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Competition over agents with boundedly rational expectations

RAN SPIEGLER

School of Economics, Tel Aviv University

I study a market model in which profit-maximizing firms compete in multi-
dimensional pricing strategies over a consumer, who is limited in his ability to
grasp such complicated objects and therefore uses a sampling procedure to eval-
uate them. Firms respond to increased competition with an increased effort to
obfuscate, rather than with more competitive pricing. As a result, consumer wel-
fare is not enhanced and may even deteriorate. Specifically, when firms control
both the price and the quality of each dimension, and there are diminishing re-
turns to quality, increased competition implies an efficiency loss which is entirely
borne by consumers.

KEYWORDS. Bounded rationality, industrial organization, multi-dimensional pric-
ing, law of small numbers, market exploitation, obfuscation.

JEL CLASSIFICATION. C79, D49, D83.

1. INTRODUCTION

Economists have grown familiar with market models with informational asymmetries
between firms and consumers: markets for experience goods in which firms know their
quality better than consumers, insurance markets in which consumers know their risks
better than firms, etc. But while these models allow for informational asymmetries, they
impose a perceptual symmetry between firms and consumers, because they retain the
assumption that “the model itself is common knowledge.”

In reality, firms and consumers often differ in their ability to understand the market
model. Firms interact more frequently with the market, and pay closer attention to it,
than most consumers. As a result, they have more opportunities to learn the market
model and the market equilibrium. Moreover, because prices are typically set by firms,
they are in a position to complicate the consumer’s task of understanding the actual
value of their products, by employing complex pricing schedules.1
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For instance, consider the problem of choosing where to open a bank account.
Banks offer a large number of financial services. At the time we open the account, we do
not know yet which subset of services will be relevant for us. The bank can complicate
our decision problem by adopting different fees for different transactions, or different
interest rates for different types of saving accounts. Likewise, when we purchase life or
health insurance, we need to calculate trade-offs across a large number of scenarios.
Insurance companies can contribute to the difficulty of this task by applying different
reimbursement policies to different contingencies.

In these examples, firms employ strategies with a potentially complex, multi-
dimensional structure. Consumers find it difficult to grasp this structure in its entirety.
Therefore, it is natural for them to resort to simplifying heuristics. An example of such
a heuristic is to sample a small number of dimensions and choose the best-performing
firm along the sampled dimensions. This heuristic can be applied in many market set-
tings, hence it saves considerable cognitive resources.

One could argue that repeated exposure to the market would enable consumers to
learn the true value of each alternative, thus saving them the need to rely on simplifying
short-cuts. However, these learning opportunities are scarce in situations such as those
described above. To quote Camerer and Lowenstein (2003, pp. 8–9), “many important
aspects of economic life are like the first few periods of an experiment rather than the
last.”

My objective in this paper is to examine the implications of market competition,
when consumers reason in this way about multi-dimensional goods and services. Here
are some of the questions that I raise: What kind of “obfuscation devices” do firms use
to manipulate consumers? Will competition among firms weaken, or rather strengthen
the effort to obfuscate? What are the social costs of obfuscation? To the extent that firms
take advantage of consumers, will competition among firms mitigate this exploitative
effect?

To address these questions, I study a simple market model with one consumer and
n firms. A strategy for a firm is a cdf F over a set of feasible prices. I interpret F as a
reduced-form representation of a multi-dimensional pricing strategy. The firm provides
a product having a large number of equally important, or equally likely dimensions. It
prices each dimension independently, such that F (p ) is the probability that the price of
a randomly sampled dimension is at most p .

Firms are standard expected-profit maximizers. The consumer, in contrast, employs
a “boundedly rational” choice procedure, called S(1) and borrowed from Osborne and
Rubinstein (1998). Faced with a profile of cdf s, he draws one sample point from each
cdf, and chooses the cheapest firm in his sample. The actual outcome of his choice is
a new, independent draw from the chosen cdf. The interpretation is that the consumer
evaluates a multi-dimensional pricing strategy by examining one dimension at random
and choosing the best-performing firm along that dimension. Firms take into account
the consumers’ choice procedure when choosing their strategy.

If firms were restricted to degenerate distributions, the consumer would always
make the optimal choice and the market would be truly competitive. This suggests that
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firms have an incentive to introduce variance into their cdf, in order to make it harder
for the consumer to perceive their true expected price. Thus, the firms’ strategic consid-
erations involve two effects: competing over the consumer, and trying to take advantage
of his inference errors. The question is how the “competitive” and “obfuscatory” effects
interact.

The characterization of symmetric Nash equilibrium in Section 3 provides a sharp
answer. There is a unique symmetric equilibrium, given by a simple formula. Expected
price is independent of the number of competitors: the consumer receives half the sur-
plus, regardless of n . Moreover, when we add a firm to the market, the equilibrium cdf is
a mean-preserving spread of the original one. Thus, firms respond to greater competition
with greater obfuscation, rather than with more competitive pricing.

In Sections 4 and 5, I analyze two extensions of the model. First, I assume that firms
control both price and quality, and choose a probability distribution over price-quality
pairs. I assume diminishing returns to quality. This extended model has a unique sym-
metric Nash equilibrium. If n is sufficiently large, the outcome is inefficient in terms
of expected surplus. Moreover, the efficiency loss increases with the number of firms,
and is borne entirely by the consumer. Second, I endow the consumer with an outside
option and show that in equilibrium, he may be worse off than if he stayed out of the
market. This effect, too, is exacerbated as n gets larger.

The lesson from these results is simple. Interventions that foster competition in a
market with rational consumers (increasing the number of competitors, introducing an
attractive outside option) may have adverse welfare effects when consumers are limited
in their ability to evaluate complex objects. The reason is that firms respond to increased
competition by obfuscating, rather than by acting more competitively.

Related literature

Osborne and Rubinstein (1998) formulate the S(1) procedure in the context of strategic-
form games, in which all players behave according to this procedure, which calls for
a novel equilibrium concept. In contrast, in the present paper, the strategic agents
(i.e., the firms) are rational, hence the need does not arise. In Spiegler (forthcoming),
I study a market in which providers of a worthless treatment (in the sense of having the
same success rate as a default option) compete in prices over consumers who evalu-
ate treatments according to S(1). As a result, this “market for quacks” becomes active
and displays non-standard welfare and comparative-statics properties. The main dif-
ference between Spiegler (forthcoming) and the present study is that a pricing strategy
in the former is a scalar and the source of randomness for consumers is exogenous. As
a result, the equilibrium characterization techniques are conventional and the welfare
properties are milder: while the firms’ ability to obfuscate in the present paper results in
a non-competitive outcome for any n , in Spiegler (forthcoming) the market outcome is
competitive when n→∞.

This work belongs to a small group of papers that study market interaction between
rational firms and consumers with cognitive imperfections: bounded ability to grasp
intertemporal patterns in Piccione and Rubinstein (2003); limited memory in Chen et al.
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(2003); and biased beliefs concerning future tastes in DellaVigna and Malmendier (2004)
and Eliaz and Spiegler (forthcoming).

Within this literature, some works have examined one of the themes of the present
paper, namely the incentive to obfuscate when consumers have a limited perception of
complex objects. Rubinstein (1993) demonstrates that a monopolist may use a prob-
abilistic pricing strategy in order to screen the consumer’s ability to categorize the re-
alization of a random variable. Erev and Haruvy (2001) argue that when consumers
evaluate alternatives with double exponential noise, lower-quality firms have a stronger
motive to increase the variance parameter of the noise. In Gabaix and Laibson (forth-
coming), firms offer two-attribute products, and one attribute is hidden from some con-
sumers. Competitive forces bring equilibrium profits down to zero. However, the pricing
structure reflects the consumers’ bounded rationality: the attribute of which all con-
sumers are aware is priced below marginal cost, while the price of the hidden attribute
is maximal.

It should be noted that the randomization motive per se can be accounted for by
models with rational consumers. For instance, Salop (1977) demonstrates that a mo-
nopolist may wish to randomize in order to discriminate between consumers with di-
verse search costs. Wilson (1988) derives a probabilistic pricing strategy from the as-
sumption that consumers arrive in a random order and are served on a first-come-first-
served basis.

Finally, this paper is related to the large literature on equilibrium price dispersion
(e.g., Varian 1980, Burdett and Judd 1983, Rob 1985, McAfee 1995, Burdett and Coles
1997), which analyzes price competition in the face of rational consumers with search
costs. It should be emphasized that price dispersion in these models is an artifact of
mixed-strategy equilibrium. In contrast, in the present paper firms have a strict incen-
tive to randomize.

2. A BASIC MODEL

A market consists of a set {1, . . . , n} of expected-profit maximizing firms and one con-
sumer. The firms play a simultaneous-move, complete information game. A strategy
for a firm is a cumulative distribution function (cdf ) Fi over a set of feasible prices
(−∞, 1]. Let Ti and E p i denote the support of Fi and the expected price according to
Fi , respectively.

After the firms make their decisions, the consumer chooses an alternative from the
set {1, . . . , n}, according to a procedure called S(1). He draws one sample point from each
Fi . Given a sample of prices (p1, . . . , pn ), he chooses i ∗ ∈ arg mini p i (with the usual sym-
metric tie-breaking rule). The outcome of the consumer’s choice is a new, independent
draw from Fi ∗ . Firms take the consumer’s decision rule into account when calculating
their expected profits from a given strategy profile.

This stylized model is open to a number of interpretations. The primary interpre-
tation that I adopt in this paper is that Fi is a reduced-form representation of a multi-
dimensional pricing strategy. Firms offer a service that covers a continuum of equally
likely contingencies. A strategy for a firm specifies a price for every contingency, such
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that Fi (p ) is the fraction of contingencies for which the price is at most p . Evaluating the
firm’s pricing strategy is a difficult task for the consumer, because it requires him to cal-
culate trade-offs across an enormous number of equally likely contingencies. The con-
sumer simplifies his decision problem by examining one contingency at random and
choosing the firm that offers the best terms in this particular contingency. It is crucial for
this interpretation that the firms cannot predict the contingency that the consumer will
sample during his deliberation. If firms knew it in advance, they would compete fiercely
along that dimension, while charging the maximal price in all other contingencies.2

Let us construct firm i ’s payoff function, fixing the profile (Fj )j 6=i . Define Hi (p ) as
the probability that the consumer chooses firm i , conditional on p i = p in his sample.
One may view Hi (p ) as the demand for firm i , induced by the other firms’ behavior. Let
E Hi denote the expected value of Hi , where the expectation is taken with respect to Fi .
When each firm plays a cdf with a well-defined density f , the definitions of Hi and E Hi

have a simple form:

Hi (p ) =Πj 6=i [1− Fj (p )] and E Hi =

∫ 1

−∞
Hi (p ) f i (p )dp .

For simplicity, I assume zero costs. Then, firm i ’s payoff function is u i (F1, . . . , Fn ) = E p i ·
E Hi . In other words, the firm’s payoff is equal to its expected price multiplied by the
probability that it is chosen by the consumer.

The firms’ strategies in this model are probability distributions. However, they are
not “mixed strategies” (with (−∞, 1) being the purported set of “pure” strategies). Tech-
nically, this is because u i is quadratic, rather than linear, in Fi . In particular, we should
not expect firm i to be indifferent between Fi and the individual elements in Ti . Indeed,
the following example illustrates that firms may have a strict incentive to randomize.

Let n = 3. Suppose that firms 1 and 2 both play the cdf F ≡U [0, 1]. If firm 3 assigns
probability one to some price β ∈ (0, 1), then its expected revenue is β · (1−β )2. Now
suppose that the firm switches to what might be called a “quasi-bait-and-switch” strat-
egy: assigning probability β to p = 0 and probability 1− β to p = 1. In this case, the
firm’s expected revenue is [β ·0+(1−β ) ·1] ·β , a strict improvement.

I interpret this type of randomization as an obfuscation device. The firm prices some
contingencies “competitively” and other contingencies “monopolistically.” The former
contingencies generate a clientele, whereas the latter contingencies generate revenue.
The obfuscation inherent in this quasi-bait-and-switch strategy is extreme, because the
consumer ends up choosing firm 3 if and only if p3 = 0 in the contingency that he sam-
pled, yet with probability 1−β , the actual price he ends up paying, is the highest in the
market. The quasi-bait-and-switch pricing strategy turns out to play an important role
in the analysis.

This example illustrates also the fundamental difference between the role of sam-
pling in this paper and in more conventional I.O. models with consumer search (e.g.,

2Alternatively, one could assume that firms know that the consumer samples a particular set of contin-
gencies C ∗, as well as another random contingency outside this set. In this case, the model describes how
firms price the contingencies outside C ∗.
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Burdett and Judd 1983). In both cases, the consumer chooses the cheapest firm i ∗ in his
sample. However, in a search model the consumer ends up paying p i ∗ , whereas in the
present model, the actual price is a new, independent draw from Fi ∗ .

Explicit multi-dimensional pricing

The following, more elaborate model may be viewed as a “foundation” for the interpre-
tation of Fi . Suppose that a pure strategy for firm i is explicitly modeled as a function
from a continuum of contingencies to a set of feasible prices. Such a pure strategy in-
duces a cdf Fi over prices, where Fi (p ) is the measure of contingencies for which the
price assigned by the pure strategy does not exceed p . Our interpretation of the con-
sumer’s choice procedure becomes explicit.

If each firm i plays a mixed strategy that randomizes uniformly over all pure strate-
gies that induce a given cdf Fi , then the elaborate formalism is reduced to our model.
The set of pure-strategy equilibria in the original model is thus isomorphic to a natural
subclass of mixed-strategy equilibria in the elaborate model.3 What enables this linkage
is that in both types of equilibria, firms know the fraction of contingencies in which op-
ponents charge any given price, without knowing the exact contingencies for which this
is the case.

An alternative interpretation

We may also think of Fi as a genuinely random pricing strategy, rather than a short-hand
for a multi-dimensional pricing strategy. In this context, S(1) captures the behavior of an
inexperienced consumer who makes a once-and-for-all decision following a brief learn-
ing phase. In many situations, consumers enter the market to seek an ad hoc solution
to a specific problem, and therefore lack the opportunity to learn the expected value of
the firms’ products through repeated purchases.

For example, people typically seek services such as criminal defense litigation, real-
estate appraisal, or building contracting very infrequently. Professionals in these fields
effectively control the price (and effort level) that they apply to a given case. Moreover,
as far as consumers are concerned, these are random variables because the firm can
discriminate among cases on the basis of criteria that are hidden from the eyes of an
inexperienced consumer. Therefore, consumers often have no choice but to evaluate
each firm on the basis of a small collection of “anecdotes”: random stories generated
from fellow consumers’ experience. It is natural for the consumer to pick the expert
with the best anecdote in his sample. But the outcome of the consumer’s decision will
be an independent draw from the distribution associated with this expert.

Although I find both the “multi-dimensionality” and “learning” interpretations of
the model plausible, I adhere to the former throughout the rest of the paper, for the sake
of expositional clarity.

3It can be shown that there exists no pure-strategy equilibrium in the elaborate model.
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Negative prices

The assumption that the support of Fi can contain arbitrarily negative prices raises at
least two concerns. First, if a consumer samples a negative price from Fi , he may realize
that this sample point cannot represent the firm’s pricing in the other dimensions, for
the firm would go out of business if it did. Thus, a negative price may lead the consumer
to rethink his choice procedure.4 Second, when Fi represents how the firm prices a
bundle of goods, negative prices expose the firm to counter-exploitation by a rational
“parasite” who will purchase a large quantity of negatively priced goods.

At any rate, as we shall see in Section 3, the assumption plays a minor role in the
analysis. It simplifies the formula of the symmetric equilibrium strategy as well as the
proof, without affecting the main findings. Appendix B analyzes the model under the
assumption that negative prices are ruled out.

3. EQUILIBRIUM

I begin with a characterization of symmetric Nash equilibrium in this model. Let F (p , n )
be the equilibrium cdf and let E p (n ) denote the expected price according to F (p , n ).

PROPOSITION 1. The game has a unique symmetric Nash equilibrium. Each firm plays
the cdf

F (p , n ) = 1−
�

2(1−p )
n

�
1

n−1

(1)

over the support [1− 1
2 n , 1].

COROLLARY 1. For every n ≥ 2,

(i) E p (n ) = 1
2

(ii) F (p , n +1) is a mean preserving spread of F (p , n ).

Corollary 1 demonstrates that an increase in n results in an increase in the variance
of the equilibrium cdf, without affecting the expected price. Thus, the number of com-
petitors, normally an indicator of the market’s competitiveness, has an orthogonal effect
when the consumer evaluates firms according to the S(1) procedure.

Firms in the model have two strategic considerations. First, there is the usual com-
petitive motive, which induces firms to offer attractive distributions. Second, there is
an incentive to confuse the consumer by introducing greater variance. In this way,
an expensive firm may increase the probability that the consumer will choose it over
a cheaper firm. The surprising feature of Corollary 1 is that firms respond to greater
competition by cultivating the “obfuscatory effect” only. Indeed, firms strictly prefer to
obfuscate in equilibrium. For n = 2, it is easy to verify that although the support of

4In reply, one may argue that since we have normalized the firms’ marginal costs to zero, “negative”
prices that are sufficiently close to zero represent positive prices below marginal cost. If the consumer is
ignorant of the cost structure, he need not react to a low sampled price by questioning his choice procedure.
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F (p , 2) is [0, 1], the only degenerate cdf that yields the same expected profit for an indi-
vidual firm is the one that assigns all weight to p = 1

2 . For n > 3, the firm strictly prefers
F (p , n ) to all degenerate cdf s.

The reasoning behind part (i) of Corollary 1 consists of two parts. First, I argue that
in order to calculate the expected price of F (p , n ), we can restrict attention to what was
referred to earlier as “quasi-bait-and-switch” strategies. Moreover, F (p , n ) and the opti-
mal quasi-bait-and-switch strategy share the same expected price. Second, I show that
the optimal quasi-bait-and-switch strategy has an expected price of 1

2 , independently of
the number of competitors.

The first part rests on a result that if Fi is a best-reply, then Hi must be linear on its
support Ti . (This result has a precedent in Myerson (1993)—see Section 6.) Suppose
that Hi were strictly convex (concave). Then, the firm could shift weight in a mean-
preserving fashion from intermediate (extreme) price levels to extreme (intermediate)
levels, and thus raise its expected revenue. The linearity of Hi has a useful corollary.
Recall that firm i typically prefers its best-replying strategy to any distribution whose
support consists of a single element. Nevertheless, an alternative indifference principle
does hold in this model. If Fi is a best-reply, then firm i is indifferent between Fi and a
quasi-bait-and-switch strategy—i.e., a lottery whose support consists of two elements,
p∗ = inf(Ti ) and p ∗ = sup(Ti )—having the same expected price as Fi .

Let α denote the probability that the quasi-bait-and-switch strategy assigns to p∗.
The firm’s payoff is [αp∗ + (1− α)p ∗] · [αHi (p∗) + (1− α)Hi (p ∗)]. A few straightforward
steps in the proof of Proposition 1 establish that p ∗ = 1 and Hi (1) = 0. By an elementary
calculation, the expected price of the optimal quasi-bait-and-switch strategy is 1

2 , inde-
pendently of p∗ and Hi (p∗), hence of n . The “indifference principle” then implies that
this must be a property of F (p , n ), too.

For a rough intuition behind part (ii) of Corollary 1, let us revisit the retail banking
example of the Introduction. The pricing of a particular financial service has two in-
dependent functions: attracting clients and generating revenues. The service generates
revenues from clients who chose the bank because it offers good terms for another ser-
vice they happened to sample. As the number of competing banks increases, it becomes
harder to generate a clientele from intermediately priced services. Therefore, the bank
increasingly resorts to a strategy that relies on low-price services to attract clients and
on high-price services to generate revenues.

Indeed, when n > 2, F (p , n ) assigns positive probability (increasing with n) to nega-
tive prices. The interpretation is that firms price some dimensions below marginal cost.
These dimensions thus function as “loss leaders.” Proposition 1 thus provides an expla-
nation for this marketing tool as an obfuscation device. As competition becomes more
intense, loss-leader pricing is more ubiquitous, reflecting a greater effort to obfuscate.5

5Lal and Matutes (1994) provide an alternative account of loss-leader pricing, which focuses on the
role of advertising. They assume that consumers can discover prices of unadvertised items only at the
store, where they face a “hold-up.” Consumers have rational expectations: they anticipate the hold-up
problem and therefore reduce their willingness to shop. Firms use advertising as a commitment device
that partially resolves the hold-up problem. As a result, firms compete fiercely over advertised items, while
selling unadvertised items at the monopoly price.
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Asymmetric equilibria

The next result shows that if asymmetric equilibria exist, they are less competitive (in
terms of expected prices) than the symmetric equilibrium. Thus, the symmetric equi-
librium has a special status in the model, because it is the most competitive equilibrium.

PROPOSITION 2. In Nash equilibrium, E p i ≥ 1
2 for every firm i , and E p i = 1

2 for at least
n −1 firms.

The reasoning behind this result is as follows. The “indifference principle” holds
in asymmetric equilibrium. However, it turns out that we cannot rule out the possibil-
ity that Hi (1) > 0 for exactly firm i (because it is possible that i ’s competitors place an
atom on p = 1). The implication is that among the simple distributions with support
{inf(Ti ), sup(Ti )}, the optimal distribution has an expected price above 1

2 . By the “indif-
ference principle,” this is also a property of Fi .

The question whether asymmetric equilibria exist remains open for n > 2. However,
for n = 2, the answer is negative.

PROPOSITION 3. When n = 2, there exist no asymmetric equilibria.

The proof involves imitation arguments: each firm i can guarantee a payoff of 1
2 E p j ,

by imitating j ’s strategy. When n > 2, such imitation arguments are unavailable, and
therefore I am unable to rule out asymmetric equilibria.

The role of the bounds on prices

The model assumes that p ∈ (−∞, 1]. The absence of a lower bound on prices guarantees
the continuity of the equilibrium strategy. As Appendix B illustrates, if a lower bound is
introduced, the equilibrium cdf places an atom on the lower bound for every sufficiently
high n . However, as long as the lower bound does not exceed 1

2 , Corollary 1 continues to
hold. Thus, the important aspects of Proposition 1 are insensitive to the lower bound.

If we assume that the upper bound on prices is any s > 0, then Proposition 1 contin-
ues to hold, except that p should be substituted everywhere with p/s . An upper bound
is necessary for equilibrium existence. Otherwise, firms could charge a low price with
positive probability in order to attract a clientele, while at the same time charging an
arbitrarily high price with positive probability, thereby generating unbounded profits.

A comment on welfare

Any welfare analysis in a model with boundedly rational consumers must be conducted
with caution, because we cannot infer their preferences from their behavior. Our S(1)
consumer chooses probabilistically, hence he does not behave as if he maximizes utility.
Therefore, if we wish to analyze the welfare implications of market competition, we need
to assume his “true” preferences over cdf s, because these are not revealed by his choices.

The most natural welfare criterion is that our consumer is risk-neutral, hence he
only cares about the expected price that he ends up paying. The reason he does not
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choose the firm that offers the lowest expected price is that due to his bounded rational-
ity, he is unable to identify that firm. If a “benevolent regulator” intervened and calcu-
lated the expected price of each alternative for him, the consumer would agree that the
best alternative is the one that minimized expected price. Under this criterion, the con-
clusion from Proposition 1 is that an increased number of competitors does not affect
consumer welfare.

This criterion does not take into account the consumer’s risk attitudes. If his “true”
preferences over cdf s display risk aversion, then the conclusion from Proposition 1
would appear to be that consumer welfare diminishes when n becomes larger, because
F (p , n + 1) is a mean-preserving spread of F (p , n ). However, our S(1) consumer is un-
aware of the actual structure of the cdf s he is facing. At the time he makes a decision,
there is no reason to assume that the risk he perceives has anything to do with the ac-
tual risk. Therefore, welfare judgments that involve risk attitudes are problematic in this
model.

4. COMPETITION AND INEFFICIENCY

As we saw in Section 3, when n > 2, firms assign positive probability to negative prices
in equilibrium. However, suppose that firms were unable to use negative prices as a
competitive device. An alternative way of attracting the consumer would be to invest in
the quality of their product. Raising the product’s quality level is a competitive strategy
that is less vulnerable to the criticisms voiced in Section 2 against negative prices. The
upshot is that investing in higher quality may introduce inefficiencies. The question is
how the firms’ pricing and quality decisions will respond to competition. In this section
I analyze a model in which firms control both the price and the quality of their product.

Formally, assume that firms simultaneously choose probability distributions over
quality-price pairs (q , p ) satisfying q ∈ [0,∞) and p ∈ [0, v (q )], where v (q ) is the con-
sumer’s willingness to pay for quality level q . If the consumer chooses a firm that offers
the realization (q , p ), his payoff is v (q )−p and the firm’s payoff is p −q . Assume that v
is increasing and strictly concave, and that v (q )−q attains a unique maximum at some
q ∗ > 0. Denote the maximal surplus v (q ∗)−q ∗ by s .

It is easy to show that the Pareto frontier consists of all quality-price pairs (q , p ) for
which either (i) q = q ∗ and p ∈ [0, v (q ∗)] or (ii) q > q ∗ and p = 0. Thus, as long as we
wish to sustain a consumer payoff below v (q ∗), it is efficient to produce the surplus-
maximizing quality level q ∗ and use prices to induce the desired payoff; whereas if we
wish to sustain a consumer payoff v̄ > v (q ∗), it is efficient to produce q such that v (q ) =
v̄ and set the price to zero. This characterization of the Pareto frontier is a consequence
of non-negativity of prices. In this section, the firm’s sole instrument for raising con-
sumer payoff beyond v (q ∗) is to produce q > q ∗. This feature plays an important role
in the results of this section. If negative prices were allowed, we would have q = q ∗

throughout the Pareto frontier.
Consumers choose according to the S(1) procedure: they draw one sample point

from each firm and select the firm that maximizes v (q )−p in their sample (with a sym-
metric tie-breaking rule). The outcome of the consumer’s decision is a new, indepen-
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dent draw from his chosen distribution (or a sequence of such draws). The interpreta-
tions advanced for the basic model are appropriate here, too.

At first glance, this model looks like a considerable complication of the basic model,
because now a strategy is a probability distribution over pairs. A simplification is im-
mediately made possible thanks to the following observation. Because the firm is the
residual claimant of any surplus that it produces, it has no reason to offer a quality-price
pair outside the Pareto frontier. (The proof is elementary and therefore omitted.)

REMARK. In Nash equilibrium, firms assign probability zero to quality-price pairs that
do not belong to the Pareto frontier.

Thus, a strategy for a firm can be represented as a probability distribution over the
unidimensional variable π= (1/s )(p −q ), which represents the firm’s normalized profit
conditional on being chosen by the consumer. For every π, the Pareto frontier assigns a
unique consumer payoff w (π), such that w (π) = v (−sπ) when π ≤ −q ∗/s , and w (π) =
s − sπwhen −q ∗/s <π≤ 1. Observe that w (·) is strictly decreasing.

We have thus reduced the extended model into our basic formalism. Define firm i ’s
strategy as a cdf Fi over π. Similarly, define Hi (π) as the probability that in a random
sample (πj )j 6=i drawn from (F1, . . . , Fn ), πj > πi for every j 6= i (plus a term contributed
by the breaking of ties). Firm i ’s payoff is u i (F1, . . . , Fn ) = Eπi · E Hi , where Eπi is the
firm’s expected profit conditional on being chosen, and E Hi is the probability that it is
chosen. Both expectations are taken w.r.t. Fi .

This simplification implies that the characterization of symmetric equilibrium is ex-
actly the same as in Section 3. However, it has different welfare implications.

PROPOSITION 4. The game has a unique symmetric Nash equilibrium. Each firm plays
the cdf given by expression (1).

COROLLARY 2. The symmetric equilibrium satisfies the following properties:

(i) Eπ= 1
2 for every n ≥ 2.

(ii) For every n > 2v (q ∗)/s , q >q ∗ with positive probability.

(iii) Expected surplus is strictly decreasing with n, for n > 2v (q ∗)/s .

The number of competitors does not affect the industry’s expected equilibrium prof-
its, which are equal to half the maximal surplus, regardless of n . However, when the
number of firms is sufficiently high, the result is inefficient in terms of expected social
surplus. Moreover, the loss in expected surplus is increasing with n and borne entirely
by the consumer. In this regard, greater competition has a negative effect on both con-
sumer and social welfare.

The adverse welfare effects of competition are a consequence of the mean-
preserving spread property of F (π, n ). Because there are diminishing returns to quality,
the surplus function v (q )−q is strictly concave. Recall that every π ∈ [−q ∗/s , 1] corre-
sponds to the surplus-maximizing quality level q ∗ and every π < −q ∗/s corresponds to
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an “excessively high” quality level q >q ∗. Thus, if we rewrite the surplus as a function of
π, it is strictly increasing and strictly concave in the range (−∞,−q ∗/s ] and constant in
the range (−q ∗/s , 1]. Since F (π, n + 1) is a mean preserving spread of F (π, n ), expected
surplus weakly decreases with n . Furthermore, because F (·) assigns positive probability
to q >q ∗ for n > 2v (q ∗)/s , expected surplus strictly decreases with n in this range.

Thus, the forces that drive the inefficiency result are: (i) the mean-preserving-spread
property of F (π, n ), which reflects the firms’ increased effort to obfuscate in response to
greater competition, and (ii) diminishing returns for quality. Non-negativity of prices is
crucial for this result. If firms could offer arbitrarily negative prices, the Pareto frontier
would be linear, and expected surplus in equilibrium would be s , regardless of n .

The mean-preserving spread property has another implication. As n becomes
larger, more weight is concentrated in two ranges of quality-price pairs: (1) the neigh-
borhood of (q ∗, v (q ∗)), and (2) the set {(q , p ) |q >q ∗, p = 0}. This means that as the num-
ber of competitors increases, quality and price are more negatively correlated. Some
dimensions are characterized by surplus-maximizing quality and the monopoly price,
while other dimensions are characterized by excessive quality and zero price.

5. OUTSIDE OPTIONS AND “MARKET EXPLOITATION”

When consumers make judgment errors, they are vulnerable to exploitation by rational
firms. Therefore, it makes sense to ask what happens when they have an outside option
that enables them to escape the market. Let us then extend the model of Section 2,
such that the consumer’s choice set is {0, 1, . . . , n}, n ≥ 2, where 0 denotes the outside
option. Let F0 be an exogenous cdf associated with the outside option. The support of
F0 is T0 ⊆ (−∞, 1). In particular, F0 does not assign an atom to p = 1. Extend the S(1)
procedure to encompass the outside option: consumers draw one sample point from
each cdf. Faced with a sample (p0, p1, . . . , pn ), the consumer chooses i ∈ arg mini p i

(with a symmetric tie-breaking rule).

PROPOSITION 5. In Nash equilibrium, E p i = 1
2 for every firm i = 1, . . . , n.

Thus, the presence of an outside option does not cause firms to act more competi-
tively in terms of expected price. Recall that the restriction to symmetric equilibrium in
Section 3 implies that Hi (1) = 0 for every firm i . The assumption that F0 does not assign
an atom to p = 1 has the same implication in the present model. By the “indifference
principle,” the expected price induced by firm i ’s best-reply is 1

2 .
One may argue that there is a difficulty in extending the S(1) procedure to encom-

pass the outside option. Consumers are naturally much more familiar with an outside
option, whereas the S(1) procedure reflects lack of familiarity with all alternatives. There
is a simple way to resolve this difficulty without changing the model, by assuming that
F0 is a degenerate cdf that assigns probability one to some p0. The interpretation is not
that the outside option is genuinely deterministic, but that the consumer knows the ex-
pected price associated with the outside option.

Note that as long as p0 < 1, Proposition 5 holds in this case. Thus, even if the con-
sumer knows that p0 <

1
2 , all firms choose E p = 1

2 in equilibrium. When the consumer
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chooses a firm over the outside option, he makes a decision error and loses 1
2 −p0 in ex-

pectation. Since E Hi > 0 for every firm i in equilibrium, consumers experience “market
exploitation” in equilibrium: they are worse off than if they were barred from entering
the market.

If we rule out negative prices, this effect becomes extreme. Assume that firms are
restricted to cdf s whose support is a subset of [0, 1].

PROPOSITION 6. Let n > 2. Suppose that F0 assigns probability one to some p0 ∈ [0, 1
2 ).

Then, in symmetric Nash equilibrium, all firms play a distribution that assigns probabil-
ity 1

2 to each of the extreme prices, p = 0 and p = 1.6

Thus, introducing a familiar, low-price outside option causes firms to raise the vari-
ance of their cdf to the maximal possible level. The intuition for this result is simple.
When the consumer knows p0, firms do not compete at all in the range p > p0. They
prefer to shift weight in this range to the extreme point p = 1, and this generates a large
revenue for the firm, conditional on being chosen. Having secured this revenue, the
firms can afford to compete fiercely in the low-price range (below p0) in order to at-
tract a clientele. When p0 is sufficiently low, this causes the firms to place all remaining
probability on the other extreme point p = 0.

According to Proposition 6, the probability that the consumer ends up choosing a
firm in symmetric equilibrium is 1− ( 1

2 )
n (as long as p0 > 0). This expression increases

with n , and converges to one as n → ∞. Thus, if there are many firms in the market,
the consumer experiences an almost certain welfare loss of 1

2 −p0, relative to a world in
which only the outside option is available.

The consumer is exploited in this case because he chooses a firm over the outside
option whenever p i < p0 for some firm i . In other words, he behaves as if he believes
that for every firm i , Fi assigns probability one to p i . This is a “belief in the law of small
numbers” writ large. The consumer treats a single sample point drawn from a firm’s cdf
as if it has the same informational content as full knowledge of p0. Moreover, he disre-
gards the fact that a firm’s cdf is the result of a strategic choice, while the outside option
is exogenous. For failing to draw these distinctions, the consumer suffers a welfare loss.

I find it interesting that introducing an attractive outside option has the same effect
as raising n in the model without an outside option. Both interventions typically con-
stitute effective competition policies in standard I.O. models. They continue to have a
similar effect in the present model, albeit in an orthogonal direction.

6. DISCUSSION

The premise of this paper is that consumers and firms often differ in their ability to
perceive cdf s (or objects that can be described as cdf s). This asymmetry implies that
firms might be able to take advantage of consumers, by raising the variance of the cdf s
that they offer. It turns out that market competition does not protect consumers from
this form of exploitation. Indeed, the firms’ sole reaction to increased competition is

6When n = 2, the same result holds if p0 <
3
8

.
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to strengthen their obfuscation tactics. As a result, increased competition need not en-
hance consumer or social welfare, and may even cause them to deteriorate.

Extensions of the S(1) procedure

Osborne and Rubinstein (1998) propose a natural generalization of the S(1) procedure,
called S(K ), which in our context means that the consumer draws K independent sam-
ple points from every Fi and chooses the alternative with the lowest average price in
his sample. The parameter K reflects the extent to which the consumer’s perception of
alternatives falls short of full understanding.

There is some formal relation between the S(K ) procedure and the model of “infer-
ences by believers in the law of small numbers” due to Rabin (2002). In this model, an
individual decision maker observes repeated draws from an i.i.d. process, and tries to
learn the process. He updates his belief according to Bayes’ rule, as if the draws were
taken from an urn with K balls without replacement. After K observations, the deci-
sion maker believes that the urn is refilled. Thus, Rabin’s decision maker predicts the
(K + 1)-th observation just like an S(K )-agent. In other respects the two models are in-
comparable.

It is straightforward to modify the model of Section 2 by replacing the consumer’s
S(1) procedure with the more general S(K ) procedure. The firms’ payoff function con-
tinues to be E p i · E Hi , with a different definition of E Hi . Define F K

i as the cdf of the
average of K independent draws from Fi . Let Hi (p ) be the probability that the con-
sumer will choose firm i , conditional on the event that the realization of F K

i is p . The
expectation of Hi should be taken with respect to F K

i .
In principle, one could adapt the equilibrium characterization technique of Sec-

tion 3 to the generalized model, by analyzing the model as if the firms choose F K
i , rather

than Fi . Indeed, some arguments can be replicated using this trick. However, the “indif-
ference principle” that plays a central role in Section 3 - namely, the payoff-equivalence
between the firm’s best-replying cdf and a two-outcome distribution—cannot be repro-
duced. The reason is that when K > 1, the support of F K

i can never consist of exactly
two outcomes.

In some cases, this model does lend itself to simple analysis. For instance, suppose
that prices are forced to lie in the range [0, 1], and that there is an outside option that
offers the good at p = 0. Then, in Nash equilibrium, all firms play a probability distri-
bution that assigns probability K /(K +1) to p = 0 and 1/(K +1) to p = 1. When n →∞,
industry profits converge to 1/(K +1).

Another way to enrich the S(1) procedure is to endogenize the number of sample
points that consumers draw from every Fi . According to the “learning” interpretation
of the model proposed at the end of Section 2, the consumer’s sample is a collection
of “anecdotes,” gathered during a brief phase of “word of mouth” learning. Given this
interpretation, one could argue that the consumer is likely to hear more anecdotes about
firms with a larger clientele. I conjecture that an extension of the model that addresses
this concern will introduce a subtle anti-competitive effect. If consumers have a more
accurate perception of a firm with a larger clientele, then it is harder for such a firm to



Theoretical Economics 1 (2006) Competition over agents 221

take advantage of consumers. This creates an incentive for firms to reduce their clientele
by offering less attractive cdf s.

Can the model be rationalized?

The modeling procedure in this paper is non-standard, in that it sets up a market model
in which the two sides differ in their ability to grasp the firms’ strategies. The ques-
tion arises, whether one could “rationalize” the model in some sense. This question has
two distinct meanings. First, we may ask whether the consumer’s individual behavior,
although non-rational in our market model, might be rational in some other market en-
vironment. The answer is affirmative. If the consumer believes that each firm offers the
same terms in all contingencies, and that these terms are drawn from some common
distribution, then he might as well sample one contingency only. A “rationalization” of a
similar sort is to assume that the consumer is interested only in the price of the contin-
gency that he samples, because he gets “reimbursed” by some third party in every other
contingency. In the former case, we rationalize the consumer’s behavior by assuming
that he believes in an incorrect model. In the latter case, we rationalize it by assuming
that it is the analyst who gets the model wrong.

A more interesting question is whether market equilibria in our model can be repli-
cated as sequential equilibria in another market model, in which our imperfectly ratio-
nal consumer is substituted with an imperfectly informed, expected-utility maximizing
consumer. To explore this question, consider the following variant on the model of Sec-
tion 2. The consumer moves after the firms choose their strategies, but is unable to
observe their choice. However, he can condition his action on a random draw from
(F1, . . . , Fn ). What is the relation between sequential equilibria in this game and Nash
equilibria in our model?

There is a sequential equilibrium in this incomplete-information game, in which all
firms play the cdf F (p , n ) given by Proposition 1, and the consumer plays the strategy
induced by the S(1) procedure—i.e., choosing the firm with the highest realization in his
sample—both on and off the equilibrium path. In equilibrium, the consumer is indif-
ferent among all firms, hence he does not mind playing this strategy. However, there are
many other sequential equilibria, which sustain different market outcomes. For exam-
ple, we can sustain the fully monopolistic outcome (in which all firms charge p = 1 with
probability one), using suitable out-of-equilibrium beliefs. In this sense, it is impossible
to say that the incomplete-information game rationalizes the basic model. The same
holds for the model of Section 4.

When we add an outside option F0 with E p0 <
1
2 , the verdict is even harsher. Suppose

that the consumer is risk-neutral (a similar argument can be devised for any other risk
attitude). Then, there exists no sequential equilibrium that rationalizes the results of
Section 5. The reason is that in sequential equilibrium, it is impossible for all firms to
play a cdf with E p = 1

2 and for the consumer to choose a firm over the outside option.
The failure to rationalize the model in this case follows from the rational-expectations
aspect of sequential equilibrium: the consumer can never be systematically fooled. He
will not choose an alternative that is more expensive on average.
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Relation to the redistributive politics literature

At the purely formal level, there is a surprising link between the basic model and the
redistributive politics model due to Myerson (1993). In Myerson’s model, n political
candidates play a simultaneous-move game. Each candidate chooses an income redis-
tribution policy subject to a balanced-budget constraint. The policy can be represented
as a cdf with an exogenously given expected value. Each voter learns his net income
under each candidate’s policy and votes for the candidate that promises him the highest
net income. The candidates’ sole motive is to be elected.

Myerson examines several electoral systems. Under proportional representation—
a system Myerson does not analyze in his paper—candidate i ’s payoff function is E Hi

as defined in this paper. The statement that firms in the present model prefer higher-
variance price distributions is analogous to the statement that candidates in Myerson’s
model prefer more unequal income distributions (interpreted as cultivation of favored
minorities). If we assume that the budget in Myerson’s model is 1

2 , the symmetric equi-
librium strategy is as given by Proposition 1.

Of course, the main formal difference between the above version of Myerson’s model
and the present model is that the latter imposes no constraint on the expected value of
cdf s. The formal linkage emerges precisely because E p i turns out to be independent of
n in equilibrium. The extended models of Sections 4 and 5 have an analogue neither in
Myerson (1993) nor in the literature that followed it.

Myerson’s model was further developed by Lizzeri (1999), who added an intertem-
poral element in order to incorporate budget deficits. Lizzeri and Persico (2001, 2005)
extended the model by assuming that candidates can choose between redistribution
and investment in a public good. Although the latter is more efficient, in equilibrium
candidates tend to prefer the former. This type of inefficiency is unrelated to the in-
efficiency result of Section 4. Rather, it is analogous to the “obfuscatory effect” of the
basic model, according to which a firm may prefer a noisy cdf with expected price β to
a degenerate cdf that assigns probability one to a lower price β ′ <β .

APPENDIX

A. PROOFS

The following notation is employed throughout the appendix. Let x = 1−p . If the con-
sumer’s gross valuation of the firms’ product is 1, then x represents his net payoff if he
pays the price p . Redefine firm i ’s strategy as a cdf G i over [0,∞), such that G i (x ) is the
probability that the consumer’s net payoff is at most x . Redefine Ti as the support of G i .

Given the profile (G j )j 6=i , redefine Hi (x ) as the probability that the consumer
chooses firm i , conditional on x i = p in his sample. Let E Hi denote the expected value
of Hi , where the expectation is taken with respect to G i . When each firm plays a cdf with
a well-defined density g , the definitions of Hi and E Hi have a simple form:

Hi (x ) =Πj 6=i G j (x ) and E Hi =

∫ ∞

0

Hi (x )g i (x )dx .
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I begin with a lemma that holds for all versions of the model. A similar result appears
in Myerson (1993).

LEMMA 1 (Linearity of H ). Suppose that G i is a best-reply to G−i . Then, all the points
{(x , Hi (x )) | x ∈ Ti } lie on a straight line, except possibly for a subset that is assigned prob-
ability zero by G i . Moreover, for every x ∈ [inf(Ti ), sup(Ti )] \Ti , (x , Hi (x )) cannot lie above
the line.

PROOF. If Ti consists of two outcomes, the first part of the result holds trivially. Let x1,
x2, x3 ∈ Ti , x1 < x2 < x3. Assume first that G i places an atom on each of the three points.
Let αk denote the mass placed on xk .

Suppose that (x2, H (x2)) does not lie on the line connecting (x1, H (x1)) and (x3,
H (x3)). Then, firm i can deviate to a strategy G ′i that differs from G i only in the probabil-
ities it assigns to x1,x2,x3, such that α′k =αk +εk and ε1x1+ε2x2+ε3x3 = 0. If (x2, H (x2))
lies below the line connecting (x1, H (x1)) and (x3, H (x3)), we set ε1, ε3 > 0 and ε2 < 0. If
(x2, H (x2)) lies above the line connecting (x1, H (x1)) and (x3, H (x3)), we set ε1, ε3 < 0 and
ε2 > 0. In both cases, E x i is the same according to G i and G ′i , but E Hi is higher under
G ′i . Therefore, (x2, H (x2))must lie on the line connecting (x1, H (x1)) and (x3, H (x3)). Note
that the argument we applied when (x2, H (x2)) lies above the line connecting (x1, H (x1))
and (x3, H (x3)) does not rely on the assumption that x2 ∈ Ti . The second part of the
claim thus immediately follows.

Extending the proof to the case in which G i does not place an atom on xk is straight-
forward. Assume that G i assigns positive probability to the neighborhood of xk . Assume
further that G−i is continuous at xk . By definition, G i assigns zero probability to the set
of points for which this is not the case. It follows that Hi is continuous at xk . Then,
we can reproduce the above deviations, which involve shifting weight from xk to other
points, only now the weight is shifted from all points in an arbitrarily small neighbor-
hood of xk . �

COROLLARY 3 (An indifference principle). Let G i and G ′i be a pair of cdfs that satisfy two
conditions: (i) E p i is the same according to G and G ′; (ii) T ′i ⊆ Ti . Then, G ′i and G i

generate the same expected payoff for firm i , given G−i .

PROOF. By Lemma 1, Hi is linear on Ti (except possibly for a subset assigned zero prob-
ability by G i ). Therefore, any mean-preserving shift of weight within the support of Ti

also preserves expected payoff. �

The following pair of lemmas pertain to Propositions 1–4.

LEMMA 2. Suppose that there is no outside option. Then, in Nash equilibrium, G i is con-
tinuous in the range (0,∞) for every firm i .

PROOF. Suppose that G i assigns an atom to x ∈ (0,∞). Then, there exists ε > 0 such
that no other firm j assigns any weight to (x − ε,x ]—because by shifting this weight to
x + ε, firm j could increase E H j by an amount that is bounded away from zero, while
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infinitesimally reducing E x j . But this means that firm i can profitably deviate by shifting
the atom on x slightly downward—this leaves E Hi unaffected, while reducing E x j . This
contradicts the assumption that (G i )i=1,...,n is an equilibrium. �

LEMMA 3. Suppose that there is no outside option. Then, in Nash equilibrium, inf(Ti ) = 0
for every firm i .

PROOF. Assume that there exists a firm i such that inf(Ti ) > 0. Denote inf(Ti ) = x ∗i .
Then, for every j 6= i , H j (x ) = 0 for all x < x ∗i . It follows that if G j assigns positive weight
to [0,x ∗), all the weight is assigned to x = 0. Suppose that firm i deviates by shifting all
the weight it assigns to (x ∗i ,x ∗i+ ε) to some arbitrarily small x > 0. Then, it reduces E x i

by x ∗i ·G i (x ∗i +ε). At the same time, it reduces E Hi byΠj=1,...,n [G j (x ∗i +ε)−G j (x ∗i )]. If ε > 0
is sufficiently small, the reduction in E Hi is negligible in comparison to the reduction in
E x i , and therefore the deviation is profitable. �

PROOF OF PROPOSITION 1. Let G denote the symmetric equilibrium strategy. Let T de-
note the support of G and denote y = sup(T ).

STEP 1. T = [0, y ].

PROOF. We have already shown that inf(T ) = 0. Suppose that G assigns zero probability
to some interval (x1,x2) ⊂ (0, y ). Then, any firm i can deviate by shifting to x1 all the
weight it assigns to (x2,x2+ε). If ε is sufficiently small, the reduction in E Hi is negligible
in comparison to the decrease in E x i , hence the deviation is profitable. Ã

STEP 2. G is continuous over [0, y ].

PROOF. We have already shown that G is continuous in (0, y ]. If G assigns an atom to
x = 0, then any firm i can deviate by shifting the weight from x = 0 to x ′ > 0. If x ′ is
sufficiently small, the increase in E x i is negligible in comparison to the increase in E Hi ,
and therefore the deviation is profitable. Ã

STEP 3. E x = 1
2 .

PROOF. By Step 2, H (0) = 0. By Lemma 1, H (x ) = (1/y ) · x for every x ∈ [0, y ]. Let us
turn to calculating y . Suppose that any firm i switches from G to a simple lottery G ∗

such that: (i) T ∗ = {0, y }; (ii) E x is the same under G and G ∗. By Corollary 3, the firm is
indifferent between G and G ∗. Let α denote the probability that G ∗ assigns to y . Then,
the firm’s payoff from G ∗ is [1−αy − (1−α) ·0] · [αH (y )+(1−α)H (0)]. But since H (0) = 0,
this expression can be simplified into (1−αy ) ·α ·H (y ).

If y ≤ 1
2 , then the value of α that maximizes the simplified expression is α = 1. But

this means that the expected value of x according to G ∗ is y , whereas the expected value
of x according to G is µ < y . By Corollary 3, firm i is indifferent between G and a lot-
tery G ′ with support {0, y } and E x = µ. Because G ′ generates a lower expected payoff
than G ∗, it follows that G , too, is not a best-reply, a contradiction. Therefore, y > 1

2 . In
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this case, the value of α that maximizes this expression is α = 1/(2y ), yielding E x = 1
2

according to G ∗. But if the optimal lottery among the lotteries with support {0, y } has an
expected value E x = 1

2 , then by Corollary 3, this must be the expected value according
to G as well. Ã

The only remaining step is to derive the equilibrium strategy. In equilibrium, E Hi =
1/n for every firm i , by symmetry. Therefore, the expected payoff from G must be 1/(2n ).
By Corollary 3, this is also the firm’s expected payoff from G ∗. Since the expected payoff
from G ∗ is (1−αy ) ·α, we obtain y = 1

2 n . Therefore, H (x ) = 2x/n for every x ∈ [0, 1
2 n ].

Because G is continuous over T , we obtain

G (x ) = n−1

Ç

2x

n
.

When all firms play G , we have a Nash equilibrium. The reason is that since H is linear
over [0, 1

2 n ], every cdf over this support satisfying E x = 1
2 is a best-reply, according to

Corollary 3.
Substituting back p = 1−x and F (p ) = 1−G (x ), we obtain the formula given by (1).�

PROOF OF COROLLARY 1. Part (i) is immediate, because the construction of G relies on
the result that E x = 1

2 . As to part (ii), a simple calculation shows that for every x ∈
[0,∞),
∫ x

0
G (w )dw is increasing with n . By a well-known result (see Mas-Colell et al.

1995, p. 198), this is equivalent to saying that G (x , n +1) is a mean-preserving spread of
G (x , n ). �

PROOF OF PROPOSITION 2. Lemmas 1–3 and Corollary 3 hold for any Nash equilibrium.
Our objective is to show that there is at most one firm i for which Hi (0)> 0. Denote the
number of firms that place an atom on x = 0 by k . If k ≤ n − 2, then Hi (0) = 0 for
every firm i . If k = n , then Hi (0) > 0 for every firm i . But this means that any firm
can profitably deviate by shifting weight from x = 0 to an arbitrarily small x ′ > 0. Now
suppose that k = n − 1—i.e., there is exactly one firm j that does not place an atom on
x = 0. In this case, H j (0)> 0 and Hi (0) = 0 for every i 6= j .

The rest of the proof follows Step 3 of the proof of Proposition 1. Denote y = sup(Ti ),
and recall that by Lemma 3, inf(Ti ) = 0. Suppose that firm i switches from G i to a simple
lottery G ∗i that satisfies: (i) T ∗i = {0, y }; (ii) E x is the same under G i and G ∗i . By Corol-
lary 3, the firm is indifferent between G i and G ∗i . Let α denote the probability that G ∗i
assigns to y . Then, the firm’s payoff from G ∗i is [1−αy −(1−α) ·0] ·[αHi (y )+(1−α)Hi (0)].
If Hi (0) = 0, then E x = 1

2 , following the same arguments as in Step 3 of the proof of

Proposition 1. If Hi (0)> 0, then the optimal value of α yields E x < 1
2 , which is therefore

also true under G i . But this means that in Nash equilibrium, E x ≤ 1
2 for all firms and

E x < 1
2 for at most one firm. �

PROOF OF PROPOSITION 3. Let us begin by stating three properties of the supports of
the firms’ strategies, denoted T1 and T2:
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• T1 = T2 = T . Assume the contrary, and suppose that firm i assigns positive proba-
bility to some interval (b , c ), whereas firm j does not. Then, firm i can deviate by
shifting all this weight nearer b .

• inf(T ) = 0. This is due to Lemma 3.

• T is connected. Assume that an interval (x1,x2)⊂ (0, sup(T )) is assigned zero prob-
ability by G1 and G2. Then, any firm i can deviate by shifting all the weight it as-
signs to (x2,x2+ε) to x1. If ε is sufficiently small, the reduction in E Hi is negligible
in comparison to the decrease in E x i , hence the deviation is profitable.

The combination of these properties yields T1 = T2 = T = [0, y ].
By Lemma 2, both G1 and G2 are continuous in (0, y ]. Moreover, at least one firm,

say firm 2 w.l.o.g., does not place an atom on x = 0 (otherwise, it would be profitable
for any firm to shift weight from x = 0 to some arbitrarily small x ′ > 0). Therefore, G2

is continuous in [0, y ]. By Lemma 1, both H1 and H2 are linear in T . By Corollary 3,
each firm i is indifferent between G i and the lottery G ∗ that assigns probability 1/(2y ) to
x = y and probability 1− 1/(2y ) to x = 0. Because G2 does not assign an atom to x = 0,
G2(x ) =H1(x ) = (1/y )·x for every x ∈ [0, y ]. Thus, by Proposition 2, E x1 = 1

2 and E x2 ≤ 1
2 .

Let us show that y ≤ 1. Because H1(0) = 0, firm 1’s expected payoff from G ∗—and
therefore, from G1 as well—is 1

2 · 1/(2y ). It follows that E H1 = 1/(2y ). Firm 1’s expected
payoff must be at least 1

4 . Otherwise, the firm could deviate from G1 to G2 (i.e., imitate
the opponent). By symmetry, both firms would have E H = 1

2 , and because E x2 ≤ 1
2 , firm

1’s payoff would be at least 1
4 , a contradiction. We have thus established that 1

2 ·1/(2y )≥
1
4 , hence y ≤ 1.

Let us now show that y ≥ 1. Because G2(x ) = (1/y ) · x for any x ∈ [0, y ], E x2 = 1
2 y .

We have shown in the preceding paragraph that E H1 = 1/(2y ). Since there are only two
firms, E H2(x ) = 1− E H1(x ). Therefore, firm 2’s payoff is (1− y /2) · (1− 1/(2y )). Firm 2’s
expected payoff from G ∗—and therefore, from G2 as well—is at least 1/(4y ) (and strictly
higher, if H2(0) > 0, in case G1 places an atom on x = 0). We have thus established that
(1− y /2) · (1−1/(2y ))≥ 1/(4y ), hence y ≥ 1.

It follows that y = 1, such that E x2 = E x1 = 1
2 . Suppose that G1 places an atom on

x = 0, such that H2(0) > 0. By Proposition 2, E x2 <
1
2 , a contradiction. It follows that

G1 ≡G2 ≡U [0, 1]. �

PROOF OF COROLLARY 2. Part (i) is the same as in Corollary 1. Part (ii) is a simple con-
sequence of the observation that the infimum of the support of F (π, n ) is 1− 1

2 n , which
is lower than −q ∗/s for n > 2v (q ∗)/s . Let us turn to part (iii). By part (ii) of Corollary 1,
F (π, n + 1) is a mean-preserving spread of F (π, n ). The surplus produced by the firm
is by definition w (π) + sπ. But this function is concave in π, and strictly concave in
the range π < −q ∗/s . Therefore, expected surplus decreases with n , and strictly so for
n > 2v (q ∗)/s . �

PROOF OF PROPOSITION 5. Lemma 1 and Corollary 3 hold for any Nash equilibrium,
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whether or not there is an outside option. By assumption, G0(0) = 0, hence Hi (0) = 0 for
every firm i . We can now apply Step 3 in the proof of Proposition 1. �

PROOF OF PROPOSITION 6. Denote x0 = 1− p0. Let G be the symmetric equilibrium
strategy. Let T denote its support and denote y = sup(T ). By definition, H (x ) = 0 for ev-
ery x < x0. Therefore, G assigns zero probability to (0,x0], so that G (x ) =G (0) for every
x ≤ x0. Also, because H (0) = 0, we can apply Step 3 in the proof of Proposition 1, hence
that E x = 1

2 according to G , and firms are indifferent between G and the simple lottery
that assigns probability 1/(2y ) to x = y and probability 1− 1/(2y ) to x = 0. Therefore,
a firm’s equilibrium payoff is 1

2 · 1/(2y ) ·H (y ). By symmetry, E H = (1/n ) · [1−G (0)]n .

Therefore, the firm’s equilibrium payoff is 1
2 · (1/n ) · [1−G (0)]n . It follows that H (y ) =

(2y /n ) · [1−G (0)]n . Suppose that y < 1. By the same reasoning as in Lemma 2, G is
continuous in x ∈ (x0, 1), hence H (y ) = 1, but then we obtain n = 2y · [1−G (0)]n , contra-
dicting the assumption that n > 2. It follows that y = 1.

Assume that G assigns positive probability to the interval (x0, 1). Let us show that
G (x ) > G (0) for every x > x0. Assume the contrary, and let x ∗ denote the infimum of
Ti ∩ (x0, 1]. Then, H (x ) = 0 for every x < x ∗. Suppose that firm i deviates by shifting
all the probability it assigns to (x ∗,x ∗+ ε) to some x > x0 arbitrarily close to x0. Then,
the firm manages to reduce E x by x ∗ · [G (x ∗ + ε)−G (x ∗)]. At the same time, it reduces
E Hi by [G (x ∗ + ε)−G (x ∗i )]

n . If ε is sufficiently small, the reduction in E x i more than
compensates for the reduction in E Hi . Therefore, the deviation is profitable.

By Lemma 1, H is linear over T . Note that 0 ∈ T —otherwise, G would assign posi-
tive weight only to elements above x0 (which itself exceeds 1

2 ), contradicting our result
that E x = 1

2 . Because H (0) = 0 and because G assigns positive probability to elements
above and arbitrarily close to x0, H (x ) tends to x0 ·H (1) as x tends to x0. At the same
time, by definition, H (x ) tends to [G (0)]n−1 as x approaches x0 from above. Using our
expressions for limx→x+0

H (x ) and H (1), we obtain:

G (0)n−1 = x0 ·
2

n
· [1−G (0)]n .

Because E x = 1
2 , it must be the case that G (0)≤ 1

2 . And since x0 ≥ 1
2 , we obtain 2n +1≥

2n , a contradiction for n > 2.
The only remaining possibility is that G assigns probability 1

2 to each of the extreme
points x = 0 and x = 1. Let us verify that this is an equilibrium. Given that firm i ’s
opponents all play G , Hi (x ) = 0 for every x ∈ (0,x0), Hi (x ) = ( 1

2 )
n−1 for every x ∈ (x0, 1)

and Hi (1) = (2/n )·[1−( 1
2 )

n ]. For n > 2, Hi (x )< x ·H (1) for every x ∈ (0, 1). Therefore, firm
i never wants to deviate to a strategy whose support is not {0, 1}. Among the lotteries
whose support is {0, 1}, G is optimal. Therefore, G is a best-reply. �

B. NON-NEGATIVE PRICES

When the set of feasible prices is [0, 1], thus ruling out negative prices, symmetric Nash
equilibrium in the basic model is characterized as follows.
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PROPOSITION 7. The game has a unique symmetric Nash equilibrium. Each firm plays
the cdf

F (p , n ) =







1−An 0≤ p ≤bn

1− n−1

Ç

2(1−p )
n

bn < p ≤ 1
(2)

where bn = 1− 1
2 n (An )n−1 and An is the unique solution in [ 1

2 , 1] of the equation

(An )n −2An +1= 0. (3)

Corollary 1 holds for this result, too.
What is the shape of F (p , n )? For n = 2, F (p , n )≡U [0, 1]. For every n > 2, the support

of F (p , n ) is T = {1} ∪ [bn , 1], where bn increases with n and tends to one as n → ∞;
F (p , n ) contains an atom (whose mass is 1− An ) on p = 0; the atom’s size increases
with n and tends to 1

2 as n → ∞; F (p , n ) contains no other atom. As n → ∞, F (p , n )
approaches the distribution that assigns probability 1

2 to each of the two extreme points
p = 0 and p = 1. This limit distribution has greater variance than any other cdf over
[0, 1]. The convergence is fast: A6 ≈ 0.51; b6 ≈ 0.9.

PROOF OF PROPOSITION 7. I continue to employ the notation of Appendix A: x = 1−p
and G (x ) = 1− F (1− p ). Lemmas 1 and 3, as well as Corollary 3, hold in this model.
Lemma 2 holds, except that G is continuous over (0, 1), rather than (0,∞). In fact, using
the same reasoning as in Step 2 in the proof of Proposition 1, we can show that G is
continuous over [0, 1). Therefore, Step 3 in the same proof holds here, too. It follows that
in symmetric equilibrium, E x = 1

2 , and therefore each firm earns a payoff of 1/(2n ). It
remains to characterize the support and exact formula of G .

STEP 1. There exists a number b ∈ (0, 1], such that T = [0, 1−b ]∪{1}.

PROOF. First, let us first show that y = 1. Suppose that y < 1. Because G is atomless on
[0, 1), G (y ) = 1 and H (y ) = 1. Each firm can deviate to a lottery that assigns probability
1/(2y ) to y and probability 1− 1/(2y ) to 0. The firm’s payoff would be 1

2 · 1/(2y ), which
is larger than 1/(2n ), a contradiction. It follows that y = 1. Suppose that x ∈ T for some
x ∈ (0, 1). By Lemma 3, 0 ∈ T . Using the same reasoning as in Step 1 in the proof of
Proposition 1, we can show that every x ′ ∈ (0,x )must also belong to T . Ã

STEP 2. H (1) = 2/n.

PROOF. By Step 3 in the proof of Proposition 1, each firm is indifferent between G and
a lottery G ′ with support {0, y } and E x = 1

2 . By Step 1, y = 1. Therefore, each firm
is indifferent between G and the lottery that assigns probability 1

2 to each of the two
extreme points, x = 0 and x = 1. The firm’s payoff from this lottery is 1

2 ·
1
2 H (1). Since this

must be equal to 1/(2n ), H (1) = 2/n . Ã

Step 2 implies that G places an atom on x = 1 for every n > 2. Otherwise, H (1)would
be equal to one and the firm’s payoff would exceed 1/(2n ), a contradiction. Let us denote
the size of this atom by 1−A.
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STEP 3. G must be given by expressions (2)–(3).

PROOF. By Step 1, T = [0, 1−b ]∪ {1}. By Lemma 1, H is linear over T . We have estab-
lished that H (0) = 0 and H (1) = 2/n . Therefore, H (x ) = 2x/n for every x ∈ T . Because G
contains no atoms below x = 1, H (x ) =G n−1(x ) for every x ∈ [0, 1−b ]. Therefore, in this
range:

G (x ) = n−1

Ç

2x

n
.

Only the exact values of b and A remain to be determined. By definition, G (1−b ) = A.
The relation between b and A is thus given by:

b = 1− 1
2 nAn−1.

Let us now determine the value of A. Let g be the density function induced by G in the
interval [0, 1−b ]. By definition,

E x = (1−G (1−b )) ·1+
∫ 1−b

0

x g (x )dx .

Because E x = 1
2 , we can retrieve G (1−b ) from the expression for E x , obtaining

1
2 =

1
2G n (1−b )−G (1−b )+1.

which can be rewritten as
An −2A +1= 0.

Substituting p = 1− x and F (p ) = 1−G (x ) for every p > 0, we have the desired charac-
terization. Ã

STEP 4. The strategy profile (G , . . . ,G ) is a Nash equilibrium.

PROOF. First, let us derive H . Given the expression for G , it follows immediately that
H (x ) = 2x/n for every x ≤ 1− b and H (x ) = 2(1− b )/n for every x ∈ (1− b , 1). Let
us check that H (1) = 2/n . Denote m = n − 1. The precise definition of H (1) in the
symmetric equilibrium is

H (1) =
m
∑

k=0

�m
k

�

k +1
Am−k (1−A)k .

We can rewrite:
�m

k

�

k +1
=

m !

(m −k )! ·k ! · (k +1)
·

m +1

m +1
=

1

m +1
·
�

m +1

k +1

�

.

Denote j = k +1. Then

m
∑

k=0

�m
k

�

k +1
Am−k (1−A)k =

1

A(m +1)
·

m+1
∑

j=1

�

m +1

j

�

Am+1−j (1−A)j .
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By a standard binomial expansion

�

m +1

0

�

·Am+1+
m+1
∑

j=1

�

m +1

j

�

Am+1−j (1−A)j = 1.

Therefore, Am+1+A(m +1) ·H (1) = 1. But since Am+1−2A+1= 0, it follows that H (1) =
2/(m +1)≡ 2/n .

Thus, H (x ) = 2x/n for every x ∈ T , and H (x ) ≤ 2x/n for every x /∈ T . We have seen
that the simple lottery that assigns probability 1

2 to each of the extreme points is a best-
reply. But G has the same expected value and it shifts weight from the extreme points
only to points x for which (x , H (x )) lies on the straight line connecting (0, 0) and (1, 2/n ).
Therefore, G is a best-reply, too. Ã

The proof of Proposition 7 is now complete. �
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