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Hyperanalytic Denoising
Sofia C. Olhede

Abstract—A new threshold rule for the estimation of a deter-
ministic image immersed in noise is proposed. The full estimation
procedure is based on a separable wavelet decomposition of the
observed image, and the estimation is improved by introducing
the new threshold to estimate the decomposition coefficients. The
observed wavelet coefficients are thresholded, using the magni-
tudes of wavelet transforms of a small number of “replicates” of
the image. The “replicates” are calculated by extending the image
into a vector-valued hyperanalytic signal. More than one hyperan-
alytic signal may be chosen, and either the hypercomplex or Riesz
transforms are used, to calculate this object. The deterministic
and stochastic properties of the observed wavelet coefficients
of the hyperanalytic signal, at a fixed scale and position index,
are determined. A “universal” threshold is calculated for the
proposed procedure. An expression for the risk of an individual
coefficient is derived. The risk is calculated explicitly when the
“universal” threshold is used and is shown to be less than the risk
of “universal” hard thresholding, under certain conditions. The
proposed method is implemented and the derived theoretical risk
reductions substantiated.

Index Terms—Hilbert transform, image denoising, 2-D analytic,
wavelets.

I. INTRODUCTION

THIS paper treats the problem of estimating an unknown
deterministic image immersed in noise, based on esti-

mating a separable wavelet decomposition of the observed
image, by using the hyperanalytic extension. Global image
“replicates” that can be argued to have the same local structure
as the observed image are defined from the vector-valued
hyperanalytic extension. The 2-D wavelet transform of the
vector-valued signal is calculated. If the magnitude of the
wavelet coefficients of the hyperanalytic signal exceeds a given
threshold, at a fixed local index value, the wavelet coefficient
of the deterministic image is estimated by the observed wavelet
coefficient, otherwise it is estimated by zero. The distribution
of this magnitude can be determined, and a suitable threshold
chosen. Given the estimated wavelet coefficients, the image
is estimated by inverting the wavelet transform. Theoretical
risk reductions are obtained for the estimation of individual
coefficients, under certain conditions.

In 1-D signal estimation, Donoho and Johnstone [1] first
proposed estimation procedures based on wavelet decomposi-
tions. Heuristically, such estimation procedures correspond to
separating the coefficients into “signal dominated” and “noise
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dominated” coefficients. The “noise dominated” coefficients
are eliminated (thresholded), or subjected to some other form of
shrinkage [2], to estimate the signal coefficients with reduced
mean square error (MSE). A possible choice of threshold is to
use the “universal” threshold, constant across coefficients. The
“universal” threshold for large sample sizes gives a risk close
to that given by using an “oracle” [1]. If the decomposition
is highly compressed, hard thresholding combined with the
“universal” threshold will achieve good estimation in terms of
low MSE.

Unfortunately, 2-D separable wavelets do not provide optimal
compression for some simple 2-D signal structures that are often
observed in images. Alternative methods have been developed
to achieve better compression of images containing simple local
structures, i.e., work by Starck et al. [3]. Methods that achieve
a substantial degree of compression, can afford to treat each de-
composition coefficient individually, and without a great deal of
sophistication. To achieve better estimation of the deterministic
image, more sophisticated techniques for the estimation of the
coefficients, may also be used.

As an example of the latter, using the tendency of signal
structure to produce nonzero wavelet coefficients in connected
regions of space and scale, improves estimation. Examples of
such methods include work by Cai and Silverman [4], Dragotti
and Vetterli [5], Pižurica et al. [6], Crouse et al. [7], Fry-
zlewicz [8], and Olhede and Walden [9]. Using such methods
may give substantial estimation improvements, in terms of
improved visual reconstructions, as realistic image structures
are represented by a complete set of image coefficients. The
aforementioned methods may also give reduced MSE.

In 1-D, Olhede and Walden [9] aimed to improve the esti-
mation of a wavelet coefficient, by using the local structure of
the signal. They calculated a second signal from the observed
signal, that roughly had the same local first order structure, using
the Hilbert transform (HT). Furthermore, the wavelet coeffi-
cients of the observed signal and its HT at a fixed scale and time
are (up to ) uncorrelated. Olhede and Walden thresh-
olded each wavelet coefficient, depending on the combined ob-
served magnitude of the wavelet coefficient, and the magnitude
of the wavelet coefficient of the HT of the signal. The method is
denoted “analytic” denoising, as it thresholds a coefficient given
the value of the decomposition of the analytic signal [10], at
that local point. The procedure, as both the HT and the wavelet
transform are linear transformations and commute, can equiva-
lently be viewed as using a second variable that is formed by a
weighted combination of coefficients at the same scale, that are
nearby in time, when deciding to threshold.

For “analytic” thresholding to work well, when estimating
signal dominated coefficients, the magnitude of the wavelet co-
efficient of the HT of the deterministic signal must be simultane-
ously large, to that of the wavelet coefficient of the signal. As the
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Fig. 1. Risk of a standardized (see Section III-F) estimated wavelet coefficient using a “universal” thresholding rule. The risk of (dash-dotted line) “analytic” hard
thresholding and the risk of (solid line) classical hard thresholding [see subplot (a)] are plotted for s = c, a, � = � = j�j=p2. The risk of (dash-dotted)
“analytic” hard thresholding, (dashed lines) Riesz thresholding, (dotted line) hypercomplex thresholding, and (solid line) classical hard thresholding are plotted in

subplots (b)–(d). In subplot (b), � = � + � = j�j=p2 for the Riesz threshold, while � = � = � = � = j�j=p2, for the Hypercomplex

threshold. In plot (c), � = � = 0 for the Riesz threshold while for s = r, h, � = � = j�j=p2 and � = � = 0 for the hypercomplex threshold. In
plot (d), � = j�j cos(3�=8), � = � = j�j sin(3�=8)=p2 for the Riesz threshold, while � = � = j�j cos(3�=8) and � = � = j�j sin(3�=8)
for the Hypercomplex threshold. For the “analytic” procedure in (b)–(d), we use � = � as the single quadrature component, corresponding to the total Hilbert
transform.

HT can be considered to have the same time-frequency structure
as the original signal [11], this can be argued. When estimating
the noise dominated coefficients, the expected value of the com-
bined magnitudes of the coefficients needs to be small, for the
procedure to perform well. To determine a suitable threshold,
the (approximate) distribution of the magnitude, must be known.
For large sample sizes, using the analytic signal, this is the
case. Fig. 1(a) shows the risk of a coefficient using “analytic”
denoising, based on the wavelet transform of the signal and
its HT taking the same magnitude, under different signal-to-
noise ratios (SNRs) [ denotes the standardized mean (see Sec-
tion III-F)]. Fig. 1(a) verifies that with a “universal” threshold,
the risk of an “analytic” hard thresholded coefficient estimate,
is less than that of a hard thresholded coefficient estimate.

We seek to extend “analytic” thresholding to 2-D, and this
will require defining additional images, based on 2-D “analytic”
signals. The additional images need to have the same local struc-
ture as the original image, and suitable stochastic properties.
There are several 2-D extensions to the HT, where more than a
single additional image, is usually defined. We refer to any com-
plete set of such images, as a set of quadrature components. We
use two special sets: the Riesz transforms (RTs, Section II-C),
and the hypercomplex transforms (HCTs, Section II-D), of the
image. We define the local magnitude of the wavelet coeffi-
cients using a set of quadrature components (Section III-A), that
together with the original image form a hyperanalytic signal.
We propose a threshold criterion, to estimate the wavelet co-
efficients of the image, depending on the value of the magni-
tude of the wavelet transform of the hyperanalytic signal. Once
the wavelet transform is inverted, this yields an estimate of the
image, and the method is denoted hyperanalytic denoising.

We discuss the form of the local magnitude for stylized image
structure: i.e., the behavior of the threshold criterion for oscilla-
tory structures and edges (Section III-B). The approximate dis-
tribution of the decomposition of the Riesz and Hypercomplex
components of noise alone is determined, at a fixed value of
the local index (Section III-C). This permits the calculation of

“universal” thresholds, for both the RT and HCT based methods
(Section III-D and E). The risks of the two different thresholding
strategies are calculated for a given threshold, (Section III-F),
where under certain conditions the risk associated with hyper-
analytic thresholding, is less than that of hard thresholding. We
implement the procedure (see Section IV), and compare results
with the hidden Markov model method (HMM) [7], and hard
thresholding. We observe a reduced MSE in several examples,
when using the proposed image denoising strategies, and ob-
serve improvements in the visual reconstructions. Hyperana-
lytic denoising is thus shown to give a simple and competitive
method of improving existing denoising strategies.

II. IMAGE MODEL AND NONSTATIONARY STRUCTURE

A. Image Structure

We model the observed image for ,
where , and denotes the sampling period
via

(1)

We collect the observed image in a matrix , and
similarly define , as well
as . The noise is modeled by ,
where denotes distributed as, and , ,

. A decomposition of the image in terms of a wavelet
basis is formed [12]. We take , , ,
and as the tensor products of functions

and . If we let denote the discrete wavelet
transform (DWT) of with tensor product wavelet , at scale
, and position , i.e., the inner product of

with the wavelet , then we may represent as

(2)
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is then associated with smooth variation in the

image , is associated with smooth variation in
and rapid variation in , etc. denotes scale , where

, while denotes a spatial localization in
the plane. If an image with coefficients is observed, then
for any fixed value , , 1, 2, where

. We collect the local indices in a vector-valued
index of .

The DWT is implemented by repeated filtering of the ob-
served signal with two filters, the scaling filter

and the wavelet filter ,
in both spatial directions separately [13], where denotes the
length of the filters and . The transform is initialized
by equating the image to the finest scale representation of the
image, i.e., . The transform at index can also be
implemented using a single filter . The decomposition will
be halted at level , and the scaling
coefficients are determined at this level to complete

the representation. Hence, for , only , for
1, 2, 3, are calculated. For more details on the DWT (see, for
example, Percival and Walden [13]), while a good exposition
of image decompositions can be found in Mallat [12].

Having observed , rather than , we calculate the DWT
coefficients , and threshold these to obtain an estimate

of , denoted . Wavelets will compress images
of sufficient regularity, a statement that can be made precise
in terms of Besov spaces. For some locally simple image
structures, a more compressed representation can be made [3].
Hence, for images containing, say edges, the deterministic
image energy in the DWT will be spread over more coefficients
than strictly necessary. As the expected magnitude of the signal
generated coefficients in the less than optimally compressed
representation will be less than the mean magnitude of co-
efficients representing the same signal structure in a more
compressed alternative decomposition, it is important that the
estimation procedure does not fail to retain signal generated
coefficients.

B. Quadrature Components

In a version of the 1-D estimation algorithms for the estima-
tion of a time domain signal suggested by Cai and Silverman
[4], a wavelet coefficient at scale and position , was estimated
using a shrinkage rule. The rule was defined in terms of the com-
bined magnitude of the observed coefficient at , and the
magnitudes of the immediate time-neighbors at the same scale,
i.e., at for . This procedure performs well if a signal
contribution present at the index exhibits clustering in ad-
jacent coefficients, i.e., the wavelet coefficients will also have
large means at . Furthermore, using the DWT at other time
points, the noise of the other wavelet coefficients is uncorre-
lated, over . The procedure is, thus, based on determining
an additional set of variables, where the full joint distribution
of the additional variables and the coefficient to be estimated,
is tractable, and the full set of variables aid the estimation of
the single coefficient. In 1-D, Olhede and Walden [9] defined a
single additional random variable at each using the HT, to
serve the same purpose as the set of DWTs in Cai and Silverman

[4]. This did not necessitate assuming local homogeneity of co-
efficients in time, but was based on the local properties of the
HT. We shall discuss the mechanism of “analytic” denoising in
some detail, to generalise the concepts involved to 2-D.

Let the Fourier transform (FT) of a -dimension signal
be denoted by

this defining the magnitude, , and phase, , of
in the Fourier domain. Given a 1-D signal , the HT of ,
is equivalently defined by

(3)
We now present the following arguments, as to why the local
structure of the HT, is similar to that of the original signal.
First, we collect and in a complex-valued signal,
denoted by the analytic signal [10], and this is given by

. For , if ,
then . If a signal corresponds to a
modulated oscillation with slowly changing period and am-
plitude, a similar result holds under some suitable conditions
[10]. Thus, in this simple case, can be argued to have
the same time-frequency structure as . For other signals
commonly in signal processing, the (complex-valued) analytic
signal is used to construct the time-frequency representation of
the real signal, i.e., the Wigner–Ville distribution [11]. When
using such representations, implicitly it is assumed that
and have the same local structure. We also note that

(4)

Thus, the frequency contribution of , previously associated
with , is shifted in cycle or phase, by
in . Thus, we are recovering a similar signal, as the fre-
quency description is the same, but a given frequency contri-
bution is assigned to slightly different time locations. Based on
this, if somewhat heuristic justification, we argue that
should have roughly the same time-frequency support as ,
and we refer to this property, as property 1) of the HT. The prop-
erty implies that the mean of the DWT coefficient of ,
should be nonzero when the mean of the DWT coefficient of

is nonzero. Property 1) needs to be extended to 2-D.
Furthermore, the stochastic properties of the DWT of the ana-

lytic signal are useful, and allow us to define a suitable threshold
procedure. These are related to a number of properties of the
HT, that we shall enumerate and suitably extend. First, we note
property 2), that the HT satisfies, namely is orthogonal to

, i.e., . This ensures that the DWT of
the noise and the DWT of the HT of the noise are approximately
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uncorrelated at .1 Second, we note property 3), namely the
magnitude of the HT of at any given frequency ,
is the same as that of the original signal. This ensures that the
DWT of the observed signal and its HT have approximately the
same variance. Finally, we note property 4), the HT is linear
in the signal. This establishes that the DWT coefficients of the
signal and the HT of the signal are jointly normal, given (1).
Properties 1)–4) follow from (3). The DWT of the signal is then
estimated by the observed DWT if the magnitude of the DWT
of the analytic signal exceeds a given threshold. For a com-
plex-valued decomposition where the real and imaginary parts
are correlated, common practice would involve transforming the
variables into an uncorrelated pair of variables, and then using
the magnitude of the complex coefficients defined by the uncor-
related pair, to threshold the wavelet decomposition [15]. While
such a procedure will produce a variable where the distribution
of the magnitude of the signal-free coefficient is tractable, when
the signal is present, the first-order properties of the new mag-
nitude will in general not be suitable. For “analytic” denoising,
simultaneously the distribution of the noise only coefficients is
tractable, and the magnitude is interpretable in terms of deter-
ministic structure of the observed image. Once the coefficient
has been estimated using “analytic” thresholding, the estimate
of the signal will be based on the thresholded DWT of the ob-
served signal alone. Thus, discontinuities in can still be
reconstructed, and are not necessarily blurred out by the HT.

The “analytic denoising” procedure will now be generalized
to 2-D. We need to define a set of images, i.e., more than one,
that will be indexed by , to serve the same pur-
pose that the HT of the signal did in 1-D. To construct these
images we use a set of linear transformations, so that property
4) will be satisfied. The HT and the signal in 1-D formed a nat-
ural representation in terms of the “analytic” signal, where the
real and imaginary components were phase shifted versions of
each other, or “in quadrature.” We shall, therefore, refer to im-
ages constructed from 2-D extensions of the HT as “quadrature
components,” where the method of construction is denoted by
.

Definition 2.1 ( -Quadrature Components): Any set of im-
ages that satisfy the following conditions.

1) The space and spatial frequency support of
, is similar to that of

.
2) Each is orthogonal (“out of phase”) to the

original signal, or ,
and for all separable , also

, for .
3) The combined energy assigned to each frequency , from

the full set of quadrature components at all points of
except for a finite set of frequencies, satisfies the equation

, where
is constant.

4) Each , for , is constructed by a linear
transformation of , are denoted the -quadrature com-
ponents of .

1Note that using the dual-tree [14] at level j = 1 gives real and imaginary
wavelet coefficients whose correlation is 0.5997, not even approximately zero.
The filters from http://taco.poly.edu/WaveletSoftware/dt1D.html were used.

The four properties of the continuous -quadrature components
[properties 1)–4)], have been chosen to ensure the correct joint
distribution of the DWT of the noisy image, and the DWTs of
the noisy -quadrature components. From property 1) we note
that the magnitudes of the DWTs of the quadrature components
are large, when the image has a contributing DWT. Property
2) ensures the DWTs of the image and its quadrature compo-
nents are uncorrelated (independent given Gaussian noise), and
the quadrature components are with the noise model of (1),
also pairwise uncorrelated to each other. Property 3) ensures the
variances of the DWTs are analytically determinable. Property
4) determines the joint distribution of the DWTs of the image
and the quadrature components, at a given local point, with the
model of (1). Of course, while the definition of quadrature com-
ponents now seems justifiable, this does not guarantee the exis-
tence of such objects. We shall give two different specific exam-
ples of quadrature components, based on extending the analytic
signal to 2-D.

The transformation that constructs quadrature component
, for each value of , is implemented in the spatial do-

main by a convolution (denoted by ), using kernel .
The integral will be approximated using a Riemann sum, where

is replaced by a periodic discrete linear filter .
The FT of is denoted by , while taking the
discrete Fourier transform (DFT) of , yields the object

. The discrete implementation of the calculation of
the quadrature components is outlined in Appendix A. Define

, and . An error
of order is introduced by the Riemann approximation,
i.e., . Note that the properties
of the continuous -quadrature components are only preserved
up to , once are calculated, and used instead
of .

C. Riesz Transforms

The RTs have been used in combination with the continuous
wavelet transform (CWT) by Metikas and Olhede [16], [17].
The RTs of , denoted by and are calcu-
lated by convolving with the Riesz kernels , for
1, 2, given with and by

(5)

The RTs satisfy properties 2)–4) of quadrature components (see,
for example, [17, pp. 15–16]). We implement the RTs discretely
(see Appendix A), and so the calculated discrete images are
only approximately satisfying 2)–4). Given the RTs combine to
have the same norm as , . To establish property
1), cf [17], consider the interpretation of the RTs for unidirec-
tional structure. If the image admits the representation with

, , for some 1-D function , of

(6)
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then the interpretation of the RTs is clear. We use polar co-
ordinates and let . The FT of is

, and we note

(7)
Thus, the two quadrature components represent the same 1-D
directional variation as , with the same directionality as

, but where the variations in direction have been shifted
in phase by . Thus, (informally) for unidirectional variation,
the RTs have the same spatial and spatial frequency support as
the original signal. In general, we cannot assume that the signal
is globally unidirectional, but as convolutions commute, we can
think of either implementing the DWT, or the RTs first (imple-
menting the subsampling of the DWT last). Once we have local-
ized the image, in scale and space, it is more reasonable to as-
sume that the local structure of the image is unidirectional. We,
thus, argue from (7) that the DWT of the RTs have the same
local structure as the DWT of , for locally unidirectional
structure. Note that we are not assuming that is periodic
or oscillatory at this stage. For nondirectional structure, the RTs
still have identical frequency support to the original image. The
RTs have similar spatial support to the original image [see (5)]
as the spatial decay of the filter is . Using the RTs when
there is no local unidirectional variation, just like for “analytic”
denoising, can be viewed as taking local weighted combinations
of the local coefficients. If the signal has locally similar struc-
ture, then again the magnitudes of the RTs should be large, if
there is signal present. Using the RTs to form the hyperanalytic
signal is denoted by putting .

D. Hypercomplex Transforms

A second set of 2-D HTs, are the HCTs. Denote the partial HT
[10] in direction by . Three additional quadrature compo-
nents are defined by the three HCTs

(8)

In Olhede and Metikas [17, pp. 12–13], it was shown that the
HCTs satisfy properties 2)–4), and note . We imple-
ment the HCTs using the discrete HT (DHT) (see Appendix A),
and so the discretely filtered additional images are only ap-
proximately satisfying conditions 2)–4). If the image is natu-
rally expressed as separable, the three HCTs of can be
argued to have the same structure as the original image, using
the same arguments as in Section II-B. By using the hyperan-
alytic signal, we hope to alleviate observed problems (see, for
example, Starck et al. [3, p. 671]), when estimating nonsepa-
rable images, using a wavelet decomposition calculated using
a separable wavelet basis. We argue that the local structure of
the HCTs of the image, is the same as the local structure of the
image, by the following. Define the partial FT (PFT) of in

direction , by , with
. The image is written as

(9)

(10)

Thus, corresponds to replicating all variation in ,
for any fixed value of , shifted in phase by and, mu-
tatis mutandis, the analogous statements hold for and

. If corresponds to a particular time-frequency
structure as a signal in , for fixed values of , then
will replicate the same structure, but shifted in phase in .
Thus, the same structure is replicated in compared to

, in either of the two axes separately, and for this reason
we consider property 1) met. Thus, if the separable DWT coef-
ficient of is nonzero at a local index, then so should also
the DWTs of be, for . We denote the hy-
percomplex components by taking . Finally a naive 2-D
extension of “analytic” denoising [9], would be to define a single
extra quadrature component corresponding to , phase
shifting in both spatial directions simultaneously. We discuss
the risk of this procedure in Section III-F, and show that this ex-
ceeds those of the other proposed hyperanalytic denoising pro-
cedures. The procedure is denoted by .

For a fixed choice of , we form the DWT of all
images, . We define ,

. Also, let be the DWT of ,
and collect these random variables in the vector

. The explicit
dependence on and in is dropped, as the distribution
of , will only depend on , the choice of quadrature com-
ponents, and , the tensor product index. Given the outlined
properties of the quadrature components, it seems reasonable
to consider a signal as “locally present” if the magnitudes of
the DWTs of all the quadrature components, i.e., ,
are large. Before we do so, to define an estimation procedure,
and justify this measure of local presence, we shall need to
demonstrate that the combined magnitudes of the DWTs of the
quadrature components of noise behave “well.”

E. Stochastic Properties of the DWTs of the Quadrature
Components

Proposition 1 (Energy of Quadrature Components): At a
fixed index value , the total energy of the DWT of the discrete
quadrature components of white noise, with variance , is
given by

(11)
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Proof: See Appendix C. The error term follows from the
discrete implementation of the hyperanalytic signal. The result
follows from properties 2)–4) of Definition 2.1.

Proposition 2 (Covariance of Transforms): At a fixed index
value , the covariance of the DWT of white noise, and the DWT
of any of the discrete quadrature components of white noise is
of order .

Proof: See Appendix C. The error term follows from the
Riemann approximation to the integral, and the result follows
from property 2).

Thus, at any given value of , the DWTs of and ,
at any fixed , are approximately uncorrelated. The
combined energy of the DWTs of , for , is a
multiplicative constant of the energy of the DWT of . We have,
thus, demonstrated that the energy of the DWT of the noise, and
its -quadrature components, is a multiple of the variance. So,
in brief, we have made the case that the magnitude of the DWTs
of quadrature components will be large if there is signal present.
The energy of the DWTs of the noise components is controlled
and proportional to the variance. We are now in the position
where we may define an estimator of a wavelet coefficient.

III. ESTIMATION

A. Defining Estimates

We define a local -magnitude, in terms of the combined mag-
nitudes of the DWTs, of the full set of . The local
-magnitude quantifies the local presence of the signal.

Definition 3.1 (The -Magnitude of a DWT Coefficient):
We define the -magnitude of the DWT of signal ,

, using quadrature components denoted by , via:

.
To relate the -magnitude definition to previous local

threshold strategies [4], let for some fixed
. Then the -magnitude,

, is a 2-D analogy to , used by
Cai and Silverman [4, p. 132], to block threshold DWTs. Each
coefficient , will be estimated by hard thresholding the

observed coefficient, depending on the value of , with
threshold , according to

if

if
(12)

This choice of estimator is different from commonly used
thresholding rules, as the rule is specified in terms of

not . When is non-negligible, but not large com-
pared to the noise-level, the estimated coefficient may be zero,
even if represents parts of a curve or directional struc-

ture. Removing from the estimated image will produce
artifacts in the reconstruction, and inflate the MSE of . We
have argued that the combined magnitudes of the DWTs of the
quadrature components are consistently large, when is
part of the deterministic image. We have shown the noise to be
uncorrelated (up to ), across quadrature components,
and so the magnitude is not consistently large, if there is no

signal present. Thus, the estimator , is likelier to
keep, rather than annihilate, energy part of a structure, while
we still control the risk when estimating noise dominated coef-
ficients. These heuristic arguments will be made more precise
in Section III-B and F.

We define, for any fixed choice of -quadra-
ture components, using tensor product wavelet ,

, as the DWT of the discrete
implementation of the quadrature components of at . We also
let ,
be the DWT of the quadrature components of , i.e.,

, at . does not depend on the choice of

. The estimator of using the indexed components and

the threshold is denoted by .

B. Magnitude of Typical Image Features

Deterministic images are often modeled as the combination
of edges and texture (see, for example, work by Vese and Osher
[18]). We calculate the wavelet coefficients of some stylized
image features, and need to specify the local characteristics of
the features, in the spatial region that the wavelet filter is sup-
ported over. Given the wavelet filters are compact the properties
of the signal outside this spatial region are not important. For a
fixed value of , let denote a spatial loca-
tion. For fixed values of and , and, thus, , each texture com-
ponent is modeled locally in spatial variable , as an AM/FM
signal [16, eq. 27]

(13)

where denotes the length of the wavelet filter, and each edge
component is modeled locally by

(14)

for . and are assumed
to be slowly varying. In general we do not expect to observe
sinusoids or discontinuities that for very slowly varying
span the entire observed image. To be able to carry out theo-
retical calculations, stylized image structures are analysed, that
observed images would subsequently approximate. Given the
DWT truncates images in space and scale, and the hyperanaly-
tization commutes with the DWT (implementing subsampling
last), these results are still useful for real images. Our subse-
quent risk calculations will demonstrate that the success of the
method depends on the expected value of the quadrature com-
ponents exhibiting suitable properties.

We define the maximum overlap discrete wavelet transform
(MODWT) coefficients of the image -quadrature components,

. These are the DWT coefficients calculated without
subsampling, with a new normalization at each level , see Per-
cival and Walden [13, ch. 4]. The FT of the MODWT filter
is denoted by , this defining
the modulus, or , and phase, , of , the
MODWT wavelet filter. Let the region of frequency space where

is mainly supported, be denoted by , and let
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. The DWT coefficients of a generic signal can
be extracted from the MODWT coefficients of , using the
relations [13, p. 203].

Lemma 1 (RT Magnitude of Local Oscillation): If the signal
locally takes the form of (13) then the -magnitude of the DWT,
defined in Definition 3.1, is given by

(15)

where is the indicator function. is an error term intro-
duced because of the leakage of the wavelet filters in the fre-
quency domain. If a sufficiently long wavelet filter is used, this
term can be ignored; see Nielsen [19], for more discussion on
avoiding leakage. The term is due to the approxima-
tion of the DFT of the function, see Appendix B.

Proof: See Appendix B.
Lemma 2 (HCT Magnitude of Local Oscillation): If the signal

locally takes the form of (13), then the -magnitude given in
Definition 3.1, is

(16)

where , is an error term depending on the leakage of the
wavelet filters in the frequency domain, and the fol-
lows due to the approximation of the DFT.

Proof: See Appendix B.
Lemma 3 (RT Magnitude of Discontinuity): If the signal lo-

cally takes the form of (14), then the -magnitude given in Def-
inition 3.1, is given by

(17)

where , , and depend on the smoothness of , while
and are given in Appendix B. The term

follows from approximating the DFT of .
Proof: See Appendix B.

Lemma 4 (HCT Magnitude of Discontinuity): If the signal
locally can be approximated by (14), then the magnitude defined
in definition 3.1, is given by

(18)

where depends on the smoothness of , and the forms of
and are given in lemma 3. The term follows

as in Lemma 3.
Proof: See Appendix B.

For oscillatory signals, the magnitude, hence, reflects signal
presence at , and the calculations motivate using the local
-magnitudes, when thresholding local oscillations. Equation

(17) illustrates the problem experienced by an edge in a 2-D
separable representation: only if or , for

, will the edge live in or , i.e., constant in one
direction and variable in the other. In this case the representa-
tion will be extremely compressed (note that the proof needs to
be adjusted for ).

From (17), it is clear that the compact spatial support of
ensures that the energy of and is mainly concen-

trated near . If we represent
in terms of a magnitude and a phase, the difference between

and will
determine exactly at which spatial indices and have
non-negligible magnitudes (see also the discussion in Gopinath
on this phenomenon [20, p. 1794]). The DWT of the quadra-
ture components will be large near the discontinuity, and the
quadrature components can be used to improve the estimation
of local discontinuities. Using hyperanalytic denoising, line
discontinuities are better reconstructed [see Fig. 2(a)–(c)]. A
curved discontinuity can be approximated as the aggregation of
amplitude modulated line discontinuities, and so improvements
in estimation can be observed also for curved structures [see
Fig. 2(e)–(g)].

C. Distribution of Noise and “Universal” Thresholds

Let be the total number of coefficients of the orig-
inal observed image. For a fixed , the distribution of must
be determined, to obtain a “universal” threshold [21], . We
let . Downie and Sil-
verman [21] proposed that a “universal” threshold should satisfy
taking a value, such that ,
for some constant . As increases, the expected
number of coefficients exceeding the threshold is some small
but finite nonzero value. We choose to use a slightly more con-
servative threshold for both the Riesz and Hypercomplex magni-
tudes. We cannot quite achieve analogous results to Downie and
Silverman, as the set of DWT coefficients , are correlated
across indices . We adopt arguments similar to those given by
Johnstone and Silverman [22], and Olhede and Walden [9], to
justify the choice of threshold.

We do not aim to determine the full covariance structure of
the full set of wavelet coefficients, of the observed image and
the quadrature components. Define as the maximum of

independent variates with the same marginal distribution as
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. By determining a threshold for ,

we obtain a conservative threshold for , as

by corollary 2, from Dykstra [23]. can be interpreted as
the degrees of freedom associated with . As shown in the
subsequent section, the DWT of the quadrature components for
any fixed value of are approximately uncorrelated, and the
matrices of Dykstra are defined to take the nonuniform variances
of , into account.

D. Distribution of the Magnitude

We seek to determine the approximate distribution of
to derive the distribution of . We, as usual, denote by
as equality in law [24].

Lemma 5 (Distribution of Riesz Coefficients): The DWT co-
efficients of the original signal and the discrete RTs of Gaussian
white noise are distributed as

(19)

where denotes a diagonal square matrix, ,
1, 4, and

.
Proof: For the proof, see Appendix C. The terms

follow by the discrete approximation to the RT.
Lemma 6 (Distribution of Riesz Magnitude): The magnitude

square of the DWT of the discrete RTs of Gaussian white noise,
denoted by , are distributed as

(20)

, , , where if
1, 4, has the distribution

(21)

while if , 3, the moment generating function of is given
in Appendix C. By using formulae derived by [25] the proba-
bility of obtaining large values may be found.

Proof: For the proof see Appendix C.

Lemma 7 (Distribution of HCT Coefficients): The DWT co-
efficients of the discrete HCT of Gaussian white noise are dis-
tributed as

(22)

Proof: For the proof see Appendix C.
Given the approximate joint distribution of the DWT coeffi-

cients at has been determined, it trivially follows that the mag-
nitude is distributed as

E. Threshold Choice

Lemma 8 (Riesz Conservative Threshold): With a threshold
of as given below, if , it follows:

(23)

Proof: For the proof see Appendix C.
From [21] we may note that the RT threshold is, thus, like

that of a . To ensure that the probability of esti-
mating a purely noise generated image by zeros tends to 1, we
take , rather than . Given the normalized mar-
ginal magnitudes of the HCT components are , we may use
results of [21] to note that, ,
gives an appropriate threshold. As the wavelet coefficients will
be correlated across , this is conservative. As a final step of
the procedure we implement cycle-spinning [13, p. 429], which
is known to improve MSE results considerably. Implementing
hard thresholding based on the magnitude of , will be
denoted by (classical thresholding). We also discuss
using a single quadrature component of , when thresh-
olding . This corresponds to a naive extension of “ana-
lytic” thresholding to 2-D, denoted by taking .

F. Risk Calculations

To compare the theoretical performance of the threshold esti-
mators proposed in this paper, we calculate the standardized risk
at any fixed value of . We define the standardized risk for pro-
cedure , in terms of the standardized means of the
quadrature components , by

(24)

If , then we denote by and the two different cases
that correspond to 1, 4 or 2, 3. For completeness we
here also provide the risk of the “analytic” denoising, not given
in Olhede and Walden [9].

Theorem 1 (The Risk of a Thresholded Coefficient): The
standardized risk of an individual coefficient using threshold
strategy , , , , with , noting
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, is independent of , and
is given by

(25)

Proof: The risk of an individual coefficient using “uni-
versal” hard thresholding has been noted by Marron et al. [26],
while the risk of the hyperanalytic thresholds are derived in Ap-
pendix C. is a special case of the bi-variate thresholding
investigated by Fryzlewicz [8]. The terms follow as the
risk is derived using the asymptotic distribution of , and
the terms in the covariance of the components yield
an extra term in the expression. This error term can be bounded
precisely using a series expansion of the exponential, and the
limits of the integration.

For some examples of signal/noise distributions, the indi-
vidual risk of a given coefficient is plotted in Fig. 1, for the four
estimation procedures using the “universal” threshold. Fig. 1(a)
shows the reduced risk of “analytic” thresholding (denoted by

), compared to hard “universal” thresholding in 1-D (denoted
by ), when the means of the wavelet coefficient of the signal
and of the HT of the signal are equal. The reduction in the risk
provides theoretical justification for “analytic” denoising [9].
Fig. 1(b)–(d) shows the risk at , using the proposed threshold.
The risk is calculated with , and using the “universal”
threshold, for any of the proposed procedures. If the means of
the DWTs of the -quadrature components are of similar mag-
nitude to the DWT of the signal, then the risk is reduced [see
Fig. 1(b) or (d)]. The greatest weakness of the proposed methods
is if the means of the -quadrature components are completely
disparate from that of the original signal. This can be noted in
Fig. 1(c). The results of Section III-B, argue that this will not
be the case for some typical image features. Also, the norm of a
signal and the full set of quadrature components are multiples of
each other. Thus, given the results of Section III-B, the means
of the DWT of the signal and the DWT of the quadrature com-
ponents, are unlikely to be consistently mismatched. Finally, if
there is no signal present, we may bound the risk in estimating
a coefficient, as becomes large.

Corollary 1 (The Risk of a Noisy Thresholded Coefficient):
The risk of an individual coefficient, when there is no signal

present, using threshold strategy , , , with ,
for is given by

(26)

Proof: See Appendix C. We denote by
.

As the representation of the image will be sparse, determining
the risk of a coefficient if no signal is present, is important.
From the corollary, and the asymptotic forms in , given in
Appendix C, we may note that the risk at the “universal”
threshold when there is no signal present is of the same order
for and . The coefficients
multiplying the order terms differ in favor of .

and correspond
to different orders (larger risks). The thresholds were introduced
to improve the estimation of signals whose representations were
slightly more spread across coefficients than strictly necessary.
The risk for any coefficient when no signal is present increases
marginally, to make the difference in estimation of the noisy
coefficients between hyperanalytic and hard thresholding for
large samples, negligible [i.e., rather than

]. The examples will substantiate this claim.

IV. EXAMPLES

To examine the properties of the proposed methods, we have
implemented simulation studies on images that can be retrieved
at http://sipi.usc.edu/database/ (Tiffany and Boat), while (Lena
and MRIScan) are downloaded from http://www-stat.stan-
ford.edu/~wavelab/. We used LA wavelets length 8. To
compare our results, similarly to [3], we also implemented
usual hard thresholding and the wavelet-domain HMM [7],
where the software is available at http://www-dsp.rice.edu/soft-
ware/. The method will be denoted by . We used the
code hdenoise.m with default settings, and .
We implemented the method at several SNRs of 2 (very
noisy), 4 (moderately noisy), and 8 (quite clean), with a set
of images, i.e., Lena (512 512 version), Boat (512 512),
MRIScan (256 256), and the second channel of the color
image of Tiffany (512 512). The SNR is (as usual) given
by . Table I shows the result over
repeated simulations. Each column of the table is presenting
results for a different image, at three different SNRs separated
by/sign. The rows present average MSEs, average standard
deviations (SDs) of the MSEs, and average PSNRs over the
50 runs. We index the rows of the table by (noisy signal),
(classical thresholding with the “universal” threshold), (Riesz
thresholding with the “universal” threshold), (Hypercomplex
thresholding with the “universal” threshold), and (the
HMM method), thus indicating the method used for obtaining
the estimator of the image. Reduced MSEs and increased
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Fig. 2. Row 1: Estimating a section of the noisy boat image (SNR = 5:56), with (a) the clean image, (b) the “universal” hard threshold estimate, (c) the “uni-
versal” hypercomplex estimate, and (d) the HMM estimate. Row 2: Section of one of the bands of the noisy Tiffany image (SNR = 8), (e) with the clean image,
(f) the “universal” hard threshold estimate, (g) the “universal” hypercomplex estimate, and (h) the HMM estimate.

peak signal-to-noise ratios (PSNRs) (using the definition of
[15]) are observed when using the proposed method with
the hyperanalytic threshold criterions. The reduction in MSE
is of a respectable magnitude compared to variation across
replications. Overall the hypercomplex thresholding procedure
is outperforming the Riesz thresholding, as well as the other
methods, apart from the boat image at high SNRs where the
HMM method performs better. The Hypercomplex method is
expected to outperform the Riesz method from the risk calcula-
tions, but not perhaps from our discussion in Section II-C and
D. The RT threshold may appear more suitable for improving
denoising in a separable basis, as it calculates a replicate in
the prevalent local direction from the image, while the HCT
thresholding simply decreases the risk in estimation by consid-
ering variation associated with the same time-frequency (i.e.,
1-D) behavior in both axes separately. However, while the RT
is mainly suitable to use on locally unidirectional structure,
the HCT allows for variation in several directions at the same
spatial point. Images quite frequently have multidirectional
variations present even locally, and so this method is borrowing
more information across the image.

Finally, to consider the visual appearance of the reconstruc-
tions, see Fig. 2(a)–(h). We show the HCT reconstructions only,
as the RT and HCT reconstructions are similar. The HCT esti-
mate in Fig. 2(c) achieves greater continuity in reconstructing
entire features [see, for example, the mast] than that achieved
by Fig. 2(b), i.e., classical thresholding, and preserves more de-
tailed features. We observe similar results in Fig. 2(g) compared
to Fig. 2(f). Observe, for example, the curved loose strand of hair
in Fig. 2(g). The HMM estimate has more noisy background re-
construction [see Fig. 2(d) and (h)]. This feature has also been

observed by Starck et al. [3, p. 680]. The HMM method captures
image detail well, as can be seen from some fine linear structures
in the background of the boat image in Fig. 2(c). However, the
retained noise makes it harder to make out these detailed fea-
tures. An interesting feature from comparing Fig. 2(a) to (c) is
that the bright outlines of some of the masts, are preserved in
the HCT estimate, but not by the other methods. Overall the
proposed method, despite its simplicity, represents a good im-
provement to standard “universal” denoising. It is surprisingly
competitive to more sophisticated methods, as is verified by the
reported SNRs.

In addition to the SNRs chosen for the full range of images,
we implemented the procedure at the SNR chosen by Starck
et al. [3], namely adding Gaussian noise with a standard devia-
tion of 20 to the raw Lena image, or using a SNR of 5.58. The
PSNR we observed in the noisy image (21.58) is less than theirs
(22.13), but that is to be expected in two different noisy replica-
tions. We found for the methods discussed in this paper, that av-
eraged over 100 replications the PSNRs were (29.22),

(30.12), (30.93), and (30.48). Starck et al.
obtained for (28.35) and (30.80). Starck et al.
obtained PSNRs between 29.99 to 31.95 by using local ridgelets
and curvelets. Clearly, the hyperanalytic denoising methods pro-
posed by this paper perform on par with competitive algorithms.
Some additional image examples can also be found in [27]. In
addition, the proposed procedure is both cheap to implement
and extremely simple to code.

V. CONCLUSION

This paper has proposed a new thresholding estimator for
the estimation of the separable DWT. We determined both the
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TABLE I
AVERAGE RESULTS OVER 50 RUNS. THE SYMMLET WAVELETS (OR LA WAVELETS WERE USED) AND J = 3

deterministic (for some stylized image features) and stochastic
properties of the suggested new thresholding estimator. We es-
tablished “universal” thresholds. We calculated the risk theo-
retically, and for some specific choices of the mean local coef-
ficients, provided plots of the risk, showing that the proposed
methods outperform classical denoising theoretically. We im-
plemented the procedure on several examples, at several SNRs,
comparing the methods with the hidden Markov model, as well
as “universal” hard thresholding. We found that the proposed
algorithms offered improvements in most cases. Given the sim-
plicity of the implementation, and visually pleasing reconstruc-
tions, hyperanalytic denoising methods offer a computationally
cheap improvement to existing methodology.

APPENDIX A
DIGITAL IMPLEMENTATION

The discrete Fourier transform (DFT) and its inverse are given
with by

(27)

The value of at frequencies

is equivalent to the value of
at frequencies

, and the
equivalent statement, mutatis mutandis, hold for . Let

, with ,
then

, , and . As the discrete RTs/HCTs, thus,
have an error of associated with approximating
the continuous versions, the discrete implementation will not
exactly meet the requirements of quadrature components. We
define

(28)
We let and define for , with

The discrete implementation of the HCT filters are based on
the partial HTs. Define if and if . Then,
for all

if ,
if
if

and . Implementing the discrete HCTs
introduces an error term of , just like the error intro-
duced in the discrete RTs.
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APPENDIX B
DWT OF TYPICAL DETERMINISTIC IMAGE FEATURES

Proof of Lemmas 1 and 2: We use periodic boundary treat-
ment (see Mallat [12, pp. 282–292]) when implementing the
MODWT

(29)

with . Let
, where we take ,

and . By direct calculation using (29), and
approximating the DFT of the by
distributions (this incurring the error term), it then
follows that:

and similarly

Thus,

. is introduced when is approximated
by , where depends
on the wavelet used.

By direct calculation, using (29), it follows that:

Similarly

Thus, it transpires that

is introduced when is approximated.
Proof of Lemmas 3 & 4: Assume for simplicity of exposi-

tion, , but with some notational changes no such
restriction needs to be made. Define the rotation matrix by

, and the change of vari-
able given by: .
We assume that decays for large frequencies,

is an example of such struc-
ture. For example, if
then , that as

will concentrate to .
, and with

the rotated by version of , with

and
, then

The approximation in (1) relies on taking the form of a
distribution contribution, i.e., constant over a large

spatial domain, but a slowly varying , will approximately
produce the same result. Also, we may find approximate
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descriptions for decomposition of the RTs, namely with
and

(30)

The approximation in (1) relies on the envelope being constant
in the spatial domain. Departures from this assumption intro-
duces an error term, . Similarly, it transpires that

, and, thus, the result follows as

, with
a new error term .

Also, we may find approximate descriptions for the hyper-
complex components, namely

(31)

Similarly, it transpires that and

. , and are constants
depending on the variability of . Again, by squaring and
adding the DWT of the quadrature terms, the result follows.

APPENDIX C
STATISTICS OF THE NORMAL VECTOR AND RISK CALCULATIONS

Set when deriving the statistical properties
of the coefficients. then has a spectral representation:

, where is a complex-valued

orthogonal increment process, see [28] [p. 244], i.e.,
if . The DWT is calcu-

lated by scaling and subsampling the MODWT. We de-
fine the MODWT of the quadrature components of noise:

. , is a subsample of

, once suitably renormalized. Note that

(32)

. We have
, ,

, and
. Clearly, we have .

We approximate the magnitude of the wavelet filters as
exact bandpass filters—see, for example, Nielsen [19] for a
discussion of such approximations. That is we approximate the
passbands by

if
if

if
if

(33)

Proof of Propositions 1 and 2:

The latter defines , a quantity that will be calculated for
, , and 1, 2, 3, 4. For , we determine

and we note that

(34)
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, by property 2) of definition 2.1, as is
separable. Therefore

(35)

Hence, the total energy of the quadrate components of the noise
is a constant times the variance of the original signal

Proof of Lemma 5: The noise is Gaussian and zero-mean. To
deduce the Lemma, using (32), we note

Hence, it follows that (and mutatis mutandis for the other values
of )

We may note that , as

Finally, note that

Clearly, we can find the variance of the second RT by permuting
the order of the spatial variable in the integration, and this then
completes the variance calculations. From the proofs of propo-
sitions 1 and 2 we can note that the components of for

1, 2, 3, 4, are uncorrelated up to . This can also
be shown by direct calculation. As was zero-mean Gaussian,
and we are forming linear combinations to obtain , the
stated result follows from the expressions for the covariances of
the components.
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Proof of Lemma 6:
a) First consider 1, 4, so that the variance of the two

Riesz components is 1/2. Then by Lemma 5 it follows di-
rectly that ,

.
has a moment generating function (MGF) given by

, and, thus,

. The probability that
does not exceed is given by

(36)

where the cdf be found in Grad & Solomon [25, p. 472],
and the function is expanded as , to get

.
b) Consider now 2, 3. Wlog assume that ,

and otherwise relabel and suitably. If
this collapses to the case given above.

Define so that where the
are iid Gaussian random variates with zero mean and unit
variance, where . The MGF is by Grad and
Solomon [25] with , ,

We let , , ,
and, hence, as we assumed ,
we note that and this choice agrees with
the notation in [25]. For future reference, note that

, , and we may
rewrite . Using results
from Grad and Solomon we may determine:

, for constant .
Thus, the probability of an observation exceeding a large
threshold, can be found.

Proof of Lemma 7:
, 1, 2, 3, 4, 1, 2, 3, 4. This follows from the

form of the partial HT [10]. From the proofs of propositions (1)
and (2) we note that the components of for a fixed value
of 1, 2, 3, 4 are uncorrelated up to . As is a
Gaussian process, it follows that , is a Gaussian vector.

Proof of Lemma 8: wavelet coefficients will be thresh-
olded, where magnitudes have the distribution given when

,4, and have the distribution that follows from ,3,
where , and , so that by
Dykstra [23]

ignoring terms in for a suitable constant , if
. Thus

So, , if , i.e., and
we take .

Proof of Theorem 1: From [26, p. 293] the risk of regular hard
thresholding is given as stated in Theorem 1. For the hyperana-
lytic procedures when , for ,

where or , the risk is

(37)

Proof of Corollary 1:
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For and 1, 4, denoted by in Fig. 1(b)–(d), it
follows

(38)

while for 2, 3, denoted by

(39)
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