Direct manipulation like tools for designing
intelligent virtual agents *

Marco Gillies!, Dale Robeterson?, and Daniel Ballin?

!Department of Computer Science, University College London, London, UK,
2 BT plc, Adastral Park, Ipswich IP5 3RE, UK m.gillies@cs.ucl.ac.uk,
{dale.e2.robertson,daniel.ballin}@bt.com

Abstract. If intelligent virtual agents are to become widely adopted
it is vital that they can be designed using the user friendly graphical
tools that are used in other areas of graphics. However, extending this
sort of tool to autonomous, interactive behaviour, an area with more in
common with artificial intelligence, is not trivial. This paper discusses
the issues involved in creating user-friendly design tools for IVAs and
proposes an extension of the direct manipulation methodology to IVAs.
It also presents an initial implementation of this methodology.

As computer graphics techniques progress from research result to wide pop-
ular adoption, a key step is the development of easy-to-use tools. A well known
example in the last decade has been the development of HTML handling tools
from simple text editors to graphical tools. These tools radically change the way
in which graphical content is produced. They remove the need for programming
ability and the concern with syntactic detail that is required by textual tools.
They shift the focus to the purely graphical/artistic factors that are really cen-
tral to graphics production. They allow professional artists (designers) to express
themselves to the best of their abilities. They also enable amateurs access to the
technology, enabling end-user content-creation and also content creation by non-
artistic professionals such as educationalists or scientists. They remove the need
for a programmer to be involved in the production process, thus putting more
of the process in the hands of the artists or designer. Thus the development of
easy to use tools is vital to any aspect of graphics research.

One of the most interesting and active areas of research in the graphics field
in recent years has been in intelligent virtual agents. The distinguishing feature
of intelligent agents is that they have proactive behaviour, and they respond
autonomously to their environment. In research terms they lie on the boundary
between graphics and artificial intelligence. They are used many in applications
such as multi-user on-line worlds, computer games, health and therapy systems,
interactive education environments and e-commerce[l]. IVAs can exhibit many
types of behaviour, we focus on Non-Verbal Communication (NVC), and in par-
ticular posture and gestures, which are important expressive elements in social

* This work has been supported by BT ple, and the EU FET PRESENCIA project
IST-2001-37927

interaction. Providing user-friendly tools for IVAs would greatly increase the
ease of production of interactive graphical environments, reduce the cost and
potentially increase the quality of the IVAs’ behaviour by allowing more di-
rect artistic input. Allowing end users to edit IVAs’ behaviour would also be
highly beneficial. This is particularly true of on-line environments where each
user is represented by an IVA, called an avatar, with autonomous beheaviour
as suggested by Vilhjdlmsson and Cassell[2]. In existing multi-user virtual envi-
ronments users are keen to personalize the appearance of their avatars[3], it is
therefore likely that they would want to be able to personalize the behaviour as
well, if user friendly tools were available.

IVAs have important features that affect design tools and make creating these
tools an important research challenge. Most importantly they have autonomous
behaviour. A character in an animated film will have their animation entirely
specified beforehand by an human animator. By contrast, an IVA will generate
new animation (or select existing animations) in real time based on its internal
state and events in its environment. We will refer to this generation or choice of
animation as the agent’s behaviour. The major challenge in creating design tools
for autonomous behaviour is that it depends on the state of the enviroment,
what we will call context, and therefore this context must be taken account of
whenever the behaviour is edited. The context can contain many features, the
location of the IVA, the behaviour of other IVAs, or the behaviour of human
participants in the environment (maybe captured through position tracking).
The context therefore consists of large quantities of heterogeneous information,
however, we assume that this can be reduced to a number of discrete and contin-
uous variables. This reduction could be done by a number of pre-processing steps
on the inputs. As we are dealing with NVC we mostly use information about
social context, for example, whether the IVA is talking to an authority figure, or
whether the topic of discussion is political. In this paper we assume the an IVA’s
behaviour is controlled by a fixed set of algorithms, which take a context and
a set of parameters and use this to generate animation. The parameters of the
IVA define its individual behaviour, how different IVAs behave differently in the
same context. Parameters in our system mostly deal with how context maps onto
behaviour, or onto intermediary internal states, for example, a parameter might
be an IVA’s tendency to become excited when discussing politics or its tendency
to gesture when excited. We assume in this work that the design tools change
only the parameters, while the algorithms remain the same. The conclusion will
describe future approaches to editing the algorithms themselves.

Direct manipulation has been one of the most successful human computer
interaction paradigms, particularly in graphics. The most important features of
the paradigm is that it allows uses to edit the final visible result, rather than
the, possibly difficult to understand, internal parameters. It seems particularly
applicable to the animated behaviour of IVAs. However, traditional applications
of Direct Manipulation rely on the ability to view the entire result at once,
however, this is not possible for IVAs due to the highly context dependent nature
of their behaviour. This paper presents tools that maintain the benefits of direct

ISpecify a context for the characterl‘—

IView current behaviour in the contextl | Internal Variables |<—| Context Variables

B !
put Variables

Edit behaviour

Done in the context —
Animation
(a) (b)

Fig. 1. (a)An overview of the proposed interaction style for editing IVA behaviour. (b)
an overview of the behaviour generation process. The black arrows show the behaviour
generation process and the grey arrows show the inference process that determines
parameters from animation.

manipulation. We propose an interaction style illustrated in figure 1(a). User may
successively view the behaviour of the IVA in different contexts. The users set
up the various variables that define the context and views the current behaviour
within that context. They can then edit this behaviour if it is not correct and then
pass on to the next context until the results are largely correct. Each edit made
to the behaviour provides a new constraint on the parameters of the behaviour
generation system. These constraints allow the user to successively refine the
behaviour with each context viewed.

Our direct-manipulation like interface aims to allow end users to edit the be-
haviour of the IVA rather than its internal parameters. This could be achieved by
allowing the users to directly animate the IVA, with a traditional 3D animation
interface. This would given very exact control of the IVA’s behaviour, and allow
a great deal of nuance. We discuss this type of interface in section 2.2. However,
this approach has a number of disadvantages, 3D animation can be very difficult
for untrained end users. Also, the behaviour of an IVA is also often composed
of a number of discrete possible actions (e.g. crossing arms, nodding, waving),
rather than a continuous range of behaviour. Direct animation is unsuited to
this sort of discrete action space, simply choosing actions from a list is a sim-
pler interface. We therefore also provide an interface, aimed at untrained users
and discrete action spaces, that provides buttons to select actions, described in
section 2.1.

1 Related Work

This work builds on a long tradition of character animation. The lower level
aspects focus on body animation in which there has been a lot of success with
techniques that manipulate pre-existing motion data, for example that of Gle-
icher[4, 5], Lee and Shin[6] or Popovié¢ and Witkin[7]. However, the more impor-
tant contributions deal with higher level aspects of behaviour control. This is a
field that brings together artificial intelligence and graphics to simulate charac-
ter behaviour. Research in this area was started by Reynolds[8] whose work on

simulating birds’ flocking behaviour has been very influential. Further impor-
tant contributions include the work of Badler et al. on animated humans[9]; Tu
and Terzopolous’ work on simulating fishes[10]; Blumberg and Galyean’s “Silas
T. Dog”[11] and Perlin and Goldberg’s “IMPROV” system[12]. We mostly deal
with non-verbal communication, which is a major sub-field of behaviour simula-
tion with a long research history including the work of Cassell and her group[13,
14, 2]; Pelachaud and Poggi[15] and Guye-Vuilléme et al.[16]. The two types of
behaviour we are using are gesture which has been studied by Cassell et al.[13]
and posture which has been studied by Cassell et al.[14] and by Bécheiraz and
Thalmann[17].

Most of the work described above deals with the algorithms for simulating
behaviour rather than tools for designing behaviour. Of the work on tools, most
has focused on using markup languages to specify IVA behaviour, for example
the APML language[18]. However, though markup languages are an important
step towards making it easier to specify IVA behaviour they are a long way from
the usability of graphical tools. There have also been tools for designing the
content of behaviour, for example designing gestures[16], however, these tools
do not address the autonomous aspects, i.e. how to decide which behaviour to
perform in a given context. Del Bimbo and Vicario[19] have worked on specifying
IVA behaviour by example. Pyandath and Marsella[20] use a linear inference
system to infer parameters of a Partially Observable Markov Decision Process
used for multi-agent systems. This inference system is similar to ours, however,
they do not discuss user interfaces. In the field of robotics Scerri and Ydrén[21]
have produced user friendly tools for specifying robot behaviour. They use a
multi-layered approach, with programming tools to design the main sections
of the behaviour and graphical tools to customise the behaviour. They were
working with soccer playing robots and used a graphical tool based on a coach’s
tactical diagrams to customise their behaviour. Their multi-layered approach has
influenced much of the discussion below. Our own approach to specifying IVA
behaviour has been influenced by work on direct manipulation tools for editing
other graphical objects, for example the work on free form deformations by Hsu,
Hughes and Kaufman[22] and Gain[23].

2 The Interface

This section describes the two user interfaces we have implemented, one based
on specifying actions from a set, and the other based on directly animating the
IVA’s pose. This section also gives examples of their use. The remaining sections
will then describe how the interfaces are implemented.

2.1 The Action based interface

The simpler of the two interfaces allows the user to specify an animation by
selecting a number of actions. Action can either be discrete (you are either doing
them or you are not, e.g. crossing your arms) or continuous (you can do them to

Y Bad Moad b o Good mood
Bad Mood
 Bad Moad ; axcilod riend shy
o o Bad mood . P
ATy angry | friend —7] Classmate shy ‘Authority shy [?+— teacher 1
fm——em @ @ ____
ity |
¢l G) [t Adtorty 1
) Atwork 1 }
Parameter Internal variable
===
| Mistake | Context variable Distant Ouput | Output variable
[Exciea | sum If-then-else (the side input is the condtion)
3 51 Muliplication by a weight the weight is not shown but it is a parameter

Fig. 2. The relationships between parameters and variables used in our examples (1)
action based specification (2) direct animation (3) a key for the diagrams.

a greater or lesser degree, e.g. leaning backward). The interface contains button
which can select discrete actions and sliders to vary the degree of continuous
actions. The user interface is shown in figure 3. The user first sets the context for
a behaviour, which is itself expressed as discrete or continuous variables that are
edited by buttons and sliders. The user may then view the resulting animation
and if they are unhappy with it they may go to an editing screen to change the
animation. When they are happy with this they submit the animation, which is
then solved for to updated the parameters of the IVA.

Figure 3 gives an example of a sequence of edits. The example is based on
editing gestures which tend to be discrete and therefore suited to action based
editing. The behavioural control used is shown in figure 2. In it two types of
behaviour are defined, gesture (beat gestures, which often acompany speech)
and distant (more hostile gestures). These behaviours depend on a number of
contextual paramters: whether the IVA is at work, in a bad mood, discussing
politics, has made a mistake, or been criticised. These are used to generated a
number of derived parameters which are used to calculate the behaviour para-
meters. These are: general tendencies to be distant or to gesture, how angry the
IVA is, how excited the IVA is and whether it dislikes the person it is talking to.

2.2 The Direct Animation Interface

The other method for specifying behaviour is to directly animate the IVA. This
leaves the IVA in a particular posture that must be solved for (currently direct
animation is only supported on postures not full animations, extending it would
not be too difficult). The user interface used for direct editing is similar to the
previous example but the user directly edits the IVA’s posture by clicking and
dragging on its body rather than using buttons and sliders. Figure 4 shows an
example that deals with head and torso posture. The space of these postures is
more continuous than gestures and has far fewer degrees of freedom, making it
more suited to direct animation. Figure 2 shows how behaviour is generated in
this example. In this example there are three types of behaviour distant (turning

head or body away), close (the distictive "head cock” posture with the head to
the side) and shy (hunched over postures). Ounly the shy behaviour is shown
but the other two have identical dependencies. The example is based on school
children’s relationships having two types of relationship, classmates (of which
friends are a special case) and authority figures (of which teachers are a special
case). Each of the three behaviour types can be exhibited differently with each
type of relationship. There is also a general tendency to a behaviour type in all
contexts, called the “shy”.

3 Behaviour generation

The Demeanour architecture is used to generate behaviour for an TVA[24, 25],
figure 1(b) shows the behaviour generation method. The basic components of
the behaviour system are parameters and context variables, which can be com-
bined together to form internal variables, and finally output variables that are
used to animation the IVA. There are two mains ways of combining parameters
and variables. The first is by addition and multiplication, which is often used
to combine context variables with weighting parameters. For reasons described
below we only allow parameters and variables that depend on parameters to be
multiplied by variables that do not depend on parameters (a variable depends
on a parameter if the parameter’s value is used to calculate the variable’s value,
directly or indirectly). Variables and parameters can also be combined by if-
then-else rules that set the value of a variable to that of one of two parameters
or variables depending on the value of a boolean condition variable, which can
be a context variable but not a parameter:

r=x1fz.=a
= o otherwise

Some of the variables produced are outputs that are passed to the animation
system. The animated behaviour is generated using a set of basic pieces of mo-
tion. Each basic motion has a corresponding output variable that is used as a
weight, with which to interpolate the motions, using a quaternion weighted sum
technique similar to Johnson’s[26]. Many motions can be continuously interpo-
lated, for example leaning forward, however, others are more all-or-nothing, for
example it makes no sense to cross your arms 50%. Therefore some motions
are classed as discrete and can only have weights of 0 or 1. In this case the
corresponding variable is thresholded so that values over 0.5 give a weight of 1.

4 Inferring Parameters from Behavior

The main technical requirement for this user interface is the ability to use a
number of examples of behaviour to generate constraints which are then solved
for a suitable set of parameter values for the IVA’s behaviour. To be more exact,
each example is a tuple < a;,c¢; > containing a context for behaviour ¢; and

an animation specified by the user a;, which is the behaviour of the IVA in
that context. The output of the method is a set of parameters. Each example
tuple provides a constraint on the possible values of the parameters. We must
solve for these constraints using a method that makes it simple to add new
constriants, as the editing methods is iterative users will continually be solving
and adding new constraints. The method must also be fast enough to solve
in real time, if the tools is to be usable. This is simplified by the fact that
the parameters and variables are combined together using linear summation,
meaning that all relationships between variables, and therefore constriants are
linear. This allows us to use Linear Programming|[27] to solve for the constriants.
Linear programming mimimizes a linear expression subject to to a number of
linear equality and inequality constraints:

> cix; subject to Y d;y; =0
Zeizi Z 0

where the x,y, z are variables and the ¢, d, e are constant coefficients. We form
constraints from the characters behaviour and internal parameters as described
in the next sections. We then minimize the sum of all parameters values us-
ing a simplex linear programming method[27]. This minimization solves for the
parameters while keeping their values as low as possible (to avoid extreme be-
haviour).

4.1 Constraints from action specifications

As described in section 2.1, the action based interface allows user to specify the
IVA’s behaviour using buttons and sliders which provide weights for each action
(0 or 1 in the case of discrete actions). When a animation is submitted these
weights are used to form linear constraints. For a continuous motion the weight
of the motion (w;) should be equal to the corresponding output variable (v;) so
we add the constraint v; — w; = 0. In the case of discrete actions we are less
certain: if the w; is 0 we know that v; is less than 0.5, otherwise it is greater, so
we add an inequality constraint:

vi—0.5§01fwi:0

4.2 Constraints from direct animation

At a high level any posture produced by Demeanour is a weighted sum over the
various possible postures as described in section 3:

p= Z WiPi
As the value of the posture p is known the above formula can be added as a
constraint on the values of the weights w;. A posture is represented as a 3-DOF

rotation for each joint of the IVA, so three constraints added for each joint. The
weights are then used to add constraints on the output variables as above.

4.3 Constraints from internal variables

With this initial set of constraint we then start to form new constraint based on
internal variables and parameters. Any variable will depend on other variables
and parameters. If the variable only depends on context variables and not para-
meters it has a constant value in a given context so it is a known (k;) variable in
the current constraint. Parameters and variables that depend on parameters are
unknowns(u;). We must form constraints on all unknowns. We start with the
constraints that are given by the animations, each of these contain at least one
output variable. Each variable v may take one of 4 forms. If it is a parameter it is
an unknown and no further constraints are added. If it is a constraint variable it
is a known and has a constant value (this is not allowed for an output variable).
If it depends on other variables and parameters by addition and multiplication
we add a linear constraint. To ensure that it is soluble we ensure that in each
multiplication, only one term is an unknown. Thus the equation for the variable

is of the form:
v=> (u; [[*)
i J
We can evaluate all knowns to calculate the coefficients of each unknown and
rearrange to get a constraint:

ch—uiJrcofv:O
)

If the variable depends on other variables by an if-then-else rule the condition
variable is a known so we can evaluate it and know which the variable v; that v
depends on, we can just add a constraint v —v; = 0. The newly added constraints
will have introduced new variables, and we recursively add new constraints for
these until we are only left with knowns and parameters, at which point we
perform the minimization as described above.

5 Conclusion and further work

As described in the introduction this paper has provided three contributions:

1. It has highlighted an important problem for future research, building user
friendly tools for designing IVA behaviour.

2. It has proposed an adaptation of direct manipulation editing as a method-
ology for solving this problem.

3. It has described an implementation of this methodology.

This is roughly the order of importance in which we rank these contributions.
We have little doubt that tools for IVA design is an important area that deserves
more research. The methodology we propose is a highly valuable one which we
consider the most promising. Our own opinion is that different methods will be
useful for different types of behaviour. Finally our implementation has shown

B DirectSet Stage (100%)
Please waltwhle Demaanour niialises

1Set Stage (100

3 Ll 20

irectSet Stage (100%)] M DirectSet Stage (100%)
Please waitwhile Demanour inillises

1Set Stage (100
Please wail while Demeanour nitalises

politics politics
messed up messed up

criicised erticised

Fig. 3. A sequence of edits using the tool from the action based specification example.
The the user initially specifies context (in this case that the IVA is in a bad mood).
The initial behaviour (image 1) is neutral as there have been no edits (for clarity, in
these examples neutral behaviour is merely a constant rest posture). The user then
specifies some distant behaviour and submits it (2). The system has set the general
Distant parameter so the IVA produces distant behaviour in a new context (3). The
user removes this behaviour to specify a neutral context (4), thus reducing the contexts
in which distant behaviour is produced, so in the next context (a political discussion)
neutral behaviour is generated (5). The user adds gesturing and submits (6). The
final two images show results after these edits, the IVA in a bad mood discussing
politics produces both gesturing and distant behaviour (7). The final image has the
same context as the original edit, showing that the same type of behaviour (distant) is
successfully reproduced, but that the exact behaviour is different (8).)

10

15et Stage (100 M DirectSet Stage (100%) &5
Please wail while Demeanour intialises. T Please wail while Demeanour iniialises. B

irectSet Stage (100 (=1E3]

- -

3 [akil | » = il
15et Stage (100%)

Please wait while Demeanour initialises Eor e |

15et Stage (100%)

Please wail while Demeanour initialises

Fig.4. A sequence of edits of the direct animation. The user initially chooses a
“teacher” context (image 1) and creates a hunched over, shy posture (2). The system
initially infers a general tendency to shyness (the “shy” parameter) and so displays
the same behaviour in a classmate context (3). The user edits this posture back to a
neutral one (4) and the system infers that the shy behaviour only occurs in authority
contexts (the “authority shy” parameter). The user then adds a “head cock” in the
“friend” context to add more close behaviour in that context (5, 6). The final two
images show the resulting behaviour in different contexts. The system has generalized
the shy behaviour from the “teacher” context to all “authority” contexts as shown in
image 7, however, it is not displayed in a neutral context (8).

11

that the type of user interface we have described is possible in practice and has
provided an important first step for research in this area. It is only a first step
and more research is needed. It is important to extend our work to other types of
behaviour, such as facial animation or speech. These extensions are likely to raise
important new issues. Another issue is that our implementation only deals with
setting the parameters of a behaviour system, we would also like to build tools
that allow users to add new parameters and change the behaviour algorithms
used. It is likely that this will require a different type of interface. One approach
would be to use a machine learning method that is able to learn more than
just parameters from behaviour. In fact a companion paper to this[28] describes
initial experiments using reinforcement learning. Another approach is to divide
the creation process into a number of stages, a more structural stage that defines
the algorithms and one that defines parameters. Each stage could have its own
interfaces. This has the benefit that each stage could have an interfaces that is
well suited to it. Also, there is a natural division between experts who would
perform the first stage and end users who could perform the second.

References

1. Schroeder, R., ed.: The Social Life of Avatars, Presence and Interaction in Shared
Virtual Worlds. Computer Supported Cooperative work. Springer (2002)
2. Vilhjélmsson, H.H., Cassell, J.: Bodychat: Autonomous communicative behaviors
in avatars. In: second ACM international conference on autonomous agents. (1998)
3. Cheng, L., Farnham, S., Stone, L.: Lessons learned: Building and deploying virtual
environments. In Schroeder, R., ed.: The Social Life of Avatars, Presence and Inter-
action in Shared Virtual Worlds. Computer Supported Cooperative work. Springer
(2002)
4. Gleicher, M.: Motion editing with space time constraints. In: symposium on
interactive 3D graphics. (1997) 139-148
5. Gleicher, M.: Comparing constraint-based motion editing methods. Graphical
Models (2001) 107-134
6. Lee, J., Shin, S.Y.: A hierarchical approach to interactive motion editing for
human-like figures. In: ACM SIGGRAPH. (1999) 39-48
7. Popovié, Z., Witkin, A.: Physically based motion transformation. In: ACM SIG-
GRAPH. (1999) 11-20
8. Reynolds, C.W.: Flocks, herds, and schools: A distributed behavioral model. In:
ACM SIGGRAPH. (1987) 25-33
9. Badler, N., Philips, C., Webber, B., eds.: Simulating Humans: Computer Graphics,
Animation and Control. Oxford University Press (1993)
10. Tu, X., Terzopoulos, D.: Artificial fishes: Physics, locomotion, perception, behavior.
In: ACM SIGGRAPH. (1994) 43-49
11. Blumberg, B., Galyean, T.: Multi-level direction of autonomous creatures for real-
time virtual environments. In: ACM SIGGRAPH. (1995) 47-54
12. Perlin, K., Goldberg, A.: Improv: A system for scripting interactive actors in vir-
tual worlds. In: Proceedings of SIGGRAPH 96. Computer Graphics Proceedings,
Annual Conference Series, New Orleans, Louisiana, ACM SIGGRAPH / Addison
Wesley (1996) 205-216

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Cassell, J., Bickmore, T., Campbell, L., Chang, K., Vilhjdlmsson, H., Yan, H.:
Embodiment in conversational interfaces: Rea. In: ACM SIGCHI, ACM Press
(1999) 520-527

Cassell, J., Nakano, Y., Bickmore, T., Sidner, C., Rich, C.: Non-verbal cues for
discourse structure. In: 41st Annual Meeting of the Association of Computational
Linguistics, Toulouse, France (2001) 106-115

Pelachaud, C., Poggi, I.: Subtleties of facial expressions in embodied agents. Jour-
nal of Visualization and Computer Animation. 13 (2002) 287-300
Guye-Vuilléme, A., T.K.Capin, I.S.Pandzic, Magnenat-Thalmann, N.,
D.Thalmann: Non-verbal communication interface for collaborative virtual
environments. The Virtual Reality Journal 4 (1999) 49-59

Bécheiraz, P., Thalmann, D.: A model of nonverbal communication and inter-
personal relationship between virtual actors. In: Proceedings of the Computer
Animation ’96, IEEE Computer Society Press (1996) 58—67

DeCarolis, B., Pelachaud, C., Poggi, 1., Steedman, M.: Apml, a markup language
for believable behaviour generation. In Prendiger, H., Ishizuka, M., eds.: Life-like
characters: tools, affective functions and applications. Springer (2004) 65-87

Del Bimbo, A., Vicario, E.: Specification by-example of virtual agents’ behavior.
IEEE transactions on visualtization and Computer Graphics 1 (1995) 350-360
Pynadath, D.V., Marsella, S.C.: Fitting and compilation of multiagent mod-
els through piecewise linear functions. In: the International Conference on Au-
tonomous Agents and Multi Agent Systems. (2004) 1197-1204

Scerri, P., Ydrén, J.: End user specification of robocup teams. In: RoboCup-99:
Robot Soccer World Cup III. Lecture Notes in Computer Science. Springer-Verlag
(2000)

Hsu, W.M., Hughes, J.F., Kaufman, H.: Direct manipulation of free-form defor-
mations. In: Proceedings of the 19th ACM SIGGRAPH annual conference on
Computer graphics and interactive techniques, ACM Press (1992) 177-184

Gain, J.: Enhancing spatial deformation for virtual sculpting. PhD thesis, Univer-
sity of Cambridge Computer Laboratory (2000)

Gillies, M., Ballin, D.: Integrating autonomous behavior and user control for be-
lievable agents. In: Third international joint conference on Autonomous Agents
and Multi-Agent Systems, Columbia University, New York City (2004)

Gillies, M., Crabtree, B., Ballin, D.: Expressive characters and a text chat interface.
In Olivier, P.; Aylett, R., eds.: AISB workshop on Language, Speech and Gesture
for Expressive Characters, University of Leeds (2004)

Johnson, M.P.: Exploiting Quaternions to Support Expressive Interactive Charac-
ter Motion. PhD thesis, MIT Media Lab (2003)

Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes
in C. Cambridge University Press (1992)

Friedman, D.; Gillies, M.: Teaching characters how to use body language. In:
Intelligent Virtual Agents. (2005) This volume.

