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ABSTRACT 
Plant-wide disturbances in chemical plants have an impact 
on product quality and running costs, thus there is a need 
for automated diagnosis of the root cause. This short paper 
reports work in progress and preliminary results from a 
novel signal processing application using conditional 
entropy. It analyses measurements from normal process 
operations in a chemical plant to determine cause and 
effect relationships. The method suggests which 
measurement is the root cause of a plant-wide disturbance 
and, additionally, maps the physical structure of the plant. 
Key words: Chemical industry; conditional entropy; control 
loop performance; fault diagnosis; non-linearity; plant-wide 
disturbance; process control; signal processing. 

1. INTRODUCTION 
This paper explores the potential of conditional entropy 
calculations for the diagnosis of root causes of plant-wide 
disturbances. Conditional entropy has the potential to 
determine cause-and-effect because it can show that 
measurement A influences measurement B more than B 
influences A. A key motivation is to provide a diagnosis 
while the plant is still running so that the maintenance effort 
may be optimally directed, thus reducing the costs of lost 
production during a maintenance shutdown. 
Preliminary results correctly found the measurement closest 
to the root cause of a plant-wide disturbance in an industrial 
data set. In addition, the method may be used to map the 
physical structure of the plant from the data alone. The 
significance of such a map will be that the analysis is able 
to explain the propagation of a plant-wide disturbance from 
its root cause. It is noted that a cause and effect map of the 
plant also has the potential to identify suitable pairings of 
manipulated and controlled variables in the design of a 
multivariable control systems. 

2. METHODS 
2.1 Conditional entropy 
For univariate random variables X and Y having values ix  
and jy  with associated probabilities: 

( ) ( )andi i j jP X x p P Y y q= = = =  

the conditional entropy of X with respect to Y is: 
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where  ( ),ij i jr P X x Y y= = =  

( )H Y X  is defined similarly with jq  replaced by ip . 
Conditional entropy is a quantitative measure of the 
remaining uncertainty of X given information about the 
state of Y. In the case of Y providing significant information 
about X, for example if there is a linear relationship 
between their probability distributions, then ( )H X Y  
tends to zero. Conditional entropy is asymmetric because 
generally ( ) ( )H X Y H Y X≠ . 

2.2 Practical implementation 
For a practical implementation the continuous time domain 
signal is quantized using quantizer levels 1 2, , ...,c c c . The 
entropy calculation then proceeds using the probabilities 
that values fall into a given quantizer interval. Thus: 
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For a dynamic time series the history of the signal over a 
number of samples is of interest. Consecutive samples from 
the time signals are grouped to form words of finite length 
L, and new random variables W and V are derived from X 
and Y respectively. W and V are defined such that the words 

iw  and jv  are composed from a current instance of x  or 
y  together with those L-1 samples previous in time. For 

example {1, 3, 4}iw =  indicates a short sequence such that 
the first instance of x  fell into quantizer interval 1, the next 
into interval 3 and the last into interval 4. The probabilities 
of the iw  are determined by enumeration of all possible 
words and counting their occurrences. Similar comments 
apply to V. Conditional entropy calculations then proceed 
on W and V rather than on X and Y. 

2.3 Refinery data set 
Data from a refinery unit were kindly provided by a SE 
Asian refinery. Previous work (Thornhill et.al, 2001) 
investigated a plant-wide oscillation in the data set. Time 
trends of the oscillatory tags are shown in Fig 1. The first 
challenge for the conditional entropy analysis is to identify 
the root cause of the oscillation (known to be in a recycle 
loop that includes Tags 33 and 34). A further challenge is to 
map the structure of the plant from an analysis of the data.  



Fig 1. Time trends from refinery data 

3. RESULTS 
3.1 Root cause analysis 
Table 1 shows conditional entropy calculations for all pairs 
of the oscillatory variables. The conditional entropy of Tag 
A given information from Tag B is to be found in the 
column headed B and row headed A. The column sums give 
an indication of the remaining uncertainty of the other 
signals given knowledge of the signal to which the column 
refers (Rouncefield, 1998). A candidate for the root cause 
of the plant-wide oscillation is that signal which gives the 
most information about the other oscillating signals.  
Tag 34 is a candidate for the root cause because the 
conditional entropies in its column have the smallest sum, 
meaning that tag 34 gives the most information about the 
other signals. This is the same conclusion as was previously 
reported using non-linear time series analysis (Thornhill 
et.al., 2001). Tag 34 is the flow in a recycle, which is why 
the disturbance propagates widely in the plant. 

3.2 Plant structure analysis 

The case when ( ) ( )H W V H V W<<  means that V 
derived from tag Y contains more information about W 

(derived from X) than vice versa. In terms of cause and 
effect, Y influences X. Relationships for each tag, for 
instance 34, may be inferred from the calculations. Fig 2 
shows which tags influence and are influenced by Tag 34. 
The numerical values are ( ) ( )H W V H V W− . The 

cause-and-effect relationships analysis from Table 1 shows: 
• Tag 24 influences 34; 
• Tag 34 influences 2, among others;  
• Tag 2 influences Tag 24. 
The feedback implicit in the relationship matches the 
known plant structure because tag 34 is in a recycle. The 
fact that 34 was found to be the root cause suggests that 
another unmeasured influence comes into the recycle loop 
at tag 34. This is most likely to be a non-linearity caused by 
a faulty actuator. 

4. CONCLUSIONS AND FURTHER WORK 
The paper has presented preliminary results from work in 
progress on the use of conditional entropy for the analysis 
of operating data from chemical plants. Application to 
refinery data has shown that the method has the potential to 
infer cause-and-effect relationships from plant data and for 
diagnosis of the root cause diagnosis of a plant-wide 
disturbance. Several implementation issues remain to be 
addressed in the next phase of the work. These include: 
• Automated selection of the quantization regime; 
• Optimization of the word length; 
• Determination of a statistical threshold for the decision 

( ) ( )H W V H V W<< ; 

• Automation of cause and effect network mapping. 
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Table 1:  Conditional entropy results and totals 

tag 2 3 4 10 11 13 19 20 24 25 33 34 
2 0.00 0.21 0.29 0.19 0.22 0.22 0.25 0.23 0.42 0.31 0.33 0.09
3 0.15 0.00 0.18 0.23 0.50 0.29 0.25 0.27 0.31 0.45 0.20 0.15
4 0.42 0.41 0.00 0.32 0.25 0.21 0.32 0.29 0.29 0.37 0.36 0.07

10 0.23 0.37 0.29 0.00 0.39 0.17 0.37 0.30 0.21 0.49 0.40 0.11
11 0.19 0.37 0.24 0.33 0.00 0.26 0.23 0.34 0.48 0.46 0.39 0.27
13 0.34 0.32 0.22 0.34 0.42 0.00 0.40 0.38 0.30 0.76 0.58 0.01
19 0.21 0.18 0.26 0.28 0.35 0.25 0.00 0.40 0.22 0.37 0.33 0.15
20 0.37 0.13 0.28 0.16 0.57 0.32 0.15 0.00 0.38 0.52 0.48 0.18
24 0.16 0.36 0.35 0.27 0.63 0.27 0.46 0.42 0.00 0.29 0.41 0.56
25 0.59 0.42 0.44 0.36 0.55 0.51 0.33 0.52 0.29 0.00 0.58 0.31
33 0.33 0.22 0.20 0.46 0.51 0.20 0.25 0.36 0.27 0.31 0.00 0.20
34 0.37 0.26 0.36 0.32 0.39 0.28 0.31 0.32 0.25 0.29 0.31 0.00

sum 3.36 3.25 3.41 3.26 5.29 3.08 3.32 3.82 3.42 4.62 4.17 2.10
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Fig 2. Network map showing the influences  
           measurements have on one another 
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