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Abstract

In this paper, we propose a general framework for sparse separvised learning, which concerns
using a small portion of unlabeled data and a few labeledtdatpresent target functions and thus
has the merit of accelerating function evaluations whemwliptiag the output of a new example.
This framework makes use of Fenchel-Legendre conjugateswidte a convex insensitive loss
involving a regularization with unlabeled data, and is aggtlle to a family of semi-supervised
learning methods such as multi-view co-regularized leqsases and single-view Laplacian sup-
port vector machines (SVMs). As an instantiation of thisrfeavork, we propose sparse multi-view
SVMs which use a squaredinsensitive loss. The resultant optimization is an inf-puoblem and
the optimal solutions have arguably saddle-point propertiVe present a globally optimal iterative
algorithm to optimize the problem. We give the margin boundlwe generalization error of the
sparse multi-view SVMs, and derive the empirical Rademacbmplexity for the induced func-
tion class. Experiments on artificial and real-world datastheir effectiveness. We further give a
sequential training approach to show their possibility paténtial for uses in large-scale problems
and provide encouraging experimental results indicatwegefficacy of the margin bound and em-
pirical Rademacher complexity on characterizing the rofesnlabeled data for semi-supervised
learning.

Keywords: semi-supervised learning, Fenchel-Legendre conjugapeesenter theorem, multi-
view regularization, support vector machine, statistieaining theory

1. Introduction

Semi-supervised learning, considering how to estimate a target functioneffew labeled exam-
ples and a large quantity of unlabeled examples, is one of currently agtiganch directions. If the
unlabeled data are properly used, it can get a superior performaacéhe counterpart supervised
learning approaches. For an overview of semi-supervised learningdsettefer to Chapelle et al.
(2006) and Zhu (2008).

Although semi-supervised learning was largely motivated by differettwedd applications
where obtaining labels is expensive or time-consuming, a lot of theoretitadmes have also been
accomplished. Typical applications of semi-supervised learning includeah@mage classification
and text classification, where it is inexpensive to collect large numbenmsiages and texts by
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automatic programs, but needs a high cost to label them manually. Thebretichis on semi-
supervised learning include PAC-analysis (Balcan and Blum, 2005), abdinéfgularization (Belkin
et al., 2006), and multi-view regularization theories (Sindhwani and Resgn2008), etc.

Among the methods proposed for semi-supervised learning, a family of tlenexample,
Laplacian regularized least squares (RLS), Laplacian supportrvegtohines (SVMs), Co-RLS,
Co-Laplacian RLS, Co-Laplacian SVMs, and manifold co-regularizatatkin et al., 2006; Sind-
hwani et al., 2005; Sindhwani and Rosenberg, 2008), make use follihweing representer theorem
(Kimeldorf and Wahba, 1971) to represent the target function in a dejing kernel Hilbert space
(RKHS).

Theorem 1 (Representer theorem)Let # be an RKHS with kernel kX x X — R. Fix any func-
tionV : R" — R and any nondecreasing functith: R — R. Define

IE) =V (Fx),.... T ) + P F]P),

and linear spacel = spaf{k(xa,-),...,k(Xn,-) }. Then for any fe H we have Jf,) < J(f) with f,
being the projection of f onta in the following form

n

f, = Zlaik(xi,-).

Thus if ¥ = mins J(f) exists, this minimum is attained for somes f£. Moreover, ifW is strictly
increasing, each minimizer of 8) over 4 must be contained if.

Generally, in the objective functiod(f) of these semi-supervised learning methods, labeled
examples are used to calculate an empirical loss of the target function arithsieowsly unlabeled
examples are used for some regularization purpose. By the reprethetarm, the target function
would involve kernel evaluations on all the labeled and unlabeled exanipi&sis computationally
undesirable, because for semi-supervised learning usually a catsidierrge number of unlabeled
examples are available. Consequently, sparsity in the number of unlalzedsgd to represent
target functions is crucial, which constitutes the focus of this paper.

However, little work has been done on this theme. In particular, there isifiediframework
proposed yet to deal with this sparsity concern. While the sparse Laplegia vector machines
(Tsang and Kwok, 2007) touched this problem, it has a complicated optimizatwis not generic
enough to generalize to other similar semi-supervised learning methodsnthastawith this, the
technique developed in this paper, based on Fenchel-Legendre atagug computationally sim-
ple and widely applicable.

As far as multi-view learning is concerned there has been work that irdesdsparsity of the
unlabeled data into the representation of the classifiers (Szedmak and-Bgare 2007). This
builds on the ideas developed for two view learning known as the SVM-2kg(thar et al., 2006).
The approach adopted is the use ofeainsensitive loss function for the similarity constraint be-
tween the two functions from two views. Unfortunately the resulting optimizaticsoieewhat
unmanageable and only scales to small-scale data sets despite interestiaticldomounds that
show the improvement gained using the unlabeled data.

The work by Szedmak and Shawe-Taylor (2007) forms the starting pminthé current paper
which aims to develop related methods that are possible to be scaled to vergltdegsets. Our
approach is to go back to considerloss between the outputs of the classifiers arising from two
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views and shows that this problem can be solved implicitly with variables onlyéttby the la-

beled data. To compute the value of this function on new data would still reguioa-sparse dual
representation in terms of the unlabeled data. However, we show thagkhoptimizing weights of
the unlabeled data the solution of theroblem converges to the solution of amsensitive prob-

lem ensuring that we subsequently obtain sparsity in the unlabeled datherffuore, we develop
the generalization analysis of Szedmak and Shawe-Taylor (2007) to 8esgoang computable
expressions for the corresponding empirical Rademacher complexity.

To show the application of Fenchel-Legendre conjugates, in Section Bopese a novel sparse
semi-supervised learning approach: sparse multi-view SVMs, wherettjegate functions play
a central role in reformulating the optimization problem. The dual optimization abeositine of
the sparse multi-view SVMs is converted to a quadratic programming probleectios 3 whose
scale only depends on the number of labeled examples, indicating the agbsotaising conjugate
functions. The generalization error of the sparse multi-view SVMs is giwveé3ection 4 in terms
of Rademacher complexity theory, followed by a derivation of empiricaleRather complexity
of the class of functions induced by this new method in Section 5. Section &sepmerimental
results of the sparse multi-view SVMs, comparisons with related methods, ampds$sibility and
potential for large-scale applications through sequential training. Ertensf the use of conju-
gate functions to a general convex loss and other related semi-supleraseing approaches are
discussed in Section 7. Finally, Section 8 concludes this paper.

2. Sparse Multi-view SVMs

Multi-view semi-supervised learning, an important branch of semi-sughlearning, combines
different sets of properties of an example to learn a target functionserTtigferent sets of prop-
erties are often referred to as views. Typical applications of multi-viewiegrare web-page cat-
egorization and content-based multimedia information retrieval. In web-pggarization, each
web-page can be simultaneously described by disparate propertieassowin text, inbound and
outbound hyper-links. In content-based multimedia information retrieval, a muli@ms=gment
can include both audio and video components. For such scenarios teaitiinmultiple views is

usually very beneficial. Even for problems with no natural multiple views, eiglfy generated

views can still work favorably (Nigam and Ghani, 2000).

A useful assumption for multi-view learning is that features from each viewgéfficient to train
a good learner (Blum and Mitchell, 1998; Balcan et al., 2005; Farqutar, 2006). Making good
use of this assumption through collaborative training or regularization eatwiews can remove
many false hypotheses from the hypothesis space, and thus facilitatetb/effearning.

For multi-view learning, an input consists of multiple components from different views, for
example,x = (x},...,x™) for an mview representation. A functior; defined on viewj only
depends o/, that is fj(x) := f;(x)). Suppose we have a set bfabeled example$(x,yi)}_,
withy; € {1, -1}, and a set ofi unlabeled examples; fj;H. The objective function of our sparse
multi-view SVMs in the case of two views is given as follows, which can beilgadtended to
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more than two views.

14
L Sy G) (w0 ]+
(+u
V(I f2ll+ 1 f21%) +Vv'zl(\ f1(x) — f2(x)| — €)%, 1)

where nonnegative scalays yy are respectively norm regularization and multi-view regularization
coefficients, and the last term is arinsensitive loss between two views with functi¢n, =
max(0, -) being the hinge loss. The final classifier for predicting the label of a xample is

fe(X) :sgn(W) .

In the rest of this section, we will show that the use of ¢hiesensitive loss indeed enforces
sparsity, and Fenchel-Legendre conjugates can be adopted to rizfarhe optimization problem.
We also show the saddle-point properties for optimal solutions and gglelaa{ly optimal) iterative
optimization algorithm.

(2)

2.1 Sparsity

In order to show the role of theiinsensitive loss for sparsity pursuit, here we represef) and
f2(x) in feature spaces as

f1() = Wi @u(X) +b1, fa(X) = w3 @2(X) + bz,
whereq (x) (i = 1,2) is the image ok in feature spaces. Problem (1) can be rewritten as

; 2
L Po = ZEZ €1+ &) + Yn([lwal|? + wa]|?) +
{+u
o 3 (W] 9505) + by~ Wi gp(x) — o] )
i=
Yi(Wi (%) +br) > 18,

s.t Yi(W3 @a(x) +b2) > 18,

L &,>0, i=1....¢,

where€, := [€},... &[] and&, ;= [€,...,&)).
The Lagrangian is

l
L= P Y O 0u06) +b0) ~ 18

A5 (Yi (W3 @2(%) +b2) — 1+ &b) + VhE} +VhEL],

whereAl, AL v vl >0 (i =1,...,¢) are Lagrange multipliers.
Supposeav1,, Wo, are the optimal solutions. By the KKT conditions, the optimal solutiwns
should satisfyai,’v—'-h = 0. Therefore, we get

Wy, === (|W1<P1( i) + b1 — w5 ga(x;) — bo| —€) +<n+le?\1y.
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where we suppose the derivative exists everywhere @net sgn{w{ @1(X) + by — W, (%) —
bo}@i(x). Now we can assess the sparsity of problem (1). From the above aguaiiois the
linear combination of labeled examples Wml‘l > 0, and those unlabeled examples on which the
difference of predictions from two views exceedsln this sense, we can get sparse solutions by
providing a non-zerae. Similar analysis applies tav,,. Therefore, functiorf (x) is sparse in the
number of used unlabeled examples. This analysis on sparsity is also wig#gLisy the represen-
ter theorem.

2.2 Reformulation Using Conjugate Functions

Definet; := [f1(x) — f2(x)]2. Then thee-insensitive loss term can be written as

{+u

()= 3 (V& —e)?, (3)

where vectot := [t,...,t,.y]". We give a theorem affirming the convexity of functiéutt).
Theorem 2 Function §(t) defined by (3) is convex.

Proof First, we show thaff(t;) := (/& — €)2 with a convex domair0, +o) is convex. When
ti € (62,+o), the second derivative2f (t)) = 1t~ ** > 0. Thus, functionfe(t;) is convex for
ti € (€2,4-0). Moreover, the value of functiofi(t;) for t; € (€2, +) is larger than 0 which is the
value of fe(t;) for t; € [0,€?], and functionfe(t;) with domain[0, +) is continuous at2. Hence,
fe(ti) is convex on the domaif®, +).

Then, being a nonnegative weighted sum of convex functity(s), is indeed convex. |

Define conjugate vectar= [z,...,2.,] " with entries being conjugate variables. The Fenchel-
Legendre conjugate (which is also often called convex conjugate orgamejunction)f;’(z) is

{+u l+u

()= sup ({72 1e(t) =supy [at ~ (v —)2] = 3 surfat — (& —#)2).

tedomf, t = =1

The domain of the conjugate function consistzaf R‘™! for which the supremum is finite (i.e.,
bounded above) (Boyd and Vandenberghe, 2004). Define

f(z) = stl_Jp{Zati —(Vii—€)3]. ()

convex. Being a nonnegative weighted sum of convex functighg,) is also convex. Below we
derive the formulation of (z).

Then, f#(2) = 14 £4(z). As a pointwise supremum of a family of affine functiorfg,z) is

Theorem 3 Function {(z) defined by (4) has the following form

fe(z) =

z€” ,
{ s for0<z <1 (5)

Z
forz <O0.
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Proof By definition, we have

fe(z) = maX{ sup zti, sup[zt — (\/t?—S)Z]} : (6)
i 0<tj<e? t>€2

The value of function syp, .2 zt; is simple to characterize. We now characterize the second term

SUR g2 [Ziti — (VB — €)%] = sup .2zt —t — €2+ 2e/f)). For 0< z < 1, we let the first derivative

equal to zero to find the supremum. FHK 0 orz > 1 the derivative does not exist and thus we

use function values at end points to find the supremum. As a result, we have

f%;, for0<z <1
suplzti — (VEi—€) ={ ze?,  forz <0

ti>€2

+o0, forz > 1.

According to (6) and further removing the range whé&ré&z) is unbounded above, we reach the
conjugate given in (5). |

Now the Fenchel-Legendre conjugdi&(z) can be represented kglfjf fs(z), which is also
well justified by the following theorem.

Theorem 4 (Boyd and Vandenberghe, 2004)f ¢(u,v) = ¢1(u) + p2(v), wheredp; and, are in-
dependent convex functions (independent means they are functidiffereit variables) with con-
jugatesd; and¢3, respectively, then

0" (00,2) = ¢7(w) + $3(2)-

A nice property of the conjugate function is on the conjugate of the conjugaieh is central
to the reformulation of our optimization problem. This property is stated by Lemma 5.

Lemma 5 (Rifkin and Lippert, 2007) If function f is closed, convex, and proper, then the conju-
gate function of the conjugate is itself, that is} £ f, where we have defined function f is closed
if its epigraph is closed, and f is properdbmf # 0 and f > —co.

It is true that functionfg(t) is closed and proper. Moreover, we have proved the convexity of
fe(t) in Theorem 2. Therefore, we can use Lemma 5 to get the following equality

fo(t) = supz't — £ (2)). 7)

Thatis
(+u t+u

zl(\/ﬁ_ £)2 = sgp(th —f(2) = Sgp_zl[ziti —fe(@)].

1=
By (7), we have
{+u {+u {+u

3 (11106 = f206)| —g)f = > Vi~ £) = supy [zt — f: (2]
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Therefore, the objective function for sparse multi-view SVMs becomes

i
fleﬂr{?,ifgeﬂ{z 21621[(1_3/‘ f1(%))+ + (L —yifa(%))+] +
{+u
V(| f2l|?+ | f21%) "‘VvSlZJp_i{Zi[fl(Xi) — f204))? — £ ()} (8

As an application of Theorem 1, the solution to problem (8) has the follovanyg f
{4u {+u

f1(x) = Zlailkl(xi,x), fo(X) = Zlaizkg(xi,x). (9)

Applying the reproducing properties of kernels, we get
1)1 = af Ksou, || f2]|* = a3 Kaorz,
whereK; andK; are(¢+u) x (£+ u) Gram matrices from two views’* and 72, respectively, and
vectoray = (af,...,ai™) 7, 0z = (a3, ...,a5™)T. Moreover, we have
f1 = Ki0g, f2 = Kaag,
with f1 = (f1(x1),..., fi(xe)) ", f2 i= (f2(x1),..., f2(xeru))".  Define diagonal matrix

U = diag(z,...,z+4) With every element taking values in the ran@el). Problem (8) can be
reformulated as

. 1 . .
min  sup — Z(E'lJrE'z)+yn(aIK1a1+a2TKzag)+
a1,02,81,8.00,00 2z 20 £

{+u
Wl(K1a1 — Ka0) 'U (Kyap — Ko0ip) — ZL fe (z)]
i=

V(3 ek (xg,%) +br) > 1 &,
s.t. Vi(3 i aka(x), %) +bp) > 1- &, (10)
L, &>0, i=1,...,0.

2.3 Saddle-Point Property

We present a theorem concerning the convexity and concavity of optimmizatidlem (10).

Theorem 6 The objective function in problem (10) is convex with respeatitay, &;, &5, b1, and
by, and concave with respect to z.

Proof First, we show the convexity. The standard form of this optimization problem is

. 18 .
min sup o zl(z'lJrE'z)+vn(aIKlal+a§Kzaz)+
i=

01,02,&1,85,b1,02 z

/+u
y\,[(Klo(l — Ksz)TU (Kldl — szz) — Zl fs* (Z|)]
i=

—yi(3 2 alku(x;,%) +b) + 18 <0,
St —Yi(3 [ odka(x}, %) +b) +1— &, < 0,
_Ila —E'ZSO, |:l,,€
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This problem involves one objective function and three sets of inequaligtiint functions (on the
left hand side of each inequality). Clearly, the domain of each objectdeanstraint function is a
convex set. Now it suffices to prove the convexity of this problem byssésg the convexity of these
functions. As all constraint functions are affine, they are convexenTwe use the second-order
condition, positive semidefinite property of a function’s Hessian or sidemnivative to judge the
convexity of the objective function (Boyd and Vandenberghe, 2084rording to this condition,
the first two items of the objective function are clear to be convex. The thitccan be rewritten as

a
(Kia1 — Kaz) U (Kao — Kaaiz) = [UY2 ( Ky —Kp ) ( a; >||2,

which is a convex functior - ||> composed with an affine mapping and thus also convex (Boyd
and Vandenberghe, 2004). Being a nonnegative weighted sumsahchmctions, the objective
function is therefore convex with respectdo, az, &, 5, b1, bo.

Then, we show the concavity using (8). AYz) is convexz[f1(x) — f2(x)]? — fZ(z) is con-
cave with respect tg. The concavity ofyH{z[f1(x) — f2(x)]? — f£(z)} follows from the fact
that a nonnegative weighted sum of concave functions is concavel @ Vandenberghe, 2004).
Hence, the objective function in problem (10) is concave with respect to |

Let © denote the parametens, 02, ¢&,,¢,, b1,b2. We can simply denote the above optimization
problem as
igfsupf (6,2 (12)
z

associated with constraints on the labeled examples, wi{ére) is convex with respect t6, and
concave with respect ta. We give the following theorem on the equivalence of swapping the
infimum and supremum for our optimization problem and include a proof fonpdeteness.

Theorem 7 (Boyd and Vandenberghe, 2004)f f(6,z) with domain® and Z is convex with re-
spect tod € ©, and concave with respect #ae Z, the following equality holds

inf supf (8, z) = supinf f (0, 2)
8 2 z 8

under some slight assumptions.

Proof The idea is first to represent the left-hand side as a value of a conuetid, and then
show that the conjugate of its conjugate is equal to the right-hand side wdeartie input value is
plugged in Boyd and Vandenberghe (2004).

The left-hand side can be expresseged), where

p(u) = inf surif (8,2) +u'Z.
z
It is not difficult to show thatp is a convex function. Being a pointwise supremum of convex
functionf(6,2)+u'z sup[f(8,2)+u'Z is a convex function off, u). Because supf (6,2) +u'Z

is convex with respect t(0, u), we havep(u) is convex.
The Fenchel-Legendre conjugatepsti) is

p*(v) =sugu'v— infsup(f(6,2) + u'z)],
u Y4
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which would bet+ if z£ v. Therefore,

« | —infgf(6,v), forveZ
p(v) = { o0, otherwise

The conjugate op*(z) is given by

p™(u) =supu' z— p*(2)) = supu' z+ inf 1(6,2)) = supinf[f (8,2) + u'z.

zeZ zeZ

Suppose & domp(u) and p(u) is closed and proper. Then by Lemma 5 we ha@) = p**(0)

which completes the proof.

Now we give a theorem showing that the optimal (i is a saddle-point.

Theorem 8 If the following equality holds for function(®, z)

infsupf (8,2) = supinf f(8,2) = f(8,2)
8 2 z 8

then the optimal paib, z forms a saddle-point.

Proof From the given equality, we have

infsupf (8,2) = supf(8,2) = £(6,2),
z z

and N
supirgf f(0,2) = il’elf f(6,2) = (6,2,
z

Therefore, 3 y
f(8,2) < 1(8,2 < (8,),

which indeed satisfies the definition of a saddle-point. The proof is completed

2.4 lterative Optimization Algorithm

To solve the optimization problem stipfg f (8,2) which is respectively concave and convex with
respect t@ and®, we give an algorithm with guaranteed convergence by the following ¢neor

Theorem 9 Given an initial valuez, for z, solveinfg f (6, zy) and obtain the global optimal poi.
Then we fincirg max f (8o, 2) to getz; from which we can ged; as a result of optimizinfg f(0,2;).
Repeat this process until a convergence p()ﬁjfz) is reached. Suppod® 7 is a saddle point. We
have (8,2) = f(8,%). That is, we got the optimal values of the objective function. If f is strictly

concave and strictly convex with respect to the variables, we furtherhav@ andz =z

Proof According to the properties of functioh and the algorithm procedure, we know that the

convergence point is a saddle point. Thus, we have
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By the saddle-point property ¢6,%), we have

and

Therefore, the above inequalities should hold with equalities and weft{@yvi = f(8,2). Fur-
thermore, iff is strictly concave and strictly convex with respect to the variables, it is tat@th O
andZz=72 |

On solving argmaxf (6, z) required in Theorem 9, we can maximize the term related, to
namelyz't — f(z) = S V[zt — f;(z)]. For this purpose, we have the following theorem.

Theorem 10
sup [zt — f7(z)] = (Vi — )3,

zedomfg (z)
and

1--£ fort; > €2
ar su it — 2 (z)] = Vi
gzedomf?(z)[z| @) { 0, forO<t <e?.

Without loss of generality, we can confine the range td {0, 1).

Proof We have
o2

* ZE
sup [zt — f:(z)] = max{ sup zti - ,supzt;} .
zedomf; (z) 4 0<z<1 1-3z’ z<0

The first supremum can be solved by setting the derivative with respgdtaero. We have

yia
sup zt —
0<z<1 1-

= (-9

wheret; > €2, and the supremum is attained with= 1 — %

Whent; < 0, sup,zti is unbounded above. When<0ti < g2 Sup, <ozt = 0 with the supre-
mum attained ag = 0. Therefore, max{sup,.12ti — 15 ,suQ<Oz,t.} = (v — €)% with the
supremum attained whemne [0, 1), which completes the proof. |

For sparsity pursuit, during each iteration we remove those unlabeled sampose cor-
respondingz’s are zero. By the representer theorem, this would not influence the wélthe
objective function. For Theorem 9, this means that the elemenwbbse values are zero in the last
iteration will remain zero for the next iteration. When there are no unlabedgohgles eligible for
elimination, the iteration will terminate and the convergence p@r#) is reached.
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3. Dual Optimization

According to the iterative optimization algorithm, when optimizing problem (10)stae from an
initial value zy and then solvéy. In this section, we show how to solve this subroutine with fixed
Now the optimization problem is equivalent to

_ 1 £ i
min Fo=>, Z(EHE'Z) +¥n(0] Kyog + 0 Koop) +
i=

01,02,&1,85,b1,b2
V(K101 — Ka02) "U (Kz01 — Kaap)
yi(3 5 ojka(xj,%) +b1) > 1),

st y.(z”“ Ska(xj, %) + bp) > 1— &), (12)
Ely EZZO7 |:1,,€

3.1 Lagrange Dual Function

We will solve problem (12) through optimizing its dual problem which is simpleotees Now we
derive its Lagrange dual function.

Suppose\], AL, vl vl >0 (i = 1,...,¢) be the Lagrange multipliers associated with the in-
equality constraints. Definkj = [A1,...,A{]" andv; = [v},...,v{]" (j = 1,2). The Lagrangian
L(a1,02,&1,&5,b1,b2,A1,A2,V1,V2) can be written as

{+u

L= Fo— zi y.za'klx, X)) +by) —1+8&)+

) +u . L -
)\lz(yi<zlo‘12k2(xj X))+ bg) — 14 &) + V&L + VhEL].
=

Note that
(Kldl — szz)TU (Kldl — Kzaz)
= GIK]_U Kiaq — ZGIK]_U Koao + (X;—Kzu Koao.

To obtain the Lagrangian dual functioh, has to be minimized with respect to the primal
variablesay, 02,&;,&,,b1,b2. To eliminate these variables, we compute the corresponding partial
derivatives and set them to 0, obtaining the following conditions

2J1(Xl — 2yVK1U szz = /\1, (13)
2J2CXZ — 2yVK2U Kioq = /\2, (14)
V= o (15)
. 1
I2 + VI2 = ﬂv (16)
ZAlyl - a
S Ny =0, (17)
2
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where

J = WK1 +WKUKy,
Xy = VnK2+VvK2UK2a

N1 Zl)\lyl

Ny =y AoyiKa(3,),
3

with Ky (:,1) andKz(:,i) being theith column of the corresponding Gram matrices.
Substituting (13)-(17) intoL results in the following expression of the Lagrangian dual function
gL (A1,A2,V1,V2)
g = yn(orl Kio1+ a, Kzaz) +yv(0(1 K1U Kiaq — 2(11 KiUKo0, +
G;—Kzu szz) —(XIAl— /\z—i— Zl —i—)\'

L 1 ,
50 /\1—1—20(2/\2 /\2+Zl L+ AL)

1

We obtain the following from (13) and (14)

— %ng(/\l + 2y K1UKza2) (19)
= %ng(/\z + 2y KoUK1ag). (20)
From (13) and (20), we have
(231 — 22K1UK2J5 TKaU K ag = Ag 4 WKiUKd, 1A,

DefineM; = 2J; — 2y\2,K1U KnglKZU Ki. Suppose the above linear system is well-posed (if ill-
posed we can employ approximate numerical analysis techniques). We get

o = M AL+ WKiUKaJ 1A).
From (14) and (19), we have
(232 — 2V2KU K1 KU K)o = Ap 4 Y KoU K1 I A
DefineM, = 23, — 2y2KU K1 J; 'K UK,. Thus we get
a2 = My Y (A2 + WKUK I HA).
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Now with a; anda; substituted into (18), the Lagrange dual funct@iiri,Az,v1,V2) is

1
= inf L=—Za, /\2_|_ _|_}\'
a9 01,02,&1,85,b1,b2 2 1 Zl

1
= 2(/\1 + VvK1U KZJZ /\2) Ml 1/\1 — é(/\2 +

vaZU Kl\Jl 1/\1 1/\2 + Zl + }\2

3.2 Solving the Dual Problem

The Lagrange dual problem is given by

VoS
0<A <&, i=1...¢
0<)\' 2{ i=1....¢0
S.t. =20 T
ZI l)\llyl_ov
ZI 1)\IZYI—0-

As Lagrange dual functions are always concave (Boyd and Védoailghe, 2004), we can formulate
the above problem as a convex optimization problem

. &
O<)\'<21£, i=1,....¢

St 0<N, <5, i=1...,4 21)
Z| 1)\1Y|—07
Z|:1)\I2yl— :

Define matrixY = diag(y,...,Yr). Then,A1 = K1 YA1 andAy = Ky YA with Kp3 = Ky (3,1 :4)
andKy = Ky(:,1:¢). We have

1
SN2+

1 _ _
-0 = S(M+WKIUKe), 1/\2)TM11/\1+2

e
VKUK A1) "My A, — Zl()\ll +Ah)

=
1 A B A
= 500D o) (N -1,

where

= YKIM[ KoY,
WY KLJ T U KoM, TK oY,
= WYKo, tKUKIM K Y,
= YKLM,IKpY,

OO0 w >
I
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andl=(1,...,1)".
SubstitutingM; andM into the expressions @& andC, we can prove thad =C'. In addition,

because of the convexity of functierg, we affirm that matri><< é g ) is positive semi-definite.

Hence, the optimization problem in (21) can be rewritten as

mp g0( ¢ g ) (%) T
OjAlj%L
st 0= =51,
- Ay=0,
Ay =0,

wherey = (yy, ... ,Y¢) . After solving this problem using standard software, we then olwlip'and
v}, by (15) and (16).

We now state the advantages of optimizing this dual problem over optimizingithalgrrob-
lem (12):

e Less optimization variables as for typical semi-supervised learhigg), and
e Simpler constraint functions.

The solution of bias termb; andb, can be obtained through support vectors. Due to KKT
conditions, the following equalities hold

) l+u )
Myi(Y agke(xj, %) +b1) —1+&) =0,
=1
/+u

No(yi( S adka(xj, %) +b2) — 145 =0,
=1

ViE =0,

vhEL =0, i=1,....0

For support vectors;, we havev > 0 (and thug', = 0) and\! > 0 (j = 1,2). Therefore, we can
resolve the bias terms by averagingy | aiki(xj,x) +b1) — 1 =0 andyi (3§ alka(x},%) +
bp) — 1= 0 over all support vectors.

3.3 Advantages of Using Conjugate Functions

In this subsection, we show the direct optimization of problem (1) without tikeeofi€onjugate
functions is of large scale and time-consuming, which justifies the advantégesing conjugate
functions.

2436



SPARSE SEMI-SUPERVISEDLEARNING USING CONJUGATE FUNCTIONS

The primal problem can be rewritten as

. 1 £ _ (+u
min Do = ﬂi;(EIlJFEIZ) +yn(a4 Kyag 4 ajg Kaas) +y\,i;6i2

01,02,&1,€2,b1,02,8i

V(i adka(x,x) +br) > 1- &, i=1,....¢,
Vi(3 i odka(x), %) +bp) > 18, i=1,....0,
st &, &,>0, i=1...(, | 22)
(34 agka (%, %) +b) — (3 adka(X), %) +b2) > =8 —g, i=1,....0+u,
(3 adka(x),%) +b1) — (T2 adka(xj, %) +bg) <& +e, i=1...0+4u,

wherey; € {1,—1}, yn,\v > 0.

We will solve problem (22) through optimizing its dual problem which can be &tp solve.
Supposa\, AL, vi v, >0(i=1,....¢) andy, 1, (i=1,...,¢+u) are the Lagrange multipliers asso-
ciated with the inequality constraints of problem (22). Defire[3y,..., 8] ", Aj = [Af,...,A{]T,

vi = ML and o= gt (5= 1,2). The Lagrangian
L(ag,02,&1,&5,b1,b2,8,A1,A2,V1,V2, 1y, ) can be written as

I +u )
L= Do- Zl[)\ll(yi(z azke(xj, %) +b1) —1+&) +
2 2,

) +u . o -
No(yi(S adko(x), %) +1p) — 1+ &5) + Vi & +vhE] -
=1

{+u  l+u {+u |
2 Hl3 agke(Xj, %) +b1— Y adka(xj, %) — b2+ +€] +
i= =1 =1

Hu  lu (+u

> ¥l arkaxx) +ba— 3 abka(xj,%) — by — & —g].
i= =1 =1

To obtain the Lagrangian dual function has to be minimized with respect to the primal vari-
ablesa,a7,¢,,&,5,b1,b2,6. To eliminate these variables, we compute the corresponding partial
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derivatives and set them to 0, obtaining the following conditions

l+u
2ynK101 = ZlMMKl )+ Zl M — MoK (:,1),
) Hu )

2ynKa012 = )\'Y'Kz(Hi)— (M — Hp)Ka(:,1),
i1+vi1:%, i=1,...,¢
i2+vi2:%, i=1,...,0

{+u {+u
—ZMM Zuﬁzluz—

{+u {+u
—Zlkzy|+§lu1 Zluz—
20 — 1—u2:0, i=1...,/4+u

Substituting these equations into the Lagrangian as what was done in SettittisXlear that
finally L is a quadratic function involving1, A2, k4, . The dual optimization problem would be a
quadratic optimization involving2+ 2(¢ + u) parameters. Now we see this direct optimization is
indeed of large-scale and time-consuming.

4. Generalization Error
In this section, we analyze the generalization performance of the spatse/iew SVMs making
use of Rademacher complexity theory and the margin bound.

4.1 Rademacher Complexity Theory

Important background on Rademacher complexity theory (Bartlett andidligon, 2002; Shawe-
Taylor and Cristianini, 2004) is introduced below.

Definition 11 For a sample S= {x,...,X/} generated by a distributiot® on a setX and a real-
valued function clasg with domainX, the empirical Rademacher complexity‘bfis the random
¢

variable
2
- i (X
gi;O-I (Xl) Xla 7Xf]a

whereo = {01,...,0,} are independent unifornj+1}-valued (Rademacher) random variables.
The Rademacher complexity $fis

2 l
=Y oif(x)||.
Z i; I | ]

Lemma 12 Fix & € (0,1) and let ¥ be a class of functions mapping from an input SpACEX =
Xx9 orX=X)to]0,1]. L.s:t(f(i)f:1 be drawn independently according to a probability distribution

QZ(?) = Ec lsup
feF

Ri(¥)=Es[R(¥)] = Ess | Sup

feF
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D. Then with probability at least— d over random draws of samples of sizevery fc ¥ satisfies

E(f®)] < BII)+R(F) +y/ et
< B+ R(F) +3/ N

wherelE[f (%)] is the empirical error averaged on tifeexamples.

4.2 Margin Bound for Sparse Multi-view SVMs

By (2), the prediction function of the sparse multi-view SVMs is derivednfitbe average of pre-
dictions from two views. Define the soft prediction function as

609 = (113 + f204).

We obtain the following margin bound regarding the generalization erropafse multi-view
SVMs. This bound is widely applicable to multi-view SVMs, for example, Szedarak Shawe-
Taylor (2007) independently provided a similar bound for the SVM-2K ntho

Theorem 13 Fix 3 € (0,1) and letF be the class of functions mapping frof= X x 9 to R given
by f(x,y) = —yg(x) where g= %(f1+ f) € G and f € . Let S= {(x1,y1),--- , (X, Yr)} be drawn
independently according to a probability distributia. Then with probability at least — & over
samples of sizé every ge G satisfies

Z . . ~
Pp(y 7 sgn(g(x))) < Zleizl(z'ﬁi'z) +2R(G)+3 '”(226/5)7

whereg! := (1—yif1(x))+, & = (L—yi f2(x))+. Function yf1(x;) and y f(x) are called margins.

Proof LetH(-) be the Heaviside function that returns 1 if its argument is greater than Oeaiad z
otherwise. We have

Pp(y 7 sgn(g(x))) = Ep[H (—yg(x))]- (23)
Consider a loss functiod : R — [0, 1], given by

1, if a>0;
A(a)=<¢ 1l+a, if —1<a<o;
0, otherwise

By Lemma 12 and since functiofi — 1 dominateH — 1, we have (Shawe-Taylor and Cristianini,
2004)
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Therefore,
EpH(Txy)) < BLAGy)] +R((A-1)05) +3/ M)
In addition, we have
l
ELafoy) < 3 @-viglo),
1 l
= 5 A0 1R 0),
l
< g SIAYh00) + (Lyifb0)
= %_Z'l@ﬁz‘z),

Where{i1 denotes the amount by which functiénfails to achieve margin 1 faps, ;) andEi2 applies
similarly to functionfs,.
Since(A4 — 1)(0) = 0, we can apply the Lipschitz condition (Bartlett and Mendelson, 2002) of
function (4 — 1) to get
Ri((A—1)0 F) < 2Re(¥).

It remains to bound the empirical Rademacher complexity of the glass
Withy; € {1,—1}, we have

l

R(F) = mmw@;qﬂmwu

fef
= Eg[su (o]
gegp‘ Zl e
= [Eg[su 0ig(X)
%ﬂg‘ E& ig(%)
= R(G). (24)
Finally, combining (23)-(24) completes the proof. |

5. Empirical Rademacher Complexity

Our optimization algorithm iteratively updatesto solve®. In this section, we first derive the
empirical Rademacher complexity éﬁ(g) for the function class induced after one iteration with
an initially fixed z, and then give its formulation applicable for any number of subsequeat iter
tions including the termination case. This Rademacher complexity is cruciahfosrém 13 when
analyzing the performance of the corresponding classifiers obtainedriyerative optimization
algorithm. Specifically, for the empirical Rademacher complexity we give th@fimg theorem
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Theorem 14 Suppose = & (Ky/Ky 1K, + KoKy 1KJ)), © = LUG % (KauK; 1Ky, + KooKy 1K )US 2,

= y—an&/Z(KlqulKle — KauK5 1K), where K, and Ky, are respectively the first rows of the

Gram matrices K and K, Ky, and Ky, are respectively the last u rows of matrix End K;, and
Uy, is the diagonal matrix including the last u diagonal elements (initially fixed,z. .,z ,) of U.

Then the empirical Rademacher comple®tyG) is bounded asy, < R(G) < ¥, wheret? =

tr(S) —ytr (77 (1 +ywO)~19) for the first iteration of sparse multi-view SVMs, atid = tr(S) for
subsequent iterations.

The remainder of this section before Section 5.4 completes the proof of tlithewhich was
partially inspired by Rosenberg and Bartlett (2007) for analyzing gotegized least squares.

We use problem (8) to reason ab&utG). As aresult of fixed, we can removéy (z) without
loss of generality to resolvé, and f,. It is true that the loss functioh : H* x H? — [0,) with
L:= 2—15 S al(L—yifi(%)) s + (1 —yifa(x)), ] satisfies

£(0,0)=1.
Let Q(f1, f2) denote the objective function in (8) witff (z) removed. Substituting in the trivial
predictorsf; = 0 andf, = 0 gives the following upper bound
min f1, f2) < Q(0,0) = L(0,0) = 1.
fl,fgeﬂ{lxﬂ{zQ( 1, 2) _Q( ) ) ( ) )

Since all terms o€( f1, f2) are nonnegative, we conclude that &y, f;) minimizing Q( fy, f2)

is contained in
~ +u

H o= {(f1,f2) i va([[Fa]® + Hf2|!2)+vvi:%12[f1(xi) — f20x)]? < 1. (25)
Therefore, the final predictor is chosen from the function class
G =[x 3100+ 200)] : (T, 1) € 1)
The complexityR(G) is
R(G) =T | sup. 1_ici(f1(xi) + fz(xi))u . (26)
(fr,f)eH |~ 1=

As it only depends on the values of functiéi{-) and f,(-) on the/ labeled examples, by the repro-
ducing kernel property which says the projection of functfoanto a closed subspace containing
k(x,-) has the same value atas f itself does (Rosenberg and Bartlett, 2007) we can restrict the
function class# to the span of labeled and unlabeled data and thus write it as

H = {(fl, fz) . yn(cxIKlo(1+cng20(2) +
Yo(Kauz — Kauaiz) "Uy(Kyatp — Kayatz) < 1}

— {(fn.f): (a] a})N( g; ) <1},

whereKy, andKjy, are respectively the lastrows of matrixK; andKj, Uy, is the diagonal matrix
including the last diagonal elements &f, and

Ky O K,
N::yn< 01 < >+vv( _é:Tu >UU(K1U —Kay). (27)
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5.1 Evaluating the Supremum in Euclidean Space

Since(fq, f2) € H implies (—f1,—f2) € }A[, we can drop the absolute sign in (26). Now we can
write

1
Ri(G) = SE; sup {o'Kyai+0 Kyaz:(a] o@)N( a1 ) <1}

1,026 R U a2

— %Eo sup {o'(Ky Kz({)( gl > (o o@)N( a1 > <1}, (28)
Oq,0p€ R +U 2 az
whereKyy, Koy represent the firgt rows of the Gram matricds; andK5, respectively.
For a symmetric positive definite matri, it is simple to show that (Rosenberg and Bartlett,
2007)
sup via=|MY?
a:a"TMa<1
Without loss of generality, suppose positive semi-definite mafrir (28) is positive definite and
thus has full rank. IN does not have full rank, we can use subspace decomposition to rBwite

to obtain a similar representation. Thus, we can evaluate the supremunteabetkéabove to get

~ 1 71/2 K]—_l;
RZ(Q)ZZEOHN KzTé all.

V||

5.2 BoundingR,(G) above and below

We make use of the Kahane-Khintchine inequality (Latala and Oleszkiev@82) 1stated here for
convenience, to bourig,(G).

Lemma 15 For any vectorsay,---,a, in a Hilbert space and independent Rademacher random
variablesay,- - - ,0on, we have

1 n n n
“EIS ciall2 < (ES oal)2<E|S gal?
5 Hi; g < ( Hi; ig) < Hi; iy

By Lemma 15 we have
u

~ u
@§R1(§)§?7 (29)
where
2 _12( Ky, 2
W = EoNY2( Y ol
20
1 K/,
= Egtr[(KM Kzg)N 1( K¥ )O'O'T]
20
asy
= tr[(Klg Kzg)Ni ( KlT[ >]
20
Recall that

K 0 K,
N:Vn< 01 Ky )+Vv< _éuT >Uu(Klu —Koy).
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Define

_ Ki O a 12
s g0 ) R=( S )

Using the Sherman-Morrison-Woodbury formula (Golub and Loan, ),996 expandN~—! as
Nt=31 i 'RI+ywR'ZR) IRz
DefineQ = (K1, Ky). We get
U = tr(QZ Q") —ywtr[ QR +wR'ZIR) IR ZTIQ.
Define

n

1
s = o3l = y—(Kngl_lKlTé + KoK 1K),

1
o — RTz—lR:\7 o2 (KyuK K + KooKy K U2,
n
7 = RT3107 = TUY2(KeK KT — KooKy 1K) (30)
- *ynu iy Ny 2ufg No¢)-
Putting expressions together, we get
W =tr(S) —wtr(J" (1 + @) 17). (31)

5.2.1 REGULARIZATION TERM ANALYSIS

From (29) and (31), it is clear to see the roles the regularization paraygtandy, play in the
empirical Rademacher complexi®/(G).
The amount of reduction in the Rademacher complexity brougly s/

Aly) =wtr(7" (1 +yw0) ).

This term has the property shown by the following lemma given by Rosemdmel@artlett (2007)
when analyzing co-regularized least squares. Here the meaningsod © are different from
Rosenberg and Bartlett (2007).

Lemma 16 (Rosenberg and Bartlett, 2007)A(0) = 0, A(yy) is nondecreasing op, > 0, and given
that © is positive definite, we have

; _tr(1TO-1
JV'anA(yV)_tr(] 0 9).

5.3 Extending to Iterative Optimization

As our sparse multi-view SVMs employ an iterative optimization procedurepfansgty pursuit, the
former outcome for empirical Rademacher complexity would not apply if wenuses than one
iteration to update. However, we can extend the former analysis to suit this case.
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Recall thatz € [0,1) (i=¢+1,...,¢+u) andU, = diag(z+1, ..., Z-u). During iterations, it is
possible that), becomes a zero matrix or other arbitrary matrix with diagonal elements in the rang
[0,1). In any case, the resultant function class can be covered by

H o= {(fr, f2) o[l fol?+ | f212) < 1},

which is obtained by omitting the term containiggin (25). Following a similar derivation, the
matrix N in (27) would be
B Ki O
n=n( S )

Finally, we can obtain a bound on the empirical Rademacher compl@(ittj/) identical to (29) but
now 72 = tr($) with § defined in (30). The proof of Theorem 14 is completed.

5.4 ExaminingR (G)

Here, we examine the rold (G) plays in the margin bound. Sinég, andKy, are the first’ rows
of K1 andKy, the formulation otr () can be simplified as

1 14 . .
tr(§) = Vtr(@KﬁKfﬁK%f@):VZ(K1(|,|)+K2(|,|)). (32)
n

ni

Now, we see that for iterative optimization of sparse multi-view SVMs, the engbiRademacher
complexity R (G) with 12 =tr(S) only depends on thélabeled examples and the chosen kernel
functions. Consequently, the margin bound does not rely on the unlabaieitig sets. In this case
the margin bound is quite straightforward to reason.

If we do not use iterative optimization, the empirical Rademacher complexity) will involve
other two term® and J. By a similar technique as in (32), we can show tBabnly depends
on the unlabeled data and the kernel functions, whilkencodes the interaction between labeled
and unlabeled data. As a result, the margin bound relies on both labeledhiaheled data. For
this case, we will give an evaluation of the margin bound with different sitemlabeled sets in
Section 6.4.

6. Experiments

We performed experiments on artificial data and real-world data to evaluatgréposed sparse
multi-view SVMs (SpMvSVMSs). For SpMvSVMs witla > 0, the entries of were fixed as 1 for
labeled data and initialized as9®5 for unlabeled data. The termination condition for iterative
optimization is either no unlabeled examples can be removed or the maximum itexatibemnsur-
passes 50. Comparisons are made with supervised SVMs, and the wisep&VM-2K method.
Each accuracy/error reported in this paper is an averaged acmacyalue over ten random splits
of data into labeled, unlabeled and test data.

Later in this section, we also provide a sequential training strategy for SpWs, which
shows an accuracy improvement over the gradual adding of unlabatied/tile with roughly linear
and sub-linear increases of running time. This indicates the possibility aedt@ of applying
SpMvSVMs to large-scale data sets. At the end, margin bound evaluasioltsrare reported.
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2 T T T T

% Class1 2r| % Class1
: * * Class2 * Class2

-1t

(a) View 1 (b) View 2

Figure 1: Examples in the two-moons-two-lines data set.

6.1 Artificial Data

This two-moons-two-lines synthetic data set was generated accordingdiov&ini et al. (2005).
Examples in two classes scatter like two moons in one view and two parallel lines athtér. To
link the two views, points on one moon were enforced to associate at rawitbhrpoints on one
line. Each class has 400 examples and a total of 800 examples weretgémearahown in Figure 1.
For SpMvSVMs, the numbers of examples in the labeled training set, unlatralethg set and
test set were fixed as four, 596, and 200, respectively. Gaussiaelkwith bandwidth 85 and
the linear kernel were used for view 1 and view 2, respectively. Thanpetersy, andy, were
selected from a small grifll0~6,104,102,1,10,100} by five-fold cross validation on the whole
data set. The chosen values gre= 104 andy, = 1. In this papery, is normalized by the number
of labeled and unlabeled examples involved in the multi-view regularization teomsupervised
SVMs, which concatenated features from the two views, we also foundgiuéarization coefficient
from this grid by five-fold cross validation.

To evaluate SpMvSVMs, we varied the size of the unlabeled training set 2@, 60% to
100% of the total number of unlabeled data, and used different valu#isefinsensitive parameter
€, which ranged from 0 to .@ with an interval 001 (wheng is zero, sparsity is not considered).
The test accuracies and transductive accuracies (on the cordaspamlabeled set) are given in
Figure 2(a) and Figure 2(b), respectively. It should be noted thahtimebers of data used to
calculate transductive accuracies are different for the three curegure 2(b). The numbers of
removed unlabeled examples for differentalues are shown in Figure 3.

From Figure 2 and Figure 3, we find that with the increase,ahore and more unlabeled
data are removed, and the remove of a small number of unlabeled datardandexrease the
performance of the resultant classifiers, especially when the origirab$iznlabeled set is large.
Therefore, we can find a good balance between sparsity and agasiag an appropriate. In
addition, more unlabeled data can benefit the performance of the ledassdiers with the same
€.
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(a) Test accuracy (b) Transductive accuracy

Figure 2: Classification accuracies of SpMvSVMs with different sizaswdbeled set anglvalues
on the artificial data. The accuracies of SVMs are also shown.

—©— #Unlabeled:20%
400} | —B— #Unlabeled:60%
—&— #Unlabeled:100%
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15y o a
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=
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o
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0 . I I
0 0.05 0.1 0.15 0.2

Epsilon

Figure 3: The numbers of unlabeled examples removed by SpMvSVMdfferemt € values on
the artificial data.

6.2 Text Classification

We applied the SpMvSVMs to the WebKB text classification task studied in BluinhMitchell
(1998); Sindhwani et al. (2005); Sun (2008). The data set corHist®51 two-view web pages
collected from the computer science department web sites at four U.@rsitizs: Cornell, Uni-
versity of Washington, University of Wisconsin, and University of T&xdhe task is to predict
whether a web page is a course home page or not. This problem hasaanogd class distri-
bution since there are a total of 230 course home pages (positive examihesfirst view of the
data is the words appearing on the web page itself, whereas the secansl tie underlined words
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Figure 4: Classification accuracies of SpMvSVMs with different sizaswdbeled set anglvalues
on text classification. The accuracies of SVMs are also shown.

in all links pointing to the web page from other pages. We preprocessddveew by remov-

ing stop words, punctuation and numbers and then applied Porter's stemnthmg text (Porter,
1980). In addition, words that occur in five or fewer documents wererggh This resulted in
2332 and 87-dimensional vectors in the first and second view, regglgctinally, document vec-
tors were normalized tof.id f (the product of term frequency and inverse document frequency)
features (Salton and Buckley, 1988).

For SpMvSVMs, the numbers of examples in the labeled training set, unldi@ieidg set and
test set were fixed as 32, 699, and 320, respectively. In the traieingng test set, the numbers
of negative examples are three times of those of positive examples to th#emterall proportion
of positive and negative examples. The linear kernel was used fonviemis. The parametesg,
andyy, for SpMvSVMs and the regularziation coefficient for SVMs were sebbcging the same
method as in Section 6.1. The chosen values for SpMvSVMsga#el0-¢ andy, = 0.01.

To evaluate SpMvSVMs, we also varied the size of the unlabeled trainifigpee20%, 60% to
100% of the total number of unlabeled data, and used different valuésefinsensitive parameter
€ ranging from 0 to @ with an interval Q1. The test accuracies and transductive accuracies are
given in Figure 4(a) and Figure 4(b), respectively. The numbersrabred unlabeled examples for
differente values are shown in Figure 5.

From Figure 5, we find that with the increasespfmore and more unlabeled data can be re-
moved. Reflected by Figure 4, the remove of unlabeled data only slightlgakethe performance
of the resultant classifiers, and this decrease is less when more unldbtdad used. We draw a
same conclusion as before: an appropriatan be adopted to keep a good balance between sparsity
and accuracy. We also observe a different phenomenon, that ig,a6$ and 100% unlabeled data
result in similar test accuracies as shown in Figure 4(a). This is redsdmatause the performance
improvement of any classifier is always bounded no matter how many daiaeue
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Figure 5: The numbers of unlabeled examples removed by SpMvSVMsfferemt € values on
text classification.

6.3 Comparison with SVM-2K, and Sequential Training

The SVM-2K method proposed by Szedmak and Shawe-Taylor (2007@>qaoit unlabeled data
for multi-view learning. Similar to SpMvSVMs, it also combines the maximum marginranidi-
view regularization principles. However, it adoptsnorm for multi-view regularization, and this
regularization only uses unlabeled data. Specifically, the SVM-2K methothbdsllowing opti-
mization for classifier parametens, wo, b1, andb, in two views

min Lt WP S G S EC S N
A 1 A 2 1 2 j
2" 2,812 8tG 5 N

Wi Q1(Xj) +b1 —w; @a(xj) —b2| <nj+e

(W] u(x) +b1) > 1— &

Yi(W3 (%) +b2) > 1— &,

&, >0,&,>0,n; >0foralli=1,....,¢,andj =¢+1,...,0+u,

S.t.

where ane-insensitive parameter is used to relax the prediction consistency betwees. vin
this subsection, we carry out an empirical comparison between SVM-gkoanSpMvSVMs for
semi-supervised learning with identical data splits.

Our first comparison takes tls@nsensitive parameter in both SpMvSVMs and SVM-2K as zero
and uses the above two data sets with different sizes of unlabeled tra@gt&agmamely, from 20%
to 60% to 100%. For SVM-2K, we adopted the same parameter selectioreappe in Szedmak
and Shawe-Taylor (2007) through five-fold cross-validation. Thahis values o€; andC; were
fixed to 1 andC, were selected from the rang®.01x 2'} (i = 1,...,10). The experimental results
are listed in Table 1, from which we see that both the test accuracies asduive accuracies of
SpMvSVMs are superior to those counterparts of SVM-2K.

The second comparison considers sequential training of SpMvSVMS$YMI2K. The pur-
pose is to show the relationship between running time, classification acausate¢he number of
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SVM-2K SpMvSVMs
# Unlabeled Test Acc. Transductive Acg. Test Acc. Transductive Aca.
20% 95.70 97.75 98.65 98.58
60% 98.50 99.19 99.35 99.22
100% 98.35 99.18 99.60 99.55
20% 84.72 84.71 89.28 90.14
60% 85.88 84.79 91.53 91.02
100% 85.84 87.85 91.50 92.90

Table 1: Test and transductive accuracies (%) of SVM-2K and SpNUsSwith different sizes of
unlabeled training sets on the artificial data (the first three lines) and tssifatation data
(the last three lines).

gradually added unlabeled examples, and thus evaluate the possibilitytentigef applying the
methods to large-scale problems. The text classification data were useel alhtihe unlabeled
training data were divided into ten equal sizes. For sequential trainingM¥SVMs, we adopted
two differente values 01 and 02. The procedure is as follows. First, we train SpMvSVMs using the
labeled data and the first portion of unlabeled data. Then, we combinetdngeceunlabeled data
from the last training with the next portion of unlabeled data together to trdivSyMs (with the
original labeled data). We repeat this progress for ten times to complete tie priocedure.

The test accuracies and total numbers of retained unlabeled data atiestep are shown in
Figure 6(a) and Figure 6(b). The averaged classifier training time is givEigure 7. Figure 6(a)
indicates the effectiveness of sequential training, which is reflectecetigehthat the test accuracies
have an overall increasing tendency. Figure 6(b) shows that SpMegMtain sparse solutions in
the sense that the number of retained unlabeled data is small compared toniber rud all the
added unlabeled data. Figure 7 shows that when0.1 the running time is roughly linear with
respect to the gradual adding of unlabeled data, and whef.2 the relationship is roughly sub-
linear. In fact, the running time can be further reduced if laggealues rather than the given values
are properly used. In practice, we can also vary the valgalafing the sequential training process.

Though the SVM-2K method was not initially proposed for sparse semirgiged learning, we
find that withe > 0 it can reduce the number of unlabeled data used for representingietassor
this reason, we attempted to explore its possibility on sequential training usingathiset under
the same setting with the sequential training of SpMvSVMs. However, fardifite values we did
not observe an improvement of test accuracies with the gradual addimjpbeled data. Actually,
for this data set whea > 0.05 SVM-2K would not use any unlabeled data at all. This indicates that
the roles of for SpMvSVMs and SVM-2K are quantitatively different.

6.4 Margin Bound Evaluation

To evaluate the margin bound in Theorem 13 for SpMvSVMs, we carrieedqeriments on the text
classification data with a priori fixed regularization valygs= 10~° andy, = 0.1. This choice of
parameters did notintend to be optimal in terms of test errors, but attempteshitorshrelationship,
if any, between the generalization bound and the test error. The emjitac@imacher complexity
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We have normalized the running times with 10% unlabeled examples to be 1.

R/(G) in the margin bound is replaced by its upper bouiigé with 712 = tr(S) — ytr (7" (I +
WO) 7).

For SpMvSVMs, only one iteration was performed in order to apply the mdygiumd. In
other words, we learned classifiers only with the initially provided conjugatéovz whose entries
were fixed as 1 for labeled data an@®®5 for unlabeled data. We used the same data split as in
Section 6.2, but varied the size of unlabeled training set ffdi®% 20% ...,100%; of all the
available unlabeled data. To compute the margin bound, the confidencal@&helorem 13 is fixed
as 95% § = 0.05). The test error rate, empirical Rademacher complexity, and margirdtere
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Figure 8: Classification error rates, empirical Rademacher complexitythenthargin bound of
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shown in Figure 8. The overall decrease of error rates is well expldigehe drop of the margin
bound and empirical Rademacher complexity brought by the regularizatiemfmore and more
unlabeled data. Figure 8(b) also indicates that after adding a certain nawfbelabeled data,
including more unlabeled data will only improve the performance marginally. giiéaomenon is
observed in Figure 8(a) as well.

7. Extensions

In this section, we discuss possible extensions of using conjugate fusfdigparse semi-supervised
learning. In particular, the-insensitive loss term can be replaced by a somewhat general convex
function. We also briefly discuss two sparse variants for Co-RLS aptht&n SVMs using the
same approach as sparse multi-view SVMs.

7.1 Arbitrary Convex Loss

In Section 2.2, for each example thénsensitive loss used & () = (v/& —€)2 with tj = [f1(x;) —
f2(x)]. This can be relaxed to a general class of user-designed lossearti defined as a convex
function oft;, for example, using existing convex functions or compositions of conuastions with
some good properties (Boyd and Vandenberghe, 2004).

Provided theg-insensitive loss conforms the slight assumptions closed, convex, aperpr
listed in Lemma 5, the methodology used for sparse multi-view SVMs and the tagesof using
Fenchel-Legendre conjugates apply well to the new optimization problem. iS his important
contribution of this paper, which gives a framework for solving problemslinng different e-
insensitive loss functions. Also, this framework applies to problems with desigwv or more than
two views, as long as the objective function is convex with respegiparameters of classifiers or
regressors) asin (11).
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7.2 A Sparse Variant for Co-RLS

The objective function of Co-RLS in the case of two views is given as fdl@@indhwani et al.,
2005; Brefeld et al., 2006)

J4
fleﬂgll,ifr;eﬂ{z 21€izl[(f1(xi) —yi)2+(fz(xi) —Yi)z] +

{+u

V(I 21+ [ f211%) +vvzl(f1(xa) — fa(%))?,

1=

where nonnegative scalays yy are respectively norm regularization and multi-view regularization
coefficients. This optimization problem is indeed convex with respect tonsiga coefficients;
andas which have the same meanings as in (9).

Replacing the last term withi! (| f1(x) — f2(%)| —€)2 results in the sparse Co-RLS algorithm
min S (00 9P (k) -2l +
et g >0 i; 1 Yi 2 Yi
+u

V(I f2ll+ 1 f21?) +VV.Z(“1(Xi) — f2(x)| — €)%

1=
This e-insensitive loss is identical to that used in sparse multi-view SVMs, andftiherere can
directly use the technique developed in this paper to solve this optimization.

7.3 A Sparse Variant for Laplacian SVMs

By including a penalty term on the intrinsic manifold smoothness, Belkin et 806)2@roposed the
Laplacian SVMs as an extension of SVMs by solving the following problemmiREHS

14 {+u
min T S (L—yif 00) +vall FI24+% 3 W (F(x) = ()2, (33)
fest £ & =1
where# is the RKHS induced by a kerngly andy, are respectively ambient and intrinsic regu-
larization coefficients, andi; > O are entries of the weight mati¥ of the graph representing the
manifold. The last term can be rewritten as
+u {+u (+u {+u
|

> Wy(Fx) - f(x))? = _Z(ZWj)fz(m)—_z W F0a) f(xj)
i=1 j=

i,]=1 i,]=1
= 2T (V-W)f =2f" Lf,
wheref = [f(x1),..., f(X4)] ", matrixV is diagonal with théth diagonal entry; = zfi‘{w.j , and
L is the positive semi-definite graph Laplacian.
This optimization problem is also convex with respect to expansion coeffizjestack variable
& and biash if we formulate it as in (12). Replacing the last term in (33) V\’ZtﬁTilmAj (|f (%) —
f(x;)| — €)% results in the sparse Laplacian SVMs

14 l+u

ming SN0 P10 S Wl 1000 105)] €2,

This e-insensitive loss has a similar form with that used in sparse multi-view SVMthars facil-
itates an extension of the technique developed in this paper to solve this optimizatio
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8. Conclusion

In this paper, we proposed a sparse semi-supervised learning fraknesing Fenchel-Legendre
conjugates. It is extendable to a wide range of semi-supervised learnthgdseIn particular, we
formulated and solved the sparse multi-view SVMs, which incorporateiagsensitive multi-view
regularization term. By rewriting this regularization in terms of conjugate funstiae obtained
an inf-sup optimization problem whose globally optimal solutions can be foyrlb proposed
iterative algorithm. We also showed that the quadratic program involvedain iggration only
depends on the size of the labeled set, which would be very efficieneforsupervised learning
problems. For sparse multi-view SVMs, we characterized their generatizatior in terms of the
margin bound and derived the empirical Rademacher complexity of the eveditLinction class.
The empirical Rademacher complexity has two different forms dependimghether the iterative
algorithm iterates only once or multiple steps.

Experimental results on sparse multi-view SVMs with differenalues showed that it is unnec-
essary to retain all the unlabeled data to represent target functionsiagdsparse semi-supervised
learning can effectively reach a good balance between classifi@rpenice and the number of
unlabeled examples retained. This would be beneficial to speed up fuegtbrations during the
classification of new examples. Comparisons with SVM-2K showed theisuipeof our proposed
method both on classification accuracies and the possibility and potential pplexkto large-scale
problems when a sequential training strategy is adopted. As in this papeiyweonacern the possi-
bility and potential for large-scale applications, we employed a moderateetatalsaves as future
work to apply the approach to much larger data sets. We also performedragpts to validate
the usefulness of the margin bound and empirical Rademacher complexit @dplain well the
regularization role unlabeled data play for multi-view learning.
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