Models of interactive systems: a case study on Programmable
User Modelling

Ann Blandford, Richard Butterworth and Paul Curzon
UCL Interaction Centre, Interaction Design Centre,

UCL, School of Computing Science,

26, Bedford Way, Middlesex University,

London, WCI1H 0OAP, U.K. Bramley Road,

A.Blandford@ucl.ac.uk London, N14 4YZ, U.K.

{R.J.Butterworth, P.Curzon} @mdx.ac.uk

Accepted for publication in ITJHCS. This is a pre-print version of the paper.
Full citation:

BLANDFORD, A., BUTTERWORTH, R. & CURZON, P. (2004) Models of interactive systems: a case
study on Programmable User Modelling. International Journal of Human—Computer Studies.
60.2. 165-216.

ATD /DID /M T nnt ~A24nd ~a 1D /E/NE O.AO0 DA 1

Models of interactive systems: a case study on Programmable
User Modelling

Ann Blandford, Richard Butterworth and Paul Curzon
UCL Interaction Centre, Interaction Design Centre,
UCL, School of Computing Science,
26, Bedford Way, Middlesex University,
London, WCI1H 0OAP, U.K. Bramley Road,
A.Blandford@ucl.ac.uk London, N14 4YZ, U.K.

{R.J.Butterworth, P.Curzon} @mdx.ac.uk

Abstract

Models of interactive systems can be used to answer focused questions about those
systems. Making the appropriate choice of modelling technique depends on what
questions are being asked. We present two styles of interactive system model and
associated verification method. We show how they contrast in terms of tractability,
inspectability of assumptions, level of abstraction and reusability of model fragments.
These tradeoffs are discussed. We discuss how they can be used as part of an integrated
formal approach to the analysis of interactive systems where the different formal
techniques focus on specific problems raised by empirical investigations. Explanations
resulting from the formal analyses can be validated with respect to the empirical data.

The first modelling style, which we term ‘operational’, is derived directly from
principles of rationality that constrain which user behaviours are modelled. Modelling
involves laying out user knowledge of the system and task, and their goals, then
applying the principles to reason about the space of rational behaviours. This style
supports reasoning about user knowledge and the consequences of particular knowledge
in terms of likely behaviours. It is well suited to reasoning about interactions where user
knowledge is a key to successful interaction. Such models can readily be implemented
as computer programs; one such implementation is presented here.

Models of the second style, ‘abstract’, are derived from the operational models and thus
retain important aspects of rationality. As a result of the simplification, mathematical
proof about selected properties of the interactive system, such as safety properties, can
be tractably applied to these models. This style is well suited to cases where the user
adopts particular strategies that can be represented succinctly within the model.

We demonstrate the application of the two styles for understanding a reported
phenomenon, using a case study on electronic diaries.

1. Authors are listed alphabetically; all have contributed substantially to the paper.

la} T nnt ~A24nd ~a 1D /E/NE O.AO0 DA ATD /DID M

1. Introduction

There have been many attempts to characterise the ‘discipline’ of HCI, in terms of both the object
of study and the legitimate methods that might be applied in that study. The object of study might
be cognition, the computer system, the work system, the interaction, etc.; the method might be
derived from the scientific, design, mathematical or social sciences tradition. One important strand
within these many traditions is that of developing models of users and of interactive systems for
explanation and prediction. In this paper, we present two such models, comparing and contrasting
their properties and the kinds of results they can deliver.

There is a long tradition of modelling in HCI; any particular modelling technique has features that
make it well suited to addressing particular user-oriented questions about a design or interaction
(Carroll, 2003). For example, Cognitive Complexity Theory (CCT: Kieras and Polson, 1985) can
be used to reason about ease of use of a device in terms of the number and nature of rules a user has
to know to be able to operate it effectively. Similarly, TAG (Payne and Green, 1986) supports
reasoning about consistency of operations in terms of user knowledge of how to perform ‘similar’
operations. John and Kieras (1996) present the GOMS family of models, including a summary of
which technique is best suited to answer particular usability-related questions. The work of John
and Kieras is unusual in explicitly scoping and comparing models, albeit within a fairly tightly knit
‘family’ of models. More recently, as discussed further below, two distinct traditions of modelling
have emerged: cognitive modelling has tended towards more complex models that have higher
empirical validity, typically based on a cognitive architecture such as ACT-R (Anderson, 1993),
while mathematical modelling has focused on the development of mathematical techniques that
support reasoning about interactive behaviour, encapsulating more limited aspects of cognition but
supporting stronger abstract reasoning.

For any modelling to be tractable it must (explicitly or implicitly) define its own boundaries.
Typically there is a fairly straightforward trade-off to be made over where such boundaries are
drawn: narrow boundaries lead to simple, maybe elegant, investigations, with limited external
validity; broad boundaries to complex, ‘messy’, time consuming investigations with higher external
validity. Modelling is a process whereby explicit boundaries for an investigation are set and a real
world referent is abstracted over and represented in some abstract notation or language. The
process of abstraction is fundamental to the process of modelling; an ‘accurate’ model of a referent
(accurate in the sense that every possible feature of the referent is included in the model) is an
oxymoron. Here, we investigate some of the smallest, most abstract models of interactive systems
possible, to see whether they can be used to reason about interactive systems and, if so, what
questions they can answer.

In summary, any model supports reasoning about particular aspects of the design of an interactive
system, and one essential challenge is to select a modelling approach that will answer interesting
questions about a design. In this paper, we present two models of the same interactive system, each
of which supports reasoning about particular aspects of that design:

® A simulation model, in the tradition of Programmable User Modelling (PUM: Young, Green
and Simon, 1989; Blandford and Young, 1996), supports reasoning about user knowledge needs
for each of two alternative strategies for achieving the same goal, and yields predictions about
likely user behaviours. Below, we refer to this as an ‘operational’ model.

® An abstract mathematical model supports reasoning about a safety property (i.e. that the goal
state is actually reached), and hence the reliability of each of the two behavioural strategies
identified.

ATD /DID /M T nnt ~A24nd ~a 1D /E/NE O.AO0 DA e}

One common feature of both is that they model a simple interactive system, consisting of one user
and one device, and that they treat user and device together: the operational model brings together a
user model and a device model to reason about their conjoint behaviour, while the other model
abstracts away from the details of user and device to reason only about interactive behaviour. The
two styles of modelling can be compared in terms of their scope and their explanatory power.

1.3: Abstract
model:
safety
1.2: Operational Other analysis 1.1: Optimisation:
knowledge-based analysis efficiency analysis

1.0: Empirical findings

Figure 1: the shape of the reasoning (shaded areas in principle possible but not done)

Broadly, the shape of this work is as follows (schematically illustrated in Figure 1): an empirical
study was conducted in which a range of usability concerns relating to a particular device — in this
case, an electronic diary — were identified (1.0). These included issues relating to roles, power
relationships, group culture, screen layout, etc.: these are discussed informally but comprehensively
by Blandford and Green (2001). Modelling takes a particular aspect of that general picture and
probes it in more detail. In principle, a variety of different more detailed analyses can be conducted;
in the work presented here, we conduct three further analyses: an efficiency analysis (1.1) that
supports reasoning about optimal behaviour and two analyses based on user knowledge — an
operational analysis, (1.2) that analyses how users exploit their knowledge and an abstract analysis
(1.3) that conducts a safety proof, establishing whether or not the user assumptions made lead to a
prediction of user errors. It retains important aspects of rationality derived from the first. These
analyses are amenable to different degrees of verification, but all need to be validated against
empirical findings to test to what extent their findings match real-world data. The strengths and
weaknesses of each kind of modelling are discussed below.

2. Background and related work

The work reported here brings together cognitive and mathematical modelling in HCI. Both are
well developed traditions. For example, cognitive modelling work has been established in the
traditions of GOMS, CCT and TAG, as well as approaches that are more grounded in the larger
context within which the user is working, such as the Cognitive Reliability and Error Analysis
Method (Hollnagel, 1998) and Cognitive Work Analysis (Vicente, 1999). In terms of detailed
modelling, researchers such as Gray (e.g. Gray, 2000) and Byrne (e.g. Byrne, 2001) have
constructed models based on an established cognitive architecture to better understand user
behaviour when working with particular interactive devices, and Salvucci and Lee (2003) have
investigated integrating GOMS models with a detailed cognitive architecture (in their case,
ACT-R). In these cases, the concern is with constructing a detailed model that well matches
empirical data, and the resulting models are necessarily complex; the focus is on cognition rather
than interaction.

Mathematical modelling of interactive systems has tended to focus on device design — for example,
in the work of Palanque and Bastide (1995), Paterno’ (1993), Thimbleby, Cairns and Jones (2001)
and Harrison and Thimbleby (1990). Relatively little work has been done involving formal
modelling of users: examples include the work of Moher and Dirda (1995), who propose a Petri net
model that supports reasoning about users’ changing mental models and their changing

7 T nnt ~A24nd ~a 1D /E/NE O.AO0 DA ATD /DID M

expectations as they work with a device, and of Rushby (1999), who applies model checking to
model a pilot’s knowledge of aircraft systems behaviour alongside a corresponding model of actual
behaviour, to reason about safety-critical divergences between the two. Work such as that of
Doherty, Campos and Harrison (2000) and Duke, Barnard, Duce and May (1998) has explicitly
incorporated a user model component within a mathematical model of an interactive system. The
work of Doherty et al exemplifies an approach that focuses on the perceptual element of cognition
relative to a particular task; the question the model answers is: does the interface display provide
support to users in addressing their domain goals? In contrast, the work of Duke et al does not
consider domain tasks, but focuses on the channels of communication and resources of user and
device. Therefore, it supports reasoning about compatibility of the agents (users and computers) at
a detailed level; this is particularly relevant for multi-modal interactions and those involving novel
input/output devices whose usability properties are poorly understood.

The work reported here shares features in common with each of these approaches: the models are
mathematical, and incorporate explicit representations of users and computers. They also support
reasoning about various aspects of user knowledge and interactive system behaviour, as discussed
below.

The operational models presented here have been instantiated in a Lisp implementation, to generate
simulations of behaviour. Work by others (e.g. Fields, 2001; Abowd, Wang and Monk, 1995) has
shown that model checking can also be used for reasoning about interactive behaviour — though in
both of the cases cited, the focus is on modelling overt behaviours, rather than any underlying user
cognition. Ongoing work (Curzon and Blandford, 2001, 2002) is investigating the strengths and
limitations of machine assisted proof for reasoning about rational user behaviour, using the HOL
machine assisted proof system. However, in this paper, we focus on the principles underpinning the
model rather than the details of any particular implementation. In the remainder of this section, we
relate the work reported here to issues within the broad area of cognitive and mathematical
modelling.

2.1 A brief history of PUM

The work reported here is the product of reflecting on what we have learnt about PUM over several
years of development and investigation. The original vision for PUM was presented by Young,
Green and Simon (1989), in which they argued that it should be possible to develop a user model
that embodied a simple model of human problem solving and common sense knowledge, that could
be ‘programmed’ with knowledge to establish how it would perform when interacting with a device
that demanded that knowledge. Essentially, this approach looks at the role that user knowledge
plays in interaction. A PUM analysis initially lays out a description of the knowledge a user might
be expected to have to interact with a proposed device. This knowledge can then be analysed in
several ways: is that knowledge adequate for the user to successfully interact under all
circumstances? If not, why not, and how can the system be redesigned so that successful interaction
is better supported? Is it reasonable to expect the user to have the necessary knowledge? Where
does the necessary knowledge come from (training, the display, etc.)? How will the user behave
given this knowledge, and is that as the designer intended?

With this initial view, the main value of modelling would derive from running the model and
comparing the resulting behaviour with that which was expected. However, at this time, no
implementation of a PUM existed.

Over the next few years, the focus remained on developing running models — initially based on the
Soar architecture (Newell, 1990). The approach taken was to develop an Instruction Language that
represented the required user knowledge succinctly, which could be compiled into Soar productions
to generate a Soar model (Blandford and Young, 1993) that implemented ‘mini-planning’ — i.e.

ATD /DID /M T nnt ~A24nd ~a 1D /E/NE O.AO0 DA I3

localised planning based on means—ends reasoning. A very similar approach has recently been
reported by Salvucci and Lee (2003), converting GOMS descriptions into ACT-R. As an approach
to fundamental cognitive science, such an approach is promising; however, as an approach to
delivering usable modelling in HCI, it had the clear shortcoming that models could only be
realistically run, debugged and modified by analysts with a working knowledge of the Soar
architecture. In addition, at that time, linking a Soar model to any external representation (e.g. of a
device) was disproportionately difficult and time-consuming. To overcome these perceived
limitations, a simpler Programmable Interactive Problem Solver (PIPS) that captured the key
elements of means—ends reasoning, and could accommodate a separate device description, was
developed and tested (Blandford and Young, 1995).

By this time, various important points about the modelling were becoming clear:

* that the process of laying out the knowledge users needed to work with the device (and
particularly any difficulties experienced by the analyst in describing that knowledge) often
yielded greater insights than the process of actually running the model — an observation that has
also been made about the use of formal methods in software development (Hall, 1990);

* that the process of programming the model sometimes demanded the inclusion of
implementational details that could obscure the fundamental principles of the model; and

* that for some systems, that could be characterised as involving repetitive activity with different
(but similar) data objects, the development and running of an operational model was completely
missing the point about the interaction, which was typically whether simple user knowledge
could be applied repetitively to data objects — whether systematically or randomly — to achieve
a given goal. For such systems, it appeared that a more abstract style of modelling would be
more appropriate than the operational PUM, but based on the same fundamental principles.

Effort was consequently focused on developing principles and on abstraction — on simplifying as
far as possible, to investigate what leverage could be gained through avoiding complexity. The
principles are presented below; they have not previously been published. Various abstract models
of particular systems have been developed (e.g. Butterworth, Blandford and Duke, 1999; 2000).

The operational models of electronic diaries presented here, including the implementation based on
the principles, have not been previously published. The abstract model presented here is largely
reproduced from Butterworth, Blandford and Duke (2000), and readers are referred to that paper for
the full mathematical proof that is described in outline below (section 6.5). The main contribution
of this paper is not in the individual models, but in the comparison and scoping of those models,
and a simple presentation of the principles underpinning the modelling.

The main features of the approach are: that it focuses on a ‘middle’ level — the knowledge level
(Newell, 1982) — rather than (for instance) the biological or social level; that it combines a re-
usable framework with device-specific information to construct a particular model; and that the
modelling is as simple as possible. Each of these features are discussed in the remainder of this
section.

2.2 Levels of description

Newell (1990; p. 122) outlines a series of levels at which human actions can be studied or analysed,
organised into four bands: the biological, cognitive, rational and social. This idea is developed by
Barnard, May, Duke and Duce (2000), who relate the same levels to computer systems and to
interactions within social and technological systems, developing theories of how interactions take
place within and across levels. While HCI has had little cause to concern itself with the biological
band, work has taken place at all the higher levels, yielding different kinds of insights about

c T nnt ~A24nd ~a 1D /E/NE O.AO0 DA ATD /DID M

human—computer interaction. For example, work in the cognitive tradition is exemplified by papers
in a special edition of this journal (Ritter and Young, 2001) on cognitive modelling that focuses on
‘embodied’ models, including the addition of simulated eyes and hands to enable rich interactions
(at a fine grain of detail) with simulated devices.

At the other extreme, work on social aspects of computing pays attention to larger-scale
phenomena such as patterns of interaction between people and devices, the resources used within
the workspace (Fields, Wright and Harrison, 2000; Hollan, Hutchins and Kirsh, 2000), and social
phenomena such as changes in roles and relationships as activities are restructured around new
technologies (e.g. Adams and Blandford, 2002). As with different kinds of models, attention paid at
different levels yields different insights into the qualities of interactions between users and devices
and makes it possible to answer different kinds of questions.

The work reported here falls at a ‘middle’ level: it is concerned with how users apply their
knowledge in interactions with devices to develop patterns of behaviour with particular (desirable
or otherwise) properties. The questions that this kind of approach can answer are therefore those
that pertain to achievement (or not) of user goals, sources of human error and efficiency of
interactions. While these are not the only questions that matter when considering usability, they are
contributing factors to overall usability, and in this paper we use the term ‘usability’ as a short-hand
for these particular issues, all of which fall within Newell’s (1990) ‘rational’ band.

2.3 Frameworks and models

One approach to studying rationality within the context of cognition is the development of
cognitive architectures. Gray, Young and Kirschenbaum (1997) assert that “cognitive architectures
provide the most important new contribution to a theoretical basis for HCI”, arguing that a
complete architecture will ensure the development of consistent models over a range of behavioural
phenomena. They distinguish between a model, which represents one particular situation, and an
architecture, which captures the generalities — the cognitive phenomena that manifest themselves in
a range of different situations. In the work reported here, we make an analogous distinction:
between a particular model and the underlying framework. The framework encapsulates a
generalised collection of guidelines for constructing a model. These guidelines encode findings
about rational behaviour derived from the cognitive science literature (e.g. Newell, 1990; Pollock,
1993), so that any model developed from that framework inherits the same rationality principles.
By working at the rational, rather than the cognitive, level, we develop models that are simpler, and
therefore more amenable to formal reasoning.

Simply instantiating a framework generates an operational model. Instantiating a framework and
abstracting over the resulting model yields an abstract model. In this paper, we follow that process
through: propose a framework, instantiate this framework with a specific case study to get an
operational model, abstract over this to get an abstract model, and finally compare and contrast the
roles played by these two types of models.

2.4 Minimalist modelling

Recognising that an important question is where to draw the boundary for a model (what is useful
information to include in a model and what can be abstracted over), we have taken a minimalist
approach. Recognising that cognitive models can rapidly become very complicated, and therefore
difficult to reason with, our approach has been to investigate the smallest, most abstract models of
interactive systems possible, to see whether they can be used to reason about interactive systems
and, if so, what questions they can answer. These models do not model learning, probabilistic
reasoning (e.g. prospect theory: Tversky and Kahneman, 1992), bounded rationality (Simon, 1987),

ATD /DID /M T nnt ~A24nd ~a 1D /E/NE O.AO0 DA =]

decision making under uncertainty (Klein, 1999) or many other key aspects of cognitive
psychology. The approach presented here could, in principle, be extended to support reasoning
about any or all of these features — in which case, the modelling would demand much more of the
analyst and the benefits of simplicity would be sacrificed for the benefits of accuracy. One of the
questions of the approach being adopted is what leverage one can get with simple models.

For the same reason, other aspects of users, such as individual differences due to variations in
culture, cognitive abilities, etc. are not modelled. As illustrated below, it is possible to model users
who have different knowledge; it would equally be possible to model users who have different
basic conceptions of the task, or different understandings of the device and how it works. In this
way, it would be possible to develop a diverse set of models for different users. Equally, it would
be possible — though arguably no longer a PUM, in terms of intellectual tradition — to replace the
principles presented below with others that reflected a different view of human interactive problem
solving. Any analytical approach to evaluating interactive systems is based on assumptions about
the users, which may be more or less explicit. This is true, for example, of GOMS (John and
Kieras, 1996) and Cognitive Walkthrough (Wharton, Lewis, Rieman and Polson, 1994), which are
closest in tradition to the approach presented here. One of the distinguishing features of PUM as
presented in this paper is that the assumptions are explicit, inspectable, and hence adaptable by
anyone who has a reason and a theoretical basis on which to adapt them — e.g. to model more
diverse users.

Focusing on abstract models, Butterworth, Blandford and Duke (1998) demonstrate a very abstract
model of interactive system behaviour and show that it can highlight potential problems with a
device design, and that the process of proving behavioural properties with the model gives a fairly
clear indication of where the problem with the device design lies. If appropriate, other methods
could then be used to more deeply analyse and remedy the problem.

There are two complementary assumptions we can make when compiling very abstract models. In
earlier work we modelled users with very limited capabilities; if such a modelled user was able to
interact successfully, then we had an argument that real users would also be able to successfully
interact (Young, Green and Simon, 1989). Conversely, we could make stronger assumptions about
users and their capabilities than in reality, but show that an interactive system model still predicts
that such a user will make an error; we then have an argument that real users are likely to make that
error too. This is the line of reasoning used in this paper.

3. A framework for modelling interactive systems

Our first step is to lay out a framework for interactive systems that incorporates principles that
describe how a rational user will interact with an interactive device. As discussed above, this
framework is based on findings in the cognitive science literature and refined from operational
models that have been developed and tested over several years.

We present here a general framework. For clarity, the presentation is simplified as far as possible.
In particular, in common with most work on mathematical and cognitive modelling:

® the system consists of only one user and one device (we use ‘system’ to refer to the total
interactive system, and ‘device’ to refer to the computer component),

* the user employs the device as a tool to achieve a certain goal and we do not address the issue
of how the user acquires new goals (either through the interaction or from any external source),

* the device is treated as being ‘passive’, i.e. its behaviour is fully determined by input from the
user.

o T nnt ~A24nd ~a 1D /E/NE O.AO0 DA ATD /DID M

In order to lay out this framework we start by describing what ‘behaviour’ is. We discuss how the
device should be modelled and lay out the building blocks for the user side of the framework by
looking at the different types of knowledge needed for the framework and what roles they play. We
look at how the display is modelled before bringing all the components together into a framework
for modelling interactive system behaviour.

Note that there is a difference between the device and user sides of this framework. The device side
makes the smallest possible set of assumptions about the device; it is effectively just some
guidelines about how to express a device model so that it can be combined easily with the user side.
The user side, however, includes a collection of assumptions which are fixed. One of the
overarching aims of this work is to provide a framework in which devices can be designed and then
placed in the context of a user model to predict the usability of the system (Young, Green and
Simon, 1989). In this sense the user cannot be ‘designed’ in the same way as the device can.

3.1 Modelling behaviour

Behaviour describes how a system’s state develops through time; typically, we model it as a simple
sequence of system states. The model we use is inductive, meaning that it defines a collection of
possible initial states and a collection of transitions that describe how the system can change state.
Given a sequence of states, we can say that it is legal for a certain model if it starts in one of the
defined initial states and every subsequent state change in the behaviour is described by one of the
transitions.

If a model has only one legal behaviour then it is deterministic. Such models are useful when we
want to automate them so that they generate simulated behaviour, but enforcing determinism on a
model tends to restrict it considerably. In general, we reason about the space of behaviours that are
legal for a model which gives much more flexibility in analysis; one focus of this paper concerns
how much of this space of behaviours can be easily reasoned about with certain models.

3.2 Modelling the device

A device specification consists of a description of the device state, a set of legal initial states and a
set of legal ‘actions’ which describe ways in which the device state can be updated. This approach
to modelling devices is intentionally not novel; we have chosen a modelling style with a thoroughly
researched and understood mathematical basis. It is based on work such as that of Lamport (1994)
and Pnueli (1992), who describe inductive specification techniques. Furthermore the idea of an
‘action’ meshes well with the user model we present below.

3.3 Modelling the user

Central to the user side of the framework is the idea of rationality. Rational behaviour is a function
of the user’s knowledge and goals. Given a certain collection of knowledge about the state of the
world, how to change the state of the world and a desired goal state, a rational user will interact in
order to move the state of the world nearer to the desired goal state (Pollock, 1993). There are two
types of knowledge which we express: knowledge about the state of the world, which we refer to as
‘beliefs’ and knowledge about how to change the state of the world, which we call ‘operations’.

A belief expresses what the user believes to be true. There is no stipulation that beliefs should be
correct, accurate or complete; indeed many beliefs are not. Typically the user’s beliefs about the
state of the device are of particular interest to us when modelling interactive systems, but other
kinds of belief will obviously come into play — for example, more domain oriented beliefs about the
task and environment.

ATD /DID /M T nnt ~A24nd ~a 1D /E/NE O.AO0 DA n

Learning new beliefs is not simply a case of adding newly learnt beliefs to the current belief state as
this may introduce contradictions. Here we make the simplifying assumption that recently learnt
information takes priority over old information. Therefore if a new belief is learnt that does not
contradict existing beliefs it is simply added to the belief state, but if it does contradict existing
belief then it replaces that existing belief (Gardenfors, 1988; Ryan, 1992); for example, if there is
only one cursor in a program and it is at position Y then it is reasonable for the user to replace any
pre-existing belief that it is at X with one that it is at Y (where X#Y). In the Lisp implementation
presented below, we deal with belief revision by distinguishing between °‘relations’ and
‘properties’: a predicate, such as that encoding cursor position, whose value is updated is encoded
as a ‘property’, whereas a predicate that can take multiple values simultaneously (so that predicates
are added to or deleted from the system state) is encoded as a ‘relation’.

Operations represent the user’s beliefs about how he can change the state of the world. For
interactive systems, operations typically describe the user’s knowledge of the how and why of
device actions; typically a device action represents how the device state is updated, and there is a
corresponding operation describing how the user believes that action affects the device state, why
the user would wish to invoke that action, and under what circumstances. There is no requirement
that there be a one-to-one relationship between actions and operations. For example the user of a
word processor may have two operations: to delete text and to move text to the paste buffer, but
they may both be carried out by the single device action ‘cut’.

An operation is represented by a collection of beliefs about actions and effects, as summarised in
Table 1. As noted in the table, beliefs about the action and its purpose are essential for any
operation; a particular operation may optionally include beliefs about preconditions, filters and
tracking.

Element Description

purpose The purpose of an operation describes why an operation will be
selected. It is a belief about what goal it is good for addressing.

precondition The precondition of an operation describes what the user needs to

(optional) believe is true before the operation can be performed.

filter The filter of an operation describes what the user needs to believe is

(optional) true before the operation can be committed to.

tracking The tracking of an operation describes what effects the user believes

(optional) that the operation will have.

action The invoked action of an operation is (typically) the device action

which needs to be invoked for the operation to be performed.

Table 1. A summary of the elements that make up an operation.

An operation’s purpose is a belief about what goal the operation is good for achieving. A rational
user will select an operation to perform if its purpose at least partially matches an outstanding goal
and there is no reason not to select it.

An operation may have a precondition, a filter, or both. These describe under what circumstances
the user will perform the operation. The difference between the two is subtle but important. A
precondition describes what the user needs to believe to be true before the operation can be
performed. In contrast, a filter describes what needs to be true before an operation will be
committed to. The user may work to make a precondition true, but not to make a filter true. Given

in T nnt ~A24nd ~a 1D /E/NE O.AO0 DA ATD /DID M

an operation that is rational to perform (i.e. its purpose matches the goal) but for which the
preconditions are not satisfied, the user will ‘commit’ to performing that operation and adopt its
unsatisfied preconditions as new goals. A filter expresses beliefs about circumstances (which the
user will not try to change) in which it is rational to select a particular operation to achieve a
desired effect.

The tracking of an operation describes what the user believes the effect of performing an operation
is. One characteristic of expert use is that operations are performed and some of their predictable
effects known without the user having to look at the display — though, as Payne (1991) points out,
much interaction is typically display-based, and users keep track of very little in their heads. The
tracking describes the beliefs the user has about the effect that an operation has (typically on the
state of the device) without looking at the display (or anywhere else) to verify this. For example,
the user may track the belief that the operation ‘move text to paste buffer’ adds the currently
selected text to the paste buffer (the user must track this belief, as it is not readily visible from the
display).

3.4 Modelling the display

The display is treated as a shared resource between the user and device (Fields, Wright and
Harrison, 2000; Butterworth, Blandford and Duke, 1999). The device renders information onto the
screen and the user interprets that information as a belief. Within their model of interactive devices,
Duke and Harrison (1993) describe a rendering function which takes the internal state of the device
to an external, visible state. In the model presented here, we take the simple approach of
representing what is displayed and assuming that the user perceives and correctly interprets
displayed information.

3.5 A framework for deriving behaviour

We can now bring together the elements of the framework for modelling devices and users and
combine them into a framework for modelling interaction. Users are the primary motivating agents
in the interaction; they are assumed to be rational and goal driven. The main aim of the framework
is to lay down rules that describe how users will do this, i.e. we are making the assumptions
underlying the phrases ‘rational’ and ‘goal driven’ explicit and inspectable.

The system state

The overall system state is subdivided into three areas: the device state, the user state and the
display state. The device state is simply the composition of all the variables in the device
specification. The user state is described by:

® the user’s current beliefs about the state of the world,
® agoal (expressed as a belief) which describes the user’s desired belief state,

® a collection of ‘commitments’, being the operations that the user has selected to perform, but
has not yet done owing to their preconditions not being satisfied, and

® a collection of ‘sub-goals’, being the preconditions of all the operations in the set of
commitments.

The display state is represented by a belief; i.e. the display is modelled as the user’s interpretation
of what is on the screen.

ATD /DID /M T nnt ~A24nd ~a 1D /E/NE O.AO0 DA 11

System behaviour

System behaviour is defined by a collection of principles which describe how the system state can
be updated and under what circumstances. As discussed above, these principles are based on
Newell’s (1990) principles of rationality which have been developed specifically so as to be
applicable to a given class of interactive systems. The principles rely on the adjectives rational,
possible, and motivated and the verbs commit, drop and perform to which we assign strict
definitions and which we place in bold to distinguish them from their more informal meanings.

The principles of behaviour are shown in Figure 2. Definitions of the adjectives and verbs are given
in Figures 3 and 4 respectively. Figure 5 shows the conditions for a legal initial state.

Principle of goal driven behaviour: The user interacts in order to achieve his overall goal. A goal is said to
be achieved when the user’s belief state implies the goal.

Principle of immediate performance: If there is an operation that is rational and possible then it may be
immediately performed.

Principle of commitment: If there is an operation that is rational, but not possible then it may be
committed to.

Principle of commitment performance: If there is a commitment that has already been made which has
now become possible, then one of two things can happen:

¢ if the operation is still motivated then it may be performed and the commitment to it dropped,
or

* if the operation is now not motivated then the commitment to it may be dropped without the
operation being performed.

Principle of belief updating: The user maintains beliefs about the state of the system by interpreting the
display state (see also the definition of performance in Figure 4).

Figure 2: The principles of behaviour

Three of the principles describe legal transitions in the system state. The exceptions are the
“principle of goal driven behaviour”, which describes under what circumstances the system can
cease interacting and the “principle of belief updating”, which states how the user maintains beliefs
from the display state. A behaviour is considered to be legal according to the principles if each step
in the behaviour can be described by one of the principles and the behaviour ceases with the system
in a state described by the principle of goal driven behaviour. One possible implementation — in this
case, in Lisp — of the principles is presented in Appendix A.

Rational: An operation is rational if all the following conditions hold:

¢ there is a goal which is either the ultimate goal or from the set of sub-goals which would be at least
partially fulfilled by the purpose of the operation, so long as...

® there are no goals (either the ultimate goal or one of the sub-goals) which are made permanently
unachievable by the purpose of the operation,

¢ the filtering condition of the operation is satisfied. i.e. the current belief state implies the filtering
condition.

Possible: An operation is possible if its preconditions and filters are satisfied, i.e. the current belief state
implies the operation’s preconditions and filters.

Motivated: An operation is motivated if its purpose is not already satisfied, i.e. the current belief state does
not imply the operation’s purpose, but it has been committed to and it is rational.

Figure 3: Definitions of adjectives

11 T nnt ~A24nd ~a 1D /E/NE O.AO0 DA ATD /DID M

As discussed above, what is rational in any given context depends on the user knowledge in that
context. In particular, whether a given operation takes the user nearer the goal depends on what the
user knows about other operations that might take him even closer towards the goal (e.g. by
constructing a plan involving more than one operation).

Commit to: An operation is committed to by adding it to the set of commitments and its precondition to the
set of sub-goals.

Drop: An operation is dropped by removing it from the set of commitments and removing its preconditions
from the set of sub-goals.

Perform: An operation is performed by updating the device state with the operation’s invoked action and by
the operation’s tracking being learnt (i.e. added to the current belief state without introducing
contradictions.)

Figure 4: Definitions of verbs

An interactive system must start in a state such that:
® the device state is legal according to the device specification,
® the user has a goal and
® the sets of commitments and sub-goals are empty.

Figure 5. Legal initial states for an interactive system

This framework is both inspectable and reusable. It is also consistent with previous work on
rational behaviour, as discussed above. We have outlined our reasons for keeping the set of
principles as simple as possible, but others could adapt them to capture more complex features of
normal interactive behaviour, such as resource-bounded decision making.

4. Case study

In the previous section we proposed a framework for modelling interactive systems. In this section
we instantiate that generalised model to a specific example: an electronic diary system. The process
of instantiation is effectively about ‘filling in the blanks’ in the general model — for example, by
defining what beliefs the modelled user has and what operations are available. Instantiating the
general model in this way gives us an operational model. We then look at two strategies for
achieving an example task and draw out the usability consequences for these two strategies and the
impact that the device design has on them. As an illustrative case study, this focuses on one
particular issue; in Section 7 we draw out lesson learnt from this and other case studies on applying
PUM using both styles of modelling illustrated here.

4.1 The diary system

For the purpose of this study, we consider a particular, commercially available, diary system —
Meeting Maker (ON Technology, 1995). We had already conducted an informal usability analysis
that had raised several important points that merited further investigation. Diaries and their use
have been extensively studied; for example, Kelley and Chapanis (1982), Kincaid, Dupont and
Kaye (1985), Payne (1993) and Palen (1999) report on studies of diary use, and draw on those
studies to propose recommendations for the design of new diary systems. In particular, Blandford
and Green (2001) present results of a qualitative study of Meeting Maker, considering the role of
the electronic diary within its social context of use, and also as one of a suite of time-management
tools (including paper diaries and many other resources) that need to work well together. In that
paper, we consider many aspects of usability; here, the focus is on particular features that are
amenable to the modelling approach that is the subject of this paper.

ATD /DID /M T nnt ~A24nd ~a 1D /E/NE O.AO0 DA 17

Meeting Maker implements a ‘frequency’ feature which was originally proposed by Kincaid et al
(1985) and implemented in the VS diary (Beard ez al, 1990). This feature allows users to set up a
series of events at regular intervals by defining a ‘base’ event, an interval (e.g. ‘weekly’ or ‘the
third Tuesday of every month’) and an optional ‘end’ date. The inclusion of such a feature is one of
the benefits of electronic tools highlighted by Palen (1999). This example was chosen for two
important but distinct reasons:

® There are two common strategies for entering multiple events that can be compared: entering
events one by one, or using the frequency feature. In our study of diary use (Blandford and
Green, 2001), it was found that only four of the sixteen interviewees used the ‘frequency’
feature confidently and effectively; the other twelve reported never using it. Two of these
reported simply remembering regular events or keeping a separate record of them, while the
remaining ten chose to enter each event in the series separately. Four of these ten were either
not aware that the ‘frequency’ feature existed, or believed that it was inadequate (e.g. that it
does not allow the user to express frequencies such as ‘the third Tuesday of the month’ — which
is does permit, but as a ‘weekly’ frequency, not a ‘monthly’ one), while the others expressed a
measure of distrust in their ability to use it without making errors. It appeared that a better
understanding of the use of this feature could be gained by constructing mathematical
representations of it, so that these informal user claims could be investigated further.

® Previous work had led us to the conclusion that operational models are most appropriate in
situations where user knowledge is the key determinant of usability (e.g. Blandford and Young,
1996), and abstract models are most appropriate where heuristic rules appear to guide behaviour
(e.g. Butterworth, Blandford and Duke, 1999). This example shares features of both, depending
on both user knowledge and patterns of behaviour, so that it could be examined from both
perspectives.

To construct a model, we need to work with particular scenarios of use. Here, we propose one such
scenario for use of the diary. Suppose that, in a certain organisation, information about upcoming
seminars and events is collated by a secretary and then disseminated amongst the staff as a paper
circular. It is up to the individual members of staff to enter these events into their diaries. These
events are characterised by being almost, but not quite, regular. For example seminars typically
occur on Wednesdays at 3pm in the meeting room, but some weeks the time and venue may
change, there may not be seminars on certain weeks and so on. A sample paper diary is shown in
figure 6.

14 T nnt ~A24nd ~a 1D /E/NE O.AO0 DA ATD /DID M

Day Date Time Event Room

Weds 20th Jan ~ 3-4pm Seminar Meeting room 1
Weds 27th Jan 4-5pm Seminar Meeting room 2
Weds 10th Feb 3-4pm Seminar Meeting room 1
Weds 17th Feb 3-4pm Seminar Meeting room 1
Weds 24th Feb 3-4pm Seminar Meeting room 1
Weds 3rd Mar 3.30-5pm Management meeting Boardroom

Weds 10th Mar 3-4pm Seminar Meeting room 1
Weds 24th Mar 3-4pm Seminar Meeting room 1
Weds 31st Mar 3-4pm Seminar Meeting room 1

Figure 6. A sample paper diary to be entered into Meeting Maker.

Meeting Maker displays a diary on screen (see figure 7), typically showing the current week. The
diary can be scrolled from week to week using a scroll bar and arrow buttons in the normal way.

He——————————+ Daily =——— M H
Man Tue Wed Thu Fri E
- 195114 2041 21114 221 2314
T T -
Sam B keep clear = :::::tc;:
presentation 4
Dam] prep
10 am] [EPJL meeting
11 am]
12pm] B4 Managernent
1] team
pm B lunch with =
JRG —
2prm]
spm] b SHT mitg b Serninar
4 prn]
Sp]
& prin] L
B -
T} 4| (i [o]

Figure 7. A typical week’s diary displayed by Meeting Maker

To enter an event into the electronic diary the user clicks on the start time of the event. This brings
up a data entry form into which the user types the information concerning that event. Once the user
confirms the data to be correct the event is entered into the diary and a representation of the event is
displayed on the screen.

A user can also enter a series of events. The user clicks on the time of the base event in the series
which brings up the data entry form as before, but the user can also select a frequency for that event
and an end date for the series. Once confirmed, a series of events which occur at regular intervals

ATD /DID /M T nnt ~A24nd ~a 1D /E/NE O.AO0 DA 1c

are entered into the electronic diary. These events share all the other attributes, such as duration and
title.

The two strategies we look at for achieving the task correspond to these two methods for entering
events into the diary. The first strategy, known as the ‘one by one’ strategy, involves the user going
through each individual event on the paper diary and entering it correspondingly into Meeting
Maker. The second strategy, known as the ‘en masse’ strategy, involves the user entering a series of
events at one go which will approximately correspond to those in the paper diary and then going
through those newly entered events and correcting them if needs be.

4.2 Efficiency analysis

A very simple analysis of the two strategies shows that in many situations it is ‘better’ to use the en
masse strategy. Consider the paper diary in Figure 6; there are nine events to enter, of which two
are unusual, and there are two ‘gaps’ in the series. It takes roughly the same amount of effort (in
terms of mouse clicks and key presses) to enter an event or delete an event as it does to correct an
event, and it takes about twice as much effort to enter a series of events. For sake of argument we
call the unit of effort to enter, delete or correct an event E, so the unit of effort to enter a series of
events is 2E. In general, if there are e events, of which g are non-standard or superfluous (i.e. need
to be changed or deleted from a series), the effort of following the one by one strategy is eE, and
that of the en masse strategy is (2 + g)E. Based on this general analysis it is only better to use the
one by one strategy in a few situations. In the particular scenario under consideration, the one by
one strategy requires 9E of effort and the en masse strategy requires (2 + 4)E, so the en masse is
more efficient. However, as discussed above, many users choose to use the one by one strategy.
Thus, if one equates rationality with optimisation, real users’ behaviour is generally not rational.
However, as highlighted below, knowledge-based rationality as defined in this paper supports
reasoning about more limited behaviours than this.

This simple analysis is similar in spirit to that done by Card, Moran and Newell (1983), in which
they compare the effort needed to correct a document using a text editor with that required to type it
out from scratch. Their model deals with surface effects — the time to press keys and set up
typewriters — and goes into much greater mathematical detail. However, the general style of
analysing efficiency, and using that as a measure of which approach is better, is analogous to this
informal analysis.

So, to summarise: we have a system we wish to model, a task which users perform with that system
and two strategies for achieving that task. Informally the question we wish to ask about the system
using our models is ‘which strategy is better?” Our model-based analyses address knowledge
requirements and proneness to error; these are alternatives to efficiency as measures of which
approach might be ‘better’. We can now compare the process and results of modelling our example
by performing both styles of modelling.

5. Operational models

We first construct an operational model of the system and scenario, based on the framework
presented above. We then use this model to reason about user behaviour for each of the two
strategies. In the following section (6), we use the operational model as a starting point for
constructing an abstract model.

12 T nnt ~A24nd ~a 1D /E/NE O.AO0 DA ATD /DID M

5.1 An operational model of Meeting Maker

To develop an operational model of Meeting Maker we first describe the device model, then the
beliefs that the user employs in interacting with the device, and finally the operations the user
employs.

The device model

The device model consists of descriptions of the device state and the actions that can transform the
device state.

The device state consists of a set of events that are recorded in the electronic diary. An event is a
record of the details of an entry in the diary; it consists of the time that the event takes place (where
‘time’ refers to a definitive marker, including date, day, hour, minute, etc), the duration of the
event, its title, etc. For the purposes of the model it is not necessary to define precisely what
information is stored in an event other than the time at which it takes place. So we declare a set of
times 7, and a set of events E, both of undefined type...

T : ... (1)
E :.. 2)
Given an arbitrary event e which is of type E then e.time denotes the time at which e takes place.

There is a set of events denoted ed (for ‘electronic diary’) which represent the events stored in the
Meeting Maker diary and, similarly, a set of events denoted pd for the paper diary.

ed : P(E) (3)
pd : P(E) “4)

We also need to capture the fact that the device makes a certain portion of the electronic diary
visible on the screen. All we need do is declare variables to denote the earliest time visible on the
screen and the latest time visible on the screen (the variables are start and end respectively).

start, end : T &)

The device actions describe ways in which the device state can change. There are five actions, as
follows:

addEvent(e): The result of invoking the action addEvent(e) is that the event e is added to the
electronic diary ed.

scroll(t): The result of invoking action scroll(t) is that the time # becomes visible in the diary
window. i.e. after scroll(t) has occurred start will be earlier than ¢ and end will be later
than 7.

correctEvent(e,, e,): The result of invoking correctEvent(e,, e,) is that event e, is removed from the
electronic diary ed and replaced by e,.

deleteEvent(e): The result of invoking the action deleteEvent(e) is that the event e is removed from
the electronic diary, ed.

addSeries(base,interval,finish): The action addSeries is a little more complicated. It adds a series of
events similar to base to the electronic diary, ed. The first event it adds is base and then it
adds events after base at a regular interval determined by inferval. It does not add events
after the time finish. For example, if base.time is “Sth Nov”, interval is weekly, and finish

ATD /DID /M T nnt ~A24nd ~a 1D /E/NE O.AO0 DA 177

is “3rd Dec” then the result of addSeries(base,interval,finish) would be that events like
base are added to ed on 5th Nov, 12th Nov, 19th Nov, 26th Nov and 3rd Dec.

To complete the description of the device model we need to assert which states are valid initial
states. A valid initial state is, quite simply, one in which start is earlier than end. The Lisp
implementation of this device model is included in Appendix B.

User beliefs

As discussed above (Section 3.3), user beliefs are collections of non-contradictory facts. Here we
describe what facts the user employs when interacting with Meeting Maker. We need facts that
express:

* whether a certain event is believed to be in the Meeting Maker diary or not,
* what times the user believes to be visible on the display, and

* that the user believes that two given events are approximately (but not exactly) equal to one
another.

The user’s goal

To define the user’s goal we assume that there is a finite collection of events in the paper diary that
need to be added to the electronic diary. The user’s goal is therefore that the user believes that all
events from pd are in the Meeting Maker diary.

5.2 The user’s operations

As discussed in Section 3.3, operations are expressions of how and why the user would invoke the
device actions. There are five operations, each one corresponding to one of the five device actions.

The first operation we describe is newEvent(e) which is an encoding of the user knowledge relating
to the device action addEvent. The purpose of performing newEvent(e) is that the event e is added
to the Meeting Maker diary, i.e. the user will commit to performing newEvent(e) if he has a goal
that includes having e in the Meeting Maker diary. The user will not be able to invoke the device
action addEvent(e) unless the user believes that the time e.time is visible on the display. However
the user may ‘sub-goal’ on that belief, i.e. if the user wants to perform the operation newEvent(e)
but cannot because he does not believe that e.time is visible he will adopt the sub-goal of changing
the device state so that he believes the time e.time is visible. The user tracks that the effect of
performing newEvent(e) is that e is added to the Meeting Maker diary; i.e. the act of performing
newEvent(e) is enough for the user to believe that e is in the diary, without having to look at the
display to verify the belief. The operation newEvent(e) is shown in a semi-formal notation below:

newEvent(e) = 6)
purpose event e is in the diary
precond time e.time is visible
track event e is in the diary
action action addEvent(e) is invoked

The operation scrollTo(t) is very straightforward. Its purpose is to make the time ¢ visible and it
invokes the device action scroll(t). It has no preconditions and so can be performed at any time.

scrollTo(t) = (7)
purpose time 7 is visible
action action scroll(t) is invoked

10 T nnt ~A24nd ~a 1D /E/NE O.AO0 DA ATD /DID M

The operation makeCorrection(wrong,right) encodes the beliefs relating to the device action
correctEvent. Its purpose is that the event right is in the Meeting Maker diary. Its sub-goaling
precondition is that the time wrong.time is visible. The user tracks that the event right is added to
the diary and that the event wrong is removed from the diary. Its filtering condition (which
describes what the user must believe before the operation is committed to) is that the user believes
that wrong and right are approximately the same event, and that wrong is already in the Meeting
Maker diary.

makeCorrection(wrong,right) = (8)

purpose event right is in the diary

precond time wrong.time is visible

filter wrong 1s approximately, but not exactly, equal to
right

track event right is in the diary, event wrong is not in
the diary

action action correctEvent(wrong, right) is invoked

The operation delExtra(wrong) encodes beliefs relating to the device action deleteEvent. Its
purpose is that the event wrong is not in the Meeting Maker diary. Its sub-goaling precondition is
that the time wrong.time is visible. The user tracks that the event wrong is removed from the diary.

delExtra(wrong) =)
purpose event wrong is not in the diary
precond time wrong.time is visible
track event wrong 1s not in the diary
action action deleteEvent(wrong) is invoked

Just as the device action addSeries was more complicated than other actions, so its corresponding
operation is also more complicated. newSeries(base, V, f) is an operation to add the events in V,
starting with event base and finishing on date f, into the Meeting Maker diary. Unlike the other
operations we have described, newSeries may not result in the purpose being fulfilled. Its
precondition is that the time of base, the base event in the series, is visible. The user tracks that a
series of events has been added to the Meeting Maker diary, but that this series may not be exactly
that required. The user invokes the device action addSeries and calculates the parameters to that
device action so that the series base,e,’... e, is as similar to the required V=e,... e, as possible. How
the user actually does this is not addressed in this analysis, but it can be a complex mental
operation, probably achieved by calculating the modal average of the time intervals in the series
e...e,

newSeries(base, V, f) = (10)
purpose events in V, which start with base, are required to
be in the diary
precond time base.time is believed to be visible
track events in V’ which is approximately the same as V
are believed to be in the diary
action action addSeries(base,interval,f) is invoked, where

base is the base event in the series, fis the date of
the last event in the series, and interval is the
modal average of the intervals between events in
V.

Clearly, there are many alternative ways of expressing this operation, each of which captures the
way some individuals might represent this operation. We have chosen an expression that captures a

ATD /DID /M T nnt ~A24nd ~a 1D /E/NE O.AO0 DA 10

precise knowledge of the base event in the series, the date of the last one and a less explicit
representation of those in between. The very difficulty of expressing this operation highlights the
fact that it demands substantially more complex knowledge and reasoning than the earlier
operations.

The Lisp implementation of this knowledge is included in Appendix C.

The display

The display shows the currently visible events and times, which is the subset of all events that
occur between start and end. That is: e in E such that start < e.time < end. In the Lisp
implementation, this information is encoded in the function ‘visibility-test’ (Appendix B).

5.3 Reasoning about the operational model

Now that we have a model of a user that interacts with Meeting Maker we can propose behaviour
patterns and see if those behaviours are rational by our definition. To do this we need to establish
whether or not each step in the behaviour can be described by one of the principles of behaviour
described in the framework. For both strategies, the goal is that the events ¢, ... e, = pd are in the
electronic diary, ed.

The one by one strategy

As discussed in Section 4.1, the one by one strategy is the simple addition of events from the paper
diary into the electronic diary. Clearly, since events can be entered in any order into the diary, for
simulation purposes we need to define an order. On reasonable approach is to define a heuristic that
determines the order in which the events will be added — for example, starting with the first event
and adding events in chronological order. This is the most likely order, since users can then use
their knowledge of order to keep track of which events have been added and which remain;
Hutchins (1995, p.297) discusses in more detail how users might keep track of which subtasks have
been completed and which are outstanding. Here, we present abstract reasoning about the
behaviour of the operational model, which can be compared to the simulation run (presented in
Appendix D).

Assume that the user has no outstanding commitments or subgoals and does not believe that the
first event, e,, is in the electronic diary. It is therefore rational to select the operation newEvent(e,)
because its purpose (that event ¢, is in the electronic diary) partially fulfils the goal of having all the
events e,... e, in the electronic diary.

Having selected the newEvent(e,) operation there are two possibilities: that e,.time is visible and the
principle of immediate performance can be invoked, or that e,.time is not visible and the principle
of commitment can be invoked.

If the principle of immediate performance is invoked then the user performs newEvent(e;) straight
away. The device action addEvent(e,;) is invoked so the event e, is added to the diary and the
tracking condition of the operation newEvent(e,;) ensures that the user believes that this has
happened. This is the case modelled in Appendix D.

In the other case the operation newEvent(e,) is committed to; it is added to the set of commitments
and its subgoaling precondition — that time e,.time is believed to be visible — is added to the
subgoals. The user now has the subgoal of making e,.time visible. The purpose of the operation
scrollTo(e,.time) matches this new subgoal and so the user selects it to perform. It has no
subgoaling precondition and so the principle of immediate performance can be applied. The device
action scroll(e,.time) is invoked and results in the time e,.time being visible on the display. The user

lalaY T nnt ~A24nd ~a 1D /E/NE O.AO0 DA ATD /DID M

can now look at the display and learn that e,.time is indeed visible. The principle of commitment
performance can now be invoked, as the precondition to newEvent(e,) is satisfied and it is still
appropriate to perform the operation. From this point onwards in the interaction, it is not rational to
re-adopt this subgoal, as it will not take the state nearer to the goal state.

So we have established that it is rational to move from a state where e, is not in the diary to a state
where ¢, is in the diary, and the user believes it to be there. That part of the goal has been achieved.
The same process is applied to the goal again, to add e, (seminar on 27" January), and so on until
all the events from the paper diary pd have been added to the electronic diary ed.

Our conclusion is, therefore, based on the user model we have constructed, that there is a rational
behaviour whereby the user can perform the one-by-one strategy and successfully add events e, ...
e, to the electronic diary. Note that we have only actually established this for one possible sequence
of actions; we can not conclude from this analysis that a real user following this strategy would
always achieve the goal, only that there is a rational way to do so. Exactly the same reasoning can
be applied for any other ordering, though in practice — a feature not included in this model — users
would probably have to tick off entered items to keep track of their progress toward the goal if
events were entered in an arbitrary order.

The en masse strategy

Similarly we can reason about the en masse strategy by describing behaviour that characterises the
en masse strategy and arguing its rationality. Again, edited highlights from a trace of running the en
masse strategy are included in Appendix D.

Initially let us assume that the user has no commitments, believes that none of the events frome, ...
e, are in the Meeting Maker diary, but believes that the time of the base event e, is visible on the
screen. (As we argued above, if that time is not visible the user can simply scroll to it; this is not
problematic.) Now we argue that it is rational to select the newSeries(e,, pd, f) operation and that
because its precondition is already satisfied, by the principle of immediate performance, it can be
done straight away. Once it has been done, the user believes that there is a collection of events £’ in
the Meeting Maker diary which are similar to pd=e, ... e,. Now the user can repeatedly step through
each of these events correcting them as necessary.

One of the critical success factors in this case is precisely how the user formulates the task. The
user may mentally step through the events that have been entered; this involves mentally tracking
every week or using the electronic diary as an external memory aid. However, the user may,
alternatively, use the paper diary as an external memory aid, and rely on that as a list of the events
that have been entered. We consider this case in detail.

If the user checks the correctness of an arbitrary event e,, from the paper diary, the result of doing
so can be either of the following:

® the user knows that the event ¢, is indeed in the diary and no correction needs to be done
(i.e.e;=¢e’).

* the event e¢’; in the diary is not exactly the same as e, and therefore needs correcting
(i.e.e’; #e).

In the first case no further action is required of the user and he can either choose a new event to
check, or cease interacting if there are no further events to check.

In the second case it is rational to select the operation makeCorrection(e’, e;), which the user does,
and the user can move on to correcting another event.

ATD /DID /M T nnt ~A24nd ~a 1D /E/NE O.AO0 DA A1

Working this through as an operational model: the user has invoked newSeries(e,, pd, f), where (see
Figure 6) ¢, is the seminar on 20" January, pd is the contents of the paper diary and fis 31* March.
The modal average is weekly, so the corresponding device action is addSeries(e,;, weekly, f), which
adds weekly seminars to the diary (all on Wednesdays at 3pm in Meeting Room 1, lasting one
hour). The first event, e,, is visible and known to be correct, so the user considers the next event, e,.
This event needs correcting (to a different meeting room), so the user performs makeCorrection(e’,,
e,). This continues until all nine events (up to 31* March) have been checked and corrected where
necessary. At this point, the user believes that the diary entries are all correct. However, inspection
of the device state shows that the user has an incorrect belief: there are additional (unwanted)
events entered in the diary on 3" February and 17" March. The strategy together with use of the
paper diary as a memory aid has not led to a successful outcome. As in the one-by-one strategy,
changing the order in which events are corrected yields the same result. The current Lisp
implementation (Appendix D) models this behaviour slightly differently: it models a user who
knows about the additional events being in the diary (because their inclusion has been tracked as
part of the operation of entering a new series) but who does not recognise this difference as being
important relative to the desired state.

As noted above, there is an alternative user strategy, which is to use the electronic diary as the
external memory aid, rather than relying on the paper one. In this case, there is a third possibility as
the user corrects an arbitrary event:

* the event e’; has no corresponding entry e, in the paper diary so e’; needs deleting.

Working through the operational model for this strategy shows that this behaviour leads to a
successful outcome. However, as discussed, success depends on whether the user uses the paper or
the electronic diary as a memory aid.

In the Lisp implementation of the knowledge of operations and user goal (Appendix C), the user
knowledge for the correct en masse strategy is represented by encoding in the user knowledge of
the goal state that certain events are not in the diary (whereas this knowledge is omitted from the
earlier incorrect — but simpler — version).

Comparison of strategies

Overall, we have established that there are two particular procedures for entering events into the
diary that yield either the intended result or a high likelihood of an erroneous result. In the latter
case, the user would be unaware of the error. In addition, we have shown that the user knowledge
needed for applying the one by one strategy is substantially simpler than that needed for applying
the en masse strategy — especially for the correct version of the en masse strategy. In particular, for
the one by one strategy, the user only ever has to invoke operations newEvent and scrollTo,
whereas for the en masse strategy, he has to invoke setSeries, makeCorrection and delExtra as well
as scrollTo.

In summary, this approach to operational modelling has highlighted two key differences between
the two user strategies being considered: the sophistication of the user knowledge needed and the
proneness to error. The en masse strategy may be more efficient, but this is at the price of increased
cognitive effort (in calculating the parameters for the ‘frequency’ operation) and mental workload
(in keeping track of which diary entries need correcting). The user also has to learn the additional
operations to perform the en masse strategy. A richer psychological model might identify other
factors that also influence the choice of strategy, such as the mental effort and accuracy of
assessing which strategy would be more efficient for any given set of diary entries. However, those
are outside the scope of this modelling. The concern here has not been to produce a fully

AN T nnt ~A24nd ~a 1D /E/NE O.AO0 DA ATD /DID M

explanatory model, but to illustrate what this particular kind of operational model can and cannot
deliver.

Running through the models for each possible rational behaviour would be time-consuming, though
clearly this process could be automated for any finite set of events. An alternative is to abstract
away from the details. Since our purpose in this paper is to compare models, we now consider this
approach.

6. Abstract models

In the previous section we demonstrated how an operational system model can be derived from
principles of rational behaviour and showed some of the reasoning that can be applied to such
models.

In essence we use operational models to prove the existence of legal behaviours, as well as to
analyse user knowledge needs. While this can be useful, we would also like to use models to
demonstrate stronger properties over (possibly infinite) classes of behaviour. In other words, as
well as being able to test claims such as ‘there exist legal behaviours which result in the goal being
achieved’ or ‘there exist legal behaviours that fail to achieve the goal’, we would like to test claims
such as ‘all legal behaviours result in the goal being achieved’. In order to demonstrate these
universally quantified claims we need to use more formal proof techniques than we did in the
previous section.

In this section we outline how we can use proof by refinement techniques to do this. However the
models we proposed in the previous section are too complicated, detailed and unwieldy to sensibly
perform such a proof on. Therefore we need to simplify those models.

6.1 Aspects to be abstracted over

When considering the models described in the previous section, two aspects immediately suggest
themselves as being unnecessarily complicated:

®* what is and is not visible, and
* the distinction between the device state and the user’s knowledge of the device state.

Consider the way we had to deal with the user making certain times in the diary visible; the user
typically had to subgoal on making the appropriate time in the diary visible before it was possible
to enter the appropriate event. In order to make certain areas of the diary visible the user had to use
the ‘scroll’ operation. However the ‘scroll’ operation has no precondition and so the user can
always scroll to the appropriate place. In effect a ‘scroll’ operation with no precondition makes the
whole of the diary eventually, if not immediately, visible. In this analysis we are not concerned
about the distinction between eventually and immediately, and therefore we make the simplifying
assumption that everything in the diary is visible, so we do not need to worry about scrolling.

Secondly, and more challengingly, in the operational models we made a distinction between the
actual device state and the user’s beliefs about the device state. In particular we modelled the set of
events that are in the diary, and the user’s beliefs about what events are in the diary. We now
simplify the models so that the device state and the user’s beliefs about the device state are
conflated. In the abstract model we propose a single variable which represents the set of events in
the electronic diary and, by inference, the user’s beliefs about which events are in the electronic
diary. This is evidently a strong claim to make, as it would appear that we are asserting that the user
has perfect knowledge, and so requires justification. Using the abstract model we will show that the
modelled user is liable to make mistakes using the en-masse strategy. Our argument is that the

ATD /DID /M T nnt ~A24nd ~a 1D /E/NE O.AO0 DA lale]

model suggests users will make mistakes in spite of having perfect knowledge, and therefore real
users with imperfect knowledge are liable to those errors (and probably others besides).

Butterworth, Blandford and Duke (2000) describe how very abstract models of interactive systems
can be proposed that can still be held to have a level of 'cognitive plausibility'. We define cognitive
plausibility to be a weak claim that all the assumptions about the user's cognition made by a model
are justifiable. Cognitive plausibility lies between 'cognitive inspectability'; which asserts that all
assumptions in a model can be inspected by cognitive scientists, and 'cognitive validity' which
asserts that all the assumptions in a model are firmly linked to accepted theory and empirical
evidence. Cognitive validity is not a claim that can practically be made without a much firmer basis
of theoretical HCI (Long and Dowell, 1989) and therefore cognitive plausibility is the best
modellers can manage.

Butterworth, Blandford and Duke (2000) recognise that cognitive plausibility for abstract models is
problematic: the assumptions made about the user in an abstract model may be very implicit and
therefore difficult to 'extract' in any way that is comprehensible to cognitive scientists. However
although the model itself may be difficult to inspect the process by which it is arrived at need not
be, and therefore cognitive plausibility may be claimed for an abstract model by justifying the
assumptions made about the users during the process of abstracting. Butterworth, Blandford and
Duke use a very similar model to the one presented here and discuss its degree of cognitive
plausibility; interested readers are directed to that paper.

6.2 Abstract system models

We define abstract system models of both the one-by-one and the en masse strategies. First, we lay
down the system model groundwork that is common to both models. The notation used here is that
defined by Morgan (1990).

A diary is a set of events.
Diary A P(E) (12)

We denote two diaries: the paper diary and the electronic diary, denoted pd and ed respectively.
pd : Diary (13)
ed : Diary (14)

In representing the two diaries equivalently (as the same type) we again make an abstraction over
the model. A paper diary and electronic diary are evidently different things (Blandford and Green,
2001) but, at least at a first level of analysis, they store the same information in different ways.
How a paper diary and electronic diary store their information is not the focus of this analysis,
which is concerned with what information is stored and how it is moved between the two diaries.

Now we propose a representation of the user’s goal. This states that when the goal is achieved the
contents of the paper diary have been added to the original contents of the electronic diary. We
represent this as follows...

goal = ed,pd:[ed=ed, U pd,) (15)

This specification fragment is in two parts. ed, pd: is the ‘frame’ of the specification and describes
which parts of the state can be affected by the specification — in this case, ed and pd, the electronic
and paper diaries. The equation in the square brackets asserts what is true after the specification has
taken place (it is the ‘postcondition’). Any variable name subscripted by a zero denotes the value of
that variable before the specification fragment has occurred.

AA T nnt ~A24nd ~a 1D /E/NE O.AO0 DA ATD /DID M

Therefore the specification goal should be read as ‘goal allows the values of pd and ed to alter, and
finishes with the value of ed being equal to its initial value unioned to the initial value of pd.” Note
that the goal says nothing about the final value of pd, i.e. it can finish with pd having any value.

Now we propose two abstract programs which represent the two strategies.

6.3 An abstract model of the one by one strategy

The program fragment strat, represents the one by one strategy. It is simply a loop that repeats
while there are events in the paper diary pd still left to be entered into the electronic diary, ed. In
each repetition of the loop an event e is selected from those remaining in the paper diary, added to
the electronic diary and then marked off the paper diary.

strat, = do (16)
var e * selectEvent]
unmarked — enterEvent,
markEvent
od

To complete the model of the one by one strategy we need to define the fragments unmarked,
selectEvent, enterEvent and markEvent, all of which are very simple. unmarked is a predicate that
holds true while there are events on the paper diary, i.e. when pd is not the null set.

unmarked = pd# & (17)
selectEvent is an abstract code fragment that ensures that the event e is selected from the set pd.
selectEvent = e: [e€ pd] (18)
enterEvent adds the event e to the electronic diary ed.
enterEvent = ed: led =ed, U {e}] (19)
markEvent removes the event e from the paper diary pd.
markEvent = pd : [pd = pd,\ {e}] (20)

This completes the abstract model of the one by one strategy.

6.4 An abstract model of the en masse strategy

The program fragment strat, represents the en masse strategy for the user who relies on the paper
diary to prompt them about which events to check or update. It is modelled in a similar way to the
one by one strategy. Initially a set of events is added to the electronic diary and subsequently there
is a loop that corrects the events in the electronic diary.

strat, = setSeries; (21)
do
vare, e’ * selectEvents;
unmarked — if
needsCorrecting — correctEvent;
fi
markEvent

od

The fragment setSeries adds a collection of events to the electronic diary that are approximately the
same as those in the paper diary. The subsequent loop goes through each of the events in the paper
diary seeing if it is correctly entered on the electronic diary. The variable e is the event on the paper

ATD /DID /M T nnt ~A24nd ~a 1D /E/NE O.AO0 DA ne

diary and the variable e’ is a similar event on the electronic diary and both are set by the fragment
selectEvents. The if statement checks to see if the event e’ needs correcting and corrects it if it does.
Lastly the event e is marked off the paper diary by the fragment markEvent.

Again, to complete the model we need to go through and define all the program fragments. (Note
that unmarked and markEvent are as defined in the one by one strategy.)

setSeries adds a set of events es to ed that are similar to pd.
setSeries = ed: [Jes ses =pd A ed = ed, U es] (22)

(This reads ‘there exists a set of events es which are similar to the paper diary pd and es is added to
the electronic diary ed.”)

selectEvents selects two approximately equal events e and e’ so that e is from the paper diary and
e’ is from the electronic diary. (The model abstracts over exactly what it means for events to be
‘approximately equal’; a precise definition is not necessary, but in more detailed analyses it would
be necessary to define what constitutes ‘approximate’.)

selectEvents = e e’ leEpdrne Eedne=e’] (23)
needsCorrecting is a predicate that hold true if e is not the same as e’.
needsCorrecting = eze’ (24)
correctEvent removes e’ from the electronic diary and replaces it with e.
correctEvent = ed: [ed=(ed \{e’})U {e}] (25)

This completes the abstract model of the en masse strategy.

6.5 Reasoning with the abstract models

When working with the operational models in the previous sections we reasoned with the models
by showing that at least one behaviour that reached the user goal of having all the events from the
paper diary correctly added to the electronic (i.e. we showed that it is possible to get to the goal
state).

Using the abstract models we can test the stronger claim that it is necessary that the user reaches
the goal state, or in other words, all the behaviours described by the models result in the goal state
being reached. If the behaviour spaces of the models are infinite it is clearly not possible to test this
stronger claim by generating the behaviours explicitly. To illustrate this stronger approach, we
employ proof techniques to demonstrate that strat, and strat, are ‘correct’ with respect to goal.
(Recall that goal is a mathematical statement that describes the contents of the paper diary being
correctly added to the electronic diary.) If we can prove that the two strategies are correct with
respect to goal then we have an argument that all the behaviours described by the two strategies
result in the goal being achieved.

We employ Morgan’s (1990) refinement calculus, which is a collection of ‘refinement’ translations
that can be applied to models, decreasing their level of abstractness while retaining their
correctness. Here we present simplified versions of the proofs given in Butterworth, Blandford and
Duke (2000).

Reasoning about the one by one strategy

We need to demonstrate that the result of strat, is that all the events initially in pd are in ed. We can
prove this by showing firstly that the loop in strat, adds only events from pd to ed, and secondly

nNc T nnt ~A24nd ~a 1D /E/NE O.AO0 DA ATD /DID M

that every time the loop occurs more events are added to ed. Technically these two properties are
known as the loop ‘invariant” and ‘variant’ respectively and are shown formally below:

invar = (ed, U pd) C ed
var= ed, C ed

These two properties are both needed for the proof. The loop invariant ensures that only items from
pd are added to ed, and therefore that ed must finish up containing only items originally in ed added
to a set of events that is a subset of or equal to pd. The loop variant ensures that items are
repeatedly added to ed.

Putting these two assertions together: that ed contains only items from ed and pd, and that ed
increases in size, we can deduce that eventually ed = ed, U pd as required.

So far we have shown that a loop with the two properties invar and var will result in goal being
satisfied. Now it only remains for us to show that the loop in strat, does indeed fulfil these two
properties.

What actually happens in the loop is that a single event e is added to ed, so we can restate the
invariant as:

(ed, U {e}) Ced
... and it is clear that e comes from pd, so we can say that {e} C pd.

Putting this together, the loop does not delete anything from ed, so ed, € ed, and adds subset of pd,
so (ed, U pd) C ed, and the loop invariant is shown.

The variant var is more simple: event e is added to ed and nothing is removed from ed and
therefore ed must increase in size, i.e. ed,C ed.

Reasoning about the en masse strategy

The en masse strategy is not correct with respect to goal. Demonstrating the failure of correctness
is typically easier than demonstrating correctness, as we simply need to show a counter-example. In
this case we simply suggest a situation where strat, completes and does not result in goal being
achieved. We can do this by considering the size of the sets involved, if the final size of ed is not
equal to the size of (ed, U pd) then ed cannot equal (ed, U pd) and strat, cannot be correct with
respect to goal.

The program fragment setSeries adds an arbitrary set of events to ed and there is no guarantee that
this arbitrary set will be the same size as pd. Assume that the set added is larger than pd, this will
only result in strat, finishing correctly so long as the subsequent loop can delete events from ed. It
cannot. The loop merely replaces events in ed with corrections: it does not decrease (or increase)
the size of ed. As the size of the final value of ed may be incorrect, the final value of ed may also
be incorrect, and therefore the proof fails.

6.6 Summary

We have shown abstract models of the strategies and sketched out proofs showing whether or not
they necessarily result in the user achieving his goal. Full proofs are presented elsewhere
(Butterworth et al., 2000). The proofs are stronger than the claims we made with the operational
models, where we only tested the possibility of the user achieving his goal. The abstract nature of
the models used in this section facilitates this stronger reasoning. However, it comes at the cost of
less explicit assumptions about the details of user behaviour and knowledge, as discussed more
fully below.

ATD /DID /M T nnt ~A24nd ~a 1D /E/NE O.AO0 DA alg}

7. Conclusions

From the analyses of both the operational and abstract models we can draw the conclusion that the
device does not support the user well in performing the en masse strategy: it places considerable
load on the user and may be error prone. This provides some explanations for the empirical finding
that users often choose the one by one strategy in preference to the en masse strategy, even though
the one by one strategy requires more input to the device. Each analysis told us different (but
consistent) things about the problem. Other analyses using different basic frameworks might have
told us yet other different things.

Our aim has been to investigate the benefits and drawbacks of these styles of analysis, which we
can now do in detail. The differences between the model-based analyses are summarised in Table 2
and described in more detail below.

Operational models

Abstract models

The tractability of
evaluation methods

The model can be simulated
automatically or by arguing that a
particular behaviour trace is legal
or not with respect to the model.
Operational models can be used to
argue the existence of certain legal
behaviours.

A finite set of behaviours can be
reasoned about.

An abstract model can be used to
prove that general properties of
behaviour are consistent with the
model. In particular, we can use
proof techniques to show
universal properties of behaviour.
Infinite sets of behaviour can be
reasoned about.

Inspectability of
cognitive assumptions

The link to theory is clear — there
is (approximately) a one-to-one
translation between the underlying
theory and the user model.

The act of abstracting over
assumptions and the act of
integrating these assumptions
with the device model means that
those assumptions become
implicit in the model.

Level of abstraction

An operational model is no more
abstract than the level of
abstraction of the underlying
theory.

An abstract model can be
considerably abstracted in both
the device model and user
assumptions.

The reuse of models

The theory incorporated into a
operational model is general and
can be ported from one specific
model to another. Different models
are implemented by defining
different knowledge and goals.

The assumptions retained in an
abstract model are specific not
only to that example, but also to
the questions that are asked of
that model. They may be
inappropriate for other examples.

Table 2. A comparison between operational and abstract models.

7.1 The tractability of evaluation methods

We showed how we can both hand-simulate and run an implementation of the operational model,
which may show the existence of legal traces that do or do not achieve the goal of an interaction.
However, an operational model cannot easily be used to ask exhaustive questions about the space
of legal behaviours. We can answer questions such as ‘can a rational user get to a goal state?’ or
‘can a rational user make errors?’, but it is harder to answer ‘will the modelled user always reach a
goal state?’, i.e. do all legal behaviours reach a goal? To do so we need to employ proof techniques.

Ao T nnt ~A24nd ~a 1D /E/NE O.AO0 DA ATD /DID M

We showed that abstract system models can check these more exhaustive properties by showing
that the models are (or are not) correct ‘implementations’ of higher level properties.

Much of the benefit of the analysis of the operational model comes not from showing the legality of
given behaviours, but from the act of setting out the knowledge that the user needs to perform the
task. The main conclusion of the operational model analysis — that the en masse strategy is more
demanding on the user (in terms of the complexity of the operations) — can be reached without
having to go to the effort of actually running the model. The act of laying out and defining the
system models gets the analyst thinking about the system from a more user centred perspective and
many potential knowledge-based usability problems can be ironed out without having to go to the
expense of simulating or proving properties about the models (Hall, 1990; Blandford, Buckingham
Shum and Young, 1998). The challenge in developing and evaluating an abstract model is ensuring
that it is valid, and that it is designed to answer interesting questions.

Predictive system modelling approaches suffer from a double bind in how they are perceived by
practitioners, as pointed out by Gray, John and Atwood (1993): ‘If models predict results that
designers consider ‘intuitive’ then the models are perceived to be of little value. On the other hand,
if models predict results that are counter intuitive, why, in the absence of empirical data, should
they be believed?’ In choosing the example used in this paper our main motivation was to select an
example for which there were known to be usability difficulties and that would explore the
different issues raised by simple models of rational behaviour and their roles within interactive
system evaluation. We are not specifically trying to show something about the system that an
analyst may not already know; however, the level of analysis we have conducted here improves the
understanding of the system and the issues involved in improving usability, taking a simple
empirical result (that people rarely use the en masse strategy even if they know about it and even
though it is usually more efficient) and demonstrating the differences in knowledge needs and in
reliability of the result for the user. To put this another way: the modelling presented here is not
predictive, in the full sense discussed by Gray et al; rather, it provides some plausible explanations
for understanding a reported phenomenon. As shown, two of the analyses produce finding that are
consistent with the empirical findings, while the third (the efficiency analysis) does not. Such
simplified models are inadequate for the detailed predictions and cognitive explanations that are
exemplified by the work of Gray (2000), Byrne and Bovair (1997), Byrne (2001) or Kieras, Wood
and Meyer (1997); however, they have a role to play in supporting an analyst exploring the
behavioural and design consequences of different user knowledge and user strategies, in the style
discussed by Fields (2001).

7.2 Inspectability of assumptions

One of the motivations behind the PUM approach, on which this modelling is based, is that it
encourages system designers to express explicitly the assumptions that they are making about users.
Simply stated, the designer is required to define user knowledge that would allow the user model to
interact successfully with the proposed device. This knowledge should be expressed clearly and can
then be validated.

In addition to presenting user knowledge for a particular scenario of use, we have also laid out
general assumptions about how users deal rationally with their beliefs. These assumptions, based
on existing theories, can be further debated and validated — or, indeed, extended or modified.

The abstract models presented here abstract not only over the beliefs that the user requires in order
to successfully interact, but also over the operational mechanism itself. Hence the assumptions
made in an abstract model are largely implicit, although the process of abstraction itself can be
made inspectable. The structure of the model will be determined by the purposes to which it is put,
rather than by a desire to make the contents of that model inspectable.

ATD /DID /M T nnt ~A24nd ~a 1D /E/NE O.AO0 DA An

7.3 Level of abstraction

An operational model inherits its level of abstraction from the underlying assumptions. Typically
the assumptions are expressed in an operational manner; it deals with the mechanisms that produce
rational behaviour. An operational model is therefore limited in how abstract it can be. The
assumptions we use were originally posited for use in systems that simulate human problem
solving. These systems have been implemented, so much of the theory behind these assumptions is
expressed in a form that is useful for implementing working systems. One of the aims of our work
has been to ‘lift’ the assumptions away from the implementational issues and try to express them
clearly and abstractly, very much in the style of Newell’s (1982) work on the knowledge level. One
of the main advances in the work reported here is to drop the need to reduce non-determinism in the
model. Previously much effort was put into cataloguing selection heuristics which refined the
notion of rationality so that the models would produce a limited, finite space of legal behaviours. In
particular, we first started working on abstract models because there were many cases where
implementing an operational model seemed to be ‘missing the point’: the point was not that there
needed to be a full simulation of behaviour (the user performs an operation on this data item, then
on that one then...), but that there was an emergent pattern of behaviour, and what was interesting
was whether that pattern could be relied upon to achieve the goal. Abstract models are better suited
to supporting this abstract reasoning than operational ones.

7.4 The re-use of models

The simplicity of the process of instantiating the general framework to an operational model means
that the assumptions captured in an operational model can be easily ported into a different example.
Indeed the general framework is by definition intended to cover a wide variety of interactive
systems, and the implemented model presented here has been ‘run’ on several different examples.
The assumptions in an abstract model are largely implicit, so it is difficult to extract those
assumptions and apply them to other examples. Indeed, abstract models are likely to be tailored not
only to a particular example, but also to a particular question about that example. The abstract
models are of little or no value in addressing usability questions other than those for which they are
formulated. However the simplicity of the abstract models means that we may be able to use them
to identify similarities between the usability questions asked of them and those asked of usability
analyses already performed.

7.5 Discussion

As discussed earlier, HCI draws from both the natural and social sciences and also engineering,
design and fine art. Researchers within disciplines operate within research paradigms that
determine what questions are considered interesting, and what methods can appropriately be
applied to address those questions. HCI is inherently multidisciplinary, and therefore draws on
methods from a range of disciplines; the questions of interest concern the quality of interactions
between users and computer systems. Long and Dowell (1989) propose that these questions focus
primarily on one or other agent to the interaction, with Human Factors focusing on the users within
the interactive system and ‘Software Engineering’ focusing on the computer systems. Barnard and
Harrison (1989) argue for a more neutral view of focusing on the interaction in its own right as the
object of study. The models presented in this paper illustrate one approach to doing this.

An interaction cannot be understood simply as the separate behaviours of the contributing agents,
but has emergent properties that relate to the interaction as an entity in its own right. The
operational model forces an explicit representation of the knowledge requirements on the user,
given particular behavioural assumptions. The abstract model focuses attention on the interaction as

n T nnt ~A24nd ~a 1D /E/NE O.AO0 DA ATD /DID M

an entity in its own right, and therefore leads towards a theory of interactions, abstracting away
from the details of the agents involved in that interaction.

The research methods employed in this work are based in software engineering and the
mathematical techniques that underpin it. However, a particular knowledge-level theory is also
expressed within the formalisation, so that software engineering and human factors are brought
together and reasoned about within a common framework. Such an approach is necessarily
limiting: by creating abstractions, we ignore much of the richness of natural human interaction.
However, this apparent weakness of mathematics can also be a strength: as argued by Duke,
Barnard, Duce and May (1998), “several key advances in understanding complex problems in
computing have come about through the development of mathematical abstractions”. HCI presents
some of the most complex problems in computing. The different mathematical abstractions
presented in this paper exemplify alternative ways of reasoning about these complex problems. We
have demonstrated some of the tradeoffs that are being made in adopting a particular level of
abstraction, and illustrated what kinds of reasoning each supports (the operational model focusing
primarily on knowledge and the abstract model on a safety proof that a particular kind of error will
not be made given the stated user assumptions).

The stronger proof technique implemented in the abstract proof approach delivers stronger
verification results than the operational model approach (e.g. about all possible cases as opposed to
individual ones), though based on more assumptions. The result in each case is that if the initial
assumptions are correct then the system is (or is not) error-free. However, as illustrated particularly
by the efficiency calculation, findings need to be informed by, and related back to, empirical
findings in order to validate them. Modelling discards information — the amount dependent on the
degree of abstraction. Successful abstraction occurs if the information lost is not critical to the
question under consideration. Validation against empirical results is a way to increase confidence
that the assumptions made are appropriate for the question considered. The findings of individual
analyses can be considered valid insofar as they are consistent with the user data.

Put another way: the efficiency analysis is interesting because it highlights something that users
‘should’ do, but don’t. In contrast, the operational and abstract models provide plausible partial
explanations of why users behave the way they do. The importance of formal analysis here is not to
give absolute statements of correctness or otherwise of a system — such absolute statements are not
attainable. Rather, in the approach presented, they give a way to probe issues of importance raised
as part of the empirical studies or earlier formal analysis.

For example, in terms of the validity of the modelling, one criticism might be that users do not
always behave rationally; this is so. However, that does not preclude the usefulness of the
approach. It would be unwise to design computer systems that cannot be used by rational users, so
we would argue that it is a minimal requirement on design that they should be usable by people
who have the necessary knowledge that they can plausibly have obtained. Put another way: unless
users are really lucky in their choice of actions, real user behaviour is likely to be less successful
than that modelled here. Bounded rationality, slips, etc. will all contribute to ineffective behaviour;
the PUM approach involves the analyst articulating what knowledge users need to perform
effectively, and exploring the consequences of plausible incompleteness or misconceptions
(Reason, 1990). In terms of Newell’s (1982) principle of rationality, from which the PUM
principles are refined: “If an agent has knowledge that one of its actions will lead to one of its
goals, then the agent will select that action”. What is rational for a given agent depends on its
knowledge and goals. Thus if such an analysis shows that a system ‘“can be used” then little can be
deduced of the use of the real system by real users in general. However, if the analysis suggests it
cannot be used, an issue that warrants further investigation has been raised, that ought to be
investigated further with reference to empirical data.

ATD /DID /M T nnt ~A24nd ~a 1D /E/NE O.AO0 DA 21

Similarly if the efficiency analysis had agreed with the empirical data then it would have been of
little interest. It is of interest precisely because it fails to explain the actual behaviour observed. It
highlights that further more detailed analysis is needed on that point and that a simple explanation
of user behaviour based on optimality cannot be sufficient. Formal methods are costly to apply.
They can only be realistically used when targeted at specific problems. It is a sensible use of
resources to employ different techniques, in an integrated way, to probe issues that have been
highlighted as important either from empirical studies or other analyses. Any individual method is
unlikely to provide the whole story, but each has the potential to yield valuable insights into
possible explanations for observed behaviour.

In summary, this work applies a mathematical paradigm (specification and proof) to the study of
interaction. The focus has been on understanding the tradeoffs between provability and
inspectability for systems that include a human agent. We do not expect such mathematical
techniques to be used routinely in interactive system design (however see Good and Blandford
(1999), where practical discount techniques closely derived from the theoretical ideas expressed
here are shown to have value in a ‘real world’ design context); their contribution is, rather, to
express issues without ambiguity. Our aim has been to demonstrate particular, complementary
styles of reasoning and to illustrate what contributions mathematical modelling can make to
reasoning about interactive system design. For the diary case study, the various models have each
provided different insights that have overall yielded a fuller picture of the issues surrounding the
use of one feature of a diary system. In doing so, we have compared the various styles of modelling
to also gain a better understanding of the strengths and limitations of each.

Acknowledgements

This work was supported by EPSRC Grant GR/L00391. We are grateful to David Duke, Harold
Thimbleby and Richard Young for useful discussions on the ideas presented here and to
anonymous referees for constructive feedback on earlier versions of this paper.

References

ABOWD, G., WANG, H-M. AND MONK, A. (1995) A formal technique for automated dialogue development. In Proc.
DIS’95. ACM. 219 - 226.

ADAMS, A. & BLANDFORD, A. (2002) Acceptability of Medical Digital Libraries. Health Informatics Journal. 8(2), 58-
66. Sheffield Academic Press. ISSN 1460-4582.

ANDERSON, J. R. (1993) Rules of the Mind, Hillsdale, NJ: LEA.

BARNARD, P.J. AND HARRISON, M.D. (1989). Integrating Cognitive and System Models in Human Computer
Interaction. In A. SUTCLIFFE AND L. MACAULEY, Eds. People and Computers V, Proceedings of HCI’89, 87-103.
Cambridge: CUP.

BARNARD, P. J., MAY, J., DUKE, D. & DUCE, D. (2000), Systems, Interactions and Macrotheory. ACM Transactions on
Computer-Human Interaction, 7.2, 222-262.

BEARD, D. & PALANLAPPAP, M. WITH HUMM, A., BANKS, D., NAIR, A. & SHAN, Y-P. (1990) A visual calendar for
scheduling group meetings. In Proc. CSCW'90. 279-290

BLANDFORD, A. E., BUCKINGHAM SHUM, S. AND YOUNG, R. M. (1998) Training software engineers in a novel usability
evaluation technique. International Journal of Human-Computer Studies, 45(3), 245-279.

BLANDFORD, A. E. & GREEN, T. R. G. (2001) Group and individual time management tools: what you get is not what
you need. Personal and Ubiquitous Computing. 5.4. 213-230.

BLANDFORD, A. E. & YOUNG, R. M. (1993). Developing runnable user models: Separating the problem solving
techniques from the domain knowledge. In J. ALTY, D. DIAPER AND S. GUEST, Eds. People and Computers VIII,
Proceedings of HCI’93, Loughborough, 111-122 Cambridge: Cambridge University Press.

2N T nnt ~A24nd ~a 1D /E/NE O.AO0 DA ATD /DID M

BLANDFORD, A. E. & YOUNG, R. M. (1995) ‘Separating user and device descriptions for modelling interactive problem
solving’. In K. Nordby, P. Helmersen, D J Gilmore, and S Arnesen, Eds: Human-Computer Interaction:
Interact’95. pp. 91-96. Chapman and Hall

BLANDFORD, A. E. & YOUNG, R. M. (1996) Specifying user knowledge for the design of interactive systems. Software
Engineering Journal. 11.6, 323-333.

BUTTERWORTH, R. J., BLANDFORD, A. E. & DUKE, D. J. (1998) The role of formal proof in modelling interactive
behaviour. In P. Markopulos & P. Johnson (Eds.) Proc. Design, Specification and Verifications of Interactive
Systems '98. pp. 87-101. Wien: Springer.

BUTTERWORTH, R., BLANDFORD, A. & DUKE, D. (1999). Using formal models to explore display based usability
issues. Journal of Visual Languages and Computing, 10. pp. 455-479.

BUTTERWORTH, R., BLANDFORD, A. & DUKE, D. (2000) Demonstrating the cognitive plausibility of interactive system
specifications. Formal Aspects of Computing, 12. pp. 237-259.

BYRNE, M. (2001) ACT-R/PM and menu selection: applying a cognitive architecture to HCI. International Journal of
Human—Computer Studies. 55. 41-84.

BYRNE, M. D. & BOVAIR, S. (1997) A working memory model of a common procedural error. Cognitive Science. 21.1,
31-61.

CARD, S.K., MORAN, T.P. & NEWELL, A. (1983). The Psychology of Human-Computer Interaction. Lawrence Erlbaum
Associates: Hillsdale, NJ.

CARROLL, J. M., (ed) (2003) HCI Models, Theories and Frameworks. Morgan Kaufmann, San Francisco.

CURZON, P. & BLANDFORD, A. E. (2001) Detecting multiple classes of user error. In Engineering for Human-Computer
Interaction, 8th IFIP International Conference, EHCI 2001, M. R. LITTLE & L. NIGAY ,Eds, pp 57-71, Lecture
Notes in Computer Science, 2254, Springer.

CURZON, P. & BLANDFORD, A. (2002) From a Formal User Model to Design Rules, In P. FORBRIG, B. URBAN, J.
VANDERDONCKT & Q. LIMBOURG, Eds. Interactive Systems. Design, Specification and Verification, 9" Int
Workshop. pp 19-33. Lecture Notes in Computer Science, 2545.

DOHERTY, D. J., CAMPOS, J. F. & HARRISON, M. D. (2000) Representational Reasoning and Verification. Formal
Aspects of Computing, 12. pp. 260-277.

DUKE, D. J., BARNARD, P.J., DUCE, D.A. & MAY, J. (1998) Syndetic Modelling. Human-Computer Interaction. 13,
337-394

DUKE, D.J., & HARRISON, M.D. (1993) Abstract Interaction Objects. Computer Graphics Forum 12(3). 25-36.
NCC/Blackwell. Proc. Eurographics’93.

FIELDS, R. (2001) Analysis of erroneous actions in the design of critical systems. DPhil Thesis. University of York.
Technical Report YCST 2001/09.

FIELDS, B., WRIGHT, P. & HARRISON, M. (2000) Analysing Human-Computer Interaction as distributed cognition.
Human-Computer Interaction Journal. 15. 1-41.

GARDENFORS, P. (1988) Knowledge in flux: modelling the dynamics of epistemic states. MIT Press.

GooD, J. P. & BLANDFORD, A. E. (1999) Incorporating Human Factors Concerns into the Design and Safety
Engineering of Complex Control Systems. In J. Noyes & M. Bransby (Eds.) People in Control: An International
Conference on Human Interfaces in Control rooms, Cockpits and Command Centres, IEE Conference Publication
Number 463, Institution of Electrical Engineers, London, 1999. ISBN number 0 85296 715 2. Pages 51 - 56.

GRAY, W. D. (2000). The nature and processing of errors in interactive behavior. Cognitive Science, 24(2), 205-248.

GRAY, W., JOHN, B & ATWOOD, M. (1993) ‘Project Ernestine: Validating a GOMS Analysis for Predicting and
Explaining Real-World Task Performance’, Human-Computer Interaction, 8. pp 237-309.

GRAY, W., YOUNG, R. M. & KIRSCHENBAUM, S. (1997) Introduction to this special issue on cognitive architectures and
Human—Computer Interaction. Human-Computer Interaction. 12. 301-309.

HALL, A. (1990) Seven Myths of Formal Methods IEEE Software, September. 11-19.

HARRISON, M. AND THIMBLEBY, H., Eds. (1990) Formal Methods in Human-Computer Interaction, 97-127.
Cambridge: CUP.

ATD /DID /M T nnt ~A24nd ~a 1D /E/NE O.AO0 DA fele]

HOLLAN,J. D., HUTCHINS, E. L. & KIRSH, D. (2000) Distributed cognition: toward a new foundation for human-
computer interaction research. ACM Transactions on CHI, 7.2, 174-196.

HOLLNAGEL, E. (1998) Cognitive Reliability and Error Analysis Method (CREAM). Oxford : Elsevier Science.
HUTCHINS, E. Cognition In The Wild. MIT Press, Cambridge, MA. (1995)

JOHN, B. & KIERAS, D. (1996) The GOMS family of user interface analysis techniques: comparison and contrast. ACM
Transactions on CHI, 3, 320-351.

KELLEY, J. F. & CHAPANIS, A. (1982) How professional persons keep their calendars: implications for computerisation.
Journal of Occupational Psychology. 55. 241-256.

KIERAS, D. E., WOOD, S. D. & MEYER, D. E. (1997) Predictive Engineering Models Based on the EPIC Architecture
for a Multimodal High-Performance Human-Computer Interaction Task. ACM Transactions on CHI, 4, 230-275.

KIERAS, D. & POLSON, P. (1985). An Approach to the Formal Analysis of User Complexity. International Journal of
Man-Machine Studies, 22, 365-394.

KINCAID, C. M., DUPONT, P. B. & KAYE, A. R. (1985) Electronic Calendars in the Office: An Assessment Of User
Needs And Current Technology. ACM Transactions on Office Information Systems. 3.1. 89-102.

KLEIN, G. A. (1999) Sources of Power: How people make decisions. Cambridge, MA: The MIT Press.

LAMPORT, L. (1994) The temporal Logic of Actions. ACM Transactions on Programming Languages and Systems.
16(3). 872-923.

LONG, J. & DOWELL, J. (1989). Conceptions of the discipline of HCI: Craft, Applied Science and Engineering. Proc.
HCI’89, 9-32 Cambridge: Cambridge Univ. Press.

MOHER, T.G. & DIRDA, V. (1995) Revising mental models to accommodate expectation failures in human-computer
dialogues. In P. PALANQUE & R. BASTIDE, Eds, Design, Specification and Verification of Interactive Systems '95.
pp.76-92. Wien : Springer.

MORGAN, C. (1990) Programming from specifications. Prentice Hall.

NEWELL, A. (1982) The knowledge level Artificial Intelligence, 18, 87-127.

NEWELL, A. (1990) Unified Theories of Cognition, Harvard University Press, Cambridge, MA.
ON Technology (1995) Meeting Maker (v.3) User’s Guide.

PALANQUE, P. & BASTIDE, R. (1995) Petri net based design of user-driven interfaces using the Interactive Cooperative
Objects formalism. In F. PATERNO’, Ed, Interactive Systems: Design, Specification and Verification. Springer
Verlag. 383-400.

PALEN, L. (1999) Social, Individual & Technological Issues for Groupware Calendar Systems. Proc. CHI'99 17-24.
ACM Press.

PATERNO’, F. (1993) Definition of Properties of User Interfaces Using Action-Based Temporal Logic. Proceedings of
the Fifth International Conference on Software Engineering and Knowledge Engineering, pp. 314-318.

PAYNE, S. J. AND GREEN, T.R.G. (1986). Task-Action Grammars: a model of mental representation of task languages.
Human-Computer Interaction, 2, 93-133.

PAYNE, S.J. (1991). Display-based action at the user interface. International Journal of Man-Machine Studies, 35, 275-
289.

PAYNE, S. J. (1993) Understanding calendar use. Human-Computer Interaction. 8. 83-100.

PNUELL A. (1992) System specification and refinement in temporal logic. In Lectures Notes on Computer Science, Vol.
652. Springer Verlag. 1-38.

POLLOCK, J. (1993). The Phylogeny of Rationality. Cognitive Science, 17, 563-588.
REASON, J. (1990) Human Error. Cambridge : Cambridge University Press.

RITTER, F. & YOUNG, R. (2001) Embodied models as simulated users: introduction to this special issue on using
cognitive models to improve interface design. Int. J. Human-Computer Studies. 55. 1-14.

RUSHBY, J. (1999) Using model checking to help discover mode confustions and other automation surprises. In D.
Javaux (Ed.) Proc. 3" Workshop on Human Error, Safety and System Development.

24 T nnt ~A24nd ~a 1D /E/NE O.AO0 DA ATD /DID M

RYAN, M. (1992) Ordered presentations of theories: a hierarchical approach to default reasoning. PhD Thesis,
Imperial College, London.

SAaLvuccr, D. D. & LEE, F. J. (2003) Simple cognitive modeling in a complex cognitive architecture. Proc. ACM CHI
2003.265 - 272

SIMON, H.A. (1987): Bounded rationality. In: J. Eatwell, M. Millgate & P. Newman (eds.): The New Palgrave: A
Dictionary of Economics. London and Basingstoke: Macmillan

THIMBLEBY, H., CAIRNS P. & JONES M. (2001) Usability Analysis with Markov Models, ACM Transactions on
Computer Human Interaction, 8(2) 99—132.

TVERSKY, A. & KAHNEMAN, D. (1992) Advances in prospect theory: cumulative representation of uncertainty. Journal
of Risk and Uncertainty, 5. 297 — 323.

VICENTE, K. (1999) Cognitive Work Analysis. Mahwah, NJ : Lawrence Erlbaum.

WHARTON, C., RIEMAN, J., LEWIS, C. & POLSON, P. (1994) The cognitive walkthrough method: A practitioner's guide.
In J. Nielsen & R. Mack (Eds.), Usability inspection methods (pp. 105-140) New York: John Wiley.

YOUNG, R. M., GREEN, T. R. G., & SIMON, T. (1989) Programmable user models for predictive evaluation of interface
designs. In Proceedings of CHI ‘89. ACM, New York.

ATD /DID /M T nnt ~A24nd ~a 1D /E/NE O.AO0 DA oY~

Appendix A: the core of the Lisp implementation of the principles of
rationality

The function that follows is the core of the Lisp implementation that produces the running
simulation of the operational model. The full Lisp code is available from

www.uclic.ucl.ac.uk/annb/puma/ .
;user—-do is the core of the implementation, implementing most of the principles of
;behaviour. The Principle of Belief Updating is implemented in the function
;'visible-effects'
(defun user-do (user-state)
;print out trace information to show how the device and user states change over time
(terpri)
(terpri) (princ "device-state: —-+-+—-+-+—-+—+-+—+—+-+—+—+—+—+—+—-+—+—-+-+-+-+-+-+") (terpri)
(princ device-state)
(terpri) (princ "user-state: - - - - = = = = = = - - - - - - - - - - - - - - ") (terpri)
(princ user-state)
(terpri) (princ "-+") (terpri)
;1f the goal of the currently committed action has in fact been achieved, then
;drop the commitment.
; (part of Principle of Commitment Performance)
(cond ((review-commitment user-state)
(terpri)
(princ "dropping a commitment; have already achieved the goal of ")
(princ (commitp user-state))
(user-do (rem-comm user-state)))
;1f you've reached the goal state then quit
; (Principle of Goal Driven Behaviour)
((desired-reached user-state) (princ "desired reached") user-state)
;1f there are no goals and no commitments, adopt goals
((and (null (list-extract 'goals user-state))
(null (commitp user-state)))
(terpri) (princ "adopting goals ")
(user-do (review-goals user-state)))
;1f there are goals but no commitments, consider ways to address goals
; (Principle of Commitment)
((and (list-extract 'goals user-state)
(null (commitp user-state)))
(terpri) (princ "considering ways to address goals ")
(princ (list-extract 'goals user-state))
(user-do (user-commit
(user-might user-state))))
;1f you can do the operation right now, then do it!
; (Principle of Immediate Performance)
((precond-true (commitp user-state) (list-extract 'knows-ds user-state))
(terpri) (princ "preconditions satisfied, so doing 1it!")
(user-do (visible-effects (issue-command user-state))))
;1f not, then sub-goal on it and adopt new commitments
; (part of Principle of Commitment Performance)
((commitp user-state)
(terpri) (princ "subgoaling")
(user-do (user-commit
(user-might (sub-goal user-state)))))
;and if you can't go any further then give up!
(t (princ "goal failed") user-state)))

e ¥4 T nnt ~A24nd ~a 1D /E/NE O.AO0 DA ATD /DID /D

Appendix B: Implemented device model

The device model, together with the initial device state and the functions that determine what is
visible to the user on the display at any time, are as follows. For simplicity, the function ‘newseries’
is implemented with a start event, start time and interval, and adds precisely 11 events, rather than
with base, interval and finish as presented in the hand simulation (section 5).

As shown here, ‘world knowledge’ about events being almost equal and times being similar are set
in the device-state, and treated as being visible to the user.

This device model works with all versions of the user knowledge (Appendix C).

;below are the functions that correspond to the device description of
;the electronic diary modelled by Blandford & Butterworth (Jan 2003)
;initialise the device state
(defun reset-state nil

(setg device-state ' ((firstvisible 30) (lastvisible 40) (is-visible 33))))
(reset-state)

;calculate what is visible on the display
(defun visibility-test (rel)

(cond ((equal (car rel) 'ined) (test-visible (caddr rel)))
((equal (car rel) 'is-visible) (test-visible (cadr rel)))
((member (car rel) '(firstvisible lastvisible)) t)
(t nil)))

(defun test-visible (tl)
(cond ((and (< (car (list-extract 'firstvisible device-state)) t1l)
(> (car (list-extract 'lastvisible device-state)) tl)) t)
(t nil)))
;define the effects of user actions on the device state.
;the definition of newseries is necessarily somewhat simplified here...
(defun scrollto (tl)
(update-value (list 'firstvisible (- tl 5)))
(update-value (list 'lastvisible (+ tl 5)))
(update-value (list 'is-visible tl1)))
(defun newevent (el tl)
(add-value (list 'ined el tl1)))
(defun makecorrection (el tl e2 t2)
(delete-value (list 'ined el tl))
(add-value (list 'ined e2 t2)))
(defun delextra (el tl)
(delete-value (list 'ined el tl1)))
(defun newseries (el tl interval)
(setg interval 10)
add-value (list 'ined el tl1))
add-value (list 'ined el (+ tl interval)))

(

(

(add-value (list 'ined el (+ tl (* 2 interval))))
(add-value (list 'ined el (+ tl (* 3 interval))))
(add-value (list 'ined el (+ tl (* 4 interval))))
(add-value (list 'ined el (+ tl1 (* 5 interval))))
(add-value (list 'ined el (+ tl (* 6 interval))))
(add-value (list 'ined el (+ tl1 (* 7 interval))))
(add-value (list 'ined el (+ tl (* 8 interval))))
(add-value (list 'ined el (+ tl1 (* 9 interval))))
(add-value (list 'ined el (+ tl1 (* 10 interval)))))

ATD /DID /M T nnt ~A24nd ~a 1D /E/NE O.AO0 DA ele]

Appendix C: implemented user models

All three implemented user models are presented here. For clarity, the minimum information
needed to perform as outlined is included in each model. In these models, each week is arbitrarily
split into ten time intervals, with Wednesdays 3-4pm being at times 33, 43, 53, etc. and later times
on Wednesdays being 34, 44, 54, etc. A seminar in Meeting Room 1 is encoded as EventA; other
events are encoded as EventB and EventC (see Figure 6).

First, the model for the one-by-one strategy...
;this is the model for a user with an electronic diary, modelling knowledge needed for
;only adding events one at a time
(setg user-knows
'((relations (ined event time) (almostequal event event)
(neartime time time))

(properties (firstvisible time) (lastvisible time) (is-visible time) (is-start
time))

(variables (tl t2 el e2 interval))

(newevent

(arguments el tl)

(precond (is-visible tl1))

(tracked (add ined el tl))

(relevant (ined el tl1)))

(scrollto

(arguments t1l)

(relevant (is-visible tl1)))

))

(setg desired-state ' ((ined eventA 33) (ined eventB 44)
(ined eventA 63) (ined eventA 73) (ined eventA 83)
(ined eventC 94) (ined eventA 103) (ined eventA 123)
(ined eventA 133)))

The model for the en masse strategy with errors (modelling the user who uses the paper diary as the
cue for which events to correct) is as follows. This includes statements of things the user needs to

know that are not visible on the display. Changes from the one-by-one model are marked in bold.
;this is the model for a user with an electronic diary, excluding knowledge about
;how to delete events
(setg user-knows
'((relations (ined event time) (almostequal event event)
(neartime time time))
(properties (firstvisible time) (lastvisible time) (is-visible time) (is-start
time))
(variables (tl t2 el e2 interval))
(makecorrection
(arguments el tl e2 t2)
(relevant (ined e2 t2))
(precond (is-visible tl))
(tracked (add ined e2 t2) (delete ined el tl))
(filter (almostequal el e2) (neartime tl t2) (ined el tl)))
(newevent
(arguments el tl)
(precond (is-visible tl1))
(tracked (add ined el tl1))
(filter (neartime tl t2) (almostequal el e2) (not ined e2 t2))
(relevant (ined el tl1)))
(scrollto
(arguments t1l)
(relevant (is-visible tl1)))
(newseries
(arguments el tl interval)
(tracked (add ined el 43) (add ined el 53)
(add ined el 63) (add ined el 73) (add ined el 83)
(add ined el 93) (add ined el 103) (add ined el 113)

20 T nnt ~A24nd ~a 1D /E/NE O.AO0 DA ATD /DID M

(add ined el 123) (add
(precond (is-visible tl))

ined el 133))

(filter (neartime tl t2) (almostequal el e2) (not ined e2 t2) (is-start tl))

(relevant (ined el tl)))

(knows-not-visible (is-start 33)

(almostequal
(almostequal
(almostequal
(almostequal

eventA eventl) (almostequal eventA eventB)
eventB eventlA) (almostequal eventC eventd)
eventA eventC) (almostequal eventA eventD)
eventD eventA)

(neartime 33 33) (neartime 43 44) (neartime 44 43)
(neartime 53 53) (neartime 63 63) (neartime 94 93)
(neartime 73 73) (neartime 83 83) (neartime 93 94)
(neartime 103 103)
(neartime 113 113) (neartime 123 123) (neartime 133 133))
))

(setg desired-state ' ((ined eventA 33) (ined eventB 44)

(

(ined eventA 63) (ined eventA 73) (ined eventA 83)
(ined eventC 94) (ined eventA 103) (ined eventA 123)
(ined eventA 133)))

Finally, the knowledge needed to correctly complete the en masse strategy is as follows:
;this is the model for a user with an electronic diary, including knowledge about
;how to delete events

(setg user-knows

'((relations (ined event time) (almostequal event event)
(neartime time time))
(properties (firstvisible time) (lastvisible time) (is-visible time) (is-start
time))
(variables (tl t2 el e2 interval))
(makecorrection
(arguments el tl e2 t2)
(relevant (ined e2 t2))

(precond (is-visible tl1))

(tracked (add ined e2 t2) (delete ined el tl))

(filter (almostequal el e2) (neartime tl t2) (ined el tl1)))
(newevent

(arguments el tl)

(precond (is-visible tl1))

(tracked (add ined el tl))

(

filter (neartime tl t2) (almostequal el e2) (not ined e2 t2))
(relevant (ined el tl1)))
(scrollto
(arguments t1l)
(relevant (is-visible tl1)))
(delextra

(arguments el tl)

(precond (is-visible tl))
(relevant (not ined el tl))
(tracked (delete ined el tl)))
(newseries
(arguments el
(tracked (add

tl interval)
ined el 43) (add ined el 53)

(add ined el 63) (add ined el 73) (add ined el 83)
(add ined el 93) (add ined el 103) (add ined el 113)
(add ined el 123) (add ined el 133))

(precond (is-visible tl1))

(filter (neartime tl t2) (almostequal el e2) (not ined e2 t2) (is-start tl))
(relevant (ined el tl1)))
(knows-not-visible (is-start 33)
(almostequal eventA eventA) (almostequal eventA eventB)
almostequal eventB eventA) (almostequal eventC eventAh)
almostequal eventA eventC) (almostequal eventA eventD)
almostequal eventD eventAh)

neartime 33
neartime 53
neartime 73

(
(
(
(
(
(

ATD /DID /M T onnd ~A24n A an

33) (neartime 43 44) (neartime 44 43)
53) (neartime 63 63) (neartime 94 93)
73) (neartime 83 83) (neartime 93 94)

17/£/NE O.A0 DA eTaY

(neartime 103 103)
(neartime 113 113) (neartime 123 123) (neartime 133 133))
))
(setg desired-state ' ((ined eventA 33) (ined eventB 44)
(ined eventA 63) (ined eventA 73) (ined eventA 83)
(ined eventC 94) (ined eventA 103) (ined eventA 123)
(ined eventA 133) (not ined eventA 53) (not ined eventA 113)))

Appendix D: traces of interaction with the instantiated Lisp model

In the following, all text in Courier font is taken directly from the trace; text in Times — like this
sentence — provides additional explanation. ... is used to denote trace text deleted for the sake of
brevity.

1: The one-by-one strategy:

This trace of the one-by-one strategy was taken from a version of the program that omits
knowledge about various relationships, such as events being almost equal and times being nearly
the same, that are not used in this strategy.

The initial device and user states:

device-state: —t-—t—F—t-—t—F—t—t—F-—F—t—F—F-t—F—F-t—F-—F-+—+-+-+

((firstvisible 30) (lastvisible 40) (is-start 33) (is-visible 33))

user-state: -

((knows-ds (firstvisible 30) (lastvisible 40) (is-start 33) (is-visible 33)))
B e e T S e e A e e e

adopting goals
device-state: —t+-—t—t—t—t—F—t—t—F—F—t—F—F-t—F—F-t—F—F-+—+-+-+

((firstvisible 30) (lastvisible 40) (is-start 33) (is-visible 33))
user-state: -

((knows-ds (firstvisible 30) (lastvisible 40) (is-start 33) (is-visible 33))
(goals (ined eventa 33) (ined eventb 44) (ined eventa 63) (ined eventa 73)
(ined eventa 83) (ined eventc 94) (ined eventa 103) (ined eventa 123)

(ined eventa 133)))
B e e T e e e A e e e e

considering ways to address goals ..
the choice is: ((newevent eventa 33
newevent eventb 44
newevent eventa 63

((ined eventa 33)
((ined eventb 44)
((ined eventa 63)
(newevent eventa 73 (ined eventa 73)
(newevent eventa 83 (ined eventa 83)
(newevent eventc 94 (ined eventc 94)
(newevent eventa 103 (ined eventa 103))
(newevent eventa 123 (ined eventa 123))
(newevent eventa 133 (ined eventa 133)))
(newevent eventa 33 (ined eventa 33)) y/n? y

Each of the choices above represents an alternative trace through the space of possible interactions.
By consistently choosing the first option presented, the analyst is selecting the strategy of entering
events in chronological order.

preconditions satisfied, so doing it!
issued command (newevent eventa 33)

adopting goals

the choice is: ((newevent eventb 44 (ined eventb 44
(newevent eventa 63 (ined eventa 63
(newevent eventa 73 (ined eventa 73
(newevent eventa 83 (ined eventa 83
(newevent eventc 94 (ined eventc 94
(newevent eventa 103 (ined eventa 103))
(newevent eventa 123 (ined eventa 123))

)
)
)
)
)
3

s T nnt ~A24nd ~a 1D /E/NE O.AO0 DA ATD /DID M

(newevent eventa 133 (ined eventa 133)))
(newevent eventb 44 (ined eventb 44)) y/n? y

the precondition for this action is not satisfied, so the modelled user has to adopt the new goal of

making the target time visible, which has no preconditions and can therefore be done immediately.
subgoaling

the choice is: ((scrollto 44 (is-visible 44)))

preconditions satisfied, so doing it!

issued command (scrollto 44)

preconditions satisfied, so doing it!

issued command (newevent eventb 44)

[...]

issued command (newevent eventa 133)

device-state: —+-+-+—+—F—F—F—F-F—F—F—F—F—F—F—F—F—F—F+—-F+—-+—-+-+
((ined eventa 133) (is-visible 133) (lastvisible 138) (firstvisible 128)
(ined eventa 123) (ined eventa 103) (ined eventc 94) (ined eventa 83)
(ined eventa 73) (ined eventa 63) (ined eventb 44) (ined eventa 33)
(is-start 33))
user-state: -
((knows-ds (ined eventa 133) (is-visible 133) (lastvisible 138)
(firstvisible 128) (ined eventa 123) (ined eventa 103) (ined eventc 94)
(ined eventa 83) (ined eventa 73) (ined eventa 63) (ined eventb 44)
(ined eventa 33) (is-start 33))
(committed))
ettt =ttt —F -ttt —F -t —F ==t —F -+ -+ -+
desired reached
After all nine events have been entered, the system outputs the final state of user knowledge about
the device state. As can be seen here, the user’s knowledge about the device state is accurate in this

case.

2: The en masse strategy (incorrect behaviour version):

As noted above (section 5), the user has to know more for this version — in particular, about events
and times being similar.

The initial state is as follows:
device-state: —+-+-+—+—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F+—-F+—-+—-+-+
((firstvisible 30) (lastvisible 40) (is-start 33) (almostequal eventa eventa)
almostequal eventa eventb) (almostequal eventb eventa)
almostequal eventc eventa) (almostequal eventa eventc)
almostequal eventa eventd) (almostequal eventd eventa) (neartime 33 33)
neartime 43 44) (neartime 44 43) (neartime 53 53) (neartime 63 63)
neartime 94 93) (neartime 73 73) (neartime 83 83) (neartime 93 94)
neartime 103 103) (neartime 113 113) (neartime 123 123) (neartime 133 133)
(is-visible 33))
user-state: -
((knows-ds (firstvisible 30) (lastvisible 40) (is-start 33)
(almostequal eventa eventa) (almostequal eventa eventb)
almostequal eventb eventa) (almostequal eventc eventa)
almostequal eventa eventc) (almostequal eventa eventd)
almostequal eventd eventa) (neartime 33 33) (neartime 43 44) (neartime 44 43)
neartime 53 53) (neartime 63 63) (neartime 94 93) (neartime 73 73)
neartime 83 83) (neartime 93 94) (neartime 103 103) (neartime 113 113)
neartime 123 123) (neartime 133 133) (is-visible 33)))
B e e T S e s s R e e e e

(
(
(
(
(
(

(
(
(
(
(
(

As before, the modelled user adopts goals and identifies actions that satisfy those goals. The user
knows about entering events one by one, so in this case the analyst has to choose the second

alternative presented to enter a new series:

adopting goals

considering ways to address goals ..

the choice is: ((newevent eventa 33 (ined eventa 33))

ATD /DID /M T nnt ~A24nd ~a 1D /E/NE O.AO0 DA a1

(newseries eventa 33 interval (ined eventa 33))
(newevent eventb 44 (ined eventb 44))

(newevent eventa 63 (ined eventa 63
(newevent eventa 73 (ined eventa 73
(newevent eventa 83 (ined eventa 83
(newevent eventc 94 (ined eventc 94))
(newevent eventa 103 (ined eventa 103))
(newevent eventa 123 (ined eventa 123))
(newevent eventa 133 (ined eventa 133)))

(newevent eventa 33 (ined eventa 33)) y/n? n

(newseries eventa 33 interval (ined eventa 33)) y/n? y

preconditions satisfied, so doing it!

issued command (newseries eventa 33 interval)

Once the event series has been entered, the modelled user adopts further goals to correct incorrect
events. In this case, the analyst only has one choice to make (which one to correct first), and from

that point on the simulation runs its course:
adopting goals

considering ways to address goals ((ined eventb 44) (ined eventc 94))

the choice is: ((makecorrection eventa 43 eventb 44 (ined eventb 44))
(makecorrection eventa 93 eventc 94 (ined eventc 94)))

(makecorrection eventa 43 eventb 44 (ined eventb 44)) y/n? y

subgoaling

the choice is: ((scrollto 43 (is-visible 43)))

preconditions satisfied, so doing it!

issued command (scrollto 43)

preconditions satisfied, so doing it!

issued command (makecorrection eventa 43 eventb 44)

[..]

issued command (makecorrection eventa 93 eventc 94)

device-state: —t-—t—+-—t—t—t-—t—t—F—F—t—F—F—t—F—F-t—F—F-+—+-+-+

((ined eventc 94) (is-visible 93) (lastvisible 98) (firstvisible 88)
ined eventb 44) (ined eventa 133) (ined eventa 123) (ined eventa 113)
ined eventa 103) (ined eventa 83) (ined eventa 73) (ined eventa 63)
ined eventa 53) (ined eventa 33) (is-start 33) (almostequal eventa eventa)

almostequal eventa eventb) (almostequal eventb eventa)

almostequal eventc eventa) (almostequal eventa eventc)

almostequal eventa eventd) (almostequal eventd eventa) (neartime 33 33)

neartime 43 44) (neartime 44 43) (neartime 53 53) (neartime 63 63)

neartime 94 93) (neartime 73 73) (neartime 83 83) (neartime 93 94)
(neartime 103 103) (neartime 113 113) (neartime 123 123) (neartime 133 133))

user-state: -

(
(
(
(
(
(
(
(

((knows-ds (ined eventc 94) (is-visible 93) (lastvisible 98) (firstvisible 88)
(ined eventb 44) (ined eventa 33) (ined eventa 53) (ined eventa 63)
ined eventa 73) (ined eventa 83) (ined eventa 103) (ined eventa 113)
ined eventa 123) (ined eventa 133) (is-start 33) (almostequal eventa eventa)

(

(
(almostequal eventa eventb) (almostequal eventb eventa)
(almostequal eventc eventa) (almostequal eventa eventc)
(almostequal eventa eventd) (almostequal eventd eventa) (neartime 33 33)
(neartime 43 44) (neartime 44 43) (neartime 53 53) (neartime 63 63)
(neartime 94 93) (neartime 73 73) (neartime 83 83) (neartime 93 94)
(neartime 103 103) (neartime 113 113) (neartime 123 123) (neartime 133 133))
(committed))

ettt =ttt —F -ttt —F =t —F -t —F -+ —+—+

desired reached

In this version of the implementation, the user does know about the incorrect events (indicated in
bold in the final user state above) but ‘ignores’ the fact that they are not in the desired state. A more
sophisticated implementation, including a more sophisticated representation of user knowledge,
would be required to model more sophisticated incorrect knowledge. A partial implementation of

AN T nnt ~A24nd ~a 1D /E/NE O.AO0 DA ATD /DID /D

this (which ‘mocks up’ the three-valued logic needed to implement this properly) is available on
the web site (www.uclic.ucl.ac.uk/annb/puma/), but a full implementation is not currently available.

3: The en masse strategy (correct behaviour version):

Given the same set of initial choices as above, the analyst selects newseries:
[...]

(newseries eventa 33 interval (ined eventa 33)) y/n? y

This time, the user model, identifies four differences and possible actions to correct them:

considering ways to address goals..

the choice is: ((makecorrection eventa 43 eventb 44 (ined eventb 44))
(makecorrection eventa 93 eventc 94 (ined eventc 94))

(delextra eventa 53 (not ined eventa 53))

(delextra eventa 113 (not ined eventa 113)))

The modelled user proceeds to make corrects and delete events to reach the desired state:

device-state: —+-+-+—+—F—F—F—F—F—F—F—F—F—F—-F—F—F—F—F+—-F+—-+—-+-+

((is-visible 113) (lastvisible 118) (firstvisible 108) (ined eventc 94)

ined eventb 44) (ined eventa 133) (ined eventa 123) (ined eventa 103)

ined eventa 83) (ined eventa 73) (ined eventa 63) (ined eventa 33) (is-start 33)

almostequal eventa eventa) (almostequal eventa eventb)

almostequal eventb eventa) (almostequal eventc eventa)

almostequal eventa eventc) (almostequal eventa eventd)

almostequal eventd eventa) (neartime 33 33) (neartime 43 44) (neartime 44 43)

neartime 53 53) (neartime 63 63) (neartime 94 93) (neartime 73 73)

neartime 83 83) (neartime 93 94) (neartime 103 103) (neartime 113 113)
(neartime 123 123) (neartime 133 133))

user-state: -

((knows-ds (is-visible 113) (lastvisible 118) (firstvisible 108) (ined eventc 94)

(
(
(
(
(
(
(
(

(ined eventb 44) (ined eventa 33) (ined eventa 63) (ined eventa 73)
ined eventa 83) (ined eventa 103) (ined eventa 123) (ined eventa 133)
is-start 33) (almostequal eventa eventa) (almostequal eventa eventb)

almostequal eventb eventa) (almostequal eventc eventa)
almostequal eventa eventc) (almostequal eventa eventd)
almostequal eventd eventa) (neartime 33 33) (neartime 43 44) (neartime 44 43)
neartime 53 53) (neartime 63 63) (neartime 94 93) (neartime 73 73)
neartime 83 83) (neartime 93 94) (neartime 103 103) (neartime 113 113)
neartime 123 123) (neartime 133 133))
(committed))
B e e T S e e s R e e e
desired reached

(
(
(
(
(
(
(
(

ATD /DID /M T nnt ~A24nd ~a 1D /E/NE O.AO0 DA AN

