
of data into labeled, unlabeled and test data.

Later in this section, we also provide a sequential training strategy for SpMvSVMs, which
shows an accuracy improvement over the gradual adding of unlabeled data while with roughly linear
and sub-linear increases of running time. This indicates the possibility and potential of applying
SpMvSVMs to large-scale data sets. At the end, margin bound evaluation results are reported.
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Figure 1: Examples in the two-moons-two-lines data set.

6.1 Artificial Data

This two-moons-two-lines synthetic data set was generated according to Sindhwani et al. (2005).
Examples in two classes scatter like two moons in one view and two parallel lines in the other. To
link the two views, points on one moon were enforced to associate at randomwith points on one
line. Each class has 400 examples and a total of 800 examples were generated as shown in Figure 1.
For SpMvSVMs, the numbers of examples in the labeled training set, unlabeledtraining set and
test set were fixed as four, 596, and 200, respectively. Gaussian kernel with bandwidth 0.35 and
the linear kernel were used for view 1 and view 2, respectively. The parametersγn and γv were
selected from a small grid{10−6,10−4,10−2,1,10,100} by five-fold cross validation on the whole
data set. The chosen values areγn = 10−4 andγv = 1. In this paper,γv is normalized by the number
of labeled and unlabeled examples involved in the multi-view regularization term. For supervised
SVMs, which concatenated features from the two views, we also found theregularization coefficient
from this grid by five-fold cross validation.

To evaluate SpMvSVMs, we varied the size of the unlabeled training set from 20%, 60% to
100% of the total number of unlabeled data, and used different values for the insensitive parameter
ε, which ranged from 0 to 0.2 with an interval 0.01 (whenε is zero, sparsity is not considered).
The test accuracies and transductive accuracies (on the corresponding unlabeled set) are given in
Figure 2(a) and Figure 2(b), respectively. It should be noted that thenumbers of data used to
calculate transductive accuracies are different for the three curvesin Figure 2(b). The numbers of
removed unlabeled examples for differentε values are shown in Figure 3.

From Figure 2 and Figure 3, we find that with the increase ofε, more and more unlabeled
data are removed, and the remove of a small number of unlabeled data can hardly decrease the
performance of the resultant classifiers, especially when the original size of unlabeled set is large.
Therefore, we can find a good balance between sparsity and accuracy using an appropriateε. In
addition, more unlabeled data can benefit the performance of the learned classifiers with the same
ε.
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Figure 2: Classification accuracies of SpMvSVMs with different sizes ofunlabeled set andε values
on the artificial data. The accuracies of SVMs are also shown.

0 0.05 0.1 0.15 0.2
0

50

100

150

200

250

300

350

400

450

Epsilon

N
um

be
r 

of
 R

em
ov

ed
 U

nl
ab

el
ed

 E
xa

m
pl

es

#Unlabeled:20%
#Unlabeled:60%
#Unlabeled:100%

Figure 3: The numbers of unlabeled examples removed by SpMvSVMs for different ε values on
the artificial data.

6.2 Text Classification

We applied the SpMvSVMs to the WebKB text classification task studied in Blum and Mitchell
(1998); Sindhwani et al. (2005); Sun (2008). The data set consistsof 1051 two-view web pages
collected from the computer science department web sites at four U.S. universities: Cornell, Uni-
versity of Washington, University of Wisconsin, and University of Texas. The task is to predict
whether a web page is a course home page or not. This problem has an unbalanced class distri-
bution since there are a total of 230 course home pages (positive examples). The first view of the
data is the words appearing on the web page itself, whereas the second view is the underlined words
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Figure 4: Classification accuracies of SpMvSVMs with different sizes ofunlabeled set andε values
on text classification. The accuracies of SVMs are also shown.

in all links pointing to the web page from other pages. We preprocessed each view by remov-
ing stop words, punctuation and numbers and then applied Porter’s stemming tothe text (Porter,
1980). In addition, words that occur in five or fewer documents were ignored. This resulted in
2332 and 87-dimensional vectors in the first and second view, respectively. Finally, document vec-
tors were normalized tot f .id f (the product of term frequency and inverse document frequency)
features (Salton and Buckley, 1988).

For SpMvSVMs, the numbers of examples in the labeled training set, unlabeledtraining set and
test set were fixed as 32, 699, and 320, respectively. In the training set and test set, the numbers
of negative examples are three times of those of positive examples to reflectthe overall proportion
of positive and negative examples. The linear kernel was used for bothviews. The parametersγn

andγv for SpMvSVMs and the regularziation coefficient for SVMs were selected using the same
method as in Section 6.1. The chosen values for SpMvSVMs areγn = 10−6 andγv = 0.01.

To evaluate SpMvSVMs, we also varied the size of the unlabeled training setfrom 20%, 60% to
100% of the total number of unlabeled data, and used different values for the insensitive parameter
ε ranging from 0 to 0.2 with an interval 0.01. The test accuracies and transductive accuracies are
given in Figure 4(a) and Figure 4(b), respectively. The numbers of removed unlabeled examples for
differentε values are shown in Figure 5.

From Figure 5, we find that with the increase ofε, more and more unlabeled data can be re-
moved. Reflected by Figure 4, the remove of unlabeled data only slightly decrease the performance
of the resultant classifiers, and this decrease is less when more unlabeleddata is used. We draw a
same conclusion as before: an appropriateε can be adopted to keep a good balance between sparsity
and accuracy. We also observe a different phenomenon, that is, using 60% and 100% unlabeled data
result in similar test accuracies as shown in Figure 4(a). This is reasonable because the performance
improvement of any classifier is always bounded no matter how many data areused.
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Figure 5: The numbers of unlabeled examples removed by SpMvSVMs for different ε values on
text classification.

6.3 Comparison with SVM-2K, and Sequential Training

The SVM-2K method proposed by Szedmak and Shawe-Taylor (2007) can exploit unlabeled data
for multi-view learning. Similar to SpMvSVMs, it also combines the maximum margin andmulti-
view regularization principles. However, it adoptsl1 norm for multi-view regularization, and this
regularization only uses unlabeled data. Specifically, the SVM-2K method hasthe following opti-
mization for classifier parametersw1, w2, b1, andb2 in two views

min
1
2
‖w1‖2+

1
2
‖w2‖2+C1

ℓ

∑
i=1

ξi
1+C2

ℓ

∑
i=1

ξi
2+Cη

ℓ+u

∑
j=ℓ+1

η j

s.t.















|w⊤
1 φ1(x j)+b1−w⊤

2 φ2(x j)−b2| ≤ η j + ε
yi(w⊤

1 φ1(xi)+b1)≥ 1−ξi
1

yi(w⊤
2 φ2(xi)+b2)≥ 1−ξi

2
ξi

1 ≥ 0,ξi
2 ≥ 0,η j ≥ 0 for all i = 1, . . . , ℓ,and j = ℓ+1, . . . , ℓ+u ,

where anε-insensitive parameter is used to relax the prediction consistency between views. In
this subsection, we carry out an empirical comparison between SVM-2K and our SpMvSVMs for
semi-supervised learning with identical data splits.

Our first comparison takes theε-insensitive parameter in both SpMvSVMs and SVM-2K as zero
and uses the above two data sets with different sizes of unlabeled training sets, namely, from 20%
to 60% to 100%. For SVM-2K, we adopted the same parameter selection approach as in Szedmak
and Shawe-Taylor (2007) through five-fold cross-validation. That is, the values ofC1 andC2 were
fixed to 1 andCη were selected from the range{0.01×2i} (i = 1, . . . ,10). The experimental results
are listed in Table 1, from which we see that both the test accuracies and transductive accuracies of
SpMvSVMs are superior to those counterparts of SVM-2K.

The second comparison considers sequential training of SpMvSVMs andSVM-2K. The pur-
pose is to show the relationship between running time, classification accuracies and the number of
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SVM-2K SpMvSVMs
# Unlabeled Test Acc. Transductive Acc. Test Acc. Transductive Acc.

20% 95.70 97.75 98.65 98.58
60% 98.50 99.19 99.35 99.22
100% 98.35 99.18 99.60 99.55
20% 84.72 84.71 89.28 90.14
60% 85.88 84.79 91.53 91.02
100% 85.84 87.85 91.50 92.90

Table 1: Test and transductive accuracies (%) of SVM-2K and SpMvSVMs with different sizes of
unlabeled training sets on the artificial data (the first three lines) and text classification data
(the last three lines).

gradually added unlabeled examples, and thus evaluate the possibility and potential of applying the
methods to large-scale problems. The text classification data were used where all the unlabeled
training data were divided into ten equal sizes. For sequential training of SpMvSVMs, we adopted
two differentε values 0.1 and 0.2. The procedure is as follows. First, we train SpMvSVMs using the
labeled data and the first portion of unlabeled data. Then, we combine the retained unlabeled data
from the last training with the next portion of unlabeled data together to train SpMvSVMs (with the
original labeled data). We repeat this progress for ten times to complete the whole procedure.

The test accuracies and total numbers of retained unlabeled data after each step are shown in
Figure 6(a) and Figure 6(b). The averaged classifier training time is given in Figure 7. Figure 6(a)
indicates the effectiveness of sequential training, which is reflected by the fact that the test accuracies
have an overall increasing tendency. Figure 6(b) shows that SpMvSVMs obtain sparse solutions in
the sense that the number of retained unlabeled data is small compared to the number of all the
added unlabeled data. Figure 7 shows that whenε = 0.1 the running time is roughly linear with
respect to the gradual adding of unlabeled data, and whenε = 0.2 the relationship is roughly sub-
linear. In fact, the running time can be further reduced if largerε values rather than the given values
are properly used. In practice, we can also vary the value ofε during the sequential training process.

Though the SVM-2K method was not initially proposed for sparse semi-supervised learning, we
find that withε > 0 it can reduce the number of unlabeled data used for representing classifiers. For
this reason, we attempted to explore its possibility on sequential training using thisdata set under
the same setting with the sequential training of SpMvSVMs. However, for differentε values we did
not observe an improvement of test accuracies with the gradual adding of unlabeled data. Actually,
for this data set whenε > 0.05 SVM-2K would not use any unlabeled data at all. This indicates that
the roles ofε for SpMvSVMs and SVM-2K are quantitatively different.

6.4 Margin Bound Evaluation

To evaluate the margin bound in Theorem 13 for SpMvSVMs, we carried out experiments on the text
classification data with a priori fixed regularization valuesγn = 10−5 andγv = 0.1. This choice of
parameters did not intend to be optimal in terms of test errors, but attempted to show the relationship,
if any, between the generalization bound and the test error. The empiricalRademacher complexity
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Figure 6: Classification accuracies and numbers of retained unlabeled examples for sequential
training of SpMvSVMs. Parameterε varies in{0.1,0.2}.
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Figure 7: Running time for sequential training of SpMvSVMs. Parameterε varies in{0.1,0.2}.
We have normalized the running times with 10% unlabeled examples to be 1.

R̂ℓ(G) in the margin bound is replaced by its upper boundU/ℓ with U2 = tr(S)− γvtr(J⊤(I +
γvΘ)−1J ).

For SpMvSVMs, only one iteration was performed in order to apply the marginbound. In
other words, we learned classifiers only with the initially provided conjugate vectorz whose entries
were fixed as 1 for labeled data and 0.995 for unlabeled data. We used the same data split as in
Section 6.2, but varied the size of unlabeled training set from{10%,20%, . . . ,100%} of all the
available unlabeled data. To compute the margin bound, the confidence levelin Theorem 13 is fixed
as 95% (δ = 0.05). The test error rate, empirical Rademacher complexity, and margin bound are
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Figure 8: Classification error rates, empirical Rademacher complexity, andthe margin bound of
SpMvSVMs with different sizes of unlabeled sets.

shown in Figure 8. The overall decrease of error rates is well explained by the drop of the margin
bound and empirical Rademacher complexity brought by the regularization role of more and more
unlabeled data. Figure 8(b) also indicates that after adding a certain number of unlabeled data,
including more unlabeled data will only improve the performance marginally. Thisphenomenon is
observed in Figure 8(a) as well.

7. Extensions

In this section, we discuss possible extensions of using conjugate functions for sparse semi-supervised
learning. In particular, theε-insensitive loss term can be replaced by a somewhat general convex
function. We also briefly discuss two sparse variants for Co-RLS and Laplacian SVMs using the
same approach as sparse multi-view SVMs.

7.1 Arbitrary Convex Loss

In Section 2.2, for each example theε-insensitive loss used isfε(ti) = (
√

ti −ε)2
+ with ti = [ f1(xi)−

f2(xi)]
2. This can be relaxed to a general class of user-designed losses that can be defined as a convex

function ofti , for example, using existing convex functions or compositions of convex functions with
some good properties (Boyd and Vandenberghe, 2004).

Provided theε-insensitive loss conforms the slight assumptions closed, convex, and proper
listed in Lemma 5, the methodology used for sparse multi-view SVMs and the advantages of using
Fenchel-Legendre conjugates apply well to the new optimization problem. Thisis an important
contribution of this paper, which gives a framework for solving problems involving different ε-
insensitive loss functions. Also, this framework applies to problems with a single view or more than
two views, as long as the objective function is convex with respect toθ (parameters of classifiers or
regressors) as in (11).
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7.2 A Sparse Variant for Co-RLS

The objective function of Co-RLS in the case of two views is given as follows (Sindhwani et al.,
2005; Brefeld et al., 2006)

min
f1∈H1, f2∈H2

1
2ℓ

ℓ

∑
i=1

[( f1(xi)−yi)
2+( f2(xi)−yi)

2]+

γn(‖ f1‖2+‖ f2‖2)+ γv

ℓ+u

∑
i=1

( f1(xi)− f2(xi))
2,

where nonnegative scalarsγn,γv are respectively norm regularization and multi-view regularization
coefficients. This optimization problem is indeed convex with respect to expansion coefficientsα1

andα2 which have the same meanings as in (9).
Replacing the last term with∑ℓ+u

i=1(| f1(xi)− f2(xi)|−ε)2
+ results in the sparse Co-RLS algorithm

min
f1∈H1, f2∈H2

1
2ℓ

ℓ

∑
i=1

[( f1(xi)−yi)
2+( f2(xi)−yi)

2]+

γn(‖ f1‖2+‖ f2‖2)+ γv

ℓ+u

∑
i=1

(| f1(xi)− f2(xi)|− ε)2
+.

This ε-insensitive loss is identical to that used in sparse multi-view SVMs, and therefore we can
directly use the technique developed in this paper to solve this optimization.

7.3 A Sparse Variant for Laplacian SVMs

By including a penalty term on the intrinsic manifold smoothness, Belkin et al. (2006) proposed the
Laplacian SVMs as an extension of SVMs by solving the following problem in an RKHS

min
f∈H

1
ℓ

ℓ

∑
i=1

(1−yi f (xi))++ γA‖ f‖2+ γI

ℓ+u

∑
i, j=1

Wi j ( f (xi)− f (x j))
2, (33)

whereH is the RKHS induced by a kernel,γA andγI are respectively ambient and intrinsic regu-
larization coefficients, andWi j ≥ 0 are entries of the weight matrixW of the graph representing the
manifold. The last term can be rewritten as

ℓ+u

∑
i, j=1

Wi j ( f (xi)− f (x j))
2 = 2

[

ℓ+u

∑
i=1

(
ℓ+u

∑
j=1

Wi j ) f 2(xi)−
ℓ+u

∑
i, j=1

Wi j f (xi) f (x j)

]

= 2f⊤(V −W)f = 2f⊤L f,

wheref = [ f (x1), . . . , f (xℓ+u)]
⊤, matrixV is diagonal with theith diagonal entryVii = ∑ℓ+u

j=1Wi j , and
L is the positive semi-definite graph Laplacian.

This optimization problem is also convex with respect to expansion coefficient α, slack variable
ξ and biasb if we formulate it as in (12). Replacing the last term in (33) with∑ℓ+u

i, j=1Wi j (| f (xi)−
f (x j)|− ε)2

+ results in the sparse Laplacian SVMs

min
f∈H

1
ℓ

ℓ

∑
i=1

(1−yi f (xi))++ γA‖ f‖2+ γI

ℓ+u

∑
i, j=1

Wi j (| f (xi)− f (x j)|− ε)2
+,

This ε-insensitive loss has a similar form with that used in sparse multi-view SVMs, and thus facil-
itates an extension of the technique developed in this paper to solve this optimization.
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8. Conclusion

In this paper, we proposed a sparse semi-supervised learning framework using Fenchel-Legendre
conjugates. It is extendable to a wide range of semi-supervised learning methods. In particular, we
formulated and solved the sparse multi-view SVMs, which incorporate anε-insensitive multi-view
regularization term. By rewriting this regularization in terms of conjugate functions, we obtained
an inf-sup optimization problem whose globally optimal solutions can be found by our proposed
iterative algorithm. We also showed that the quadratic program involved in each iteration only
depends on the size of the labeled set, which would be very efficient for semi-supervised learning
problems. For sparse multi-view SVMs, we characterized their generalization error in terms of the
margin bound and derived the empirical Rademacher complexity of the considered function class.
The empirical Rademacher complexity has two different forms depending onwhether the iterative
algorithm iterates only once or multiple steps.

Experimental results on sparse multi-view SVMs with differentε values showed that it is unnec-
essary to retain all the unlabeled data to represent target functions and using sparse semi-supervised
learning can effectively reach a good balance between classifier performance and the number of
unlabeled examples retained. This would be beneficial to speed up functionevaluations during the
classification of new examples. Comparisons with SVM-2K showed the superiority of our proposed
method both on classification accuracies and the possibility and potential to be applied to large-scale
problems when a sequential training strategy is adopted. As in this paper we only concern the possi-
bility and potential for large-scale applications, we employed a moderate data set. It leaves as future
work to apply the approach to much larger data sets. We also performed experiments to validate
the usefulness of the margin bound and empirical Rademacher complexity, which explain well the
regularization role unlabeled data play for multi-view learning.
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