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ABSTRACT 

ABSTRACT 

Automated layout planning aims to the implementation of computational 

methods for the generation and the optimization of floor plans, considering the 

spatial configuration and the assignment of activities. Sophisticated strategies 

such as Genetic Algorithms have been implemented as heuristics of good 

solutions. However, the generative forces that derive from the social structures 

have been often neglected. This research aims to illustrate that the data that 

encode the layout’s social and cultural generative forces, can be 

implemented within an evolutionary system for the design of residential layouts. 

For that purpose a co-operative system was created, which is composed of a 

Genetic Programming algorithm and an agent-based unfolding embryology 

procedure that assigns activities to the spaces generated by the GP algorithm. 

The assignment of activities is a recursive process which follows instructions 

encoded as permeability graphs. Furthermore, the Ranking Sum Fitness 

evaluation method is proposed and applied for the achievement of multi-

objective optimization. Its efficiency is tested against the Weighted-Sum Fitness 

function. The system’s results, both numerical and spatial, are compared to the 

results of a conventional evolutionary approach. This comparison showed that, 

in general, the proposed system can yield better solutions. 
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INTRODUCTION 

INTRODUCTION 

 “The synthesis of design solutions is characterized by uncertainty, 

unpredictability, the joy of discovery and the frustration of fruitless explorations”  

[Kalay,2004,p.199] 

 

Nowadays, architecture has become a field of multidisciplinary influence. 

Particularly, the encapsulation of computational methods within the design 

process, has reformulated the traditional approaches to the design problems. 

Since the early years of the computational era, designers pioneered the 

implementation of computation in the field of layout planning problem. The 

layout planning problem is one of great complexity for it seeks to satisfy a set of 

often conflicting criteria. Additionally, the configurations that result from the 

combination of even a small amount of spaces constitute a vast search space 

that makes impossible the enumeration of all the possible solutions and the 

selection of the best among them. Hence, traditional methods to solve this kind 

of problems are based on the designer’s intuition and creativity.  

 

However, the development of sophisticated computational algorithms 

proposed efficient heuristics for solutions that perform well under the imposed 

set of constraints. Genetic Algorithms [GAs] in particular, were influenced by 

the way that natural evolution occurs on populations of individuals, namely 

through selection and reproduction of the fittest. The implementation of GAs 

within the field of automated layout planning yielded efficient solutions.   

 

Nevertheless, in most cases of automated layout planning, the researchers 

seem to neglect the impact that the social and cultural background have over 

the formation of the layout configuration. This research questions the possibility 

to guide the evolution of layouts by considering these underlying generative 

forces. 

 

In order to answer this question, a multi-objective Genetic Programming 

algorithm is applied over a population of individuals to induct their adaptation 

to a set of criteria. Genetic Programming [GP], developed by Koza [Koza,1992], 

is the subset of GAs which is involved with the program induction problem. 

Hence, the articulation of residential layouts as programs, with values and 
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INTRODUCTION 

functions, was necessary for the cooperation with the GP algorithm. Thereupon, 

the allocation of activities [embryology] to a set of spaces occurs as an 

independent unfolding procedure that is based on permeability graphs, e.g. 

Gamma Graphs [Hanson,1998 and Hillier and Hanson,1984].  

 

This report will start with an introduction to the social meaning and the 

underlying social/cultural rules which generate the houses’ layouts. An overview 

follows along with a classification of the different approaches developed over 

time for the automated layout planning. A selection of distinctive works which 

illustrate the different approaches will be presented. Thereupon, the 

methodology developed for this research will be thoroughly explained, along 

with its variations and early attempts. Furthermore, the findings of the research 

will be presented whose meaning and importance will be discussed in respect 

with the related work and the aims set.  
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1. LITERATURE REVIEW        
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LITERATURE REVIEW 

1.1 HOUSES’ UNDERLYING GENERATIVE RULES 

“Buildings are not just objects but transformation of space through objects.” 

[Hillier and Hanson,1984,p.1]  

 

People transform the space of their environment in order to host their activities 

and their needs. This transformation is not a random aggregation of closed 

spaces, it rather responds to certain generative rules that vary among the 

different societies and cultures. 

 

“Buildings, indeed, the entire built environment, are essentially social and 

cultural products. […] Their size, appearance, location and form are governed 

not simply by physical factors but by a society's ideas, its forms of economic 

and social organization, its distribution of resources and authority, its activities 

and the beliefs and values which prevail at any one period of time.” [King,1980, 

p.1] 

 

 
Figure 1 Decoding configurations. [Hillier and Hanson,1984] 

 

In “The social logic of space” Hillier and Hanson [Hillier and Hanson,1984] tried 

for the first time to decipher the quantitative attributes of a building’s inner 

structure in respect with the social processes that provoked their form and 

order. This approach was in conflict with the one which several researchers 

adopted whose main notion was to describe the space and then relate that 

space to usage [see examples in the next chapter]. As it is argued “the man-

made environment through its ordering is already a social behaviour”. [Hillier 

and Hanson,1984,p.8] 
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LITERATURE REVIEW 

Furthermore, according to the authors, the relations in the physical 

configuration of spaces could describe the social meaning of space. One of 

the objectives was to find the building rules that produce the resulting spatial 

configuration. These rules concern the combination of elementary generators in 

a set of more general rules that constitute the building’s genotype. And it is this 

genotype that makes different instances of buildings to be categorised under 

the same label. Their similarity or diversity is not based on their geometric 

attributes, but instead on their underlying generative rules. 

 

“What is realised in every interior is already a certain mode of organising 

experience, and a certain way of representing in space the idiosyncrasies of 

cultural identity.” [Hillier and Hanson,1984,p.145] 

 

 
Figure 2 Similar plans generate different patterns of use [Hillier and Hanson,1984] 

 

One of the tools that have been used is the Justified Gamma Map, which is a 

representational device [Figure2]. Spaces are assigned depth values according 

to the steps, needed to reach that space from the exterior. Then, these spaces, 

symbolically represented as circles, are arranged in lines according to their 

depth; one depth line below the other. Thereupon, the circles are connected 

with lines which represent the connectivity among spaces, if there is any. 

Hanson proposes that “the most complex configurational structures are built out 

of these elementary spatial gestures” [Hanson,1998,p.77]. As it is argued, the 

power of that representation is a result of the fact that the gamma map 
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deciphers the different underlying syntactic genotypes of buildings [Figure2] 

whose geometry and adjacency Maps are identical [Hillier and Hanson,1984, 

p.150]. 

 

While their approach has been used for the analysis of the built environment, it 

has also been used within generative methods, such as the generation of 

aggregations based on a set of rules. Furthermore, this research was based on 

Hanson’s suggestion that “we can if we so wish use the spatial decodings to 

generate new designs for houses which share the salient features of the existing 

collection, each an original, creative, interpretation of the genuine article” 

[Hanson,1998,p.270]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3 Random aggregation of cells with one face free [Hillier and Hanson,1984] 

Figure4 Villager application [Doulgerakis unpublished] 
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1.2 SPACE LAYOUT PLANNING 

In “Decoding homes and houses”, Julienne Hanson mentions that “the same 

brief for a house may generate solutions of breathtaking sophistication and 

mind-numbing banality” [Hanson,1998,p.2]. In general, the space layout 

problem is one of great complexity. Even a small number of spaces give rise to 

a vast search space as the population of possible solutions augments 

exponentially.  

 

Since computation made possible the development of search algorithms and 

optimization strategies, researchers tried to use these new means as an effort to 

solve that kind of problems [e.g. the Facilities Layout Problem–FLP]. Liggett, in 

her paper “Automated Facilities Layout: past, present and future” reviews 

several approaches that aimed to address a demanding design problem. 

“Facility layout is concerned with the allocation of activities to space such that 

a set of criteria are met/or some objective minimized” [Liggett,2000,p.197]. 

 

Attempts to build automated solutions for spatial layout problems have their 

origin in the 1960s. These attempts set different goals and follow various 

strategies in order to come up with a solution. As the spatial layout planning 

becomes an optimization problem, the number and the nature of the 

parameters which have to be optimized, define the complexity of each 

strategy’s goal. These objectives vary from the optimization of a single criterion 

function [such as the cost minimization associated with flow of materials 

between activities], to the finding of an arrangement that satisfies a diverse set 

of constrains [e.g. position, orientation, adjacency, path, view or distance] [see 

SEED and LOOS/ABLOOS in Kalay,2004]. 
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1.3 REPRESENTATIONS OF SPACE 

Facilities Layout Problems [FLP] can be divided in the following general 

categories according to the way that the structure of space is considered: the 

equal-area facility layout problems and the unequal-area facility layout 

problems. 

 

1.3.1 EQUAL AREAS [One–to–One Assignment] 

Early attempts to solve FLP aimed to assign activities to a given set of spaces 

whose arrangement is predefined by a one-to-one correspondence. This 

problem is formulated as a Quadratic Assignment Problem [QAP] by Armour 

and Buffa [Armour and Buffa,1964]. “QAP is a category of problems that is 

concerned with finding optimal locations for a set of interrelated objects”. 

[Ligget,2000,p. 200]  

 

     
Figure5 One-to-one assignment [Ligget,2000] 

Figure6 Modularisation on a block plan [Liggett,2000] 

 

1.3.2 UNEQUAL AREAS [Block Plan] 

The Unequal Area FLPs consider that each activity has different area 

requirements. Consequently, these problems are by far more complicated than 

those of the first category. However, they are more powerful in solving real 

world problems, as in reality, activities need host spaces of various magnitudes. 

The unequal area FLP can be furthermore divided in two categories according 

to the type of the plan that the FLP is called to solve.      
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THE GRID-BASED APPROACH 

“In the grid-based block plan layout problem the facility layout is constructed 

on the grid plan, called the grid-based block plan and divided into squares or 

rectangles having a unit area” [Lee et al.,2005,p.880]. Then, the activities are 

partitioned into cells of the same unit-area according to their area 

requirements [Figure6]. Thereupon, as Liggett [Liggett,2000,p.205] stresses, the 

problem is translated to a one-to-one assignment problem. In this case, the 

module’s attributes influence the results of the automated algorithm. The grid 

can only approximately create plans whose elements are not rectilinear; the 

approximation limit is defined by the grid’s unit area. Nevertheless, there are 

examples which show that this method can be efficient in FLP solving [see Jo 

and Gero,1998 and Rosenman,1996]. 

 

THE CONTINUAL APPROACH 

Other approaches [see Mitchell et al.,1976] manipulate space based on its 

geometrical attributes, e.g. the rectangle that describes the given outline. The 

partitioning of the outline’s geometry into smaller, unequal, geometries 

[rectangles] provides the spaces that host the activities. There are several 

strategies that lead to the partitioning of space. Tam [Tam,1991] as well as Tate 

and Smith [Tate and Smith,1995] conclude to the layout by following a tree-

structured hierarchical slicing procedure. Namely, the initial rectangle is 

recursively divided into smaller parts. Each rectangular partition in the slicing 

structure corresponds to an allocated activity.  

 

 
Figure7 Facilities Layout Problem’s approaches 
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1.4 GENERATING SOLUTIONS 

Liggett [Liggett,2000,p.202] classifies the existing generative methods in two 

categories. On the one hand, there are the constructive initial-placement 

strategies, whereas on the other, there are the iterative improvement strategies.  

 

1.4.1 CONSTRUCTIVE PROCEDURES 

According to Jo and Gero [Jo and Gero,1998], a constructive procedure is an 

n-stage decision process that starts with a set of spaces and a set of activities 

which are assigned to the spaces one at a time. These activities are allocated 

the one next to the other according to the predefined design requirements. For 

each placement, a ‘tree-search’ is executed and the selection of an activity-

location assignment is made. The criteria for the selection of the next element 

to be assigned can be either local or global. Tree search can either be 

influenced by the spaces that have already been assigned [local criteria], or 

by the future search steps as well [global criteria]; thereupon, the assignment 

that guarantees the most promising evolution is selected.  

 

1.4.2 ITERATIVE IMPROVEMENT STRATEGIES 

In order to optimize the outcome of a constructive strategy, improvement 

procedures are applied at a later stage, i.e. after the completion of the first 

assignment. The simplest one is the ‘pair wise’ exchange which is based on the 

random selection of a pair of assigned spaces and the exchange of their 

activities. The result is evaluated according to the requirements and if the 

exchange improves the solution’s efficiency, it is accepted as the new solution 

and so on.  

 

1.4.3 SOPHISTICATED STRATEGIES 

There is another category of strategies which are used in order to build more 

efficient automated solutions for spatial layout problems. This category is 

characterized by the use of sophisticated algorithms that provide a massively 

parallel exploration of the solution space. Evolutionary Algorithms attempt to 
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imitate the way that natural evolution generates evolved organisms as offspring 

of less-evolved ancestors. 

 

 
Figure8 Evolutionary computation [Bentley,1999] 

 

As Peter Bentley explains, “evolutionary design has its roots in computer 

science, design, and evolutionary biology. It is a branch of evolutionary 

computation, it extends and combines CAD and analysis software, and it 

borrows ideas from natural evolution” [Bentley,1999,p.35]. Evolutionary design 

uses as a tool, evolutionary algorithms in order to explore the design solution 

space, either for the generation of innovative designs or for the optimization of 

the design’s efficiency according to predefined criteria. It follows the 

explanation of the evolutionary algorithms that can be used in spatial layout 

planning and in the next section, paradigms will be described.  

 

GENETIC ALGORITHMS 

“Genetic Algorithms [GAs] model natural selection and the evolution process. 

Conceptually, genetic algorithms use the mechanisms of inheritance, genetic 

crossover and natural selection in evolving individuals which, over time, adapt 

to their environment.” [Gero,1996,p.16]  

 

Bentley [Bentley,1999,p.8] mentions that GAs use two kind of abstract spaces. 

The first space is the solution space, which comprises all the possible solutions of 

a given problem. As it is impossible for a GA to manipulate the solution space, 

given that it is merely a computational algorithm, the second space contains a 

coded version [Genotypes] of all the possible solutions. This space is called the 

search space of the GA.  
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Figure9 Search space and solution space [Bentley,1999] 

 

The genotype is a set of coded parameters that describe the phenotype. These 

parameters are called the genes, while the values that the genes can take are 

called alleles. The genotype is often represented as a string of values and each 

string position corresponds to a single gene.  

 

The efficiency of the algorithm is based on the fact that it is applied to a 

population of solutions. The search within the solution space is highly parallel as 

each individual explores a different area of that space. “Evolution operates on 

no single individual but on entire species.” [Flake,1998, p.340]  

 

The genotypes are then translated to their corresponding phenotypes which 

are then evaluated according to the predefined criteria. As Jo and Gero [Jo 

and Gero,1998,p.152] comment, the phenotypes [e.g. the organisms per se] 

live in the world. Hence, their good or their bad performance depends 

exclusively on their physical attributes and not on their chromosomes.  

 

The fitness assignment guides the evolutionary algorithm. The individuals that 

perform better in their environment [e.g. the fittest] are more probable to 

survive and reproduce themselves. According to John Koza [Koza,1992,p.1], 

“fitness causes, over a period of time, the creation of structure via natural 

selection. That is, fitness begets structure.” 

 

 
Figure10 Genetic algorithms [Kalay,2004] 
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On the other hand the evolving power of a genetic algorithm derives from the 

recombination of the genetic material of well fitted solutions in order to create 

offspring populations with better-fitted individuals. The recombination and the 

propagation of the genetic material are executed with the following genetic 

operations: 

  

a. Survival. Each individual has a probability to survive in the next 

generation according to its fitness value. 

 

b. Crossover. Two ‘parent’ phenotypes are selected from the 

entire population. The selection probability of each individual 

depends on its fitness value, e.g. the fittest are more probable 

to reproduce. The genetic material of the parents is 

combined for the creation of an offspring genotype. The 

genes of this genotype acquire randomly a value between 

the two corresponding gene values of its parents. 

 

c. Mutation. It is applied with a low probability to the offspring 

genotype. A single gene discards its value and randomly 

selects a new value.    

 

 

 

 

 
Figure11 Genetic operations in solution space [Gero,1998] 
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Figure12 Genetic operations [Flake,1998] 

 

The GAs have the ability to evolve their population’s organisms and to instruct 

them to ‘adapt’ to the requirements which are set by the evaluation criteria. As 

Flake mentions, “we have both parallelism and iteration as fundamental pieces 

of the biological equation for adaptation” [Flake,1998,p.340]. The genetic 

algorithm’s efficiency is due to the integration of these two fundamental 

elements.  

 

GENETIC PROGRAMMING 

Genetic programming was developed by John Koza [Koza,1992] as a method 

to make computers to evolve computer programs. Bentley and Corne [Bentley 

and Corne,1998,p.17] classify GP as a special kind of genetic algorithm whose 

individuals are programs and whose genetic operations are modified versions 

of the operations that GAs implement. 

 

      
Figure13 Programs in tree-forms [Sean Hanna unpublished] 
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Koza [Koza,1992,p.2] stresses out that in order to get computers to solve specific 

problems, the structure of a computer program is required.  

 

Such a structure can: 

 

a. perform operations in a hierarchical way, 

b. perform alternative computations depending on the 

outcome of intermediate calculations, 

c. perform iterations and recursions, 

d. perform computations on variables of many different types, 

and 

e. define intermediate values and subprograms which can be 

subsequently reused. 

 

The major difference between GAs and GP is that in the second case the 

solution to the problem does not have a predefined length and structure. In 

GAs the genotype of an individual constitutes a fixed length string of genes that 

include all the necessary information in order to describe each solution. “The 

initial selection of string length limits in advance the number of internal states of 

the system and limits what the system can learn” [Koza,1992,p.66]. Within the 

context of genetic programming “the size, the shape and the structural 

complexity of the solution should emerge during the problem-solving process as 

a result of the demands of the problem. The size, shape, and structural 

complexity should be part of the answer produced by a problem solving 

technique- not part of the question” [Koza,1992,p.2]. 

 

 
Figure14 Crossover and mutation in GP [Sean Hanna unpublished] 
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Since a chromosome of a computer program can be of variable length and 

complexity, a specific solution representation is needed in order to be able to 

accept the genetic operations, crossover and mutation. Koza [Koza,1992] 

proposed the arrangement of the solutions in hierarchical tree-structures with 

intermediate and terminal nodes. The crossover operation selects randomly a 

node in each parent genotype and swaps their branches. As for mutation, GP 

selects randomly a node in a tree-structure, and replaces the sub-tree whose 

root is that node with a new randomly generated sub-tree.  

 

GENETIC ALGORITHMS vs. GENETIC PROGRAMMING 

In summary, GP and GAs are both divisions of the evolutionary algorithms and 

they execute similar heuristics in the solution’s induction process. However, their 

major difference is the kind of solutions that they are involved with. GAs 

articulate the problem in terms of values required, whereas GP focus on rules 

describing a method to solve the problem. GAs explore the search space 

defined by a specific problem in search of a specific optimal solution [data]. 

On the other hand, GP explores the search space defined by a general set of 

problems in search of a general solution [algorithm] that responds to the 

requirement set by such problems. 

 

Hence, the selection for the implementation of the appropriate algorithm, 

either GAs or GP, depends on the objectives of the research. When a problem 

is explicitly defined as a single case problem and the desired result is the final 

values of the variables, the GAs should be implemented. Whereas, when the 

input that defines a specific problem [e.g. environment values and objectives] 

is unknown, GP can provide a general set of instructions [algorithm] that solve 

adequately such problems.  
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1.5 RELATED WORK FOR THE SPACE LAYOUT PLANNING 

1.5.1 CONSTRUCTIVE APPROACH 

CRAFT [Armour and Buffa,1964]  

Armour and Buffa [Armour and Buffa,1964] formulated the space layout 

problem as a Quadratic Assignment Problem [QAP]. They created an 

application called CRAFT [Computerised Relative Allocation of Facilities 

Technique] whose purpose was to solve the space layout problem as a 

combinatorial problem in which indivisible activities are to be assigned to fixed 

locations on a plan.  

 

The algorithm starts with an arbitrary initial layout and computes its ‘cost’ in 

interconnection distances according to a predefined matrix of desired 

adjacencies. Then, CRAFT performs a pair-wise exchange strategy in order to 

create solutions which perform better in fulfilling the given requirements. This 

procedure is repeated until there is no possible exchange that can reduce the 

interconnection cost. 

 

 
Figure15 CRAFT [//me.utexas.edu/~jensen/ORMM/omie/design/layout/craft.htm] 

 

SMALL RECTANGULAR FLOOR PLANS [Mitchell et al.,1976] 

In the ‘Synthesis and optimization of small rectangular floor plans’ [Mitchell et 

al.,1976] a combination of algorithms is proposed, aiming to solve a FLP, 

focused in the case of a small house. It is implied that rectilinear spaces can 

result from the application of a transformation matrix over a dimensionless 

representation of rectilinear plan forms. A minimum rectangular grating is 
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superimposed over a rectilinear outline and then, the dimensions of the 

minimum gratings are adjusted so that each cell becomes square. 

 

 
Figure16 Dimensionless dissections of rectangles [Mitchell et al.,1976]  

 

An algorithm has been devised in order to enumerate all possible combinations 

of dissections that can be made to the initial rectangle so as to produce a 

given amount of rooms.  The user imports the desired connectivity and 

orientation requirements. Then, the program enumerates all the acceptable 

assignments which correspond to the given preferences and fit within the 

several dissections.  

 

 
Figure17 Transformations of dimensionless representations [Mitchell et al.,1976] 

 

Having produced a file of plans that satisfy adjacency and orientation 

requirements [in dimensionless representation], the next step is to consider the 

application of dimensioning vectors which will produce dimensioned plans 

according to specified requirements. A nonlinear programming algorithm was 
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applied to each of the plan arrangements generated at the previous step in 

order to discover the dimensioning vectors which optimise the objective subject 

to the defined constraints. Only a small amount of arrangements can yield 

feasible solutions which constitute the final outcome of the method.      

 

SITEWALKER [Doulgerakis,2007] 

Sitewalker is an algorithm that was devised at an early stage of that research. 

The rooms are composed of joined elementary cells. Each room has predefined 

area-ratio requirements. Additionally, a matrix specifies which rooms should be 

connected and which should be not connected. Spaces are added one at a 

time. For each allocation all the possible following spaces and their possible 

placements are explored and the less ‘expensive’ position, in terms of 

overlapping areas, is selected.  

 

Some of the produced solutions were promising from an architectural point of 

view. However, their efficiency can not be assured since the tree search 

algorithm could not predict future positioning steps. In an effort to include the 

future allocations in the decision calculations, the limit of the available 

computational power was reached. 

 

 

       
Figure18 Sitewalker [Doulgerakis unpublished] 
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1.5.2 EVOLUTIONARY APPROACH 

EDGE [Jo and Gero,1998] 

The Evolutionary Design based on Genetic Evolution system, called EDGE, is 

based on the evolutionary design model. EDGE is a grid-based approach for 

block-plan problems. The interaction matrix is based on subjective judgements 

of the client. The requirements in areas and adjacencies are defined by the 

user while the perimeter of the building is fixed.  

 

According to the authors, the design elements of the algorithm include:  

a. a set of activities or space elements  

b. a space in which to allocate the activities 

c. an operator to locate a specific activity to a specific location  

d. a strategy to control the operator  

e. the evaluation criteria.  

 

The activities are placed one at a time within the borders of the building and 

what remains to be found is the order of the placement. The order of activities is 

then interpreted into the language of the genetic search system. Each gene 

includes a distinct activity for avoiding activity duplicates. However, the 

recombination of the genetic material through the genetic operations of the 

genetic search process distracts this equilibrium. A reordering function is then 

required, so as to ensure once again that all the activities of a genotype are 

unique. 

 

 
Figure19 Allocated departments within the outline [Jo and Gero,1998] 
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The system does not converge to a single solution as it is usually the case in 

evolutionary design; alternatively it provides a series of promising solutions. Then, 

the user chooses a solution among them. 

 

THE GENERATION OF FORM [Rosenman,1996] 

The structure of the designing elements in Rosenman’s model is hierarchical. A 

house is considered to be composed out of zones. Zones are considered to be 

composed out of rooms which are considered to be composed out of space 

units. Rosenman’s work is a grid-based approach for block-plan problems. Each 

room is composed of a number of space units. At the room level, the 

component unit is a fundamental unit of space. At the zone level, the 

component unit is a room and at the house level the component unit is the 

zone. 

 

According to the author, the design grammar used here is based on the 

method for constructing polygonal spaces represented as closed loops of 

edge vectors. The grammar is based on a single fundamental rule which states 

that any two polygons Pi and Pj may be joined through the conjunction of 

negative edge vectors, V1 and V2 [equal in magnitude and opposite in 

direction]. The conjoining of these vectors results in an internal edge and a new 

polygon Pk.   

 
Figure20 Generation of a ‘trimino’ [Rosenman,1996] 

 

Initially, a population of different rooms is generated for each room type in a 

given zone through the conjoining of rectangle polygons to ‘polyminoes’. 

Progressively, a population of different zones is generated through the 

conjoining of rooms. Then, a population of different houses is generated 

through the conjoining of different zone types.  
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Figure21 Possible arrangements of two rooms [Rosenman,1996] 

 

Each population is then evolved and the solutions are ‘adapted’ to the 

predefined requirements. At each level of the spatial hierarchy, different fitness 

functions apply according to the requirements of that level. By the time that this 

work was published, only a simple set of criteria had been implemented. 

According to Rosenman, each evolution-run converges quickly to a dominant 

solution.  

 

EVOLVING URBAN STRUCTURES [Finucane et al., 2006] 

By focusing on a different design scale Finucane et al. developed a 

sophisticated evolutionary system whose purpose is to produce urban structures 

within a given site according to a project brief. The system is composed of a 

genetic algorithm and an ‘ant’ pheromone trail model. The former sets the 

basis for the solution while the development of the phenotype [embryology] is 

achieved through the later. 

 
Figure22 Ant’s pheromone trail [Finucane et al.,2006]  
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In particular, the GA randomly locates amounts of ‘food’ that represent the 

uses defined by the brief. Thereupon, within each evolution run and for each 

individual, the ‘ant’ pheromone trail model is executed for the determination of 

the optimal movement paths and building locations [for the particular ‘food’ 

distribution]. The evolutionary process is guided through the interaction of the 

intertwined systems.  

 

Additionally, the genetic algorithm executes a multi-objective optimization 

through the classification of non dominated solutions to ‘Pareto’ fronts. The 

individual’s fitness value does not depend on its general performance, but 

rather to the balanced or unbalanced fulfilment of the criteria.     

 

 

 

 

 

 

 

 

 

 

 

 
Figure23 Generated urban structure [Finucane et al.,2006] 
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Based on the framework that was described in the literature review, an 

evolutionary system was created in order to show that a different approach to 

the automated layout planning is possible.  

 

This thesis attempts to demonstrate that an efficient evolutionary system, whose 

purpose is to generate floor plans, can be driven by a computationally 

independent process [embryology] that assigns activities to existing spaces 

according to a set of rules [preferences]. These rules can be encoded in terms 

of required dimensional attributes as well as permeability graphs. The evolution 

of spaces and the assignment process are intertwined in the same system. The 

space configuration restrains the movement and the decisions of the ‘assigner’. 

Simultaneously, the ‘assigner’ evaluates the resulted allocation of activities and 

inducts the evolution of configurations towards the one or the other direction. 

 

Most of the cases presented earlier [see related work section], implement 

advanced methods in order to find optimal solutions in the problem of assigning 

a set of activities within a plan. However, they don’t consider the generative 

power that the cultural and social structures have over the formation of the 

built environment.  

 

As it is previously mentioned, Hillier and Hanson [Hanson,1998 and Hillier and 

Hanson,1984] stress out that there is an underlying social structure that has the 

role of a ‘genotype’ in the generation of buildings. Different buildings have 

different layouts because either they host different sets of activities, or the 

allocation of their activities is inducted by different cultural backgrounds. In 

both cases, the needs in the implementation of control and power over the 

given set of activities form a genotypical set of instructions.  

 

In this thesis it is argued that this very set of instructions can be used as the 

driving force within an evolutionary process in order to direct the evolution 

towards solutions [e.g. spatial configurations] that can host a set of activities in 

the same general way that a particular type of buildings already does. It is an 

effort to create a generative system whose generative power is based on the 

way that societies have inducted the evolution of their environments. 
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For the creation of the aforementioned system, the PROCESSING programming 

language was used. The system was implemented within the context of a real 

example, namely the typical multi-storey residential building in the centre of 

Athens. The system’s efficiency will be tested against a conventional Genetic 

Programming algorithm whose activities are randomly assigned during the 

generation of the individuals. 
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3.1 SPACE AS PROGRAM 

Architectural design nowadays strives to adopt the methodologies and the 

tools of computer science. Some of the uses of computation in architecture 

include analysis, reproduction, generation and optimization of design artefacts. 

Regardless of the reason for which one implements computation in the general 

field of architecture, there is a common basis that is required. Since 

computation processes information in mathematical terms, there is a need to 

describe space and spatial attributes in terms of numerical values. 

 

There have been created numerous systems that take as input these numerical 

values and produce an elaborated output. If we consider these inputs as a 

representation of space then, the output is consequently an elaborated space. 

As already mentioned, evolutionary design describes a design solution in terms 

of a set of numerical values that is the genotype of the solution. The objective 

of applying genetic algorithms is to evolve an optimized version of these 

parameters in order to satisfy some criteria. 

 

 
Figure24 Numerical representation and manipulation of space 

 

The restriction of GAs is that they function upon a fixed length genotype. By 

evolving a predefined set of parameters in a predefined order that compose 

the genotype, the search space of the evolutionary algorithm is reduced 

extensively. Consequently, there is no way to ensure that the optimal solution 

will be within the search space in the first place.  

 

Koza [Koza,1992] proposed, a kind of evolutionary algorithms that they 

elaborate a genotype of variable size and structure. Genetic Programming 

[GP] is based on the notion that the magnitude and the structure of the 
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attributes in the optimal solution is part of the answer and not part of the 

question [Koza,1992, p.2].  

 

A very interesting point that Koza [Koza,1992,p.3] stresses out regarding genetic 

programming is that a wide variety of seemingly different problems from 

different fields can be recast as requiring the discovery of a computer program 

that produces some desired output when there is an appropriate evaluation 

method. Hence, several different problems can be translated into problems of 

“program induction”. 

 

 
Figure25 Aggregated spheres within an isospatial grid [Coates,1999] 

 

GP has already been implemented in order to generate form either as 

aggregation of spheres within an isospatial grid [Coates,1999] or as 

combination of 3D objects [Coates and Hazarika,1999]. Coates proposes that 

the tree-like structure of programs-genotypes within a GP can be implemented 

in terms of Lindenmayer-Systems. Both Koza and Coates use LISP for their 

algorithms. In LISP all the solutions are expressed in terms of S-expressions, tree-

like structures whose nodes can be either functions [intermediate nodes] or 

values [terminal nodes]. 

 
Figure26 GP Population of 3D object’s combinations [Coates and Hazarika,1999] 
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3.2 STRUCTURE OF THE GENOTYPE 

Within this research, the problem of layout planning is considered as a ‘program 

induction’ problem whose tree-like solutions are of unknown size and 

complexity. The programs’ genotypes are expressed as tree-like recursive 

structures whose arguments [terminal nodes] are dimensions of spaces and 

whose functions [intermediate nodes] are manipulating operations over the 

sub-dependent spaces. The individual’s generation process involves a 

randomly generated genotype, whose tree structure describes a unique spatial 

formation.   

 

a cb

+ *–
inner
nodes

set depth

 

inner nodes [functions] 

Terminal nodes [arguments] 

Figure27 GP genotype’s structure [Sean Hanna unpublished] 

 

During the development of the research, two methods were followed for the 

production of configuration of spaces [aggregation and subdivision method]. 

Both approaches share the same tree-like genotype representation but they 

differ in the way their operations manipulate space. 

  

3.2.1 AGGREGATING SPACES 

The first attempt to describe a spatial configuration was based on the 

aggregation of spaces. The program’s genotype is composed by arguments 

and functions. The arguments are spaces which have two variables [width and 

height], whereas the functions are transformation operations [move forward, 

rotate and scale according to variables] that apply to the sub-dependent 

arguments [e.g. the spaces]. 
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Figure28 Aggregation of spaces genotype-phenotype  

 

 

 

Further experimentation with that strategy within the GP algorithm showed that 

it was extremely difficult to achieve the right distances among the spaces, so as 

to avoid separation or overlapping. The evolution of solutions seemed a 

confusing process that punishes the individual genotypes when their spaces 

were far apart and when they were overlapping. It seemed impossible to reach 

a point where the connections among spaces would really matter. 

Additionally, this strategy is rather inefficient when the outline of the site is given, 

which is the case in most layout planning problems. In order to address these 

issues, a reversed strategy [subdivision of space] was used.    

 

 

 
Figure29 GP population [aggregation of spaces] 
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3.2.2 SUBDIVIDING SPACE 

For the creation of configurations of spaces, the second and more efficient 

approach was to start with an initial rectangle that is recursively subdivided until 

a certain depth. The spaces which are produced from the final subdivision are 

the spaces of the configuration. This strategy is more efficient since within a 

configuration, spaces are separated by walls which constitute a common 

edge. When a shape is divided into one or more parts, the sum of its parts 

constitutes the whole, and it is analogous to the subdivision of a given site to a 

building’s spaces [the unoccupied spaces can be considered as spaces of null 

type].  

 

 
Figure30 Subdivision of space genotype-phenotype  

 

In this case the program genotype is composed out of variables [number of the 

sub-dependent spaces and the percentage of each subdivision], and 

functions [direction and angle of the subdivision].  
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3.3 MANIPULATION OF GEOMETRY 

Since the aforementioned tree-like genotype structure can produce the 

required variations in shape and size of solutions, the next step was to find the 

way that the tree-structured genotype would describe a configuration of 

spaces. 

 

3.3.1 RECTANGULAR SPACES 

Initially, the subdivision of spaces could occur only rectilinearly. The initial site in 

that case is always a rectangle and the transformation operations of the 

genotype describe the analysis of a rectangular space to smaller rectangles.  

 

 
Figure31 Rectilinear subdivision 

3.3.2 POLYGONAL SPACES 

As already analysed [related work section], most approaches to the 

automated layout planning problem manipulate rectangular spaces. Even 

those works that end up with nonrectangular shapes [Rosenman,1996 and 

Gero,1998], their polygonal spaces are the result of the aggregation of unitary 

rectangular elements.  

 
Figure32 Polygonal subdivision 
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Whereas a rectangular space could efficiently be subdivided to rectangular 

spaces there was a need for a more flexible strategy that could consider space 

as a polygon and not as a rectangle. It is worth mentioning that in this case, 

one could easily remain within the borders of rectangular spaces since a 

rectangle is a polygon. Nonetheless, by considering space as polygon allows 

non-rectangular shapes to be included in the generation of solutions and 

widens the search space towards more realistic configurations.  
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3.4 EMBRYOLOGY-THE ASSIGNMENT OF ACTIVITIES 

The development of the individual’s phenotype occurs after the execution of 

an individual embryology process. Thus, as in Finucane et al. approach 

[Finucane et al.,2006] the resulting configuration results from the interaction 

among the evolutionary and the embryology algorithm.  

 

After the spatial aggregations are generated by the GP genotype, the 

assignment of activities is initialized. This is accomplished through an agent 

based algorithm that traverses through each configuration and assigns 

activities to spaces according to geometrical and topological requirements. 

 

 
Figure33 intertwined GP and embryology algorithms 

 

3.4.1 ENCODING OF GENERAL PREFERENCES 

Initially, a way to encode these requirements was needed. Additionally, as 

these requirements vary among different social and cultural groups they are 

referred to as preferences. 

 

In this application model these preferences involve the quantities of activity 

types, the magnitude for each activity, the ratio of spaces, the preferred locus 

of each activity [external, internal etc] and the connectivity among the 

activities. In all the above cases the requirements are encoded in terms of 

matrices and refer to a set of predefined space-types.  
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These space types are: 

 

a. vertical communication 

b. entrance 

c. living room 

d. corridor 

e. wc 

f. kitchen 

g. bathroom 

h. study-room/workshop 

i. diner 

j. room 

k. terrace 

l. storage 

 

 

The needs in activities are scripted in terms of a one-row matrix. The number at 

each place of the matrix defines the existence and the number of the space-

type that corresponds to that particular place. The area requirements are 

described with a matrix of floats that defines the minimum and the maximum 

area value for each space-type.  

 

 
Figure34 Encoding of general preferences 
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That is also the case for the ratio requirements. As for the connectivity 

requirements, the correspondent matrix is a square matrix that each space-

type corresponds to a row and a column. When an element of the Matrix is 1, 

the space-types that correspond to the row and the column should be 

connected, whereas if it is 0, a connection is not required. The locus 

requirements are described in terms of a matrix that instead of numerical values 

contains strings. For each position, these strings inscribe the accepted positions 

of the correspondent space-type [for instance front, back, middle]. 

 

3.4.2 ENCODING OF GAMMA MAPS 

As it is argued in this research, even though the aforementioned requirements 

are necessary in order to describe a residential layout, they are not enough. 

The social and the cultural forces that generate the particular kind of layouts 

can be scripted through the use of justified gamma maps. 

 

Gamma Maps describe the topological relationship among the activities. This 

topological relationship can be described through a pair of matrices, a 

downward and an upward matrix. The downward matrix defines the ensuing 

activities and for each space-type contains the spaces which this particular 

activity leads to. The upward matrix defines the preceding activities and for 

each space-type contains the spaces which this particular activity follows. 

 

 
Figure35 Encoding of gamma-maps 
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3.4.3 ITERATION OF SPACES AND ASSIGNMENT OF ACTIVITIES 

In this model the agent’s start point is considered to be the entrance even 

though this is not mandatory. Initially, a search amongst the existent spaces is 

executed for the most suitable host space for that activity. All the spaces that 

meet the locus criterion are stored within a vector. Thereupon, each space 

within that vector is evaluated depending on how it performs against the 

magnitude and ratio requirements. The fittest space is then selected as the 

entrance of the layout.  

 

 
Figure36 Activities assignment algorithm 

 

Successively, the space operates a search for the more appropriate host-space 

for each activity contained within the downward gamma graph matrix. All the 

unassigned places that are adjacent to the parent space [initially the 

entrance] are stored within a vector. Thereupon, each space within that vector 

is evaluated. The evaluation considers the area of the space, the ratio, the 

location and the upward gamma graph. The fittest space is then selected to 

host that particular activity. Once all the ensuing activities are assigned [if they 

can all be assigned] these activities become the next round’s parent spaces 

and the same procedure is implemented recursively until the assignment of all 

of the required activities [or the assignment of all the activities that can be 

assigned within that particular configuration].  
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Figure37 Searching for starting spaces.   

 

3.4.4 INITIALIZATION OF THE EVALUATION FUNCTION 

Once the assignment procedure is terminated, the final evaluation procedure 

of the layout is initialised. The evaluation is based on how the predefined 

preferences have been met through the interaction of the configuration-

generation procedure and the activities-assignment procedure. Hence, the 

fitness is not a direct outcome of the space; rather it is assigned through the 

performance of an agent within the created space. This is also the approach of 

Pablo Miranda [Miranda, 2004] in ArchiKluge applet which evolves built forms 

based on the performance of agents within the environment set by the 

genotype.   

  

The different approaches to evaluate the result of a multi-objective 

evolutionary algorithm will be discussed in the next section. 

 

 
Figure38 Reproduction of the population 
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3.5 THE EVOLUTION OF CONFIGURATIONS 

It is worth mentioning, that within the context of GP there is a problem to 

produce solutions which are ‘valid’ and don’t cause a system crash when they 

are executed. The tree-structured genotype can handle the required variations 

in shape/size of the solutions and its creation method assures the generation of 

valid solutions, yet most of them are not good solutions. In order to proceed 

from merely valid solutions to good solutions, an evolutionary algorithm is 

implemented. 

 

3.5.1 POPULATION OF INDIVIDUALS 

Initially, the algorithm produces a population of randomly generated 

genotypes, whose initial site polygon is loaded from a dxf file. Then, in every run 

of the algorithm, this population is replaced by an offspring population whose 

genotype-individuals result from genetic operations applied over the individuals 

of the population of the previous generation. 

 

 
Figure39 One GP algorithm is executed for each floor 

 

3.5.2 MULTI-OBJECTIVE EVALUATION AND SELECTION 

The solutions are first evaluated against a set of criteria and they are assigned a 

fitness value for each criterion. These values are calculated according to the 

declination from the criteria’s ideal values. Hence, the better a solution may 
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perform in respect to a particular objective, the lower this objective’s fitness 

value will be.  

 

There are several methods that calculate the solutions’ total fitness value. 

Particularly, the Weighted Sum, the ‘Pareto’ Optimisation and the Ranking Sum 

methods will be discussed in the following paragraphs.  

 

WEIGHTED SUM 

In this case, the total fitness value is the weighted sum of the partial fitness 

values. The individuals are then ranked according to their fitness value and the 

selection of the parents for each offspring is a probabilistic selection based on 

the solutions’ ranking.  

 

Even though this is a widely used practice, it is often criticised, for the “good-

fitted” solutions that it produces can be dominated by a good performance of 

that solution on a sole objective fulfilment. Moreover, weights’ values have a 

direct impact on the solution’s evolution. Nevertheless, it is very difficult to 

enumerate all their possible ‘tunings’ in order to find the weights’ combination 

that produces the best results. 

 

 
Figure40 Weighted Sum Fitness function 

 

PARETO FRONTS 

For the overcoming of these issues, some advanced strategies have been 

developed that focus on non-dominated solutions. One of these methods 

classifies the population’s individuals among ‘Pareto’ fronts. The ‘Pareto’ fronts 
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are groups of solutions with a particular grade of non-dominance. As Cvetkovic 

and Parmee argue while the application ‘Pareto’ fronts present very good 

results, it is extremely computationally expensive to implement [Cvetkovic and 

Parmee,1998]. 

 

RANKING SUM 

Another method was instead developed in order to achieve the multi-objective 

optimization. This method was based on the notion of the ranking selection, 

only that it extends that idea to each criterion and not only to the total fitness. 

The individuals are ranked once for each criterion. The performance of each 

solution is then calculated as the sum of the rankings of that particular solution 

for each one of the objectives. Then the individuals are ranked according to 

the total ranking. 

 

This method evaluates the individual’s performance based on its relative 

performance in the satisfaction of each criterion separately. Thus, there is no 

need to calculate each criterion’s weight, because the only thing that matters 

is the ranking [e.g. the relative performance] for each objective. Additionally, it 

is more difficult for a sole objective to dominate, though not impossible. 

Weighted sum and Ranking Sum were both implemented in order to test the 

efficiency of each method.  

 

 
Figure41 Ranking Sum Fitness function 
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SELECTION 

There are several methods to select the parents of the next generation’s 

individuals; for example the probabilistic selection according to their fitness 

value or the eyeball test where the user selects manually the parents.  

 

In our research the Ranking Selection Method is adopted. Once the evaluation 

of the individuals is executed, either with the Weighted Sum or the Ranking Sum, 

the individuals are sorted form the best fit to the worst fit. Thereupon, a 

probability selection according to the ranking of the solutions defines the 

parents of the next generation’s individuals. 

 

3.5.3 GENETIC OPERATIONS 

The genetic operations [GO] which are applied over the parent genotypes aim 

to recombine the genetic material of the good-fitted solutions in order to 

produce better-fitted solutions. These genetic operations are divided into the 

sexual and the asexual GOs. The sexual GOs recombine the genetic material 

from two parents in order to produce one offspring [e.g. crossover] while the 

asexual operations recombine the genetic material of one sole genotype in 

order to produce an altered version of that particular individual [e.g. mutation].   

 

 
Figure42 Crossover genetic operation 

 

ADAM DOULGERAKIS  MSc AAC  50 



METHODOLOGY 

CROSSOVER 

The crossover GO is implemented over two parent-genotypes selected as 

described above [Figure42]. The crossover selects randomly a break-point in 

each tree-structured parent-genotype and exchanges the sub-trees that 

depend on these break-points. Hence, the offspring genotypes combine a part 

from both parents’ subdivision instructions. 

` 

MUTATION 

The mutation GO is implemented with a small probability over the offspring 

genotypes that result from the crossover GO. Mutation selects randomly a 

break-point in the genotypes’ structure and removes the sub-tree that depends 

on that break-point. Thereupon, a new randomly created tree-structured 

genotype is added to the offspring genotype as a sub-tree whose root is the 

break-point. 

 

 
Figure43 Mutation genetic operation 

 

ADF [Automatically Defined Functions] 

As Koza [Koza,1991] proposes, sub-structures of programs that perform very well 

can be considered as useful sub-structures and can be used during a mutation 

GO instead of a randomly generated program. These sub-structures are called 

Automatically Defined Functions [ADF]. 
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3.6 THE CONTEXT OF THE APPLICATION 

3.6.1 MULTISTOREY RESIDENTIAL BUILDING IN ATHENS 

The described methodology is implemented and tested within the context of 

the typical multi-storey residential building in the centre of Athens. A plethora of 

social, economic and cultural reasons whose description unfortunately exceeds 

the framework of this research contributed to the formation of that particular 

kind of social and built structure.  

 

 
Figure44 Fragmentation of property in Patisia-Athens [Grigoratos and Sfiriou,2006] 

 

In brief, land property is peculiarly fragmented and distributed amongst the 

population. The massive demands for residences in Athens alongside with the 

effort of the state to strengthen the country’s economy [whose one of the main 

sectors was the construction industry] accelerated the demolition of the old 

one-floor residences and the massive construction of multi-storey residences. 

 

After the expansion of the metropolitan area, a big part of residents moved 

towards the suburbia. Hence, these buildings started to host non-residential 

activities. Nowadays, a set of different activities can be found within the same 

building, distributed among its floors. 

 

Architects struggled to develop innovative and creative ways to design that 

kind of dense structure. The complexity of objectives and activities along with 

the demand for maximum use of the available space, restrained peculiarly the 

factor of aesthetics. 
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Figure45 Typical multi-storey residential buildings [Grigoratos and Sfiriou,2006] 

 

3.6.2 APPLICATION OF THE MODEL TO THE CONTEXT  

The program accepts as input a dxf file with the site and the neighbouring 

buildings. Then, it calculates the maximum height of the building and the 

available area for each floor. A set of rules/preferences is scripted for different 

user profiles and distributed among the floors of the buildings. As it is the case in 

reality, each floor has a degree of autonomy as each inhabitant can arrange 

the layout in order to fulfil their needs. However, the whole structure is 

composed of the aggregation of these distinct floors.  

 

 
Figure46 Site and environment imported by .dxf file 

Figure47 Generate building constrained by site and heights 

 

The implemented user types are selected based on typical examples of 

inhabitants [see appendix II]. Even though a complete research would provide 

accurate data for more representative patterns of use, that process is out of 

the limits of this research due to restrained time and the non-existence of 

registered data. Moreover, the input data are not considered crucial for that 

research as its objective is the manipulation of the data for the generation of 

solutions and not the data per se.  
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4.1 VERSIONS OF THE APPLICATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the testing of the model’s efficiency several versions of the program were 

developed. The differences among these versions aim to compare each one’s 

efficiency in solving the particular problem of automated layout planning as it 

has been outlined in the objectives and the methodology sections. Therefore, 

the results are tested against each other. 

 

 
Figure48 Versions of the application 

 

Apart from these variations, all four versions are identical and have been tested 

under identical conditions. The number of generations is set to 1500. Whereas 

further fine tuning of the algorithm’s details would provide better results, the 

pros and cons of each strategy are depicted from their comparison. 
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4.2 PREASSIGNED ACTIVITIES vs. UNFOLDING ASSIGNMENT 

An overview of the programs’ results, gives the impression that the algorithm 

which is based on the pre-assigned activities is more efficient than the one 

which is based on the agent-based activities assignment. The evolution in the 

total fitness value of the fittest individual is by far more obvious in the first case 

as it can be observed in the following graph [Figure49]. 

 

 
Figure49 Fitness of fittest and average fitness graphs 

 

However, a scrutinised analysis of the data changes that first impression. As it 

has been explained [see methodology chapter], in the agent-based 

assignment process, a given configuration constitutes the input. The activities 

are then assigned to the existing spaces by following rules which define their 

sequence, and by performing an exhaustive search in order to find the most 

appropriate host space for each activity. Consequently, it is expectable that 

even from the early stages of the evolutionary algorithm the solutions will be 

relatively acceptable.  

 

This is certified by the comparison of the total fitness values in the first 

generations of the algorithm [Figure49]. While the randomly assigned activities 

start with a total fitness value around 50, the agent-based assignment process 

starts with a fitness value around 30. Apart from the difference in the early 

stages, there is an important difference at later stages. It is observed that the 

agent-based process reaches better results than the randomly assigned 

activities. In the first case, the fittest solution reaches values below 18, whereas 

in the second the best total fitness value is stabilised around 25. 
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Figure50 Evolution of each objective in the two methods 
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The evolution of the fulfilment of the several criteria over the generations 

certifies the above finding [Figure50]. Generally, the starting fitness-values in the 

case of the agent-based process are better than the values in the random 

assignment process. In spite of the seemingly unstable [or even negative] 

course of evolution for some criteria in the first case, their final satisfaction results 

are better than in the second case. The evolutionary algorithm searches for the 

best equilibrium among the values of the criteria that produce the best result. 

 

In general, the agent-based assignment of activities process [embryology] 

performs well in cooperation with the Genetic Programming evolutionary 

algorithm and produces better results than a merely random-based genetic 

search. Additionally, as seen from an architectural point of view, the resulting 

layouts are more rational in the first case than in the second [figures 51,52]. 

 

 
Figure51 Typical layouts [Activities Assignment Embryology] 

 
Figure52 Typical layout [Randomly Assigned Activities] 
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4.3 WEIGHTED SUM FITNESS vs. RANKING SUM FITNESS  

There are also some interesting observations concerning the efficiency of the 

ranking sum classification criterion compared to the weighted sum criterion. As 

it can be observed in the graphs below [Figure53], even though the criterion for 

the sorting of the individuals was not the total fitness value [but the sum of the 

separate rankings, executed for each one of the criteria], the evolution of the 

total fitness value is evolved towards better values.  

 

 
Figure53 Evolution of solutions. 

 

The mechanism of the ranking-sum strategy justifies the temporary negative 

evolution in the total fitness value. As it has been explained [see methodology 

chapter], the weighted sum fitness value provides a hint of how well a solution 

performs within its environment and it’s not an undisputable factor. Instead, the 

fine tuning amongst the several objectives defines the solution’s good or bad 

performance.  

 

In certain cases it might be better to spare a particular objective for a better 

tuning in return, and the ranking-sum strategy is efficient in taking such 

equilibrium decisions, as it can be observed through the study of the objective’s 

graph and the produced configurations [Figures 54-57]. Besides, the ‘negative’ 

evolution of the total ranking value can be explained from the fact that 

evolution affects the whole population and not just the fittest solution. 

Consequently, the total ranking of the fittest solution decreases continuously, for 

the population is getting better, while it maintains the first position.   
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Figure54 Objectives’ graph 

 
Figure55 Typical layout [Activities Assignment Embryology and Ranking Fitness] 

 
Figure56 Typical layout [Activities Assignment Embryology and Weighted Sum] 

 

In general, the layouts which were produced with the ranking-sum evaluation 

strategy were more rational than those which were produced with the 

weighted sum strategy [figures 55-56]. However, the deciphering of the 

algorithms’ data was not trivial, since it seemed that the data were in conflict 

with the resulting configurations. As it can be seen in the objectives’ graphs 

below [Figure57] the fittest individual reached better total fitness values when 

the evaluation was based on the weighted sum method. What is really 

impressing is that even the objectives reach better values with the weighted 

sum evaluation. A thorough observation of both evaluation mechanisms 

provides the answer to that riddle.  
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Figure57 Evolution of each objective in the two methods 
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As it can be verified from the graphs above [Figure57], the less satisfied 

objective criterion, in the case of the weighted-sum evaluation, is always the 

quantities factor.  This factor is related to the number of hosted against the 

number of required activities. A trade off in the quantities factor results to a 

smaller amount of activities to be evaluated and consequently to a lower total 

fitness value [see also layout Figure56]. It is thus verified that the performance of 

the solution is not analogous to the total-fitness value.  

 

On the contrary, when the ranking sum evaluation method is implemented, the 

fittest solutions are the ones whose objectives are well-balanced and that’s the 

reason why its results are better. As it can be observed in the graphs [Figure57] 

the less satisfied objective is the required adjacencies. Hence, it can be argued 

that since the ranking sum evaluation method does not need weight 

calculation, the most conflicting objective is the adjacency requirements.  

 

 

 

 

 

 

 
Figure58 Perspective views of solutions 
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5.1 GENERAL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As previously discussed [see results chapter], the model used within this research 

can be considered as successful since relatively good results have been 

produced regarding both numerical data and spatial configurations. The 

research’s hypothesis that an efficient evolutionary system aiming to generate 

floor plans can be driven by a computationally independent embryology 

process is thus verified. This process assigns activities to existing spaces 

according to a set of rules [preferences] which are encoded in terms of 

required dimensional attributes as well as permeability graphs. Additionally, it 

has been shown [see results chapter], that an evaluation method which 

classifies individuals according to the sum of their rankings [for each objective 

separately] produces more balanced results than the weighted sum evaluation 

method.   
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5.2 COMPARING TO OTHER APPROACHES 

The other approaches for the automated layout planning problem that have 

been studied during the research provided valuable material and helped in the 

development of the methodology. Particularly, this method is based on the 

notion that an evolutionary approach is more efficient in the exploration of the 

search space since the number of possible solutions is extremely high for an 

exhaustive search for the best solution. Thus, it can be classified within the 

evolutionary approaches to the automated layout planning problem.  

 

In the case of Sitewalker [Doulgerakis 2007] some of the results produced with 

exhaustive search in steps were particularly satisfactory. However, when the 

consideration of future search steps was attempted, the limit of the available 

computational power was reached. As Jo and Gero [Jo and Gero,1998] argue, 

in constructive approaches [such as CRAFT [Armour and Buffa,1964] and 

Sitewalker [Doulgerakis,2007]] there is always the risk that the algorithm will 

never find its way out of a local optimum and thus, a method such as an 

evolutionary algorithm which performs a parallel search, is more efficient.   

 

Nevertheless, Mitchell et al. [Mitchell et al.,1976] produce a set of well-fitted 

solutions with an exhaustive search among all the possible solutions. However, 

the drawback of that method is its massive computational cost. Hence, as the 

title of the work proposes, it is efficient only when applied to small rectangular 

floor plans with a small number of rooms.  

 

However, the way that Mitchell et al. system manipulated space influenced this 

research. The subdivision of a given rectangle to smaller rectangles constitutes 

a very capable means of producing spatial configurations. Moreover, these 

spaces are not the result of aggregated unitary cells; instead they constitute 

independent geometric elements. Thus, the results are not restrained by the 

granularity of an underlying grid as it is the case in Rosenman’s approach 

[Rosenman, 1996]. The method which was developed within this research 

adopts this perspective for the manipulation of unequal-area spaces. Thus, it is 

classified within the unequal area approach [Block Plan] to the automated 

layout planning problem and particularly within the continual space block plan 

approach. However, that research is not narrowed down to rectangular 

ADAM DOULGERAKIS  MSc AAC  65 



DISCUSSION 

shapes. The subdivision can occur diagonally and the consideration of 

geometry as polygons allows the manipulation of almost all the possible site 

outlines and favours the production of even more realistic solutions. 

 

The developed methodology has a similar approach with the Finucane et al. 

[Finucane et al.,2006] system. Particularly, the development of the phenotype is 

in both cases an independent embryology process that optimizes the 

translation of the genotype to the actual configuration. Moreover, both 

approaches attempt a multi-objective optimization. Finucane et al. yield 

efficient solutions by classifying the individuals in ‘Pareto’ fronts. This research’s 

approach to the multi-objective optimization [e.g. the Ranking Sum Fitness] 

produces efficient results as well. 

 

An element which is neglected in the related approaches is the social and the 

cultural background, whose forces have an important role in the formation of 

the buildings’ layout. This research aims to prove that it is possible to encode 

these forces [in this case by means of the gamma-map] and to implement 

them within a generative system whose purpose is to create floor-layout 

solutions.  
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5.3 LIMITATIONS AND FURTHER DEVELOPMENT 

Further development of the system was restrained due to time constrains. 

Additionally, the data which have been used as required attributes for the 

configurations are not based on statistics. Instead, the preferences of the 

different user-types have been encoded intuitively. Nevertheless, the objective 

of this research was to confirm that such an approach can be efficient and 

thus, these data are not of crucial importance in that branch of the research.  

 

A research could be held concerning the typology and the statistics of this type 

of buildings. Furthermore, the system’s efficiency could be tested against real 

data by comparing existing typologies and configurations resulting from the 

implementation of the methodology described.  

 

Moreover, there are several methods to decode the social and the cultural 

underlying forces that drive the formation of buildings layouts; permeability 

map being one of them amongst others. Within the context of this research, 

only the permeability graph [gamma map] has been implemented. A number 

of other data such as visibility and privacy can also have large impact over the 

layout’s formation forces. 

 

A further development of that research should attempt to implement these 

data as generative criteria for the assignment of activities, as well as evaluation 

criteria for the classification of the results. 

 

Furthermore, it must be mentioned that in order to produce more efficient and 

realistic results, the activities-assignment process should have the ability to join 

two [or even more] spaces or to further subdivide them if this could make the 

solution’s performance better. This change could be then translated as 

additional information integrated in the solution’s genotype by following the 

Lamarkistic model of evolution.  

 

While this approach was attempted and managed to produce results within 

sole individuals, its implementation to the Genetic Programming algorithm was 

restrained due to the lack of sufficient computational power. Namely, the 

calculation of the possible additions and subdivisions for every individual and 
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the selection of the best action among the numerous options are excessively 

demanding in computational power as it approaches exhaustive search 

algorithms. 

 

Ultimately, it would be very interesting to expand this system as a co-

evolutionary system focusing on the interaction of the building’s floors. That 

evolutionary algorithm would generate each floor’s configurations 

independently, but the result would be evaluated according to the feasibility of 

the solutions as a to-be-built project. For instance the placement of terraces, 

vertical communications, and wet spaces [bathroom, kitchen], are decisions 

that should be taken in regards to the whole building in order to achieve 

functional solutions. 
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CONCLUSIONS 

The development of the application system was based on the ongoing 

research aiming to address the automated layout planning problem with the 

use of sophisticated heuristics, such as Genetic Algorithms. However, in most of 

these cases, the impact of the generative forces that derive from the social 

and the cultural environment has been neglected. The objective of that 

research was to illustrate that the encoding of these forces in terms of 

permeability graphs, can be implemented within an evolutionary process in 

order to yield meaningful and efficient results. 

 

In order to examine this approach’s potentials, two similar multi-objective GP 

systems have been elaborated. The first one represents the traditional 

evolutionary approach whose individuals acquire random values during the 

generation of the initial population. Whereas, the second is a Genetic 

Programming algorithm implemented for the evolution of residential layouts 

driven by an independent agent-based unfolding embryology process, which 

assigns activities to the spaces, generated by the GP, according to a set of 

spatial and permeability requirements. In the latter, the GP and the assignment 

process compose a single evolutionary system, as GP generates spaces and 

the assignment allocates the activities and evaluates the result.  

 

Both systems have been executed within the same context, with the same 

requirements and for the same time. The context of the experiment was a 

typical multi-storey residential building in the centre of Athens. As it was justified 

by the comparison of the results, the co-operational GA-assignment system 

yielded better results than the conventional GA system. Thus, the hypothesis of 

the research was verified and the proposed approach can be considered as 

successful. 

 

Hence, the contribution of this research to the evolution of automated layout 

planning is that it showed that elements which encode the social meaning of 

buildings can be used within a generative system and particularly in 

cooperation with an evolutionary system. Nevertheless, according to Hillier and 

Hanson [Hillier and Hanson,1984] there is a plethora of such encodings [e.g. 

visibility and privacy graphs] whose purpose is to decode the social forces that 
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generate configurations. Therefore, a further development should attempt to 

implement these encodings within the evolutionary system.   

  

To conclude, it is worth mentioning that designers and researchers in the digital 

era of architecture are vulnerable to consider that computational methods will 

eventually assure the generation of creative solutions which overpass the 

human capabilities. However, an efficient generative procedure should not 

neglect that layouts are not merely hosts of activities. Instead, they reflect 

social structures and respectively, they induct these structures to their 

inhabitants. To use Winston Churchill words, ‘we shape our buildings and 

afterward our buildings shape us’ [Churchill,1944] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure59 Backyard at Montessori school, Delft [Hertzberger,1991] 
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APPENDIX I: SCRIPTING METHODS 

In this appendix some elements of the program will be thoroughly described. 

The full source code for all the applications developed within this research can 

be found in the included CD-ROM. 

 

The application is scripted in Processing programming language. However, 

several elements of the program required methods and classes that overpass 

processing potentials. In these cases, Java classes have been called within the 

processing environment. As the classes are named after the object they 

represent [e.g. the polygon class represents polygons], different lettering have 

used to differentiate the references. Hence, words in bold refer to classes.   

 

GENOTYPE 

A node class was created that could represent both values and functions. 

When the generation of a random genotype is initialised, an instance of the 

node class is called that is the root node whose depth value is 0. Then, the root 

node instantiates a random number of children nodes whose depth value is 1. 

This procedure is repeated recursively until a certain depth value is reached. 

The node class takes as input the parent node [in the case of the root node the 

parent node is null] and stores in a Java vector the children nodes. In addition, 

every node stores in Java vectors all its ancestors and all its descendants. This is 

achieved when the instantiation of every node takes place. Thus, every 

instance obtains ‘knowledge’ of its position within the genotype tree by 

reference to its immediate parent node as well as to its ancestors. Furthermore, 

in every moment each node is conscious of its sub-dependent tree and nodes.   

 

RECTANGULAR SPACES 

When a genotype instance is called, it takes as input value the initial space, 

namely the outline of the building. That space can be either the available part 

of the construction site, or the site itself. Since this input constitutes a geometry, 

an appropriate class is needed that can create and manipulate geometry. 

Initially, the site was strictly rectangular, and the shapes were boxes. A space 

class was then created that used as input the initial point, the width and the 
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length of the rectangular space and produced as output a box whose area 

was defined by the given width and length values and whose height was 

predefined.  

 

The initial space, which is the input of the genotype, is transmitted to the root-

node. The root-node successively decides randomly the number of the children 

nodes and the orientation of the subdivision [vertically or horizontally]. 

According to each case the root divides the width [horizontal division] or the 

height [vertical division] while keeping the other value intact. The divisor is the 

number of the children nodes. Then the root-node instantiates a number of 

nodes that is equal to its number of children value. The children nodes are 

called one at a time and they are given as inputs their own space, which is 

composed of the intact value [for instance the width], a part of the other value 

[for instance the height], and a starting point calculated by the starting point of 

the parent node translated to the sum of the portions of the previous children-

nodes [if any]. The last child’s space is the remaining part of the initial space.  

 

That procedure is repeated recursively until the maximum depth is reached. All 

the nodes without children-nodes are considered as terminal [e.g. the nodes 

of maximum depth and the nodes that while their depth value is less than the 

maximum value, their number of children value was randomly set to 0]. All the 

terminal nodes store a duplicate of the node’s space within a vector in the 

genotype. This duplicate represents a constructed space.  

 

While all the nodes have each one their space, these spaces are merely an 

abstract instance as they do not represent an actual, constructed space, but 

the given space that they dispose in order to distribute it among their children. 

Only the terminal nodes’ spaces are materialized as actual space. Thus, by 

the end of that procedure in lieu of the initial geometry there is a set of 

rectangles whose areas compose the initial rectangle.   

 

POLYGONAL SPACES 

A polygon class was created that used as input two arrays of coordinates, the 

xPoints [] array for the x-coordinates and the yPoints [] for the y-coordinates. 
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Each space object has a reference to its corresponding polygon. However, 

while these parameters are sufficient in order to draw the polygon or to 

calculate its centroid, the need for further manipulation [e.g. Boolean 

operations] led towards the implementation of Java classes. 

 

The notion was that a polygonal space could be subdivided to polygonal 

spaces with the use of Boolean operations [join, subtract, intersect]. Java’s 

area class can perform these operations. In order to render a polygon to an 

area, the Java general path class was used. Since general path implements 

the java shape interface it can provide the area of a given polygon [polygon-

>general path->area]. It is worth mentioning that java has its own polygon class 

that implements the java shape interface, so it would be easier to get its area 

[polygon->area]. Nevertheless, java polygon accepts arrays of integers as 

coordinates, and for the purpose of subdividing polygons, float coordinates 

were necessary. In brief, in order to perform a Boolean operation over two 

given polygons, the following sequence is used: for both polygons, create a 

general path from the polygons’ points that describe its outline [general path 

gp1, general path gp2] -> get the areas that correspond to the general 

paths [new area a1 = area[gp1], new area a2  = area[gp2]] -> perform the 

Boolean operation with the areas [ new area rest = a1.subtract[a2]].  

 

Another important method that java area class provides is the transform 

method. By this method one can manipulate the given area [translate, rotate, 

scale] by use of the AffineTransform class that is merely a transformation 

matrix. The AffineTransform matrix can be set by applying its “translate”, 

“rotate” and “scale” methods. In brief, in order to perform a transformation 

over a given area object the following procedure is followed:  create an 

identity AffineTransform matrix [new affine transform m] -> apply a 

transformation method over this matrix [m.translate[x, y]] -> apply this 

transformation to the initial area a [a.transform[m]].   

 

Up to that point, it is achieved to apply transformations as well as Boolean 

operations to given polygons. However, the result of the aforementioned 

procedures is in terms of an area and not of a polygon. Consequently, in order 

to complete the procedure, a final step was necessary: to render the resulted 
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area to its corresponding polygon. That step was achieved by use of the 

PathIterator interface. The PathIterator interface provides the mechanism for 

objects that implement the Shape interface [such as area objects] to return 

the geometry of their boundary by allowing a caller to retrieve the path of that 

boundary a segment at a time [Java reference]. Hence, the new transformed 

polygon is created by retrieving the transformed area’s PathIterator. In brief 

the procedure is the following: polygons-> areas of polygons -> manipulate 

the areas -> get resulted areas -> get new polygons from resulted areas. 

 

Thereupon, in order to create a configuration the followed procedure is similar 

with the one that was applied for the creation of configurations of rectangular 

spaces. The initial polygon that is the input of the genotype is transmitted to 

the root-node. The root-node successively decides randomly the number of the 

children nodes, the orientation [vertically or horizontally], and the angle of the 

subdivision. The root creates a filter rectangle that is the bounding rectangle of 

its polygon. According to each case the root scales, rotates and translates the 

filter in order to produce the children node’s bounds. Each child node’s space 

is the intersection of the initial polygon with the filter rectangle. Then the root-

node instantiates a number of nodes that is equal to its number of children 

value. The children nodes are called one at a time and they are given as input 

their own polygon. The last child’s polygon is the remaining of the initial’s 

polygon.  

 

CROSSOVER 

In order to perform the crossover GO, first a genotype copy function is needed. 

That function’s role is to generate an identical duplicate of a genotype so as 

when the crossover occurs to the copies of the genotypes, the original 

genotypes remain intact. The copying is achieved by recursively ‘reading’ the 

original genotype’s nodes and creating in the same time identical duplicates 

of these nodes to the duplicate genotype.  

 

Successively, the crossover function selects randomly a breaking point node for 

each genotype. Every genotype stores within a vector every node that is 

created from its root-node. Thus, the selection of breaking points occurs by 
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randomly selecting a node among the nodes that are stored within the nodes-

vector of each genotype. Once the selection of break-points is made, the 

genotypes exchange the sub-trees that have as roots the breakpoints nodes.  

 

A re-creation function is then applied to the genotypes in order to update the 

changes that have occurred. Particularly this re-creation function removes the 

nodes from its initial genotype’s and adds them to its current genotype’s 

node-vector, updates the depth value of each node, updates the genealogy 

relations that are inscribed within each node’s allAncestors and allDescendants 

vectors, and updates the polygons of each node. Each node object has 

memory of the way that its parent filter-polygon was manipulated [translated, 

scaled and rotated] for the production of that exact node. Consequently, the 

same transformations are applied but in different filter-polygons this time 

resulting to different polygons. 

 

Eventually, the two offspring genotypes are evaluated and the fittest is 

selected as the offspring, whereas the other one is rejected.    

 

MUTATION 

The mutation GO is occasionally applied, with a small probability factor, over 

the offspring genotype of the crossover operation. The mutation GO selects 

randomly one break point [as in the crossover] and removes the sub-tree that 

has as a root the break point node. Then, a new random genotype is 

generated that is added to the first genotype by replacing the break point 

node with the new genotype’s root-node.  

 

In order to produce solutions that are considered within the acceptable 

boundaries, the new genotypes maximum depth allowance is equal to the 

general maximum depth allowance minus the break point’s depth value. 

Successively, the recreation function is applied again in order to update the 

final genotype. 
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ADF [Automatically Defined Functions] 

In our model, the genotypes that have a very good performance, store to a 

vector a new genotype that is a duplicate genotype of a sub-tree. 

Thereupon, when the mutation GO is applied, instead of generating a new 

random genotype, the mutation has a chance to occur by adopting randomly 

one of the ADF genotype.     
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APPENDIX II: USER TYPES 

The user types and their preferences which were implemented for the purpose 

of this application are considered to be a three member family type, a two 

member family type, a professional type, and an artist type. 
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