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In this paper, the unsteady evolution of two-dimensional fully nonlinear free-surface
gravity–capillary solitary waves is computed numerically in infinite depth. Gravity–
capillary wavepacket-type solitary waves were found previously for the full Euler
equations, bifurcating from the minimum of the linear dispersion relation. Small
and moderate amplitude elevation solitary waves, which were known to be linearly
unstable, are shown to evolve into stable depression solitary waves, together with
a radiated wave field. Depression waves and certain large amplitude elevation
waves were found to be robust to numerical perturbations. Two kinds of collisions
are computed: head-on collisions whereby the waves are almost unchanged, and
overtaking collisions which are either almost elastic if the wave amplitudes are both
large or destroy the smaller wave in the case of a small amplitude wave overtaking a
large one.
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1. Introduction
In this paper, two-dimensional gravity–capillary solitary waves travelling on the

surface of a fluid of infinite depth with a velocity c < cmin are considered. Here cmin

is the minimum phase velocity of linear waves

cmin =

(
4gσ

ρ

)1/4

, (1.1)

where σ is the constant coefficient of surface tension, g is the acceleration due
to gravity and ρ is the fluid density. Longuet-Higgins (1989), Vanden-Broeck &
Dias (1992) and Dias, Menasce & Vanden-Broeck (1996) first computed branches of
solitary waves which have either a positive free-surface elevation at their centre –
denoted waves of elevation – or a negative free-surface elevation at their centre –
denoted waves of depression. Iooss & Kirrmann (1996) proved the existence of these
two branches for cmin − c > 0 small. Analytical approximations for these branches of
solitary waves were given by Dias & Iooss (1993). At small amplitude, the envelope
of these waves can be approximated by the focusing nonlinear Schrödinger (NLS)
equation’s solitary wave solution from which the wavepacket solitary travelling wave is
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obtained since the phase and group speed are equal at the minimum of the dispersion
relation. More recently, fully localized three-dimensional solitary waves (lumps) were
found in this regime by Parau, Vanden-Broeck & Cooker (2005).

There are relatively fewer studies on the stability and dynamics of gravity–capillary
solitary waves. In the shallow water limit and for the Bond number less than or near
1/3, there are dynamical simulations based on model equations such as the fifth-order
Korteweg–de Vries (KdV) equation in two dimensions or the Kadomtsev–Petviashvili
(KP) or Benney–Luke equation in three dimensions. These regimes imply a very
thin fluid layer of less than 0.5 cm for water. Of note is the work of Malomed &
Vanden-Broeck (1996) who study solitary wave interactions within the fifth-order
KdV equation, Berger & Milewski (2000) who study the generation of fully localized
three-dimensional waves by a pressure forcing in a model Benney–Luke equation,
and Grimshaw, Maleewong & Asanavant (2009) who study the stability of Euler
free-surface flows with a pressure forcing in the shallow limit.

In the deep water limit, which, due to the wavelength of these waves requires only a
few centimetres of water, Calvo, Yang & Akylas (2002) computed the spectral stability
of waves along the two branches. They found that the depression branch was stable
and the elevation branch unstable at small and moderate amplitudes, becoming
stable at a point far along the branch, where the elevation wave resembles two
depression waves placed side-by-side. Recent theoretical work has proved existence
and a type of stability for waves in this regime (see Groves & Wahlén 2010 and
references therein). The stability of two-dimensional waves to three-dimensional
perturbations has been studied in shallow water (Bond number less than 1/3) by
Kadomtsev & Petviashvilli (1970), whereas in deep water, variational arguments have
been applied to the gravity–capillary case by Kim & Akylas (2007). In both cases
transverse instabilities are predicted, and these are related to the eventual existence
of lumps. Computations of the dynamics of solitary waves have been restricted to
model equations by Akers & Milewski (2008) (for two-dimensional fluids) and Akers
& Milewski (2010) for three dimensions. To our knowledge there have been no
computations of the dynamics of gravity–capillary solitary waves, using the full Euler
equations.

On the experimental side, Zhang (1995) performed early experiments on three-
dimensional gravity–capillary waves in a wind-wave tank and observed isolated
steep surface dips believed to be localized lumps. More recently, Falcon, Laroche
& Fauve (2002) have carried out careful experiments to observe depression solitary
waves in very shallow layer of mercury, and Diorio et al. (2009) have generated
fully localized three-dimensional wavepacket solitary waves in deep water and
simulated the results with the model equation developed by Akers & Milewski
(2009).

The formulation of the problem is considered in § 2 and the numerical results are
presented in § 3.

2. Formulation
Consider a two-dimensional, irrotational free-surface flow of an inviscid,

incompressible fluid of infinite depth in the presence of gravity and capillary forces.
The governing equations for the flow are

�φ̄ = 0 for −∞ < y < ζ̄ (x, t), (2.1)

φ̄ → 0 as y → −∞, (2.2)
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ζ̄t + φ̄x ζ̄x = φ̄y at y = ζ̄ (x, t), (2.3)

φ̄t = −1

2

[
φ̄2

x + φ̄2
y

]
− ζ̄ +

ζ̄xx

(1 + ζ̄ 2
x )3/2

at y = ζ̄ (x, t). (2.4)

The equations were made dimensionless by choosing (σ/ρg)1/2 and (σ/ρg3)1/4 as the
units of length and time. The free surface is denoted by y = ζ̄ (x, t) and φ̄ is the
velocity potential. Equations (2.3) and (2.4) are the kinematic and dynamic boundary
conditions at the free surface.

The main idea to handle the unknown free surface computationally is to reformulate
this system, based on a time-dependent conformal map from the physical domain to
the lower half-plane with horizontal and vertical coordinates denoted by ξ and η,
respectively. Such a method was pioneered by Dyachenko, Zakharov & Kuznetsov
(1996) and used, for example, by Li, Hyman & Choi (2004). The map can be found
by solving the harmonic boundary value problem

yξξ + yηη = 0 for −∞ < η < 0, (2.5)

y = Y (ξ, t) at η = 0, (2.6)

y ∼ η as η → −∞, (2.7)

where Y (ξ, t) = ζ̄ (x(ξ, 0, t), t). The harmonic conjugate variable x(ξ, η, t) is defined
through the Cauchy–Riemann relations for the complex function z(ξ, η, t) =
x(ξ, η, t) + iy(ξ, η, t). In the transformed plane, the velocity potential φ(ξ, η, t) �
φ̄(x(ξ, η, t), y(ξ, η, t), t) and its harmonic conjugate ψ(ξ, η, t) also satisfy Laplace’s
equation. Thus,

φξξ + φηη = 0 for −∞ < η < 0, (2.8)

φ = Φ(ξ, t) at η = 0, (2.9)

φ → 0 as η → −∞, (2.10)

where Φ(ξ, t) � φ(ξ, 0, t). Defining Ψ (ξ, t) � ψ(ξ, 0, t) and X(ξ, t) � x(ξ, 0, t), from
elementary harmonic analysis we have that

Ψ = H [Φ], X = ξ − H [Y ], (2.11)

where H is the Hilbert transform

H [f ] =

∫ ∞

−∞

f (ξ ′, 0, t)

ξ ′ − ξ
dξ ′. (2.12)

Next, we shall write the evolution equations for Y and Φ using the boundary
conditions at the free surface. By application of the chain rule, since Y (ξ, t) =
ζ̄ (x(ξ, 0, t), t), Φ(ξ, t) = φ̄(x(ξ, 0, t), y(ξ, 0, t), t) and Ψ (ξ, t) = ψ̄(x(ξ, 0, t), y(ξ, 0, t), t),
we have

Yt = ζ̄xXt + ζ̄t , (2.13)

Yξ = ζ̄xXξ , (2.14)

Φt = φ̄t + φ̄xXt + φ̄yYt , (2.15)

Φξ = φ̄xXξ + φ̄yYξ , (2.16)

Ψξ = ψ̄xXξ + ψ̄yYξ = −φ̄yXξ + φ̄xYξ . (2.17)
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Using these formulas, the kinematic and dynamics boundary conditions (2.3) and
(2.4) now read

Ψξ = XtYξ − YtXξ , (2.18)

Φt = −1

2

Φ2
ξ + Ψ 2

ξ

J
− Y +

XξYξξ − YξXξξ

J 3/2
+

XtXξ + YtYξ

J
Φξ +

XtYξ − YtXξ

J
Ψξ , (2.19)

where J = X2
ξ + Y 2

ξ . Furthermore, Xt and Yt are not independent. Notice that zt/zξ

is an analytic function of ξ + iη, and that it, therefore, follows that the real and
imaginary part of their boundary values are related also by the Hilbert transform:

Im

(
zt

zξ

)
η=0

=
YtXξ − XtYξ

J
= −Ψξ

J
, Re

(
zt

zξ

)
η=0

=
YtYξ + XtXξ

J
= H

[
Ψξ

J

]
.

(2.20)

Solving for Xt and Yt ,

Xt = XξH

[
Ψξ

J

]
+Yξ

(
Ψξ

J

)
, (2.21)

Yt = YξH

[
Ψξ

J

]
−Xξ

(
Ψξ

J

)
. (2.22)

Inserting these relations into (2.18) and (2.19) together with (2.11), we obtain the
surface Euler system

Xξ = 1 − H [Yξ ], (2.23)

Ψξ = H [Φξ ], (2.24)

Yt = YξH

[
Ψξ

J

]
−Xξ

(
Ψξ

J

)
, (2.25)

Φt =
1

2

Ψ 2
ξ − Φ2

ξ

J
− Y +

XξYξξ − YξXξξ

J 3/2
+ ΦξH

[
Ψξ

J

]
. (2.26)

Given initial values for Φ and Y , Xξ and Ψξ can be calculated with the first two
equations, and Φ and Y can then be advanced in time with the last two equations.

The numerical integration of the surface Euler system is accomplished with a
Fourier spectral discretization of the ξ dependence, where all derivatives and Hilbert
transforms are computed spectrally. We use that the Fourier symbol of H is i sgn(k),
that is, if

q̂(k) = F [q(ξ )] =

∫ ∞

−∞
q(ξ ) e−ikξdξ, (2.27)

then,

H [q] = F −1[i sgn(k)F [q]]. (2.28)

Nonlinear terms are computed in real space and dealiased, and a fourth-order Runge–
Kutta method is used to advance the solution in time. The surface Euler system has,
of course, the same conserved quantities as the original Euler equations (2.1)–(2.4),
which we will use to monitor the errors in the computations. The mass, M , horizontal
momentum, P , and energy, E, are given by

M =

∫
YXξ dξ, P =

∫
YΦξ dξ, E =

1

2

∫
Ψ Φξ dξ +

∫
(
√

J − Xξ ) dξ +
1

2

∫
Y 2Xξ dξ.

(2.29)
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These quantities are conserved up to a relative error of less than 10−8 throughout
our computations. Such accuracy was necessary to detect, in certain cases, small
‘inelasticities’ in certain collisions. A more detailed view of the error is shown in
figure 6.

The classical dispersion relation can be recovered from the linearized equations
which are obtained by taking Y , Φξ and Ψξ small and Xξ ∼ 1 and J ∼ 1

Yt = −H [Φξ ], (2.30)

Φt = −Y + Yξξ , (2.31)

which yields the dispersion relation

ω2 = |k|(1 + k2). (2.32)

In our scaled variables, the phase speed c has a minimum of
√

2 at k =1 from which
the solitary waves will bifurcate.

3. Results
3.1. Travelling waves

Seeking travelling solutions to the Euler equations (2.1)–(2.4) with wave speed, c, we
assume all functions to depend on x − ct and replace (2.3), (2.4) with

−cζ̄x = −φ̄x ζ̄x + φ̄y (3.1)

−cφ̄x = −1

2

[
φ̄2

x + φ̄2
y

]
− ζ̄ +

ζ̄xx(
1 + ζ̄ 2

x

)3/2
. (3.2)

A similar calculation to that of the previous section results in Ψ = cY and the dynamic
boundary condition (2.26) is replaced by

c2

2

(
1

J
− 1

)
+ Y +

YξXξξ − XξYξξ

J 3/2
= 0. (3.3)

This, together with Xξ = 1−H [Yξ ], completes an integro-differential system for finding
Y . From this Φ is found by using Φ = −cH [Y ], completing the initial data needed
for the surface Euler system. These equations for travelling waves are equivalent to
the system solved by Vanden-Broeck & Dias (1992) under a different scaling.

Numerically, the equations are discretized spectrally with Fourier modes in ξ and
solved for the Fourier coefficients by Newton’s method. In most calculations, 2048 or
4096 modes were used so as to give appropriately resolved initial data for the time-
dependent computations. The elevation and depression branches of waves discussed
in § 1, together with typical profiles, are shown in figure 1. One can note that the
small amplitude asymptotics (based on an NLS equation) is only applicable at very
small amplitudes which had been noted earlier by Dias & Iooss (1993) and Akers
& Milewski (2009). Furthermore, the NLS equation does not predict any of the
dynamical phenomena observed. It is also instructive to show the bifurcation curves
using the energy instead of the centre free-surface displacement as the amplitude
parameter (see figure 2a). In this figure, the elevation and depression branches are
almost equal up to E ≈ 0.3, where they change behaviour abruptly with the elevation
branch having a less rapid increase in energy than the depression one. At large
amplitudes, one can see that the elevation wave has approximately twice the energy
of the depression wave, matching the intuition that these waves are similar to two
depression waves placed side-by-side.



Dynamics of gravity–capillary solitary waves 471

1.34 1.36 1.38 1.40 1.42

0.2

(a) (b)

(c)

0.1

0

–0.1

–0.2

–0.3

–0.4

Speed, c

A
m

pl
it

ud
e,

 Y
(0

)

−80 −60 −40 −20 0 20 40 60 80

0.15
0.10
0.05

0
–0.05
–0.10

−20−30

0.4

0.2

–0.4

0

–0.2

−10 0 10 20 30

y

y

x

Figure 1. (a) Elevation and depression branches of the solution together with the bifurcation

point at c =
√

2 and the small amplitude asymptotic prediction (dashed curve). Typical
free-surface profiles: an elevation wave (b) at the right endpoint of the computed elevation
branch (Y (0) = 0.1 and c = 1.4106) and a depression wave (c) at the left endpoint of the
computed depression branch (Y (0) = −0.4 and c =1.3660). Note that the vertical scale is
greatly magnified relative to the horizontal scale and that the smaller amplitude depression
wavepacket has a carrier wavelength of approximately 2π corresponding to k = 1.
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Figure 2. (a) The elevation and depression branches (up and down triangles, respectively)
are parameterized by the energy of the solution. (b–d ) Three free-surface profiles are shown
for the instability of an elevation wave: t = 0 (b), t =150 (c) and t = 600 (d ). The profiles
are shown in a frame of reference moving to the right with the speed of the initial elevation
wave (c = 1.4002). Its initial amplitude is Y (0) = 0.15. The arrow in (a) indicates the transition
between the initial and final solitary waves of the time evolution.

3.2. Dynamics

3.2.1. Instability

The first dynamical computational experiment presented is the evolution of an
unstable elevation wave and is shown in figure 2. Various perturbations to the
depression wave were tried (with magnitudes up to 10 % of the initial wave) yielding
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Figure 3. (a) A portion of the large amplitude elevation branch is shown, with a turning
point at E ≈ 4.0673 and c ≈ 1.2357. Along the lower part of the branch the waves are stable
according to our computations. (b–d ) Three free-surface profiles are shown in the dynamics
of a perturbed (5% perturbation) elevation wave: t = 0 (b), t = 125 (c) and t =2500 (d ). The
profiles are shown in a frame of reference moving to the right with the speed of the initial
elevation wave (c = 1.2882). Its initial energy is E = 2.9926 corresponding to the last point
shown on the branch (the branch continues but was not computed beyond this point).

always similar results: the instability manifests itself by a growing asymmetry in the
central troughs, where the leading trough grows to become the single central trough
of the larger amplitude and slower depression wave. There is a radiated wave field
of linear wave packets shed on both sides of the solitary wave. The waves shed
behind the solitary waves are longer, with k > 1 so that their group speed permits
the energy to travel at speeds below that of the solitary wave. Shorter waves are
shed ahead of the solitary wave. Given that the computations are performed in a
periodic domain, the evolution is shown only until the radiated waves have wrapped
around the domain. We note, however, that the computations were continued to
much longer times and that the remaining depression solitary wave is robust and
persists in a sea of small amplitude gravity–capillary waves. One can estimate the
amplitude of the resulting depression wave by observing that very little energy is
radiated away during the dynamics: in the example shown only approximately 1 % of
the energy of the original solitary wave is lost resulting in an almost horizontal
transition in the speed–energy curve of figure 2 (note that the energy of the
perturbation we imposed – approximately 5 % in the example shown – also ends
up in the radiated field). Other computations of the instability of moderate amplitude
elevation waves of varying amplitudes (with energies between 0.2 and 0.7) yield similar
results.

It was found in Calvo et al. (2002) that at large amplitudes, beyond a ‘limit point’
in the bifurcation curve, the elevation waves regain spectral stability. This result
is confirmed here where a variety of perturbations with 5 % of the energy of the
initial waves did not show instability on the lower branch of the curve in figure 3(a).
In figure 3(b–d ), a sample time-dependent computation is shown. Note that some
of the perturbation energy has remained in the primary solitary wave and has
contributed to the outcome of a wave of slightly larger energy and lower speed than the
original.
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Figure 4. Head-on collision of two depression waves of different amplitudes (minimum
free-surface heights of −0.36 and −0.12): t = 0 (a), t = 60 (b) and t = 110 (c). The collision is
almost elastic with some radiation, invisible to the eye, to the right (ahead) of the larger wave
in (c).

We also performed similar stability experiments on depression waves. These were
stable in all cases tried.

3.2.2. Collisions

The second set of computational experiments are head-on collisions between stable
depression waves, an example of which is shown in figure 4. Several collisions were
computed, both symmetric – when both waves are of equal amplitude – and not
symmetric, and in all cases the collisions were almost elastic with very little radiation.
Close inspection of the computation leading to figure 4 reveals a radiated field of
amplitude 10−3. As a measure of robustness of these waves, we also allowed the above
computation to continue for long times and despite many head-on collisions due to
the periodicity of the domain, the original waves remain essentially unchanged.

The third set of computational experiments are that of overtaking solitary wave
collisions: a larger, slower wave is placed ahead of a faster smaller wave. Here we
observed two distinct behaviours. An example of the first behaviour is shown in
figure 5 whereby the slower wave approaches the larger, and during the collision
process it breaks up by transferring some energy to the larger wave and radiating
the remaining energy both ahead of the larger solitary wave (in the form of shorter
waves) and behind it (in the form of longer waves). Only one wave remains after the
collision. This type of collision is observed to happen when the difference in wave
amplitudes between the two waves is large.

In figure 6, we present the time evolution of the energy error shown in figure 5,
together with the difference between the initial data and the solution obtained
numerically by reversing time after t = 3500 in the collision computation. The surface
Euler equations were integrated on a periodic domain ξ ∈ [−160, 160), with the
standard fourth-order Runge–Kutta explicit scheme, with �t = 0.05, N = 4096 Fourier
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Figure 5. Overtaking collision of two depression waves of different amplitudes (minimum
free-surface heights of −0.36 and −0.12) shown in a frame of reference moving at the speed of
the larger wave. From (a) to (d ): t = 0, t =2000, t = 2500 and t = 3500. Only the larger wave
survives the collision, with the smaller wavepacket, to the left of it eventually dispersing.

modes, dealiasing with a buffer of N modes (since the nonlinearities are not algebraic,
the dealiasing is approximate), and no filtering. We note that the energy of the waves
decreased monotonically, and that most of the final time-reversed error is due to a
very small phase shift in the initial solitary waves, of the order of 10−7 of a carrier
wavelength after a nonlinear evolution of order 103 carrier wavelengths.

The second type of behaviour occurs when both waves survive the collision, as in
figure 7. The collision is also inelastic: the larger wave always gains some energy,
the smaller one loses some and there is some radiated wave field. In the process of
colliding the waves exchange ‘identities’: the smaller trailing wave grows in amplitude
and the larger, leading wave loses amplitude to become the new pair of solitary waves.
This results in a backward phase shift for the larger wave and a forward shift for the
smaller wave. This type of collision occurs when both waves are of larger amplitude
and their amplitude difference is small.

Some collisions of depression waves with the much larger amplitude elevation
waves of figure 3 were also computed and show similar behaviour to figure 5: the
much larger elevation wave survives, and the depression wave is destroyed in the
collision.

For all collision experiments, the initial data were constructed by computing first the
two solitary travelling waves individually, by the spectral method described before, but
on a large domain. The two waves are then shifted so as to minimize their overlap,
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Figure 6. Evolution of the errors for the computation shown in figure 5. (a) Relative mass,
momentum and energy errors as a function of time. (b) The difference between the initial data
and the time reversed solution computed from t = 3500 back to t = 0.

and the two solutions are added. The accuracy of this superposition method was
verified numerically in the case of two equal waves travelling in the same direction –
which were seen to travel as a well-separated pair of waves – and was found not to
introduce measurable errors (compared to the aforementioned 10−8 accuracy of the
scheme).

4. Conclusion
An accurate and efficient numerical procedure to compute time-dependent nonlinear

gravity–capillary free-surface flows was implemented. The method was used to study
the time evolution of wavepacket solitary waves with decaying oscillatory tails. It was
found that elevation solitary waves are unstable and evolve into depression solitary
waves. On the other hand depression solitary waves of moderate amplitude and
certain large amplitude elevation waves were found to be stable in agreement with
previous stability analysis. Head-on and overtaking collisions of depression solitary
waves were also studied. Collisions are inelastic and some collisions will destroy
one of the waves. The nonlinear Schrödinger equation, which is the standard model
for wavepacket dynamics, does not predict any of the stability or inelastic collision
behaviour that we observed. It only predicts the existence of solitary waves. The
behaviour of these waves, however, is qualitatively similar to the models studied by
Malomed & Vanden-Broeck (1996) and Akers & Milewski (2008).
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Figure 7. Overtaking collision of two depression waves of different amplitudes (minimum
free-surface heights of −0.36 and −0.28) shown in a frame of reference moving at the speed
of the larger wave. From (a) to (d ): t = 0, t = 4000, t = 4500 and t = 6000. Both solitary waves
survive the collision. Only part of the computational domain is shown.
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