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Abstract— Video decoding complexity modeling and prediction is 
an increasingly important issue for efficient resource utilization in 
a variety of applications, including task scheduling, receiver-
driven complexity shaping, and adaptive dynamic voltage scaling. 
In this paper we present a novel view of this problem based on a 
statistical-framework perspective. We explore the statistical 
structure (clustering) of the execution time required by each video 
decoder module (entropy decoding, motion compensation, etc.) in 
conjunction with complexity features that are easily extractable 
at encoding time (representing the properties of each module’s 
input source data). For this purpose, we employ Gaussian mixture 
models (GMMs) and an expectation-maximization algorithm to 
estimate the joint execution-time – feature probability density 
function (PDF). A training set of typical video sequences is used 
for this purpose in an offline estimation process. The obtained 
GMM representation is used in conjunction with the complexity 
features of new video sequences to predict the execution time 
required for the decoding of these sequences. Several prediction 
approaches are discussed and compared. The potential mismatch 
between the training set and new video content is addressed by 
adaptive online joint-PDF re-estimation. An experimental 
comparison is performed to evaluate the different approaches and 
compare the proposed prediction scheme with related resource 
prediction schemes from the literature. The usefulness of the 
proposed complexity-prediction approaches is demonstrated in an 
application of rate-distortion-complexity optimized decoding.  

Index Terms— Complexity Modeling, Complexity Prediction, 

Video Coding, Parametric Density Estimation, Clustering Methods, 

Statistical Analysis, Prediction Theory 

I. INTRODUCTION 
he proliferation of media-enabled portable devices based 
on low-cost processors makes resource-constrained video 

decoding an important area of research [12]–[16]. In addition, 
modern state-of-the-art video coders tend to be highly content-
adaptive [11] [17] in order to achieve the best compression 
performance. Therefore, they exhibit a highly-variable 
complexity and rate profile [18]. This makes efficient resource 
prediction techniques for video decoding a particularly 
important and challenging research topic. As a result, several 
fine-grain multimedia adaptation frameworks that collaborate 
with power-aware hardware modules to optimize battery life 
under quality constraints have been proposed [16] [19]. In 
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order for the adaptation to be efficient, much work has recently 
focused on the video encoding and decoding complexity 
prediction [5]–[12] [14] [18]-[20].  

In this paper, following a statistical-learning perspective, 
we investigate the intrinsic relationship of the execution time 
requirements of each decoding module with simple feature 
variables representing the source and algorithm characteristics. 
We term the per-module execution time as real complexity 
metric (RCM) and try to establish whether it can be predicted 
from feature variables easily-obtainable during encoding time. 
We demonstrate the usefulness of predicting module-specific 
execution time in scalable video decoders with an application 
that performs selective decoding of compressed content based 
on complexity-distortion optimization. 

Statistical and machine learning techniques have been 
widely used in the image and video processing literature [1] 
[2]. However, the current work is the first systematic attempt 
to bring these statistical tools in the emerging domain of video 
decoding complexity analysis and complexity prediction (a 
system overview is given in Section II). Our statistical point of 
view in these problems is inspired by the intuition that similar 
video sequences (in terms of content characteristics), when 
decoded under similar conditions, should produce a similar 
decoding complexity profile. The statistical analysis of our 
experimental results (Sections III and IV) confirms our 
expectation and furthermore provides useful insights into 
properties of video decoding complexity. Using these insights 
as well as domain-specific knowledge, we modify and properly 
extend standard statistical methods and models for the problem 
of video decoding resource prediction (Sections V-VII). 
Applications of decoder-driven bitstream shaping based on the 
derived results are discussed (Section VIII). 

II. SYSTEM OVERVIEW AND MODEL DESCRIPTION 
The proposed system consists of two main blocks as seen in 

Figure 1: the joint PDF estimation module for RCM–
complexity features, which operates during the offline training, 
and the online complexity prediction module. The adaptive 
PDF re-estimation is an optional enhancement module that 
increases the system prediction accuracy but also the overhead 
for on-line complexity prediction. 

We assume that there is a joint PDF characterizing the 
statistical behavior of RCMs ,

cm
nGk  (where cm is the RCM 

type) and the complexity features ,
cm
n Gb . For each video frame, 

these features can be easily extracted based on the intra 
frames, the motion-compensated difference frames and the 
motion vectors produced during encoding time and can be 
stored or transmitted along with the compressed bitstream with 
minimal overhead [7]. Unlike the RCMs that depend on the 
particular algorithm used to decode and reconstruct the video 
data as well as on the implementation platform, these features 
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depend only on the source properties (frames and motion 
vectors). The PDF estimation (Section III) provides the 
prediction module with the model parameters (denoted by 

GM
 ). When a more advanced model is used based on 
Markov-chains (Section V), the prediction module also utilizes 
the model‘s state transition probabilities. In this case, there is 
also feedback from the decoder with the true values of RCMs 
of previously-decoded frames ( 1,

cm
n Gk   in Figure 1) in order to 

assess the prediction performance and recalibrate the model. 
The prediction module is provided with the complexity feature 
vector ,

cm
n Gb  for each unit to be decoded (e.g. a video frame or 

a GOP) and, in conjunction with the PDF estimation that was 
performed off-line, attempts to predict the RCMs of these 
units. When the adaptive PDF re-estimation module is present, 
it adaptively predicts the RCMs using either the offline-trained 
GMM model or the current sequence statistics (Section VI). A 
resource management system can utilize the complexity 
prediction for quality vs. energy tradeoffs [13] [16], or for 
scheduling the execution in multiple threads/processors [8]. 

 
Figure 1. Proposed complexity-driven system architecture. 

A. Module-specific Execution Times as Real Complexity 

Metrics  
The decoding part of most modern video coders consists of 

an entropy decoding module, an inverse-transform module, a 
motion compensation module and a pixel interpolation module 
(for fractional-pixel motion compensation) [3] [5] [11] [21]. In 
our recent work [6] [7], we identified an associated ―generic‖ 
cost metric for each module. In this paper we are considering 
the execution time as the real complexity metric of each 
module. Even though execution time measurements are tied to 
a particular decoder platform, they capture the ―real‖ 
complexity of processing (decoding) a particular compressed 
bitstream. Hence, they are relevant for a variety of applications 
such as operating system task scheduling [13], adaptive 
shaping of a compressed bitstream [7], dynamic voltage 
scaling methods [19], scheduling in multiple processors [8], 
etc. In addition, even though we assume that training can be 
performed based on a particular decoder of interest and by 
using representative sequences, we remark that, during online 
encoding, the required decoding execution time cannot be 
measured in most application scenarios, since decoders run on 
remote platforms

1
.  

The module-specific breakdown of execution time is 
performed by partitioning the decoding software into the 
following modules: entropy decoding functions ( ED_tics ), 
inverse transform function ( IT_tics ), motion compensation 
( MC_tics ), and fractional-pixel interpolation module 
( FI_tics ).  

 
1 In video streaming applications, encoding is typically performed in a 

powerful server workstation while decoding may occur in personal computers, 

laptops, portable video players, cell-phones, etc. 

For single-threaded single-processor execution, the 
summation of the execution time for all modules participating 
in the reconstruction of a video frame represents the decoding 
complexity for the particular frame [9] [11] [12] [15]. All 
remaining parts of the decoder cause negligible execution time 
overhead in comparison to these modules. A resource monitor 
can be implemented at the receiver that measures the processor 
cycles (―tics‖) [22] required for the completion of the 
operations performed by each module, in order for them to be 
used during the training process. In this paper, we follow the 
generic approach of assuming that the required time for the 
processing of every frame by each module can be measured in 
real-time. The vast majority of general-purpose processors or 
programmable digital signal processors have built-in registers 
for this purpose [22]. This process is of very low-complexity 
and provides accurate measurements, which can be 
straightforwardly converted to time measurements based on 
the frequency of the underlying processor [22]. Moreover, 
minimal software instrumentation is required and this can be 
done in a similar fashion for a variety of underlying 
architectures and software implementations. 

For each video framen , with 1 n N   and N  the total 
number of frames in our sample space, we define the following 
complexity features:  

 the percentage of decoded non-zero transform coefficients, 
( )Tp n ;  

 the percentage of decoded non-zero motion vectors, ( )Mp n  
(out of the maximum possible motion vectors per video 
frame);  

 the percentage of non-zero interpolated fractional-pixel 
positions, ( )Ip n ;  

 the sum of magnitudes of the non-zero coefficients, 

nonzero( )n ;  
 the sum of the run-lengths of zero coefficients runlen( )n .  
These features depend only on the input source data 

(motion-compensated difference frames and motion vectors). 
Hence they can be computed at encoding time and transmitted 
to the decoder with the compressed bitstream [6] [7].  

B. Model Variables and Notation 
The elementary complexity that we model and predict in 

this paper is the sum of the module-specific RCMs over the 
same-type frames in a GOP. Following terminology used in 
open-loop video coding [17] [21], our adaptation unit (AU) 
will be each temporal level in every GOP. Notice that the 
temporal levels can be seen as categories of frame types within 
each GOP [21]. In our experiments, we have grouped together 
temporal level 5 and 4 (corresponding to intra frames (I) and 
uni-directionally predicted (P-) frames respectively) since they 
consist of one frame per GOP. Temporal levels 1~3 
correspond to hierarchies of bi-directionally predicted (B) 
frames using variable block-size motion estimation and 
compensation (similar to the hierarchical B pictures of 
H.264/AVC [11] [21]). Finally, temporal level 0 corresponds 
to the output (reconstructed) video frames. Hence, the theory 
and methods of this paper can be applied for complexity 
modeling in conventional I-, P-, and hierarchical B-frames of 
hybrid coders [3] [21] (e.g. in H.264/AVC [11]).  

In order to segment all the available frames of each 
temporal level (frame type) into uniquely-identifiable subsets, 
we define the parameter index set 

( ,  tlev; SEQ, GOP)G R . The parametersR , tlev , SEQ  
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and GOP  refer respectively to the streaming bitrate, the 
temporal level, and the specific video sequence and GOP-
number within the video sequence that the sample adaptation 
unit belongs to. Moreover, in our notation we use the 
semicolon (;) to separate the leftmost parameters that remain 
constant from the rightmost parameters that are the indices to 
our sample subset.  

For the adaptation unit n  that is characterized by the 
parameter index

2
 ( ,  tlev,  SEQ, GOP)G R , we denote the 

numerical value of RCM cm  (where 
cm {ED_tics,IT_tics,MC_tics,FI_tics} ) by ,

cm
nGk . 

Additionally, using the above notation, let ,
cm
n Gb  denote the 

( 1s  )-dimensional
3
 feature vector associated with the RCM 

cm  of the AU n  indexed by the parameter index setG . 
Notice that the value for ( 1s  ) as well as the identity of the 
relevant features to each RCM vary and will be determined 
later with a pruning process. In the most general case, if we 
consider all the (not evidently correlated) features, we have: 

,
cm nonzero runlen[ ( )  ( )  ( )  ( )  ( )]n G

T M Ip n n n p n p nb    (1) 

By joining ,
cm
nGk  and ,

cm
n Gb , we define the s -dimensional 

sample vector , , ,
cm cm cm
n G nG n Gk    x b . Using the corresponding 

Greek letters for random variables, we define the random 
variable cm

G  for the RCM cm  in the parameter set indexed 
by G , the feature vector random variable cm

G  and the vector 
random variable cm cm cm

G G G      . We will refer to cm
G  

as a ‗target complexity multi-variable‘ and denote its s -
dimensional joint probability density function as cm cm( )GP  . 
We will estimate this joint density function using the training 
dataset 1 2

cm cm cm cm{ , ,..., }G NX  x x x , where N  is the total 
number of AUs in the parameter set G . Then, we will use this 
density estimate, in conjunction with other statistical 
information, to predict the RCMs from instantiations of the 
complexity features.  

C. Problem Description 
In typical resource prediction problems we are concerned 

with the mean absolute error. In this paper, however, we use 
the LMSE criterion to quantify the accuracy of the prediction. 
Optimal complexity predictors in the LSME sense can be 
expressed analytically and also require little computational 
effort during the on-line prediction. Moreover, LSME-based 
predictors tend to produce individual errors of smaller 
magnitude [23] by penalizing large errors more heavily than 
e.g. the 1L -norm criterion. 

Let online,
cmˆn G  denote the estimator of the RCM value 

online,
cm
n Gk  of the sample set G  that was used to train the 

estimator. Here onlinen  denotes the current AU index inside 
the video sequence that is being predicted. The minimization 
problem we solve, according to the least mean square error 
criterion, is 

                      online online

,online
cm

, , 2
cm cm

ˆ
ˆmin E ( )

n G

n G n Gk


   (2) 

where the expectation is over all the adaptation parameters 
(e.g. temporal levels), all the AU indices (e.g. all the GOPs) 
and all the RCMs cm . The above problem assumes 
knowledge of the joint RCM–feature probability density 

 
2 When no semicolon is used, all the parameters are constant and the index 

set reduces to a single index. 
3 Note that we use 1s   dimensions to simplify notation, so that our 

target variable has s  dimensions. 

functions cm cm( )GP   defined in the previous section. To obtain 

cm cm( )GP   from our training data, we need to address the 
probability density estimation problem. As explained and 
justified next, we employ a GMM for the PDF and use the EM 
algorithm to perform parametric density estimation.  

III. GAUSSIAN MIXTURE MODELING OF RCMS-COMPLEXITY 

FEATURES JOINT PDFS 
In this section we introduce the Gaussian mixture model for 

the RCM–complexity-features statistical modeling. In order to 
tie our statistical analysis with prediction results, we next 
present our baseline prediction algorithm that is an LMSE-
optimal predictor naturally customized for the GMM 
formulation. Indicative results for both the statistical properties 
and the prediction performance are presented and certain 
interesting dimensions of decoding complexity are highlighted. 

A. Gaussian Mixture Model for PDF Estimation of RCM–

Complexity-features 
For illustrational purposes, we display our approach for the 

complexity of entropy decoding (i.e. RCM ED_tics ) and 
using our domain knowledge, we consider the three 
complexity features that are intuitively more related 
to ED_tics . Thus, our complexity target variable 

cm cm cm
G G G     b  will be 

 ED_tics ED_tics nonzero runlen
G G G G G

Tp          

for some sample set indexed byG . Of course, with the 
appropriate selection of features and modifications in the 
dimensions of the variables and the model, the approach 
generalizes to any subset of complexity features. 

Let ED_tics ED_tics
ˆ ( )GP   denote the density estimate of the 

four-dimensional entropy decoding complexity target variable  

ED_tics ED_tics nonzero runlen
G G G G G

Tp        . 

The Gaussian mixture model assumes that the density estimate 
can be written as a mixture of Gaussian components: 

  ED_tics ED_tics ED_tics, ED_tics
1

ˆ ( ) ( )
m

G
G G G G

m
m

M

P w





    (3) 

where GM  (number of components) is determined through 
information-theoretic criteria as described in Subsection IV.B. 
Here, ED_tics( )

m

G G

   denotes a 4-D Gaussian distribution 

ED_tics, ED_tics,( , )G G
m mm C  with parameters 

 ED_tics, ED_tics,,G G
m m m  m C , where ED_tics,

G
mm  is the 

mean vector: 

ED_tics nonzero runlen
ED_tics, , , , ,G G G G

T

G
m m m m p m

       
m

  
(4) 

and ED_tics,
G

mC  is the 4-by-4 positive definite (symmetric) 
covariance matrix, compactly written as: 

 ED_tics ED_tics ED_tics

ED_tics ED_tics ED_tics

, ,
ED_tics,

, ,

G G G

G G G

G G
m m

G
m G G

m m

 



 
 
 
 
  

b

b b

C C
C

C C
 (5) 

where 
ED_tics ED_tics cm, ,

, G G G
G G

m m  b
C C and 

cm ,G
G
mb

C   are the RCM, 

RCM-feature and the feature covariance matrices respectively. 

The parameters ED_tics,
G

mw  are the mixing (weight) 
coefficients, which denote the relative importance of each 
Gaussian in the total distribution. They satisfy the 
normalization condition 
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                            ED_tics,1
1GM G

mm
w


  (6) 

For brevity, we will refer to each of the components as 
Gaussian component m  and to a specific Gaussian mixture 
with parameters { | 1 }m Gm M    as the mixture

GM
 .  

Domain knowledge suggests that these features should be 

highly correlated. To determine the extent of their inter-

dependence, we computed the cross-correlation of nonzero  

and each of runlen  and Tp , for all the temporal levels of nine 

representative video sequences and several decoding bitrates. 

With the exception of the ―Sailormen‖ sequence that had 

weaker correlation coefficients 
nonzero runlen

0.9  
 

 and 

nonzero
0.85

Tp
 


, all the rest of the sequences had 

coefficients below 0.98  and above 0.97  respectively, which 

confirms our intuition. The strong dependence of the three 

features in our coder implementation indicates that using all of 

them is redundant. Hence, we performed dimensionality 

reduction of our sample space and kept only one of the three 

features ( nonzero ) for our statistical analysis. Experiments 

with various subsets of the features in a scalable coder [17] 

yielded no tangible improvement in prediction results as 

compared to the cases when only nonzero was used (we omit 

these experiments here for brevity of description). Still, the 

more generic model description is useful for other coding 

frameworks, where usage of several features may lead to better 

prediction results. 

B. Online Prediction based on Complexity Features and 

Offline Training 
Let ˆ ,1m Gm M    denote the m -th Gaussian 

component estimated through EM in Section IV. The 
probability of a certain (s -dimensional) RCM cm  and its 
feature pair cm cm, )( G G  given ˆm  is:  

 

cm

cm

cm

cm

cm cm 2

,cm

cm ,

,cm1

cm ,

1ˆ, | )
2

1
      exp -

)2 ( )

         ( )
)( )

(

(

(

G

G

G

G

G G
m s G

m
T

G
m
TG T

m

G
mG

m TG T
m

P









 
















 

                          
                           

C

C

 (7) 

The Gaussian form of the above joint conditional 
probability yields analytic solutions for the optimal LMSE 
estimator [23], which, given ,

cm
n gb and ˆm , is: 

   
cm cmcm cm cm

,
cm, cm cm

1
,

cm, ,, ,

ˆE | ,ˆ

G GG G G

G G n g
m m

G G n g
m mm m 

 

 


    

  
b b

b

C C b
(8) 

The last equation gives an explicit estimator for the 

instantiation of each RCM cm  using the available online 

complexity feature vector ,
cm
n Gb  and the parameters of the 

Gaussian component ˆ
m . Since the parameter training is 

performed offline, as described in Section III, the matrix 

inversion and multiplication in (8) are pre-computed; thus only 

one matrix-vector multiplication and vector subtraction are 

performed online. Notice that the derived expectations of (8) 

are mixed according to the mixing coefficients G
mw  in (3), i.e. 

the probability that ˆ
m  is responsible for cm

G , prior to 

observing ,
cm
n Gb  . The conditional expectation cmˆG  for the 

whole GMM 
GM

  given the observed complexity feature 
,

cm
n Gb  is thus 

                         cm cm,1
ˆ ˆGMG G G

m mm
w 


  , (9) 

which, given the derived estimators of (8) and the mixing 
coefficients G

mw , is computationally inexpensive in 
comparison to the complexity of video decoding. We remark 
that the online model execution complexity was negligible in 
comparison to the video decoding complexity (less that 2% in 
all cases).  

C. Statistical Analysis of RCMs using the Proposed Scheme 

and Observations 
Our proposal to predict complexity through offline PDF 

training on the RCM–feature space and LMSE prediction 
using the current feature value is based on the assumption that 
similar (in the complexity sense) sequences mostly lie on the 
same regions of the RCM–feature space. Thus, when these 
regions do not overlap excessively across the feature direction, 
features can efficiently discriminate and predict the RCM 
values.  

In the following figures and tables we show indicative and 
motivating results from a representative set of standard CIF 
test video sequences. The spatial-domain version of the video 
coder [17] used in our experiments encoded the first 256 
frames of 9 sequences: ―Stefan‖, ―Silence‖, ―Sailormen‖, 
―City‖, ―Raven‖, ―Football‖, ―Coastguard‖, ―Paris‖ and 
―Harbour‖ using multi-frame variable block-size motion 
compensated prediction and update steps within multiple 
decomposition (temporal) levels. For each GOP, the total 
number of temporal levels

4
 was set to 4 (i.e. three sets of 

hierarchical B-frames and one P-frame). Each GOP had 16 
frames. In all figures and tables, we show results from 
prediction with GOP granularity (i.e. the sum of the RCMs and 
features in each temporal level for each GOP were calculated 
leading to seq 16N   points per sequence) and prediction 
with temporal level granularity. The results are normalized to 
indicate the average number of processor cycles (―tics‖) per 
pixel (computed across temporal levels and GOPs). 

We start by presenting an indicative example for the 
complexity measurements of the motion compensation (using 

Mp  as complexity feature) and the fractional-pixel 
interpolation module (using Ip  as feature). For each case we 
present results corresponding to an indicative temporal level 
(prediction hierarchy). Apart from the data points, we also 
depict the fitted Gaussian mixture model. Figure 2.(i)-(ii) 
present the related results. The corresponding prediction 
results shown in the titles are presented in more detail in Table 
1 and will be discussed separately.  

The first thing to notice in Figure 2.(i)-(ii) is the self-
clustering of most sequences‘ GOPs in the RCM–complexity-

 
4 In a four-temporal-level video coder, entropy decoding is performed in 

levels 4 through 1 (nothing is transmitted for level 0 – which corresponds to 

the output frames of the reconstructed video sequence) and for the intra-

frames of the additional (5th) level. Reconstructed frames via motion 

compensation are created in levels 3 through 0 (no frames are created via 

motion compensation in temporal level 4 and 5). 
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feature space. We observed similar results across temporal 
levels and bitrates. This ―self-clustering‖ property will be 
further discussed and exploited for increased complexity 
prediction accuracy in Section V. There are however some 
notable exceptions, such as the sports sequence ―Football‖ and 
the sequence ―Raven‖ that have irregular motion of multiple 
objects and also camera motion. Moreover, in the case 
of FI_tics , on top of the self-clustering behavior we note a 
strong linearity in the RCM–complexity-feature space, which 
could potentially lead to a simpler model. Overall there also 
appears to be some ―cross-clustering‖ among different 
sequences that indicates the similarity of sequences in a 
decoding complexity sense. For instance, notice that GOPs 
from ―Paris‖ and ―Silence‖ cluster together and this behavior 
was consistent across most rates and temporal levels. Although 
the cross-clustering is quite weaker in general than the self-
clustering, it can play a complementary role to the later and 
enhance prediction during changes in video content. We also 
remark that the cases without clustering that are present in the 
results of Figure 2.(i)-(ii) will be handled based on techniques 
that improve the prediction based on feedback from the 
decoder RCM measurements (introduced in a later section). 

In Table 1 we present the corresponding prediction errors 
by predicting the measurements of the training set via the 
optimal estimator of (8). The errors are calculated as the mean 
relative error

5
 (in percentages) per temporal level of each GOP 

and each sequence: 

max

max

, ,
cm cm1

,
cm1

ˆ
mean_rel_err(tlev,GOP,SEQ)= 100%

N nG nG
n

N nG
n

k k

k











(10) 

where the index n  is over all the GOPs in that particular 
temporal level (frame type) for one sequence and 

5 tlev
max seq 2N N    based on the properties of temporal 

levels in the coder used in our experiments [17]. The cases that 
exhibit large prediction error will be handled with approaches 
based on on-line measurement feedback as explained later. 

For the entropy decoding and the inverse transform RCMs, 
i.e. ED_tics  and IT_tics , we present an indicative example 
at high bitrate, where the complexity measurements are more 
prominent and exhibit higher variability across the different 
video sequences. We are using nonzero

G as feature, based on 
the dimensionality reduction proposed previously (Subsection 
III.A). Figure 2.(iii)-(iv) and Table 2-Table 3 contain 
indicative results. The scaling of the measurements is 
normalized relative to the average value of all RCMs present 
in our experimental pool, in order to show that these metrics 
have low importance in the overall decoding execution time. 
Notice that this is true even for the presented case of tlev=5 , 
which corresponds to intra frames.  

Overall, similar remarks to the motion-compensation and 
interpolation cases regarding the self- and cross-clustering 
apply here as well. The provided prediction examples for 
IT_tics (Table 2) demonstrate that the vast majority of the 
mean relative prediction errors are below 10% and actually in 
quite a few cases they are below 5%. On the other hand, worse 
prediction performance is obtained for the ED_tics (Table 3). 
However, this large error is not expected to affect the overall 

 
5 Even though the natural error criterion to report for LMSE estimation 

and prediction would be SNR, in order to adhere to the relevant resource 

prediction literature [12]–[16], we report the error based on (10). 

complexity prediction significantly, since ED_tics  and 
IT_tics  do not contribute a lot to the overall complexity. 
Since the prediction is performed per GOP, the errors in each 
temporal level can partially cancel out. Thus, the relative 
errors per temporal level serve as indicators of how well the 
prediction is done per temporal level, but their average is 
generally more than the actual mean total error per GOP for a 
particular sequence. The later is given under the ―Total1‖ 
column in Table 2 and Table 3. 

Although we made observations about clustering that are 
behind the proposed algorithms and the prediction results of 
Table 1-Table 3, the target of this paper is complexity 
prediction and not the clustering itself. Weaker clustering may 
still lead to good prediction and vice-versa. Moreover, the 
results in this section do not contain all the improvements we 
propose in our framework (such as adaptive prediction based 
on on-line measurement feedback) and they are provided in 
this section as an initial motivation.  

IV. OFFLINE TRAINING FOR THE GMM PARAMETERS 

ESTIMATION 

To learn the parameters of the GMM we employ an EM 

algorithm that is biased toward our goal for reduced 

complexity prediction error. The following subsection 

introduces the basic EM scheme for our problem while 

Subsection IV.B discusses the appropriate selection of the 

GMM components based on an information-theoretic criterion. 

A. Parameter Estimation with the Standard Expectation-

Maximization Algorithm 
To specify a d -dimensional Gaussian function one needs d  

coordinates for the mean and  

1 1
( 1)

2 2

d
d d

       
 

elements for the covariance matrix (the rest are given from the 
symmetry). For a GMM 

GM
 with GM  Gaussian components, 

1GM   mixing coefficients (due to the normalization 
condition) are required. Thus, in the general case, the number 
( )Ga M  of parameters one needs to specify in (3) is 

           
1

( ) ( 1) 1 1
2G Ga M M d d d
         

 (11) 

For our specific example with the four-dimensional entropy 
decoding complexity target variable [see (4), (5)] we would 
need ( ) 15 1G Ga M M    parameters. However, under the 
dimensionality-reduction imposed on the problem, this number 
decreases significantly to ( ) 6 1G Ga M M   . 

The estimation of the GMM parameters is performed 
through the Expectation-Maximization (EM) algorithm [24] 
[25]. EM is an iterative optimization procedure that attempts 
to maximize the likelihood function of the data: 

                   ,
cm cm, cm1

ˆ( ; ) ( )
G MG

NG n G
M n

L X P 
  x  (12) 

or equivalently the more convenient log-likelihood function of 
the data: 

                    ,
cm cm, cm

1

ˆ( ; ) log ( )
G MG

N
G n G

M
n

l X P 


   x  (13) 

over all the models 
GM

 . Here, ,
cm, cm
ˆ ( )

MG

n GP  x  denotes the 

probability of the sample ,
cm
n Gx  under the model

GM
 . 
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     (i)              (ii)             (iii)            (iv) 
Figure 2. Examples of GMM fittings and LMSE prediction results for (i) motion compensation and (ii) fractional interpolation RCMs, (iii) 

ED_tics , and (iv) IT_tics . Each experimental point corresponds to one GOP and the results are presented in average number of 

processor tics per pixel of each GOP.  

 MC_tics  FI_tics   MC_tics  FI_tics  

Stefan 10.69 4.17 Football 6.09 3.21 

Silence 37.84 16.43 Coastguard 11.21 7.74 

Sailormen 22.46 3.23 Paris 38.62 25.17 

City 13.95 2.94 Harbour 28.25 20.05 

Raven 11.12 3.58    

Table 1: Mean relative prediction error [percentage – as defined in (10)] per sequence for the motion compensation and fractional-pixel 

interpolation RCMs. The mean prediction error is the average of the prediction error for each temporal level of each GOP of each sequence. 

IT_tics  
Rate = 384Kbps Rate = 1536Kbps 

tlev=5,4 tlev=3 tlev=2 tlev=1 Total1 tlev=5,4 tlev=3 tlev=2 tlev=1 Total1 

Stefan 3.01 9.81 5.47 4.42 3.33 9.53 6.31 21.35 2.05 5.02 

Silence 2.93 7.61 7.55 6.29 4.58 1.20 6.34 7.33 2.20 3.29 

Sailor-men 3.70 4.69 5.00 2.98 2.71 1.28 6.59 9.50 3.63 4.06 

City 1.39 4.21 5.36 6.91 4.48 1.37 4.06 6.25 2.74 3.08 

Raven 2.04 8.46 5.39 2.46 2.40 3.78 4.02 12.19 4.05 4.62 

Football 4.47 12.23 7.50 6.45 4.81 6.24 5.96 43.04 3.14 12.65 

Coast-guard 2.16 5.38 9.22 8.83 6.67 5.59 6.80 15.49 5.11 5.41 

Paris 1.21 3.23 7.51 5.83 4.62 0.93 6.26 8.41 2.56 3.89 

Harbour 1.26 7.90 6.35 9.13 5.69 4.59 6.52 20.97 10.76 9.54 

Total2 2.46 7.06 6.60 5.92 4.37 3.84 5.87 16.06 4.03 5.73 

Table 2: Mean relative prediction error [percentage – as defined in (10)] per temporal level and sequence for IT_tics  , given nonzero
G  and 

the fitted Gaussian mixture from the offline training. 

ED_tics  
Rate = 384Kbps Rate = 1536Kbps 

tlev=5,4 tlev=3 tlev=2 tlev=1 Total1 tlev=5,4 tlev=3 tlev=2 tlev=1 Total1 

Stefan 31.19 47.95 26.73 50.26 40.33 19.00 13.68 14.02 20.08 14.00 

Silence 24.73 14.26 14.42 12.41 8.16 10.25 13.02 17.87 13.98 13.88 

Sailor-men 16.35 14.42 11.00 10.84 4.19 11.93 9.28 7.25 14.17 4.51 

City 18.07 9.99 6.65 12.56 9.62 2.93 4.40 7.38 7.42 5.30 

Raven 9.70 12.90 11.54 26.83 14.45 9.46 6.57 9.40 9.22 6.56 

Football 39.20 67.42 36.73 104.81 70.33 30.08 9.76 14.02 9.50 10.15 

Coast-guard 5.16 18.45 19.95 11.85 9.12 9.39 5.70 5.29 7.32 3.82 

Paris 27.25 11.08 15.07 17.73 17.97 10.34 13.72 21.36 19.61 17.44 

Harbour 4.16 23.78 16.40 16.76 12.87 9.56 7.97 9.86 12.89 7.28 

Total2 19.54 24.47 17.61 29.34 20.78 12.55 9.34 11.83 12.69 9.21 

Table 3: Mean relative prediction error [percentage – as defined in (10)] per temporal level and sequence for ED_tics  , given nonzero
G  and 

the fitted Gaussian mixture from the offline training. 

In the case of Gaussian mixture models, EM alternatively 
computes the expected values of the mixing coefficients per 
sample, also called responsibilities of each Gaussian 
component for each sample, given the current model 
parameters and data and then updates the model parameters 
given the new responsibilities and the data.  

In the expectation step, the responsibility of all 
components ˆ ,1m Gm M   , for all data samples 

,
cm ,1nG n N x , is computed using 
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, ,
, cm, cm cm, cm

1

ˆ ( ) ( )
G

m m

M
G G nG G G nG

n m m m
m

w w
 

  


 
    
  
x x  (14) 

In the maximization step, EM computes the weighted means 
and covariances  

                ,
cm, , cm ,

1 1

ˆ ˆ( ) ( )
N N

G nG
m n m n m

n n

i i  
 

  x  (15) 

, ,
, cm cm, cm cm,

1
cm,

,
1

ˆ ( ( ) ( )) ( ( ) ( ))

( , )

ˆ

N
nG G nG G

n m m m
G n
m N

n m
n

i i j j

C i j

  







      





x x
(16) 

as well as the updated mixing coefficients 

                               cm, ,
1

ˆ
N

G
m n m

n

w N


   (17) 

At the start of the algorithm the parameters of the GMM are 
picked randomly. In addition, a good way to construct initial 
guesses for the means is to pick any GM  samples at random. 
To initialize the covariance matrices, one can use the total 
covariance of the data, while the initial mixing coefficients are 
usually considered all equal to 1 / GM . 

The algorithm is assumed to have converged when the log-
likelihood function 

( )
cm( ; )

G

j G
M

l X  in the j -th iteration differs 
from 

( 1)
cm( ; )

G

j G
M

l X  less than the machine precision 
threshold  . 

Although the EM algorithm is well suited for GMM 
estimation, there are two potential problems with its practical 
application. Firstly, there are potential convergence problems. 
Like all the stochastic optimization procedures, EM can be 
trapped in local maxima of the log-likelihood and thus yield 
sub-optimal results, or suffer from the singularity matrix 
problem that will prohibit the algorithm from converging to a 
solution. These problems are ameliorated when a large enough 
number of random starting points (model parameters) are used 
during the training and then the best solutions are chosen.  

The second problem involves the selection of the 
appropriate complexity of the model in order to capture the 
true underlying probability distribution without over-fitting the 
training data. Our approach to handle this is discussed in the 
next subsection.  

B. Selection of Appropriate GMM Complexity – Number of 

GMM Clusters to Use 
There are several criteria that penalize higher model 

complexity. One of the most often used in conjunction with 
GMMs is the Bayesian information criterion (BIC): 

       BIC( )= 2 loglik( ) ( ) logG G GM M a M N     (18) 

where loglik( )GM  is the maximized log-likelihood function 
(the log-likelihood function for the best GMM *

GM
  with GM  

Gaussian components): 

 
max

, *
cm cm

1

loglik( )=max ( ; ) = log ( | )
G G

G n g
G M M

n

N

M l X P


  x (19) 

In this paper, we use BIC to determine the appropriate 
GMM complexity. Following [26], we select the number GM  
that gives rise to the first decisive local minimum for BIC , i.e.  

 
 

* min{ : BIC( 1) BIC( )

BIC( ) BIC( 1) }
G G G G

G G

M M M M

M M

  

  
             (20) 

In order to justify the usage of BIC in the domain of video 
decoding resource modeling and prediction (since BIC is a 
general model selection criterion), we compared the 
performance for values of GM  within a distance of three from 
the optimal GM

  according to the BIC, and picked the one that 
produced the best prediction results. Thus, even though the 
GMM was trained with the log-likelihood as cost function, 
among those optimal models close to the best BIC value, we 
selected the one that minimized our average prediction error 
per temporal level in our training set. This alternative method 
of model complexity selection yielded on average only 
marginally better prediction results (in most cases less than 
3%  improvement). Since the BIC also yielded less complex 
models (all of them containing less than seven Gaussian 
components), its use in our application domain is justified.  

V. ADAPTIVE ONLINE COMPLEXITY PREDICTION THROUGH A 

MARKOV CHAIN MODEL OF DOMINANT GAUSSIAN 

COMPONENTS 
The baseline prediction presented earlier builds upon the 

cross-clustering of similar sequences and thus is useful during 
scene changes or when no decoding complexity measurement 
feedback is provided. However, video source characteristics 
exhibit, in general, strong short-term autocorrelation that is 
exploited in state-of-the-art video coders. This autocorrelation 
manifests itself also in decoding complexity characteristics, as 
was shown by various authors through autoregressive and 
adaptive linear models of complexity [7] [16] and was further 
confirmed through the strong self-clustering behavior observed 
in section III.C. Here, we seek to take advantage of the strong 
short-term autocorrelation in our statistical modeling and 
prediction approach using Markov-chain models.  

A. Model Description and Intuition 
We model the sequence of Gaussian components m  that 

are expected to be responsible
6
 for the sequence of 

observations of the complexity target random variable cm
G  as 

a Markov chain. We call these Gaussian components 
dominant.  

Although we performed experiments with a variety of 
Markov-chain orders for our model, it appears that the 
majority of gain in the complexity-prediction results appears 
already from an order-1 model (―Markov-1‖). Hence, we focus 
our analysis on this case for the remainder of the paper. A 
detailed study on whether higher-order models are truly 
beneficial for some complexity-prediction applications under 
the proposed framework is left as a future topic.  

Let n
m  denote the Gaussian components that produces the 

complexity target variable instantiations 
,

cm online, {1,.., }n G n Nx and 1n
i
  the Gaussian component 

that produces the complexity target variable instantiation 
1,

cm
n Gx , for a particular video sequence and in a particular 

measurement set G , where onlineN  is the total number of AUs 
in the currently decoded video sequence. In most of the cases, 
and provided that the motion-compensation part of the coder is 

 
6Since our model is probabilistic, any Gaussian component can be 

responsible for a particular complexity variable instantiation, albeit with 

different - often very small - probability.    



IEEE Trans. on Circuits and Systems for Video Technology 

 

Copyright (c) 2008 IEEE. Personal use of this material is permitted.  

However, permission to use this material for any other purposes must be obtained from the IEEE by sending an 

email to pubs-permissions@ieee.org. 

 

8 

successful enough in capturing the intrinsic scene motion, we 
expect the complexity in the entropy decoding ,

cm
n Gx  (and 

similarly in the inverse filtering) to lie close to the complexity 
1,

cm
n Gx of the previous AU. Intuitively, this complexity 

‗inertia‘ is expected much more in the low temporal levels (i.e. 
prediction among frames that are closer to each other in time 
[27]) than in the high ones that are noisier and less correlated. 
In the case of shot changes, we expect jumps to different 
regions of the complexity sample space. Similar behavior is 
expected for the complexity of motion compensation and 
interpolation modules.  

Knowing 1n
i
  therefore provides valuable information for 

the probability to have the next dominant Gaussian 
component n

m . This information is captured in our model 
through the state transition probabilities 

1( , ) ( | ) n n
i jP i j P    that are trained offline from our 

training dataset as follows.  
We calculate for all training sequences and all the temporal 

levels the state transition probabilities 
1( , ) ( | ) n n

i jP i j P    of the dominant Gaussian 
components using the conditional occurrence frequencies from 
our training set. The identification of the dominant Gaussian 
components is done with comparison of the Gaussian 
component likelihoods for the observed complexity data ,

cm
n gx . 

The transition probability matrices are at most 6 6  since all 
our Gaussian mixtures contain at most six Gaussian 
components (see Section III). Typical transition probability 
matrices are illustrated in Table 4. We used the ED_tics  
results for temporal levels 5 and 4 at 512 kbps and 1024 kbps 
with the optimum number of Gaussian components 4GM   
and 3GM   respectively. The probability concentration in 
the diagonal agrees with the self-clustering property. 

To further motivate the importance of the correct 
identification of the dominant Gaussian component for the 
prediction accuracy, we present next an oracle prediction 
scheme that assumes this information is a-priori available. 

B. Selection of Appropriate GMM Complexity – Number of 

GMM Clusters to Use 
This subsection presents the results for an oracle algorithm 

that predicts the RCM given the complexity feature and under 
the assumption we know the dominant Gaussian component 
the current sample belongs to. This component can be trivially 
determined a-posteriori by finding the Gaussian component 
that yields the largest probability for the observed complexity 
metric-feature pair after decoding. However, this component 
cannot be determined a-priori in a completely reliable manner, 
since this essentially assumes that the RCM that we want to 
predict is known, which is true only after the decoding is 
completed. In this sense, the oracle algorithm is useful as an 
upper bound on the prediction accuracy that practical 
algorithms can achieve within our statistical framework. 

The results of Table 5 for ED_tics  are significantly better 
than our baseline algorithm and remain quite good even for 
low bitrates, where prediction tends to be more unstable. 
Similar improvements were observed for IT_tics  , 
MC_tics  , and FI_tics  with the average prediction error 
reducing to 3%, 7.5% and 2.5% respectively. Due to space 
limitations, these results are omitted. Thus, it becomes clear 
that the correct identification of the dominant Gaussian 
component can play a major role in the prediction accuracy 
results. In conjunction with the strong self-clustering property 

(see Section III) and through the transition probabilities of 
Table 4, we expect that the introduction of memory in our 
prediction scheme should provide significant improvements in 
the proposed framework‘s prediction performance. In other 
words, finding a-posteriori the dominant Gaussian component 
for the previous measurement will help us improve our 
prediction for the current measurement. An algorithm to 
accomplish this is described next. 

C. Online Prediction with Additional Online Measurement 

Feedback 
Assuming that after the offline training we have reliable 

estimates for the transition probabilities 
1( , ) ( | ) n n

i jP i j P     as well as the observation 
probabilities ,

cm( | )n g n
iP b  with , {1,.., }Gi j M , we propose 

the following extension to the prediction approach. 
Instead of using the (stationary) mixing coefficients G

mw  
obtained from the EM training of the offline data, we update 
the mixing coefficients at each prediction step to obtain a 
sequence n

mw . The update is done in two phases. We denote 
with ( )n n

m mw P    the current weight estimate that was used 
in the prediction of cm

n̂k . Once the decoding is done, we get the 
actual value cm

nk  as feedback from the decoder. Now, for all 
{1,.., }Gm M  we calculate (using Bayes‘ law) the posterior 

probability of having the m -th Gaussian component produce 
the current complexity observation: 

,
, cm cm

cm cm

,
cm cm

1

( , | ) ( )
( | , )

( , | ) ( )
G

n n G n n
n n n G m m
m M

n n G n n
i i

i

P k P
P k

P k P

 


 







b
b

b





 (21) 

We update the current probabilities for the Gaussian 
components by setting ,

cm cm( ) ( | , )n n n n G
m mP P k  b . Then, we 

obtain the probability to get each Gaussian component in the 
next AU using the state transition probabilities:        

                     1 1

1

( ) ( | ) ( )
GM

n n n n
m m i i

i

P P P    



    (22) 

The updated probabilities constitute the mixing coefficients 
1n

mw
  for the next AU complexity prediction. The rest of the 

prediction proceeds as in the static LMSE prediction case, 
with the only difference that we use 1n

mw
 in (9).  

VI. VARIANTS OF RCM PREDICTION 
In the next subsections we will consider alternative 

prediction schemes that can reduce in some cases either the 
prediction error or the prediction overhead. We will also show 
a way to adaptively enhance the trained PDF when ―atypical‖ 
sequences (in complexity terms) are encountered.  

A. Alternative Prediction Scheme: Maximum-Likelihood 

(ML) Prediction 
In this subsection we use again the LMSE estimator given 
,

cm
n Gb and ˆ

m , as described in (8), but instead of mixing the 
estimators for all the Gaussian components as in (9) we only 
consider the most likely Gaussian component  *

ˆ
m
  for the 

observed feature value ,
cm
n Gb : 

                      * ,
cm

ˆargmax ( | )n g
m

m
m P  b  (23) 

Once we obtain the solution of the optimization in (23) 
through GM  probability evaluations and 1GM   
comparisons, we use the modified LMSE estimator with one 
Gaussian component: 
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Gaussian 
Componen

t 
number 

j  1 j  2 j  3 j  4 

i 1 0.93 0.00 0.07 0.00 

i 2 0.00 0.76 0.22 0.02 

i 3 0.05 0.28 0.67 0.00 

i 4 0.00 0.08 0.00 0.92 
 

Gaussian 
Componen

t 
number 

j  1 j  2 j  3 

i 1 0.94 0.00 0.06 

i 2 0.00 1.00 0.00 

i 3 0.10 0.00 0.90 
 

Table 4: Examples of transition probability matrices. The j  th element of each row i  in the tables indicates the probability of transition from 

the dominant Gaussian component i  to dominant Gaussian component j  . 

ED_tics  
Rate = 384Kbps Rate = 1536Kbps 

tlev=5,4 tlev=3 tlev=2 tlev=1 Total1 tlev=5,4 tlev=3 tlev=2 tlev=1 Total1 

Stefan 6.81 11.36 9.06 7.55 6.40 12.36 14.77 16.07 19.66 13.37 

Silence 2.50 5.92 5.90 7.28 4.35 1.03 9.39 4.13 12.09 6.20 

Sailor-men 4.27 7.91 8.00 5.89 2.97 4.15 11.85 7.25 16.20 6.85 

City 3.75 4.62 7.51 4.91 2.93 4.57 5.07 5.47 5.01 3.07 

Raven 9.94 10.07 7.06 7.33 3.78 8.81 5.71 8.24 9.08 6.60 

Football 11.98 10.20 8.71 7.77 6.17 19.15 9.66 8.78 8.56 8.11 

Coast-guard 4.48 7.53 6.70 6.23 3.95 5.07 6.59 5.94 9.42 4.21 

Paris 2.63 3.80 11.37 7.20 5.74 0.91 8.44 2.34 17.28 8.77 

Harbour 3.91 4.61 5.71 5.31 2.18 6.23 5.83 8.51 13.20 6.81 

Total2 5.59 7.34 7.78 6.61 4.27 6.92 8.59 7.41 12.28 7.11 

Table 5: Results from Oracle prediction: Mean relative prediction error [percentage – as defined in (10)] per temporal level and sequence for 

ED_tics . 
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C C
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 (24) 

The intuition is that, provided the components are not 
substantially overlapping in the feature subspace, the most 
likely Gaussian component will be (most probably) the correct 
one and the related RCM value *cm,

ˆG
m

  will be closer to the 
true one, thus reducing the noise from other components. As 
discussed in Subsection III.C, the condition of less overlapping 
is better satisfied in higher rates and temporal levels, where the 
ML estimator performs better than the LMSE estimator. 
Moreover, for the motion-estimation related RCMs, the ML 
estimator should also work better. However, whenever there is 
significant Gaussian component overlapping and the sequence 
being currently decoded is similar to the Gaussian that is less 
densely populated in the training set (i.e. has smaller a-priori 
probability), then all the predictions may differ considerably 
from the true RCMs. In this case, the averaging of the LMSE 
estimator will yield better results. At this point, it is interesting 
to note the similarity of the ML prediction to the local linear 
regression model approach used in [6] [7]. ML prediction 
disregards less significant components (which are more distant 
in the Mahalanobis sense), thus essentially performing a 
prediction using a more localized region of the RCM–feature 
space. In this sense, it is quite similar to the local regression 
scheme of [6] [7], albeit the different sampling conditions 
prevent us from expecting similar prediction results.  

B. Adaptive Online Density Re-Estimation 
Since video statistics can be extremely diverse, we examine 

the possibility of enhancing the prediction accuracy of the 
proposed complexity prediction system by adaptively 

switching between the off-line GMM and the re-estimation of 
the joint RCM–complexity-feature PDF. This would be very 
useful for sequences that predominantly fail to fit in the 
existing training set, i.e. are ―atypical‖.  

For each GOPn , with 1n  , we perform this process as 
follows. For every new RCM measurement that comes from 
the decoder, we update the RCM–feature mean and covariance 
matrices estimated from the current video sequence in all 
temporal levels (on-line Gaussian component estimation). Let 

1
online
n̂   denote the Gaussian component corresponding to the 

online mean and covariance matrices calculated from 
GOPs1, , 1n  . In parallel with the prediction procedures 
described above, we perform LMSE prediction of the current 
GOP‘s RCMs using only 1

online
n̂   and the current GOP‘s 

complexity feature ,
cm
n Gb . After we receive the decoder‘s 

feedback, we compare the prediction error between the ―online 
mode‖ and the ―offline-trained GMM mode‖. Based on the 
comparison, we select the way to determine which mode – 
online or GMM – we will use for the next prediction:  

 
 

1
mode

mode
active_mode  = argmin(err ),  

mode online, offline-GMM

n n


 (25) 

In order to discourage frequent mode switching due to small 
noisy variations of the prediction error, we include a ―bias‖ 
scaling factor to the error of the active prediction mode, i.e. 

          
2

, ,
mode mode cm cm

mode
err ˆn nG nGx k k    (26) 

with mode 1.0x   if  mode active_mode
n

  and 

 active_mode
0.0 1.0nx  . After defining the ―bias‖ scaling 

factor 
 active_mode

nx  empirically based on preliminary 

simulation results, it was kept constant during our 

experimentation with the proposed approach.  
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VII. SUMMARY OF PROPOSED PREDICTION ALGORITHMS 
In Figure 3 we show the pseudo-code for the combined 
Markov-1 – Re-estimation algorithm, which is the most 
extended version of the algorithms we propose. The rest of the 
algorithms can be derived as follows. For Markov-1: Skip step 
6 and 8b. Also skip the error calculation and the complexity 
prediction using the Re-estimation part. For LMSE: As above, 
plus skip the GMM model online measurement and update 
altogether (steps 4 and 8). Without online model updates 
Markov-1 becomes LMSE and can be used when no online 
feedback is available. For Max-likelihood variants: In any of 
the previous variants, substituting equation (24) for (8) in the 
complexity prediction (step 7) yields the corresponding ML 
variants. Experiments are detailed in the following section, 
where we examine the prediction accuracy based on the 
adaptive re-estimation of the PDF model versus the offline-
GMM based prediction. 

VIII. EXPERIMENTAL VALIDATION 
We utilized a scalable video coder [17] that incorporates a 
variety of advanced motion prediction tools found in state-of-
the-art standardized video coders. The decoding algorithm was 
implemented in platform-independent optimized C code and 
executed in an Intel Core Duo processor within the Windows 
XP operating system. Profiling of the execution time for each 
module was done using the built-in processor counters [22]. 

The utilized sequences for our experiments were all 
Common Interchange Format (CIF) resolution video clips with 
30 frames-per-second replay rate. With all the advanced 
coding options enabled (long temporal filters, multihypothesis 
motion-compensated prediction and update, etc.), real-time 
decoding was not possible without platform-dependent 
software optimization. Hence, similar to prior work [9] [11] 
[12] [18], we resorted to simulation-based results. 

 

1. While (   more frames to decode) –Iteration m  

2. 

3. 

4. 

  

5. 

  

6. 

 

7. 

  

 

 

8. 

8a. 

 

8b. 

  module cm {ED_tics,IT_tics,MC_tics,FI_tics}  

  tlev  

Measurement: Get the decoding measurement 
1

cm
mk 

 from the previous prediction 

unit (frame 1m ). 

Error calculation: Calculate with (26) the weighted errors between the previous 

frame measurement and the predictions from Markov-1 and Re-estimation algorithms 

Algorithm selection: Determine which algorithm/model to use for current frame 

prediction using (25). 

Complexity prediction: Calculate the new complexity estimate cm
m̂k  using the LMSE 

predictor (24) for both models (GMM updated with “Markov-1” and single Gaussian 

updated with “Re-estimation”). Output the value for the selected model to the 

resource management system. 

Models updates: Using measurement 
1

cm
mk 

: 

a) Markov-1 update: update the Gaussian component probabilities (mixing 

coefficients of the GMM) for the next prediction cycle using (21) and (22), 

b) Adaptive PDF re-estimation: update the current sequence mean and covariance. 

Figure 3: Pseudo-code for the complete set of proposed prediction algorithms. 

Bitrate 

(kbps) 

 Tempete  Foreman Mobile News 

Entropy 

Decoding  

Inverse 

Transform  

Entropy 

Decoding  

Inverse 

Transform  

Entropy 

Decoding  

Inverse 

Transform  

Entropy 

Decoding  

Inverse 

Transform  

384 2.17 3.58 2.14 3.42 1.67 2.99 7.26 11.40 

1024 3.08 3.54 3.71 3.52 2.62 3.01 10.68 10.51 

1536 3.88 3.56 3.72 3.52 3.15 3.09 12.05 10.52 

Average: 3.04 3.56 3.19 3.49 2.48 3.03 10.00 10.81 

Motion 

Parameters 

Motion 

Compensation 

Fract.-pixel 

Interpolation 

Motion 

Compensation 

Fract.-pixel 

Interpolation 

Motion 

Compensation 

Fract.-pixel 

Interpolation 

Motion 

Compensation 

Fract.-pixel 

Interpolation 

60.99 32.41 60.63 32.69 61.81 32.68 52.26 26.93 

Table 6: Percentile of the execution time attributed to each module for decoding four indicative video sequences. The motion compensation 

and fractional pixel interpolation where averaged over all bitrates since they do not vary with the decoding bitrate (~1% variation).

A. Impact of Module-specific RCMs in the Overall Decoding 

Complexity 
Table 6 shows the percentile of the execution time of each 
module for reconstructing four typical video sequences used in 
our experiments. Results for three indicative bitrates are 
provided. The results indicate that the importance of each 
module in the resulting execution time varies depending on the 
decoding bitrate and the sequence used. Clearly, motion 
compensation and fractional-pixel interpolation appear to be 
the dominant components in the decoder‘s complexity.  

B. Comparisons of Proposed Prediction Schemes 
In this subsection we are comparing the proposed methods 

amongst each other, and also with respect to the results 
obtained from a state-of-the-art approach for video decoding 
complexity prediction based on linear regression, that was 
proposed in the relevant literature [16] [19]. The comparison 
includes our main proposals, i.e. the LMSE-based prediction 
with and without feedback and the adaptive PDF re-
estimation

7
. 

 
7 The proposed ML approach of Subsection VI.A produced similar results 

to the module-specific linear regression approach (adapted from [16]) and 

hence its results are omitted for brevity of description. However, Subsection 

VI.A is relevant to the overall scope of our work and shows how different 

variants of the proposed approach can derive similar schemes to other 

methods proposed in the literature.  
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Bitrate 

(kbps) 

 Tempete  Foreman Mobile News 

ED_tics  IT_tics  ED_tics  IT_tics  ED_tics  IT_tics  ED_tics  IT_tics  

384 24.89 6.29 11.32 3.93 10.12 2.14 25.44 7.58 

512 24.27 4.53 7.13 4.92 4.75 3.20 18.49 2.66 

896 5.42 2.98 11.60 2.44 13.56 2.45 19.30 1.86 

1024 5.95 2.76 22.93 4.07 4.47 3.61 13.41 1.99 

1280 5.34 3.85 7.46 2.48 4.43 3.37 17.97 3.22 

1536 10.52 4.95 7.57 3.56 6.09 3.56 18.33 5.00 

Average: 12.73 4.23 11.34 3.57 7.24 3.06 18.82 3.72 

Motion 

Parameters 

MC_tics  FI_tics  MC_tics  FI_tics  MC_tics  FI_tics  MC_tics  FI_tics  

3.38 10.90 6.67 4.36 12.52 1.63 28.57 19.40 

Table 7: Average relative prediction error of the ― LMSE ‖ algorithm (percentage). 

Bitrate 

(kbps) 

 Tempete  Foreman Mobile News 

ED_tics  IT_tics  ED_tics  IT_tics  ED_tics  IT_tics  ED_tics  IT_tics  

384 13.46 5.12 10.96 2.90 4.07 2.31 15.46 7.20 

512 10.70 3.80 12.36 4.37 3.58 1.42 12.52 3.59 

896 7.85 2.32 11.63 3.58 8.72 2.60 5.75 1.66 

1024 6.37 3.55 23.02 4.74 7.20 3.62 5.88 1.28 

1280 8.20 4.00 13.29 2.68 6.61 3.46 11.35 2.71 

1536 10.77 4.23 10.87 2.53 6.62 3.64 10.11 3.22 

Average: 9.56 3.84 13.69 3.47 6.13 2.84 10.18 3.28 

Motion 

Parameters 

MC_tics  FI_tics  MC_tics  FI_tics  MC_tics  FI_tics  MC_tics  FI_tics  

11.21 2.61 10.37 4.76 12.65 1.43 15.96 6.90 

Table 8: Average relative prediction error of the Markov-1  prediction algorithm (percentage). 

Bitrate 

(kbps) 

Tempete Foreman Mobile News 

ED_tics  IT_tics  ED_tics  IT_tics  ED_tics  IT_tics  ED_tics  IT_tics  

384 8.51 5.22 8.30 5.86 3.92 3.56 11.56 8.53 

512 7.56 5.33 6.88 5.97 3.45 4.25 9.81 4.11 

896 5.19 2.69 5.24 4.03 5.06 3.70 6.65 3.39 

1024 4.31 3.98 12.60 4.87 4.77 4.31 7.96 2.57 

1280 4.41 4.21 3.82 3.07 4.29 2.76 8.33 3.58 

1536 5.27 5.14 2.97 2.46 4.19 4.49 7.69 4.70 

Average: 4.24 2.81 6.04 3.27 3.24 3.47 5.00 3.09 

Motion 

Parameters 

MC_tics  FI_tics  MC_tics  FI_tics  MC_tics  FI_tics  MC_tics  FI_tics  

6.16 2.36 7.20 3.98 11.27 2.42 10.51 6.61 

Table 9: Average relative prediction error of the ― Re-est ‖ algorithm using adaptive online PDF re-estimation (percentage). 

1) Least-Mean-Square-Error-based Prediction with and 

without On-line RCM Feedback 
We present experimental prediction results for the various 

RCMs using the schemes proposed in this paper. We denote as 
― LMSE ‖ the baseline LMSE estimation algorithm [i.e. using 
(8), (9) and only offline training] and as ― Markov-1 ‖ the 
Markov-enhanced LMSE estimation that adapts the weights of 
the mixture model used in the predictor based on the feedback 
received from the decoder (Subsection V.C). Finally, we 
denote as ― Re-est ‖ the method that performs PDF re-
estimation based on on-line feedback from the decoder 
(Subsection VI.B). The results are given in Table 7-Table 9. 
The set of video sequences mentioned in Subsection C was 
used as the training set for our offline GMM and state 
transition probabilities, while the sequences ―Tempete‖, 
―Foreman‖, ―Mobile‖ and ―News‖ comprised the test set. 
Starting with the most-important part, i.e. MC_tics , notice 
that the off-line ― LMSE ‖ method performs surprisingly well 
in comparison to the other approaches that require on-line 
feedback from the decoder, with the exception of the ―News‖ 

sequence. The complexity prediction for the fractional-pixel 
interpolation, FI_tics  is also quite accurate in the ― LMSE ‖ 
method, but the ― Re-est ‖ method performs better in general. 
Regarding the entropy decoding and inverse transform 
complexities, i.e. ED_tics  and IT_tics , the ― Re-est ‖ 
method is again a superior predictor. This indicates that a 
combination of the different approaches could be beneficial, 
and it would also not require on-line feedback for all the 
RCMs of the previously-decoded GOPs.  

We also compare against the regression-based approach 
proposed in previous work [16] [19], which was shown to 
outperform other related methods. The results can be found in 
Table 10. This approach adapts the coefficients of a linear 
predictor based on linear regression with previously-obtained 
decoding RCMs (per module). We experimented with various 
predictor lengths for each module of the decoder and selected 
(per module) the one that provided the best results on average. 
It can be seen that the combination of the best choices from the 
proposed methods systematically outperforms the regression-
based approach proposed in [16] [19], with only few 
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exceptions. Finally, we remark that, on condition of the GMM 
accuracy on RCM–feature modeling, the proposed methods 
consist of the optimal predictor in the MSE sense. This is in 
contrast to previously proposed schemes [13] [19] [7] that 
perform complexity prediction based on heuristic predictors 
without any guarantee of optimality.  

C. Selective Bitstream Decoding based on Complexity 

Estimates 
We conclude our experimental investigations by 

demonstrating an application of the proposed complexity 
modeling and estimation. One missing aspect of conventional 
rate-distortion modeling for video coders is a model estimating 
the complexity associated with processing of a certain 
component of a compressed bitstream. Our approach consists 
of such a framework since it provides reliable estimates of the 
associated cost of decoding a certain component of the 
compressed bitstream. As such, the streaming server of a video 
session may selectively decide to omit certain parts of the 
compressed stream from the transmission in order to satisfy 
real-time constraints of a certain decoder, or simply to reduce 
the transmission overhead, since the complexity model 
predicts that the decoder will exceed the real-time decoding 
constraints if these parts are used. This was initially termed as 
―complexity-constrained bitstream shaping‖ in our previous 
work [7]. Notice that our approach that provides module-by-
module real complexity metrics is very suitable for this task. In 
addition, the use of a scalable bitstream ensures that decoding 
occurs even if certain texture or motion (motion vectors or 
interpolation information) is omitted.  

We set two upper-bounds on the processing cycles 
(expressed in tics/pixel) permissible for the video decoding of 
each GOP (which corresponds to approximately 0.53 seconds 
under the utilized settings) and two corresponding upper 
bounds on the average bitrate per GOP. Then, based on the 
proposed LMSE  prediction algorithm we estimate the 
decoding time per temporal level and per module. We couple 
these measurements with a distortion model for the impact of 
each component of each temporal level [6]. Then, based on the 
rate-distortion-complexity optimization algorithm of our 
previous work (Figure 3 of [6]) we selectively drop certain 
substreams for each temporal level in order to satisfy the total 
constraints set for each GOP (rate and complexity). For each 
texture or motion-vector bitstream corresponding to each 

video frame, the scalable bitstream parser can select from the 
truncation points corresponding to the bitrates reported in 
Table 7-Table 10 (if under the constraint set per GOP). From 
the obtained complexity-distortion set of points, we select the 
one closest to the complexity constraint that has the highest 
PSNR estimate (based on the distortion model). 

Representative average peak-signal-to-noise (PSNR) results 
are presented in Figure 4 for the different bounds set for the 
processing cycles. As a reference, we also include the 
corresponding results when using the linear regression method 
for complexity estimation [16] [19] (corresponding prediction 
results can be found in Table 10). In addition, the results when 
complexity is unconstrained are included in the figure to 
provide an upper bound. Overall, there is a progressive 
decrease in quality when selective components are removed 
based on the distortion-complexity estimates. The results of 
Figure 4 demonstrate that the proposed complexity prediction 
approach enables higher PSNR under the complexity bounds 
than the case where linear regression is used, since, on 
average, operating points that closer to the bound are selected. 
This brings the results of the proposed approach closer to the 
upper bound that performs only rate-distortion optimization 
without complexity constraints. We observed similar 
improvements offered by the proposed approach when the 
Re_est  complexity prediction algorithm was used. 

 

IX. CONCLUSIONS 
In this paper we propose and discuss several statistical 
modeling and prediction schemes for video decoding 
complexity based on module-specific execution times (which 
we term as real complexity metrics – RCMs) and easily-
extractable complexity features. We show that there is 
significant self- and cross-clustering in the temporal-level 
partitioned RCM–complexity-feature domain for many video 
sequences (Figure 2). The clustering is highly correlated to the 
content of the video sequences and can be successfully used to 
engineer optimal and effective prediction algorithms.  
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Bitrate 

(kbps) 

Tempete Foreman Mobile News 

ED_tics  IT_tics  ED_tics  IT_tics  ED_tics  IT_tics  ED_tics  IT_tics  

384 6.44 5.60 7.48 6.24 4.99 7.07 16.87 24.91 

512 5.15 3.47 7.80 7.16 5.68 8.73 8.12 5.90 

896 5.01 1.05 4.36 3.49 6.34 4.41 8.97 4.05 

1024 5.06 4.28 22.93 5.10 6.68 6.60 10.25 4.56 

1280 3.72 2.47 3.51 3.37 7.05 5.69 9.63 3.81 

1536 4.06 5.17 2.58 2.23 6.27 5.46 5.59 5.27 

Average: 4.91 3.67 8.11 4.60 6.17 6.33 9.91 8.08 

Motion 

Parameters 

MC_tics  FI_tics  MC_tics  FI_tics  MC_tics  FI_tics  MC_tics  FI_tics  

12.41 2.88 10.03 3.57 15.23 3.13 12.16 6.12 

Table 10: Average prediction error of the linear regression method used in previous work on decoding complexity prediction [16] [19]. 
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Figure 4: Rate-distortion-complexity optimized decoding. Two complexity and rate upper bounds were set for each GOP (interval of 0.53 

seconds). In all cases we use the model-derived estimates for the expected number of cycles of each operational setting. 
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