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The single copy entanglement of a given many-body quantum system is defined [1] as the maxi-
mal amount of entanglement entropy (equivalently, the maximal number of EPR singlets) one can
deterministically distill from a bipartition of a single specimen of that system. For critical (gapless)
quantum spin chains, it was recently shown that this is exactly half the von Neumann entropy [2],
itself defined as the number of EPR singlets one can distill in the asymptotic limit—that is, given an
infinite number of copies of the system. It is an open question as to what the equivalent behaviour
for gapped systems is. In this paper, I show that for the paradigmatic spin-S AKLT chain (the
archetypal gapped chain), the single copy entanglement is equal to the von Neumann entropy: i.e.

all the entanglement present may be distilled from a single specimen. This appears to a simple
explanation in terms of the valence bond solid representation of the state, but provides the first
evidence that gapped spin chains also have different behaviour in the context of single copies as well
as in the asymptotic limit. Calculations are performed using a coherent spin state representation,
allowing straight-forward evaluation of properties through a transfer matrix approach.

PACS numbers: 75.10.Pq, 03.65.Ud

The amount of entanglement naturally present in the
ground states of many-body quantum systems is of great
interest to both the quantum information and condensed
matter communities [3]. For bipartite pure states the
unique entanglement monotone is the von Neumann en-
tropy [4, 5]; the amount of entanglement present in the
ground states of spin chains and other many-body sytems
is often quantified by calculating this quantity with re-
spect to a particular bipartition. It is asymptotically
equal to the ratio of the number of EPR singlets one may
distill from a given system to the number of copies of that
system—that is, given an infinite number of copies of the
system [4]. Of course in realistic, physical situations one
might only have access to a single specimen of a partic-
ular system, and the von Neumann entropy in this case
gives an upper bound to the distillable entanglement. An
interesting question then arising is to how much entan-
glement can be deterministically distilled from a single
copy of a system.

This was studied originally by Lo and Popescu [6],
who considered various optimal strategies for the inter-
conversion of entangled states by local operations. It
was subsequently shown by Nielsen [7] that deterministic
transformation of one state |ψ〉 to another |φ〉 using lo-
cal operations and classical communication (LOCC) is
possible if the nonincreasingly-ordered Schmidt coeffi-
cients of the final state majorize those of the initial state
(λψ ≺ λφ); this was then generalised to a strategy for
converting arbitrary bipartite states by Vidal [8, 9].

More recently, Eisert and Cramer [1] and Orús et al.

[2] defined the single copy entanglement as the number of
singlets deterministically distillable from a single speci-
men of a given system, and showed that for the case of
gapless quantum spin chains close to criticality this is
exactly half the von Neumann entropy: that is, half the

entanglement present may be distilled in a single process

[41]. However, a large class of spin chains of interest are
gapped (i.e. there is an energy gap between the ground
and first excited states), which have substantially dif-
ferent entanglement properties: in the gapless case, the
block entropy (the entanglement of a block of contiguous
spins with the remainder) is known to be logarithmically
divergent in the block length, and in the gapped case,
it saturates [10, 11, 12, 13, 14]. It is this short-ranged
nature of entanglement in gapped systems which gives
rise to area laws [15, 16, 17, 18]. It would therefore be
interesting to know whether gapped chains also exhibit
different behaviour in the context of single specimens.
While this remains an open problem in general, I shall
in this paper provide an example giving indications that
this is indeed the case. Specifically, I shall show that the
celebrated spin-S Affleck–Kennedy–Lieb–Tasaki (AKLT)
chain [19, 20, 21] has a single copy entanglement equal

to the von Neumann entropy for all S; i.e. all the en-

tanglement present in the spin chain may be distilled in

a single process. This spin chain is a paradigm in con-
densed matter physics, and was the first evidence of the
veracity of the Haldane conjecture [22, 23].

Recent years have seen a resurgence of interest in this
state, partly due to its role as the simplest of the matrix
product states (MPS, which in general have been shown
to efficiently simulate many 1D systems [24, 25, 26, 27]
and may be used as a variational set in density matrix
renormalisation group (DMRG) calculations [28, 29]). It
has also attracted interest in the context of quantum
information theory, due to its interesting entanglement
properties [30, 31, 32], and the fact that all stabilizer
states (including cluster states) have an interpretation in
terms of a VBS state [33, 34].

Single copy entanglement: The single copy entangle-
ment (with respect to a particular bipartition) is defined
[1] as the maximal number of singlets one can determinis-
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tically distill from a single copy of a specimen in a single
process; i.e. the largest M for which the transformation

ρ→ |ψM 〉 〈ψM | under LOCC (1)

is possible with unit probability (where |ψM 〉 =

1/
√
M

∑M
i=1 |i, i〉, the maximally-entangled state of di-

mension M ×M), determines the single copy entangle-
ment E1 to be logM , the equivalent number of singlets
[42]. Applying Nielsen’s reduction criterion to a biparti-
tion of a spin-S chain into a block of length L and the
remainder, this holds if and only if

K
∑

k=1

α↓
k ≤ K

M
for all K ∈ [1,M ], (2)

where {α↓
1, . . . , α

↓
(2S+1)L} are the nonincreasing eigenval-

ues of the reduced density matrix of the block of length
L. As pointed out by Eisert and Cramer [1], this is ob-

viously equivalent to the criterion that α↓
1 ≤ 1/M (i.e.

the majorization reduction must be more mixed than the
maximally-entangled state). One can then define the sin-
gle copy entanglement

E1(ρ) = log
[

1/α↓
1

]

= − logα↓
1. (3)

Critical, gapless systems: Using the machinery of
conformal field theory, Orús et al. found that for
all translationally-invariant quantum spin systems that
can be mapped onto an isotropic, quadratic system of
fermions (via the Jordan–Wigner transformation), the
single copy entanglement of a block of length L is ex-
actly half the von Neumann entropy in the thermody-
namic (L→ ∞) limit: both logarithmically diverge with
L. Explicity,

E1(ρL) =
c

6
lnL− c

6

π2

lnL
+O(1/L), (4)

where c is the conformal field theoretic central charge.
Non-critical, gapped systems: It is known that for

gapped systems, the block entropy saturates to a con-
stant bound [10, 26, 30, 32]. This qualitatively different
entropic behaviour would suggest that the single copy
entanglement might also have substantially different be-
haviour. As a first step towards understanding this, it
would be instructive to consider the AKLT chain, the
first example of a chain satisfying the Haldane conjecture
[19, 20, 21]. This chain consists of N spins of magnitude
S, with two spin-S/2’s at either end. In the Schwinger
boson representation this is written [35]

|VBS〉 =

N
∏

i=0

(a†i b
†
i+1 − b†ia

†
i+1)

S |0〉 , (5)

where a†i , b
†
i are bosonic operators, and the spin operators

are defined as S+
i = a†i bi, S

−
i = aib

†
i , S

z
i = (a†iai−b

†
ibi)/2,

L

FIG. 1: The VBS state has an interpretation in terms of
‘bonds’ between spins, where each bond is a singlet of two
spin-S/2’s, and at each bulk spin the state is projected (dot-
ted circles) to the symmetric space of total spin. The single
copy entanglement measured here is with respect to the par-
titioning into a block of length L and the remainder.

with the constraint a†iai + b†ibi = 2S. For general S, this
is the unique ground state of the Hamiltonian

H =

N−1
∑

j=1

2S
∑

J=S+1

AJP
J
j,j+1 + π0,1 + πN,N+1, (6)

where the operator Pj,j+1 projects bond spins j, j+1 onto
the (symmetric) subspace of total spin J . The bound-
ary terms π0,1, πN,N+1 are similarly defined to project
the end spin S and S/2 onto the total spin J subspace.
The isotropic case with no boundary operators has also
been studied for the case S = 1 [31], and the edge ef-
fects decay exponentially; similarly the effect of studying
periodic boundary conditions in Eqn (6) as opposed to
open boundary conditions also decays exponentially [36].
This state may be interpreted in terms of ‘bonds’ be-
tween spins (Fig. 1), with each bond being a singlet, and
is often referred to as a valence bond solid (VBS).

Coherent spin state approach to the VBS: An alterna-
tive representation of state (5) is given in terms of coher-
ent spin states. The well-known oscillator coherent state
is defined to be an eigenstate of the annihilation opera-
tor a; by analogy, the coherent spin state is defined as an
eigenstate of the spin raising operator S+ [37]

|θ, φ〉 =
1

(1 + |µ|2)2S exp(µS−) |S, S〉 , (7)

where |S,m〉 is the spin state with 〈S2〉 = S(S + 1) and
〈Sz〉 = m. Parametrizing this with µ = eiφ tan(θ/2) gives

|θ, φ〉 =

S
∑

m=−S

uS+mvS−m

√

(

2S

S +m

)

|S,m〉 , (8)

where (u, v) := (eiφ/2 cos(θ/2), e−iφ/2 sin(θ/2)). This
state has a clear geometric interpretation: the state
|θ, φ〉 may be represented by the unit vector Ω =
(θ, φ) (i.e. a point on the unit sphere). Therefore
the overlap between two such states may be found
geometrically as 〈θ, φ θ′, φ′〉 = [cos(θ/2) cos(θ′/2) +
sin(θ/2) sin(θ′/2) exp(i(φ − φ′))]2S , and thus

| 〈θ, φ θ′, φ′〉 | =

(

1 + Ω ·Ω′

2

)S

. (9)
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Comparing Eqn (8) to the Schwinger boson representa-
tion of the S

2, Sz eigenstates

|S,m〉 =
(a†)S+m(b†)S−m

√

(S +m)!(S −m)!
|0〉 , (10)

it is clear that one can obtain an alternate representation
of a state by making the replacement a† → u, b† → v,
a → ∂/∂u, b → ∂/∂v, and multiplying by

√

(2S)! when
operators occur in pairs.

Therefore, denoting the coherent state |Ω〉 one may

write [35, 36] 〈Ω VBS〉 =
∏N
i=0

√

(2S)!(uivi+1−viui+1)
S ;

and hence | 〈Ω VBS〉 |2 =
∏N
i=0(2S)!|uivi+1−viui+1|2S =

∏

〈ij〉(2S)!(1−Ωk ·Ωk+1)
S/2S. This approach was used in

Ref. [36] to calculate all two-spin correlation functions,
and more recently in Ref. [32] to calculate the block
entropy.

Single copy entanglement of the VBS: Using the co-
herent spin state approach, one may calculate the den-
sity matrix ρL of L contiguous spins. The trace of
any operator in this representation is trA = (2S +
1)/4π

∫

dΩ 〈Ω A Ω〉 and therefore one obtains

ρL =

∫

∏

j /∈L

dΩ

4π

〈Ωj VBS〉 〈VBS Ωj〉
〈VBS VBS〉

=

∫
∏L
i=1

dΩi

4π

∏L−1
k=1 Tk,k+1 |Ω1〉0 〈Ω1| ⊗ |ΩL〉L+1 〈ΩL|
∫

∏L
j=1

dΩj

4π

∏L−1
k=1 Tk,k+1

,

where the transfer matrix Tk,k+1 := (1−Ωk ·Ωk+1)
S/2S

and in the first line I have omitted factors of (2S + 1).
It was found in Ref. [32] that this is independent of the
length of the total chain N , and therefore without loss of
generality one can set L = N . Following the methods of
Refs. [32, 36], one may find the eigenvalues of this matrix
(replacing S → S/2 for the end spins)

The following decomposition in terms of Legendre
polynomials may be used [36, 38]

(

1 + x

2

)S

=

S
∑

l=0

(2l+ 1)
S!S!

(S − l)!(S + l + 1)!
Pl(x), (11)

from whence it follows that

ρL =
4π

(S + 1)2

S
∑

l=0

λ(l)L−1Il(s0 · sL+1), (12)

where λ(l) := (−)lS!(S+1)!/(S−l)!(S+l+1)! and Il(X)
is an lth order polynomial in X determined recursively
through

Ij+1(X) =
2j + 3

(S + j + 2)2

(

4X

j + 1
+ j

)

Ij(X)

− j

j + 1

2j + 3

2j − 1

(

S − j + 1

S + j + 2

)2

Ij−1(X) (13)

with I0(X) = 1/4π, I1(X) = 3X/4π(S/2 + 1)2. These
polynomials form a complete set of isotropic, two-site
tensor operators.

The eigenvalues of the density matrix may be found
using this method, and summed using the standard for-
mula for the von Neumann entropy (S(ρ) = −tr ρ log ρ)
to find the block entropy for general S, which was found
to approach 2 log(S+1) exponentially fast in L (the ther-
modynamic limit) [32], confirming the conjecture by Vi-
dal et al. that the block entropy of a gapped integer spin
chain reaches saturation for all S [10]. For the purposes
of this paper, only the largest eigenvalue is required.

The density matrix is diagonal in the basis of the total
spin of spins 0 and L+ 1. These spins, of course, add up
to several multiplets in the usual manner of spin addition,
and so there will be degeneracy in the eigenvalues. One
thus requires the largest value of

〈Pσ〉 = tr {PσρL} , (14)

where Pσ is the projector on to the subspace of total
spin σ. This multiplet distribution (i.e. the eigenvalues
multiplied by their weight) is given by [36]

〈Pσ〉 = 4π(2σ + 1)

S
∑

j=0

(S + j + 1)!(S − j)!

(S + 1)!(S + 1)!
λ(j)L+1Ij(X(σ)),

(15)

where X(σ) := s0 · sL+1 = σ(σ + 1)/2 − S(S + 1). The
calculation of the single copy entanglement only requires
the eigenvalues, and thus one omits the weights (2σ+1).

This distribution is found recursively, determined by
the coefficients Ij(X(σ)). The largest values are given
by the case σ = 2S (σ = 0) for L even (odd). For even
L, the required value is

〈P2S〉 = (2S + 1)

S
∑

j=0

2j + 1

(S + 1)2
λ(j)L+1 (16)

and thus the largest eigenvalue is

Λ1 =
S

∑

j=0

2j + 1

(S + 1)2
λ(j)L+1 (17)

=
1

(S + 1)2







1 +
S

∑

j=0

λ(j)L+1(2j + 1)







, (18)

which gives the single copy entanglement:

E1 = − logΛ1

= 2 log(S + 1) − log







1 +

S
∑

j=1

λ(j)L+1(2j + 1)







(19)

= 2 log(S + 1) − logλ(0)L+1







1 +
S

∑

j=1

λ(j)L+1

λ(0)L+1
(2j + 1)







.

(20)
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Since λ(j) < λ(j + 1) for all j, and λ(0) = 1, it is clear
that in the thermodynamic case L → ∞ (as considered
in the critical, gapless case [2]), this becomes

E1 → 2 log(S + 1), (21)

which is exactly equal to the von Neumann entropy, as
found by Katsura et al. [32]. The proof for L odd follows
analogously. It therefore is the case that all the entangle-
ment present in the VBS state (the ground state of the
gapped spin-S AKLT Hamiltonian) may be distilled from
a single copy: one can distill with certainty a maximally-
entangled state, the dimension of which is related to S.
This would appear to have an intuitive explanation in
terms of the valence bond picture of the state: the entan-
glement between a block and the remainder of the chain
is related to the number of bonds ‘cut’ by the bound-
ary (indeed, this is similar to the reasoning behind area
laws [15, 16, 17, 18] although the analogy is not strict in
this case, since the entanglements of formation and dis-
tillation are only equal in the asymptotic limit), and is
further evidence of the qualitatively different behaviour
of gapped chains to gapless chains. One should contrast
this with the critical case [2], from whence one can dis-
till with certainty (in the L → ∞ limit) a maximally-
entangled state of arbitrary dimension (i.e. an infinite
single-copy entanglement); the crucial, qualitative differ-
ence is that this is still only half the total amount of
entanglement present.

Summary: It has been demonstrated that all the entan-
glement present in the VBS ground state of the gapped
AKLT Hamiltonian for arbitrary S may be distilled with
certainty in a single process. This qualitative difference
to the behaviour of gapless, critical chains provides evi-
dence that the entanglement present in gapped systems
is of a fundamentally different nature. An open problem
is whether the single copy entanglement saturates to the
von Neuman entropy for all gapped quantum systems.
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[28] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
[29] F. Verstraete, J. I. Cirac, J. I. Latorre, E. Rico, and

M. M. Wolf, Phys. Rev. Lett. 94, 140601 (2005).
[30] H. Fan, V. Korepin, and V. Roychowdhury, Phys. Rev.

Lett. 93, 227203 (2004).
[31] H. Fan, V. Korepin, V. Roychowdhury, C. Hadley, and

S. Bose, Phys. Rev. B 76, 014428 (2007).
[32] H. Katsura, T. Hirano, and Y. Hatsugai, Phys. Rev. B

76, 012401 (2007).
[33] F. Verstraete and J. I. Cirac, Phys. Rev. A 70, 060302(R)

(2004).
[34] S. Clark, J. Phys. A: Math. Gen. 39, 2701 (2005).
[35] D. P. Arovas, A. Auerbach, and F. D. M. Haldane, Phys.

Rev. Lett. 60, 531 (1988).
[36] W.-D. Freitag and E. Müller-Hartmann, Z. Phys. B 83,

381 (1991).
[37] J. M. Radcliffe, J. Phys. A: Gen. Phys. 4, 313 (1971).
[38] I. S. Gradshteyn and I. M. Rhyzhik, Tables of integrals,

series, and products (Academic Press, 1980).
[39] I. Peschel and J. Zhao, J. Stat. Mech. p. P11002 (2005).
[40] H.-Q. Zhou, T. Barthel, J. O. Fjaerestad, and
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