
SNAP Based Resource Control For Active Networks
Walter Eaves (I). L a w n c c Chmg (I), Alex Galir (I), lliomar Becker (2). Torhid4 S d i (3). Spyros Dmazis (3). Chiho Kitahara (3)

1.Univsrriry College London, Dept. of Elccwical Enginemin& Torrington Place, London WClE 1IE. UK; E-mail: (w.eaver, I .shsng,a.galis)~~.uel.ac.~
2. Fravnhofer lnstimte for Opsn Communication Systems, Kaiserin-Augusta-Allec) I, D-IO589 Berlin, Gmnany: E-mail: becker@fokus.gmd.de

3. Himchi Ewope Ltd., 59 Sf. Andrews Street, Cambndge, CB2 3112, U K E-mail: (chiha.kitaham, spyros.dcnazis, 1oshiali.Eurulri)~itachi-eu.com

Abshoe- This paper proposes a new efficienl mechanism for
controlling and managing the resources within and around the
active nodes 1131: routers and switches that have a legacy
S m managemat system. Existing system such 8s AXILE 161
has an out-of-hand management capability, which is
insufficient for managing data flow as the flow progresses
through the network. This paper proposes the use of the

network resource management mechanism on the FAIPJ active
nodes [7],[12]. It has an in-hand management approach in
which each data flow will negotiate its next hop before it goes
there; or it fan ereate IPSec tunnels and modify routing table
entries for the data flow.

different YES. Through the extensions the NodeOS' offen
facilities through the following facilities: 1) Security - The
security component in the active node is in charge of

all requests to the node API based on the
security policies previously set hy an authorised principal; 2)
Resource Access
component within the active node receives request for
allocating node-isolated resources (both computational and
communication) to different principals; 3) Demullipiexing -
The demultiplexing component is in charge of forwarding
active packets to the corresponding EE and VE, based on the
packet header information (e.g., ANEP header [IO]) and a
forwarding table used by this component; 4) Acrive Service

1. OVERVIEW Provisioning - ASP system is in charge of downloading
The main objective of the EU-IST FAIN (Future Active active services into the active nodes or management stations
Network) [SI project is to develop the i ~ f r & m x e for the when necessary; 5) Virruol Environmenl Manager (VEMgr)

and Of new New - Component includes activities that assist the policy-based
services are implemented by the injection of codes on the management system to enforce its policies, e.g., monitofing
active nodes. VE Environment) Ican be of resources, event notification, VE instantiation, etc. More
assigned to a different service provider and each VE is details on the FAIN AN Node architecture are beyond the
guaranteed to have access to the necessiuy resources. of the scope of this document and can be found in [l2]. Allocation
active nodes in order to support new services. Thus a RCF of in the FAIN RCF is in the interest of the
(Resource Control Framework) in the NodeOS is needed for resource consumers i.e. VEs and the active applications, this
the management and distribution of node resources to is achieved by the application of higher.level policies;
different VEs:The service provider must negotiate with the whereas both a~~ocation and monitoring of are in
node opentor for the ~ ~ w U ~ X S requested by the VEs; the the interest of the network management system [7].
RCF will then partition the resources of the node to the VEs
according to the agreement, and provide the VFs with 11. INTRODUCTION
guaranteed access to the partitioned resources. As dqicted, This paper describes a new conhol mechanism
EEs (Execution Environments) are simply treated as using SNMP across a network for controlling and managing
technologies (e.g.. m) used to implement services that, in the resources within and around the active node: routers and
mm, may operate entirely in One Ofthe three Planes: I:OntrOI, switches that have a legacy SNMP management system. In
management, or transport EES, and consequently services our approach, once a VE is given the authority to access the
are VEs, which if connected together requested network resources, the resources can be obtained
provide a proper virtual private network (W N) on W ofthe from any SMP-enabled network devices. Finite state
network infrastructure. Tne VE is a necessary abslraction machines are implemented by active packets; these
that is used only for the purpose of partitioning the resources machines can then program a of S M - e n a b l e d
of the AN Node. The VE concept is very important for the network devices in a synchnised manner, and provide a
complete understanding ofthe delegation approach followed for rollback should any request for a network
within the FAIN management framework. resource fail, then the fulfilled requests made earlier are
resources and access rights of principals using the active released. using this =tive packet mechanism, it he
network. Consequently, all interactions of Principals With possible to implement complex network reconfigurations;
the active network are checked against the access rights of for instance, it can create psec tunnels and modify routing
their particular VE. VEs are built on top of the node table entries to use it. The system uses the SNAP
operating system that involves the services of a number of programming language implement the finite sate,
extensions in the form of active node facilities that are lt offers the facilities to issue ,he following
required to support the instantiation and operation of SNMP that can be applied to network devices:

The Resource
combined Ppproa& of SNAP 121 and SNMP 191

I NodeOS is an OS for active n d c r and includes facilities for setting up
and management of communications channels for inter-EEs, manages the
muter resounes, pmvidcr MIS, and isolates EEs fmm each other.

mailto:becker@fokus.gmd.de

SET - .set and changes their current operational
configuration; GET - get the current device status; SET
TRAP - set traps to report changes in device status. The
system will also be possible to issue an instruction to any
active extensions available in (or around) the active node;
this will be used to demonstrate the loading of mobile
software agents into a JVM (Java Virtual Machine) near the
active node. These mobile software agents will be used for
monitoring network conditions and reporting directly to any
VE or twoot her management systems'. Security will be
provided for by the standard mechanism used in SNMP:
usemame, password and community. SNAP packets will be
transmitted in cleattext, hut the authority to activate the
SNMP commands will be an active extension provided by
the VE within the active node. Mobile agents will he loaded
in a similar manner, the VE will be given the authority to
load them. The mechanism in this latter case will be that
available within the Grashopper agency [4].

IILSY STEM DESIGN GOALS
A. Interceptor Paradigm
Active network management is the application area for this
system. Active networking is an interceptor paradigm. It is
difficult to develop applications that rely upon intercepting
data packets because the interceptor must decode each data
packet and its intention must he understood.

B. ABLE: Active Nehvorking Out-of-Band (61
The ABLE platform for network management is shown in
figure 2. The ABLE platform used a routefs packet filtering
capabilities to supply ANEP UDP packets that contained a
Java class to the system component "The Activator". The
Activator reconshucted the Java class from the packet
stream and forked itself. Its child then performed an
exec () to launch a JVM (Java Virtual Machine) that could
run the Java class intercepted it.

Figure 1 ABLE An Example of the Interceptor Paradigm

This paper suggests that ABLE is deficient as an active
networking system. It is useful for loading network monitors
and managers into routers (or nearby management stations)
wherever a customer data flow appeared in the network. It is
not suitable for managing the data flow as it progresses
through the network. It is, in effect, an out-of-band
management facility. It did provide a mean to locate flow
managers more effectively, but it did not provide a means to
locate the flow itself This is clearly a problem: a data flow
is most unstable when it is first established. The network bas
to adapt to the load it presents and consequently the nodes
through which the flow passes are most likely to change
when the flow first presents itself to the network.

In contrast to traditional network management, what is
needed for effective network management is an in-band
management capability. Each flow will negotiate its next
hop before it goes there. It will be seen that SNAP and
S N M P can come close to achieving this: the SNAP packet
will precede the data and go to the next hop, it will then
establish a route for the data that will follow it. The
information used by the SNAP packet to choose the route
will state the intention of the data flow. For example:

The data flow may be an HTTP request for a large
resource to be delivered to the requesting machine.

The data flow may be the start of a large system backup:
sending large amounts of data to the accepting machine.

In both cases, the data flow will be asymmetric; in the
former case, it will require a larger capacity in the reverse
direction; in the latter, in the forward direction. The
information that states the requesting machine's intent is
only available at the edge of the network where the request
is made - only the local network administration knows the
capability and priority of its machines for a limited resource.
The statement of intent is contained in an active packet that
attempts to match its source with the sink of the data flow.
The active packet can revise and choose how the source and
sink impedances are matched.

C. Active Packets & Active Extension Technology: SNAP &
SNMP
SNAP (Safe Network with Active Packets) [Z] is a
programming language that provides active packets at high
level of safety. Essentially, SNAP packets are UDP packets
that are embedded with assembly codes. As a SNAP packet
traverses through the network, simple compntations' such as
to add and remove data to a stack within the packet can be
performed. This is a genuinely active mode of operation. It
will be seen that the application of SNAP within active
network management is as a finite state machine that

It is also planed that thc extension of Grasshopper by IKV for the FAIN
project can be exploited by the SNAP system. Thc Grasshopper extenion
allow agents to be wnsponed using ANEP packesls 141.

SNAP programrmng language is an aJsembly language and it -01
perform any computations that BR comparable in complexity lo that of a C
or lava program; nor can it suppon the wide range of data lyp$s hat arc
available in the^ languages.

2099

follows the progression of a reconfiguration of a network.
Finite state machines do not need a complex runtime
environment and SNAP will prove to he sufficient. SNMP
(Simple Network Management Protocol) has been chosen as
the active extension technology to work with SNAP for a
number of reasons:
i It is the de-facto language of network management.

SNMP v.3 provides cryptographically strong role-based
access control.

An extensible MIB and programmable SNMP v.3 agent
have become available for conventional operating systems.

Machines that run conventional OS are now capahlc to act
as network routers as well.

The extensible MIB allows complex operations to be
simplified to one macro instruction. In SNMP, the GET and
SET commands can be thought of as operation codes for a
programming language: LOAD and STORE. One could think
of the object identifiers in the extensible MIB as memory
locations. Simple programs can be written in SNAP to test
the operational state and branch to different operation
sequences.

N. SYSTEM DESIGN,
A. Injectors
Injectors inject programs into the network to reconfigure it.
An injector will decide to inject code, because it has
intercepted a request for a data flow from its own network.
An injector intercepts and interprets some part of an
application protocol. For example, the injector may intercept
NFS (Network File System) requests, obtain the user
identification contained within the NFS request and use that
to priorities the use of bandwidth to deliver the data. It can
also make use of the MAC address, the IP address, and the
current network topology in its own administrative iiomain.
In effect, it monitors the state of its own network and its
connection with external networks.
When a new network condition develops, an injector will
attach control information to the data flows it hopes to
control:

Appearingflows ~ A new network condition is engendered
by a new data flow and the control information will be
attachcd to the new flow.

Disappearingflows -An injector may know that a flow, or
a set of flows has finished: a machine or user or another
network may have disappeared from the network.

An injector was demonstrated in the FAIN project: the
ABLE platform used a packet filter to trigger the inje:ction of
code that constructed an IPSec tunnel [7], (111. For the
SNMP SNAP approach proposed here, a more sophisticated
packet filter will be used. This will be a PromethOI, system
[3]. PromethOS is preferred means of providing node
operating system plug-ins for active nodes. It is an e:rtension
of the Netfilter [IO], a standard part of the Linux kernel.

PromethOS packet filters will have a degree of feedback;
they will be programmed by SNAP packets to wait for
particular network events. The SNMP SNAP packets will
inject code. These will be sent to the same host as the data
that triggered the network event. All active SNAP-enabled
routers will intercept these packets as they traverse the
network. The SNAP packets should precede the data packets
in the network, so that the data packets will not be able to
traverse the network until the SNAP packets have a created
a route for them. If this was the case, it would be desirable
to implement another PromethOS module that performs
packet spooling. The difficulty with operating injectors is to
decide what code to inject.

B. Interceptors
Intercepting SNAP packets is more complicated than
injecting them. These are the constraints: I) The code has to
be executed as quickly as possible, so that the packet can be
quickly forwarded and minimise latency during the
establishment of the data flow; 2) The functionality required
will need to make use of active extensions on the node; 3)
Active extensions require blocked I/O; 4) Blocked U0
cannot be performed in the same thread as the execution of
the SNAP packet, because it would add too much latency.
Because of this a new invocation model is proposed.

C. Active Extensions
SNAP provides a facility to access services within the
SNAPS: CALLS (call service). A service is a C function.
This will he used to dispatch the SNMP commands
embedded in the SNAP program (figure 3). SNAP also
provides a facility to read variables maintained by the
SNAPD: SVCV (service variable collect). This will be used
to return the state of SNMP variables. In this way, an SNMP
command can be issued on one thread and the result can be
retumed, stored within the SNAPD and dispatched as the
result in a subsequent SNAP packet. To illustrate, figure 3
shows an simplified example of the assembly codes that can
be embedded in a SNAP packet to perform a SNMP SET:
here : push cu~rent node address
push 6 ; puah the 6" stack value
push I(addresrl1. (addrerr21l

: push the addresses onto the
stack

Push ii\"set\"l, l \ " o m \ " ~ l
; push a SNMP command onCO t h e
stack

mktup 4 i create a t u p l e
push bar : push result returned by t h e

baz:
isrup i is it a tuple
bne 1 ; branch to "barl" i f y e s
b a r l :
calls \"te3ts"c\"

i calls t h e service " tes tsvc"
$"CY \-rerL"al\"

; pusher t h e variable * t e s t V a l "
push 4 4 5 5 i purher a p o r t number
demux : Iendo a string (on 2"' TSVI to

rsrvice ^bar"

the por t 10" TSV)

Figure 3 Assembly codes for SNMP SNAP SET

2100

The first four instructions push the current node address; the
6'" stack value e.g. authority in our example; the source and
destination addresses; and the SNMP SET command onto
the stack respectively. The fifth instruction creates a tuple,
which holds the top four popped stack values and returns a
value, which is an offset into the heap. bar checks whether
it is a tuple; if true, then branches to b a r l . barl is a
service in the service table that formats the tuple as a string
and puts it into a registered variable testVal - this
variable now holds the "stringnified" SNMP command. The
desire port number is then pusho nto the stack, and the
SNMP command is then delivered to the desire port.

D. Invocation Model
A kernel-based SNAP packet processor is currently under
development at the University of Pennsylvania [2]. This will
he a node OS plug-in. This will be unable to invoke any
active extensions outside of the kernel. Their proposed
invocation model is for two SNAP-enabled nodes: A and B.
1. A: Execute SNAP instructions that do not invoke active
extensions.
2. A: On reaching an instruction that does invoke an active
extension:

A Stop executing in the kernel and forward.the packet to
the next hop amving at B.

A: Continue executing the packet program in user space.
Invoke the active extension, wait for the result and, when it
arrives, send it onto the next hop as a SNAP packet that only
contains the result.
3. B: the SNAP packet sent by A is now executed. Two
conditions may arise:

The result of the invocation of the active extension at the
previous active node is required to progress the
computation.

The result at the precious active node is not needed.
4. B: If the latter is the case, the packet can continue to
execute.
5. B: If the former is the case, then apply 2.

In this way, SNAP packets can proceed very quickly
through the network. A SNAP program will be in place at
each active node waiting for the 110 to unblock at preceding
nodes in the network. Diagrammatically, the situation is as
given in the figure 4. At time interval, 1, packet p arrives,
denoted pI. Its blocking commands are invoked
asynchronously and the packet is passed on. At time period
p. the result is ready.

Other packets arrive, p2 though to p,.~.. They may be
forwarded or spooled. SNAP packets will almost certainly
be dispatched, but it would be desirable to spool data
packets. Eventually time period r arrives and the result of
the SNAP operation invoked at time period 1 is available
and it is dispatched immediately. If the data packet flow is
being spooled, a release indication would be sent by the next
hop, presumably after it has received and processed the
result of the operation of plarr iving after period r. A more
sophisticated analysis than this would show that the
synchronisation of the operation invocation and the arrival
of the result form a self-organising protocol - similar to
Djikstra's leader election protocol for communications bus
synchronisation.

In effect, the interaction between the kernel and user space
SNAP interpreters requires two new primitives within
SNAP: FORK and J O I N [SI. These will be implicit in the
calls to the active extensions: CALLS and SVCV. The design
of the FORK and J O I N primitives is common to many OS.
An identifier will be needed to specify the thread to join.
The usual problem of finding a unique identifier in an open
distributed system will be faced. Also SNAP will require
two stacks: a supervisor stack used for synchronisation and a
user stack used for the SNAP program. The operation of the
kernel SNAP interpreter will he an atomic copy, increment
the program counter and forward.

E. Implementarion
The kernel space SNAP interpreter is not currently
available, but the proposed invocation model (FORK and
J O I N) can be proved using the current USR space overlay
network architecture of SNAP. Interceptors will be SNAPD
running on active routers. They will listen on several SNAP
control ports. At the time of writing, the SNAP interpreters
are not part of a system that has packet spooling, which is
still an experimental of the Linux kemel [111.

V.TH E ShfNP-SNAP APPLICATION SCENARIO
The below collaboration diagram shows how a SNAP packet
implementing a finite state machine could be used to create
an ad-hoc network. There are four routers in this system: I,
s, t, U. Each of which must move to its respective operational
state: SI, s2, s3, s4. The network to be constructed is a sub
network that passes all of its traffic through an ATM switch.
The traffic must be conditioned so that the bit-rate limited
virtual channel carrying the traffic does not arbitrarily drop
cells and conupt the IP packets. To simplify the
management of the traffic conditioning, the traffic is carried
in an IP in IF' tunnel and it is conditioned. It is then
unencapsulated and given to the ATM switch's IP interface.
Typically, this network might be used to support ADSL
access for a neighbourhood.

Figure 4 The invocation model

2101

m

Figure 6 The network diagram for the S N M P Sh AP
Application Semario

-+
Figure 7 SNAP Program: ad-hoe network construction

The progression of the states of construction is this:
SI - The router I, supporting DHCP, RIP version 2 and,

say, two IOOBaseTx interfaces offers a sub-network to client
machines. It creates an interface for that sub-network on one
of its IOOBaseTx interfaces and announces a route to the
sub-network with RIP version 2 on the other interface. It
injects the SNAP packet.

S2 - An upstream router, s, receives the SNAP packet and
is told to wait for a RIP version 2 event- the announcement.
of the new sub-network. In response it will create an IP in IP
tunnel endpoint for it. It passes the SNAP packet on.

S3 -The next upstream router, t, receives the SNAP packet
and is told to construct the other IP in IP tunnel endpoint and
to apply a traffic conditioner to the tunnel and to route the
traffic to an ATM switch.

S4 - The router with the ATM interface creates a route for
the unencapsulated traffic of the sub-network.

This is the son of network construction task that many
system administrators must perform. SNAP is used to carry
the instructions and to record the changes of state of the
network. The instructions can be at conceptually a high
level, the extensible SNMP agent allows many simple
instructions to be grouped together. The states correspond
exactly to the construction of the system. Clearly, this task
could be automated, the only variables are: IP sulmetwork
to be supported; IP tunnel endpoints addresscs; traffic

conditioning parameters: ATM interface IP address. A set of
each of these could easily be embedded into a number of
SNAP programs. The DHCP routers would be given at least
one each to inject into the network when a client machine
starts to use the network they manage the addresses for.

VI. CONCLUSION
This paper describes a new mechanism using SNAP
language for controlling and managing the resources within
and around the active nodes: routers and switches that have
a legacy SNMP management system. The SNAP system
propagates S N M P command execution through a network
lends itself to mass production of SNAP programs to
construct large numbers of network. It exploits active
networking by having control information move with the
data it must support. This is an efficient mechanism for
invocation of any active extensions outside of the kernel. It
provides synchronised changes in state, thus disruption
caused by transient operational states will be minimised.
The effect of the latter could be entirely eliminated with the
use of packet spooling. This would be synchronised to an
acknowledgement message that the network has attained its
new state.

ACKNOWLEDGEMENT
This paper describes work undertaken and in progress in the
context of the FAIN - IST 10561, a 3 years project during
2000-2003. The IST programme is partially funded by the
Commission of the European Union.

Multiust Video

n MS-ClS-99-24.

. WP3-ETHa)Z-

', FAIN technical

REFERENCES
[I1 R. Kcller. S. Choi "An A d v c Router Amhimfur$ for Multiust Video
Di$"buuon",
L21 1. Mmm "Safs and Elficienc Activs Pnsku". Lcchoid vpn MS-ClS-99-24.
USA, Oct 1999. htm://www.sis.uDmn.cdui-ionnu'
131 L. Ruf. 'Ps ign of PromeLOS". FAIN technical rcph WP3-ETHa)Z-
PmmBOS. ETH Zusch. Dlc 2001. hnn://wwnmm&os.orw
[I] 1. Difuich, C. Wrckerlc "A" Eikmion for Omlhoppci'. FAIN technical
rcph Germany, Oct ZWI. htm:/luw.~rasrhooondcinm.dd
IS] D. La, "A Java ForkIJ~in Fmcwork", New York. USA.

181 FAIN Public WWW S-CT htm:!!ww.iscfain.org
[9] NET-SNMP community, h ~ p : / ! n F I - m ~ ~ . r o u r c s f ~ ~ g ~ . " ~ ,
[IO] Ncifiltcr Cars T-. ht#o:!/www.oetfiitoorg.org
[I l l M. Bluc, I. lomnnidir Trust Manngcmsnt for IPSso". NDSS ZOOI. Sm Diego,

2102

http://htm:!!ww.iscfain.org
http://ht#o:!/www.oetfiitoorg.org

