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Abstract

The results of kinetic MC simulations of the reversible pattern formation during the adsorption of mobile metal atoms on

crystalline substrates are discussed. Pattern formation, simulated for submonolayer metal coverage, is characterized in terms of

the joint correlation functions for a spatial distribution of adsorbed atoms. A wide range of situations, from the almost

irreversible to strongly reversible regimes, is simulated. We demonstrate that the patterns obtained are defined by a key

dimensionless parameter: the ratio of the mutual attraction energy between atoms to the substrate temperature. Our ab initio

calculations for the nearest Ag–Ag adsorbate atom interaction on an MgO substrate give an attraction energy as large as 1.6 eV,

close to that in a free molecule. This is in contrast to the small Ag adhesion and migration energies (0.23 and 0.05 eV,

respectively) on a defect-free MgO substrate.
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1. Introduction

In general, metal atom adsorption at constant dose rate

on metallic or insulating substrates shows two modes of thin

film growth: monolayer-by-monolayer, or 3D metal cluster

formation [1–4]. The detailed understanding of this process

is important for many technological applications, including

catalysis and microelectronics. In particular, the model

system of Ag thin film deposition on MgO has been widely

studied [5–7]. For this particular system, 2D growth

changes to 3D island formation at submonolayer metal

coverages of 0.2–0.5 ML [1]. Electron microscopy exper-

iments performed at low and moderate temperatures reveal

two kinds of pattern formation: spherical compact clusters,

and worm-like loose cluster growth [7,8]. The analysis of

these structures reveals some regularities. At constant

temperature, a change in adsorbate concentration increases

the size of the metallic clusters, but leaves the characteristic

distance between cluster centers almost unchanged. The

distance is typically of order 0.1 mm, i.e. a few hundreds of

lattice constants. Moreover, the variation of Ag adsorption

rate and the temperature do not affect this characteristic

distance strongly. However, a temperature increase from

100 up to 450 8C transforms loose clusters into compact

ones [7].

There are two classes of general approach in the

theoretical description of the growth mode of thin metallic
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films. The first approach assumes the system to be in a

thermodynamical equilibrium, so that statistical methods

can be applied [9,10]. In fact, a constant adsorbate

concentration is assumed, i.e. the adsorption rate is expected

to be very slow, whereas metal atom diffusion is very fast, so

that the system reaches the thermodynamic equilibrium

between adsorption of the two successive metal atoms.

However, this is not the case when adsorbate atoms strongly

interact with each other, which prevents the rapid trans-

formation of small clusters into larger clusters (Ostwald

ripening).

The alternative kinetic approach, usually based on rate

equations, focuses on mobile atom diffusion and aggrega-

tion [4]. Often, a kinetic Monte Carlo (MC) or similar

technique is used to model the relaxation kinetics for

systems with a constant number of particles in which

Ostwald ripening occurs [11,12]. We would like to mention

in this respect pioneering papers by Ben-Shaul et al. [13,14]

where pattern formation was studied as a result of a strong

adsorbate-adsorbate interaction and diffusion.

Most of the kinetic MC simulations (see Ref. [15] and

references therein) deal with the irreversible growth of

aggregates, which corresponds to the limiting case of a very

strong adsorbate–adsorbate interaction and/or low tempera-

tures. This leads usually to dendritic-like adsorbate patterns

(unless, e.g. periphery diffusion is incorporated). Recently,

kinetic MC modelling was extended to the cases where

adatoms attach to islands is a reversible process (see Refs.

[16–18] and references therein). However, most of these

studies are restricted to the case of a weak reversibility of

particle adsorption from their aggregates.

In this paper, we perform MC simulations for a realistic

process of adsorbate deposition with a given rate, taking into

account both the adsorbate surface diffusion and interaction.

To describe the spatial distribution of adsorbed atoms, we

use the very transparent language of joint correlation

functions characterizing relative spatial distribution of

adsorbed atoms. Unlike many previous studies, we cover a

whole range of situations, from weak to strong particle

reversibility.

2. Model

We assume that adsorbate atoms arrive at the surface

with a given dose rate z ¼ ka2; where k is the adsorption rate

per unit surface and unit time, a is the lattice constant.

Typically k ¼ 2–8 £ 1013 Ag/cm2 s-1 [5]. Adsorbed atoms

are mobile on the surface. In the case of noninteracting

particles, their diffusion obeys the standard equation

D ¼ D0 exp 2
Ea

kBT

� �
¼

a2

z
d; ð1Þ

where Ea is the activation energy, d the hop frequency,

and z ¼ 4 is the number of nearest neighbors (NNs). For

the activation energy of Ea ¼ 0:1 eV typical both for Ag

on MgO [9,10] and on Pd [19], one finds that, in the

typical experimental temperature interval of

T ¼ 300–1000 K, the diffusion coefficient D changes

only by an order of magnitude. This clearly indicates

that adsorbate diffusion is weakly activated, so that the

observed temperature effects are most probably related

to the interaction between adsorbed atoms. As we show

below, diffusion determines the scale of structures

formed, but not their type. In this sense, the incomplete

information about the magnitude of D0 has no big effect

on our qualitative conclusions.

Let us translate this information to the abstract level of

computer simulations. We study the adsorption of particles

on sites of square discrete lattice. Each site can be either

empty (state 0) or occupied by an adsorbate (state A). The

adsorbate concentration CA is the fraction of occupied sites

on the lattice. Our 2D model is restricted to the growth of an

adsorbate monolayer, since we are interested only in the

initial stages of thin film growth. Diffusion of an adsorbed

particle on the lattice is described by its hops to a free

NN site.

We take into account of the short-range interaction only

between particles in NN sites which is described by the

parameter EAA ¼ 21; with 1 . 0 (attraction). An inter-

action energy is always introduced in equations in

combination with the temperature, therefore the energy

dependence of the model introduces the additional dimen-

sionless parameter v ¼ 1=kBT : In our approach, aggregates

of particles are dynamical formations; single particles can

join and leave aggregates. This is in contrast to the standard

phenomenological theory of nucleation and growth [4]

based on the irreversible growth of aggregates exceeding

some critical size. The hopping rate is determined by both

the Ea value and the difference in particle energies before

and after its hop. Thus it depends on the EAA and the

difference in the NN numbers for the initial and final states

(see details in Refs. [20–22]). The typical size of the

simulated surface was 256 £ 256 sites.

It is well recognized that the formulation of the kinetic

Master Equation for mobile and interacting particles is not

unique [23], a fact which has led to the suggestion of many

different reaction dynamics (Metropolis, Transition State

Theory, etc.). Not going into details, we follow here a novel

theory (the so-called standard model [20–22]) which is

based on a complete axiomatic approach, free of the

disadvantages of previous MC theories.

Our main interest will be focused on the pattern formed

by adsorbed particles on the lattice. The structure for a given

CA is determined by the two dimensionless parameters: v

and d=z: The latter is typically quite large: d=zq 1: We use

the time increment z ¼ 1: The general algorithm of the

kinetic MC simulations is well described in the classical

Refs. [24,25], whereas the peculiarities of our modelling are

discussed in Refs. [22,26].
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3. Results

Let us consider the results for the large value of the

dimensionless attraction energy v ¼ 3 (weak reversibility,

corresponding to a strong attraction and/or low tempera-

tures) presented in Fig. 1(c). Four vertical windows in this

figure correspond to a monotonic increase in adsorbate

concentration. It is obvious that the adsorbate aggregates are

very dense with only a few small holes. They are practically

immobile, and no new aggregates arise. That is, all newly

adsorbed particles join already existing aggregates. Small

aggregates grow independently and coalesce periodically

when their boundaries touch, thus forming large aggregates

of irregular shape. An increase in the diffusion coefficients

by a factor of 24 ¼ 16 increases the characteristic distance

between aggregates by a factor of 2 (Fig. 1(d)) but preserves

the similarity of patterns. This is in complete agreement

with scaling arguments [26] predicting that the mean

distance between aggregates is proportional to d1=4: These

aggregate structures are quantitatively analyzed below using

the joint correlation functions.

The pattern formation and kinetics are governed by the

ratio of the particle hopping rate to the adsorption rate. In

our units, the adsorption rate is assumed to be unity. The

aggregate pattern remains similar after reducing the

interaction energy to v ¼ 2; d ¼ 29 £ 103: However,

aggregates become here more loose than before (Fig.

1(b)). One can observe a large number of single particles

which leave aggregates and walk randomly on the lattice. A

further decrease in the dimensionless attraction energy

down to the critical value of v ¼ 1:25 (a strong reversibility

regime) leads to the disappearance of the aggregate pattern.

As one can see in Fig. 1(a), only short-range order in the

distribution of particles exists (numerous very small and

loose aggregates).

Now let us characterize the aggregate patterns quanti-

tatively, using the language of the joint correlation functions

FabðrÞ where a;b ¼ 0;A [20]. These functions have a

simple physical meaning. Assume that some site is in the

state a ¼ 0;A: We are interested in finding a probability that

a site at the distance r is in the state b. This probability,

v
ðaÞ
b ðrÞ ¼ FabðrÞCbðrÞ; is normalized to unity:X

b¼0;A

v
ðaÞ
b ðrÞ ¼ 1: ð2Þ

Two equations follow from Eq. (2):

F0AðrÞCA þ F00ðrÞC0 ¼ 1; ð3Þ

FAAðrÞCA þ FA0ðrÞC0 ¼ 1: ð4Þ

Taking into account the symmetry property F0AðrÞ ¼

FA0ðrÞ; the conclusion can be drawn that of all these

functions only one is independent. Therefore, hereafter we

shall consider only the function FAAðrÞ; which describes the

correlations in distribution of adsorbate atoms.

To explain the meaning of FAA; let us take some particle

A. The correlation function gives the probability density of

finding a particle A at a given distance r from the chosen

particle placed into the origin. The random (chaotic, or

Poisson) distribution corresponds to FAAðrÞ ¼ 1:

Fig. 2 shows the joint correlation functions for a

dimensionless particle interaction energy of v ¼ 3: At

small relative distances, the correlation function greatly

exceeds the unity thus indicating a strong adsorbate

aggregation. For aggregated particles, one can define the

aggregate radius R as the distance at which the correlation

function approaches unity. At larger distances the corre-

lation function becomes even less than unity: there are no

other particles nearby the aggregate boundary, since all such

particles are already attached. Lastly, with further increase

in distance, the correlation function reaches the asymptotic

value of unity once more, which corresponds to the presence

of other aggregates, at these larger distances. These spacings

correspond to the mean distance between aggregates, L0;

introduced above. Let us define L0 from the minimum of the

correlation function. One can see that, for the hopping rate

of d ¼ 25 £ 103 (curve 1), the aggregate radius R is about

five lattice constants, and the scale L0 is about 8. After the

scaling d by the factor of 16 (curve 2), the shape of the

correlation function remains the same, but both scales, R; L0;

double. This is in the complete agreement with scaling

arguments [26].

For v ¼ 2:0 we obtain qualitatively similar correlation

functions, but with less pronounced minima due to the

reduced aggregate density. The scale L0 is still observable,

and it has the same order of magnitude. However, for

smaller v ¼ 1:25; the aggregate structure completely

disappears: L0 is no longer observable, and the scale R

(the mean size of the aggregate) loses its dependence on the

hopping frequency (which indicates the quasi-equilibrium

regime).

4. Ab initio calculations of interaction between adsorbate

atoms

Let us discuss now the energetics of the interaction of the

adsorbed atom with the substrate and with other adsorbed

atoms. This was studied earlier by means of classical

simulation methods [27,28]. It was concluded that the single

Ag diffusion energy on MgO is Ea ¼ 0:1 eV, the adsorption

energy atop surface O22 is Eads ¼ 0:66 eV, whereas the

mutual attraction energy between NNs is about

Eint ¼ 1:2 eV. In order to check how these results are

affected by neglect of the electron density redistribution,

quantum mechanical calculations are necessary. Recently,

we performed preliminary ab initio Hartree-Fock calcu-

lations combined with a posteriori PW-GGA electron

correlation corrections to the total energy, as implemented

in the CRYSTAL-95 code (see more details in Ref. [10]).

We found there Ea ¼ 0:05 eV, Eads ¼ 0:26 eV for Ag

monolyer and 0.46 eV for three metal layers. In order to
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Fig. 1. Snapshot of the spatial distribution of adsorbate atoms at concentrations of CA ¼ 0:1; 0.3, 0.5, 0.7 and 0.9 correspond to a series of

windows, from the top to the bottom. The dimensionless attraction energy v ¼ 1=kBT ¼ 1:25 (a), 2 (b), and 3 (c). (d) is the same as (c), but with

the hop frequency scaled by a factor of 24 ¼ 16.
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study an isolated Ag atom on MgO substrate as the reference

point, we use here 3 £ 3 extended surface supercells, and

found that the attraction between two nearest Ag atoms

(RNN ¼ 2:82 Å) on the flat MgO surface is as large as

1.6 eV. This is close to the dissociation energy of a free Ag2

molecule (1.78 eV at Req ¼ 2:53 Å). This large interaction

is in contrast to the small (0.05 eV) migration energy for Ag

atoms on a defectless MgO substrate.

Recent ab initio DFT calculations of the interaction

between nearest Ag atoms on 1 ML Ag/Pt surface [19] give

the mutual attraction energy of 0.05 eV and hopping energy

of 0.06 eV. In other words, Ag adsorbate interaction

energies on insulators (MgO) considerably exceed those

on metals (Pt).

5. Discussion and conclusions

Our MC modelling covers a whole range of cases, from

weak to strong adsorption reversibility, and demonstrates

the considerable difference between simulations assuming

the adsorbate concentration to be constant, and a permanent

flux of adsorbates to the surface. In our submonolayer

adsorbate modelling, we observe loose adsorbate aggregates

in the strong reversibility regime (the dimensionless

attraction energy v ¼ Ea=kBT . 1:25), and no pattern

formation for smaller interaction energies at higher

temperatures. For the particular Ag/MgO system, where

there is a large attraction energy between nearest neighbor

adatoms, pattern formation should occur up to very high

temperatures, T ¼ 1000 8C. This is confirmed experimen-

tally [6–8]. In contrast, for Ag-1ML, Ag/Pt the critical

temperature could be much lower, T ¼ 100 8C.

To learn more about adsorbate growth mode, one has to

go beyond 2D simulations and model a growth of several

metal planes. Such calculations are now in progress.
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