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NONSUBJECTIVE PRIORS VIA PREDICTIVE RELATIVE
ENTROPY REGRET

BY TREVOR J. SWEETING,1 GAURI S. DATTA2 AND MALAY GHOSH3

University College London, University of Georgia and University of Florida

We explore the construction of nonsubjective prior distributions in
Bayesian statistics via a posterior predictive relative entropy regret criterion.
We carry out a minimax analysis based on a derived asymptotic predictive
loss function and show that this approach to prior construction has a number
of attractive features. The approach here differs from previous work that uses
either prior or posterior relative entropy regret in that we consider predictive
performance in relation to alternative nondegenerate prior distributions. The
theory is illustrated with an analysis of some specific examples.

1. Introduction. There is an extensive literature on the development of ob-
jective prior distributions based on information loss criteria. Bernardo [5] obtains
reference priors by maximizing the Shannon mutual information between the pa-
rameter and the sample. These priors are maximin solutions under relative entropy
loss; see, for example, [3, 8] for further analysis, discussion and references. In reg-
ular parametric families the reference prior for the full parameter is Jeffreys’ prior.
It is argued in [5], however, that when nuisance parameters are present, then the
appropriate reference prior should depend on which parameter(s) are deemed to be
of primary interest. This dependence on parameters of interest is mirrored in the
approach to prior development via minimization of coverage probability bias; see,
for example, [11, 23, 25] for further aspects of this approach.

In the present paper we explore the construction of nonsubjective prior distrib-
utions via predictive performance. It is possible to use Bernardo’s approach to ob-
tain reference priors for prediction. However, as shown in [5], this program turns
out to be equivalent to obtaining the reference prior for the full parameter, which
produces Jeffreys’ prior in regular problems. Further analysis along these lines
is carried out in [17]. Datta et al. [12] explore prior construction using predic-
tive probability matching, which is shown to produce sensible prior distributions
in a number of standard examples. In the present article we follow Bernardo [5]
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and Barron [3] by taking an information-theoretic approach and using an entropy-
based risk function. However, here we focus on the posterior predictive relative
entropy regret, as opposed to the prior predictive relative entropy regret used by
these authors. Our starting point is the predictive information criterion introduced
by Aitchison [1], which was also discussed by Akaike [2] as a criterion for the
selection of objective priors. We depart from these and other authors by taking a
more Bayesian viewpoint, in that we are less concerned here with performance
in repeated sampling but rather with performance in relation to alternative prior
specifications. The main aim of the paper is to search for uniform, or impartial,
minimax priors under an associated predictive loss function. These priors are also
maximin, or least favorable, which can be interpreted here as giving rise to mini-
mum information predictive distributions.

The organization of the paper is as follows. We start in Section 2 by defining
the posterior predictive regret, which measures the regret when using a posterior
predictive distribution under a particular prior in relation to the posterior predictive
distribution under an alternative proper prior. We define a related predictive loss
function and argue that this is a suitable criterion for the comparison of alternative
prior specifications. We discuss informally the results in Section 6 on impartial,
minimax and maximin priors under a large sample version of this loss function. We
also give a definition of the predictive information in a prior distribution. Through-
out we make connections with standard quantities that arise in information theory.
In Section 3 we relate posterior predictive regret and loss to prior predictive re-
gret and loss and in Section 4 we obtain the asymptotic behavior of the posterior
predictive regret, which is obtained via an analysis of the higher-order asymptotic
behavior of the prior predictive regret. The higher-order analysis carried out in
Section 5, which is of independent interest, leads to expressions for the asymp-
totic forms of the posterior predictive regret, predictive information and predictive
loss. In Section 6 we investigate impartial minimax priors under our asymptotic
predictive loss function. It turns out that these priors also minimize the asymptotic
information in the predictive distribution. In the case of a single real parameter,
Jeffreys’ prior turns out to be minimax. However, in dimensions greater than one,
the minimax solution need not be Jeffreys’ prior. The theory is illustrated with
an analysis of some specific examples, and some concluding remarks are given in
Section 7.

There are a number of appealing aspects of the proposed Bayesian predictive
approach to prior determination. First, since the focus is on prediction, there is no
need to specify a set of parameters deemed to be of interest. Second, difficulties
associated with improper priors are avoided in the formulation of posterior predic-
tive, as opposed to prior predictive, criteria. Third, the minimax priors identified
in Section 6 arise as limits of proper priors. Fourth, these minimax priors are also
maximin, or least favorable for prediction, which can be interpreted here as min-
imizing the predictive information contained in a prior. Finally, and importantly,
the same asymptotic predictive loss criterion emerges regardless of whether one is
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considering prediction of a single future observation or a large number of future
observations.

2. Posterior predictive regret and impartial priors. Consider a paramet-
ric model with density p(·|θ) with respect to a σ -finite measure µ, where
θ = (θ1, . . . , θp) is an unknown parameter in an open set � ⊂ Rp , p ≥ 1. Let
pπ(x) = ∫

p(x|θ) dπ(θ) be the marginal density of X under the prior distribution
π on �, where both π and pπ may be improper. Let � be the class of prior distri-
butions π satisfying pπ(X) < ∞ a.s. (θ) for all θ ∈ �. That is, π ∈ � if and only
if P θ({X :pπ(X) < ∞}) = 1 for all θ ∈ �.

We suppose that X represents data to be observed and Y represents future obser-
vations to be predicted. Denote by pπ(y|x) the posterior predictive density of Y

given X = x under the prior π ∈ �. Let � ⊂ � be the class of all proper prior
distributions on �. For π ∈ � and τ ∈ �, define the posterior predictive regret

dY |X(τ,π) =
∫ ∫

log
{

pτ (y|x)

pπ(y|x)

}
pτ (x, y) dµ(x) dµ(y).(2.1)

We note that dY |X(τ,π) is the conditional relative entropy, or expected Kullback–
Leibler divergence, D(pτ (Y |X)‖pπ(Y |X)), between the predictive densities
under π and τ . See, for example, the book by Cover and Thomas [10] for defi-
nitions and properties of the various information-theoretic quantities that arise in
this work. It follows from standard results in information theory that the quantity
dY |X(τ,π) always exists (possibly +∞) and is nonnegative. It is zero when π = τ

and is therefore the expected regret under the loss function − logpπ(y|x) associ-
ated with using the predictive density pπ(y|x) when X and Y arise from pτ (x)

and pτ (y|x), respectively.
When τ = {θ}, the distribution degenerate at θ ∈ �, we will simply write

dY |X(τ,π) = dY |X(θ,π), where

dY |X(θ,π) =
∫ ∫

log
{
p(y|x, θ)

pπ(y|x)

}
p(x, y|θ) dµ(x)dµ(y)(2.2)

is the expected regret under the loss function − logpπ(y|x) associated with using
the predictive density pπ(y|x) when X and Y arise from p(x|θ) and p(y|x, θ),
respectively. The regret (2.2) is the conditional relative entropy D(p(Y |X,

θ)‖pπ(Y |X)). The readily derived relationship∫
dY |X(θ,π)dτ(θ) = dY |X(τ,π) +

∫
dY |X(θ, τ ) dτ(θ)(2.3)

implies that (2.2) is a proper scoring rule, as pointed out by Aitchison [1]; that
is, the left-hand side of (2.3) attains its minimum value over π ∈ � when π = τ .
We note that the final integral in (2.3) is the Shannon conditional mutual informa-
tion I (Y ; θ |X) between Y and θ conditional on X (under the prior τ ). Conditional
mutual information has been used by Sun and Berger [21] for deriving reference
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priors conditional on a parameter to which a subjective prior has been assigned,
and by Clarke and Yuan [9] for deriving possibly data-dependent “partial informa-
tion” reference priors that are conditional on a statistic.

Definition (2.1) of the posterior predictive regret is motivated by standard argu-
ments for adopting the logarithmic score logq(Y ) as an operational utility function
when using q as a predictive density for the random quantity Y ; see, for example,
the discussion in Chapter 2 of [6]. The criterion (2.2) was used by Aitchison [1] for
the purpose of comparing the predictive performance of estimative and posterior
predictive distributions, which was followed up by Komaki [16], who considered
the associated asymptotic theory for curved exponential families. Hartigan [14]
obtained related higher-order asymptotic expressions which he used to compare
estimative predictive distributions based on (bias-corrected) maximum likelihood
and Bayes estimators. Akaike [2] discussed the use of (2.2) for the selection of
objective priors. A similar approach was also proposed by Geisser in his discus-
sion of Bernardo [5]. Recently, Liang and Barron [19] have derived exact minimax
priors under the criterion (2.2) for location and scale families.

The criterion (2.1) extends the domain of definition of (2.2) from degenerate
priors {θ} to all proper priors τ ∈ �. We argue that (2.1) is a suitable Bayesian
performance characteristic for assessing the predictive performance of a nonsub-
jective prior distribution π when θ arises from alternative proper prior distribu-
tions τ . There are two ways of thinking about this. First, we might be interested in
the predictive performance of a proposed nonsubjective prior distribution under its
repeated use, as opposed to its performance under repeated sampling, as measured
by (2.2). From this point of view, we could consider the prior selection problem
as an idealized game between the Statistician and Nature, in which each player
selects a prior distribution. An alternative viewpoint is to consider (2.1) as measur-
ing the predictive performance of π in relation to a subjective prior distribution τ

that is as yet unspecified. Thus, τ might reflect the prior beliefs, yet to be elicited,
of an expert. In this case the prior selection problem could be viewed as a game
between the Statistician and an Expert. It is possible, of course, that the Statisti-
cian and Expert are the same person, whose prior beliefs have yet to be properly
formulated.

Akaike [2] considered priors that give constant posterior predictive regret (2.2),
referring to such priors as uniform or “impartial” priors. Such priors will only exist
in special cases, however. Achieving constant regret over all possible priors τ ∈ �

in (2.1) is clearly never possible since, for any fixed π ∈ �, the precision of the
predictive distribution under τ will tend to increase as τ becomes more informa-
tive, in which case dY |X(τ,π) will eventually increase. Alternatively, since τ is
unknown, one might wish to consider the minimaxity of π over all τ ∈ �. How-
ever, the maximum regret will tend to occur at degenerate τ . We would therefore
be led back to the frequentist risk criterion (2.2), which is not the object of primary
interest in the present paper.
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For these reasons, we will study the loss function

LY |X(τ,π;πB) = dY |X(τ,π) − dY |X(τ,πB),(2.4)

provided that this exists (see later), which is the posterior predictive regret asso-
ciated with using the prior π compared to using a fixed base prior πB ∈ �. Since
we will be investigating default priors for prediction, it is necessary that our pro-
cedure for choosing the base measure πB is such that pB(y|x) does not depend
on the particular parameterization of the model that is adopted. We are therefore
inevitably led to a choice of base measure that is invariant under arbitrary repara-
meterization. In the case of a regular parametric family, an obvious candidate for
πB is Jeffreys’ invariant prior with density proportional to |I (θ)|1/2, where I (θ)

is Fisher’s information in the sample X. Since we will only be considering regular
likelihoods in the rest of this paper, we take πB = πJ in the sequel and simply
write LY |X(τ,π;πJ ) = LY |X(τ,π).

Assume that the base Jeffreys’ prior πJ satisfies dY |X(θ,πJ ) < ∞ for all θ ∈ �

and let pJ (y|x) be the conditional density of Y given X under πJ . Then the
( posterior) predictive loss function defined by

LY |X(θ,π) = dY |X(θ,π) − dY |X(θ,πJ )

=
∫ ∫

log
{

pJ (y|x)

pπ(y|x)

}
p(x, y|θ) dµ(x)dµ(y)

(2.5)

is well defined, although possibly +∞. Now let �Y |X ⊂ � be the class of proper
priors τ for which

∫
dY |X(θ,πJ ) dτ(θ) < ∞. Then for π ∈ � and τ ∈ �Y |X , we

can define the expected predictive loss

LY |X(τ,π) =
∫

LY |X(θ,π)dτ(θ)

=
∫

dY |X(θ,π)dτ(θ) −
∫

dY |X(θ,πJ ) dτ(θ)

= dY |X(τ,π) − dY |X(τ,πJ ),

(2.6)

as in (2.4). Since τ ∈ �Y |X , the final line is well defined (possibly +∞).
Next we define, for τ ∈ �,

ζY |X(τ) = dY |X(τ,πJ ) =
∫ ∫

log
{

pτ (y|x)

pJ (y|x)

}
pτ (x, y) dµ(x) dµ(y).(2.7)

Since the negative conditional relative entropy −dY |X(τ,πJ ) = −D(pτ (Y |
X)‖pJ (Y |X)) is a natural information-theoretic measure of the uncertainty
in the predictive distribution pτ (Y |X), we will refer to ζY |X(τ) as the pre-
dictive information in τ . Here pJ (y|x) acts as a normalization of the con-
ditional entropy of pτ (y|x). From relation (2.3) with π = πJ , we see that
ζY |X(τ) ≤ ∫

dY |X(θ,πJ ) dτ(θ), from which it follows that supτ∈� ζY |X(τ) =
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supθ∈� ζY |X({θ}). That is, the maximum predictive information occurs at (or
near) a degenerate prior. Thus, ζY |X(τ) is a natural entropy-based measure of the
information in the predictive distribution pτ (y|x). Note that, again from (2.3),
ζY |X(τ) < ∞ whenever τ ∈ �Y |X .

It now follows from (2.3), (2.6) and (2.7) that, for π ∈ � and τ ∈ �Y |X , we can
write

dY |X(τ,π) = LY |X(τ,π) + ζY |X(τ).(2.8)

We will explore priors for which LY |X(θ,π) is approximately constant in θ ∈ �.
Notice that if LY |X(θ,π) is approximately constant, then, from (2.8), dY |X(τ,π) is
approximately constant over all τ having the same predictive information ζY |X(τ).
This therefore provides a suitable notion of approximate uniformity of the poste-
rior predictive regret (2.1).

In Sections 4 and 5 we will derive large sample forms, L(θ,π),L(τ,π), ζ(τ )

and d(τ,π), respectively, of suitably normalized versions of LY |X(θ,π),

LY |X(τ,π), ζY |X(τ) and dY |X(τ,π) and simply refer to L(θ,π) as the predictive
loss function. Importantly, for smooth priors π this asymptotic loss function will
not depend on the amount of prediction Y to be carried out. In Section 6 we will
investigate uniform and minimax priors under predictive loss. As is often the case
in game theory, there is a strong relationship between constant loss, minimax and
maximin priors. We give an informal statement of Theorem 6.1. An equalizer prior
is a prior π for which the predictive loss function L(θ,π) is constant over θ ∈ �.
Suppose that π0 is an equalizer prior and that there exists a sequence τk of proper
priors in the class 	 ⊂ �, to be defined in Section 4, for which d(τk,π0) → 0 as
k → ∞. Then Theorem 6.1 states that π0 is minimax with respect to L(τ,π) and
ζ(π0) = infτ∈	 ζ(τ); that is, π0 contains minimum predictive information about Y .
This latter property is equivalent to π0 being maximin, or least favorable, under
L(τ,π). Since by construction L(τ,πJ ) = 0 for all τ ∈ 	, πJ is automatically an
equalizer prior. However, there may not exist a sequence τk of proper priors with
d(τk,π

J ) → 0, in which case Jeffreys’ prior may not be minimax. Some examples
will be given in Section 6.

Although the focus of this paper is on the general asymptotic form of the predic-
tive loss, we briefly note the implications of adopting either the posterior predictive
regret (2.2) or the predictive loss (2.5) in the special case where the family p(·|θ)

of densities is invariant under a suitable group G of transformations of the sample
space. See, for example, Chapter 6 in [4] for a general discussion of invariant de-
cision problems. Let G be the induced group of transformations on �. Then the
predictive loss (2.5) is invariant under G and the invariant decisions are invariant
priors satisfying π(ḡ(θ)) ∝ π(θ)|dθ/dḡ(θ)| for all ḡ ∈ G. If the group G is tran-
sitive, then the predictive loss is constant for every invariant prior. Furthermore,
if we consider the broader decision problem in which we replace pπ(·|x) by the
arbitrary decision function δ(x) = qx , where qx(·) is to be used as a predictive
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density for Y when X = x, then it can be shown that pR(y|x), the posterior pre-
dictive density under the right Haar measure on �, is the best invariant predictive
density under the posterior predictive regret (2.2). Since πJ is an invariant prior,
it further follows that the right Haar measure is the best invariant prior under the
predictive loss function (2.5). Since submission of the final version of the present
paper, a careful analysis using (2.2) for location and scale families has appeared
in [19].

Returning to the definition of the predictive loss function (2.4) relative to an
arbitrary base measure πB , we see that this is related to the expected predictive
loss (2.6) by the equation

LY |X(τ,π;πB) = LY |X(τ,π) − LY |X(τ,πB).

Therefore, using πB will give rise to an equivalent predictive loss function if and
only if LY |X(θ,πB) is constant in θ . In this case we say that πB is neutral relative
to πJ .

3. Relationship to prior predictive regret. In this section we relate the pos-
terior predictive regret (2.2) and loss function (2.5) to the prior predictive regret
and loss function. We will use these relationships in Section 4 to obtain the asymp-
totic posterior predictive regret d(τ,π) and loss L(τ,π).

For π ∈ �, we define the prior predictive regret by

dX(θ,π) = D
(
p(X|θ)‖pπ(X)

) =
∫

log
{
p(x|θ)

pπ(x)

}
p(x|θ) dµ(x),(3.1)

which is the relative entropy D(p(X|θ)‖pπ(X)) between p(x|θ) and the prior
predictive density pπ(x). Note that π may be improper in this definition. In that
case, unlike the posterior predictive regret, alternative normalizing constants will
give rise to alternative versions of (3.1), differing by constants. The prior predictive
regret (3.1) is the focus of work by Bernardo [5], Clarke and Barron [7] and others.
Now define �X ⊂ � to be the class of priors π in � for which dX(θ,π) < ∞ for
all θ ∈ �. If πJ ∈ �X , then for π ∈ � we define the prior predictive loss by

LX(θ,π) = dX(θ,π) − dX(θ,πJ ) =
∫

log
{

pJ (x)

pπ(x)

}
p(x|θ) dµ(x),(3.2)

which is well defined (possibly +∞).
The posterior predictive regret (2.2) and loss (2.5) are simply related to the prior

predictive regret (3.1) and loss (3.2). The following result is essentially the chain
rule for relative entropy. However, we formally state and prove it since, first, the
distribution of X may be improper here and, second, we need to make sure that
these relationships are well defined.
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LEMMA 3.1. Suppose that π ∈ �X,Y . Then π ∈ �X , dY |X(θ,π) < ∞ for all
θ ∈ � and

dY |X(θ,π) = dX,Y (θ,π) − dX(θ,π).(3.3)

If further πJ ∈ �X,Y , then LY |X(θ,π) < ∞ for all θ ∈ � and

LY |X(θ,π) = LX,Y (θ,π) − LX(θ,π).(3.4)

PROOF. Since π ∈ �, the marginal densities pπ(X) and pπ(X,Y ) are a.s. (θ)

finite for all θ ∈ �. Therefore,

pπ(x, y) =
∫

p(x, y|φ)dπ(φ) = pπ(x)

∫
p(y|x,φ)dpπ(φ|x) = pπ(x)pπ(y|x),

since, by definition, p(x|φ)dπ(φ) = pπ(x) dpπ(φ|x). It now follows straightfor-
wardly from the definitions (2.2) and (3.1) that

dX,Y (θ,π) = dY |X(θ,π) + dX(θ,π).(3.5)

Since π ∈ �X,Y , it follows from (3.5) that both dY |X(θ,π) < ∞ and π ∈ �X and,
hence, relation (3.3) holds. Since π ∈ �X and πJ ∈ �X , it follows from (3.2)
that LY |X(θ,π) is finite for all θ . Finally, since πJ ∈ �, we have pJ (x, y) =
pJ (x)pJ (y|x) and relation (3.4) follows straightforwardly from the definitions
(2.5) and (3.2).

Finally, let �X ⊂ � be the class of priors τ in � satisfying
∫

dX(θ,

πJ ) dτ(θ) < ∞. It follows from equation (3.3) of Lemma 3.1 that πJ ∈ �X,Y

and τ ∈ �X,Y imply that
∫

dY |X(θ,πJ ) dτ(θ) < ∞, τ ∈ �X and∫
dY |X(θ,πJ ) dτ(θ) =

∫
dX,Y (θ,πJ ) dτ(θ) −

∫
dX(θ,πJ ) dτ(θ).

Therefore, if π ∈ �X,Y and τ ∈ �X,Y , then the expected posterior loss LY |X(τ,π)

at (2.6) is well defined. �

4. Asymptotic behavior of the predictive loss. Throughout the remainder
of this article we specialize to the case X = (X1, . . . ,Xn) and Y = (Xn+1, . . . ,

Xn+m), where the Xi are independent observations from a density f (x|θ) with
respect to a measure µ. In the present section we investigate the asymptotic be-
havior as n → ∞ of the predictive loss function (2.5). In particular, we will show
that, under suitable regularity conditions, the asymptotic form of (2.5) (after suit-
able normalization) is the same regardless of the amount m of prediction to be
performed. This leads to a general definition for broad classes of priors π and τ of
the (asymptotic) predictive loss L(τ,π), information ζ(τ ) and regret d(τ,π).

For an asymptotic analysis of the posterior predictive regret (2.2) and loss func-
tion (2.5), from (3.2), (3.3) and (3.4), we see that it suffices to study the as-
ymptotic behavior of the prior predictive regret dX(θ,π). Suppose that π ∈ �

has a density with respect to Lebesgue measure. For notational convenience,
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in what follows we will use the same symbol π to denote this density. Let
l(θ) = n−1 logp(X|θ) = n−1 ∑n

i=1 logf (Xi |θ) be the normalized loglikelihood
function and let i(θ) = Eθ {−l′′(θ)} = n−1I (θ) be Fisher’s information per obser-
vation. A standard result for the prior predictive regret (3.1) when π is a density
(see, e.g., [7]) is that, under suitable regularity conditions,

dX(θ,π) = p

2
log

(
n

2πe

)
+ log

{ |i(θ)|1/2

π(θ)

}
+ o(1)(4.1)

as n → ∞. [Here the π appearing in the first term on the right-hand side of (4.1) is
the usual transcendental number and should not be confused with the prior π(·).]
Taking Jeffreys’ prior to be πJ (θ) = |i(θ)|1/2, it follows from (3.2) and (4.1) that
the prior predictive loss satisfies

LX(θ,π) = log
{ |i(θ)|1/2

π(θ)

}
+ o(1).

It now follows from (3.4) that, for any sequence m = mn ≥ 1, LY |X(θ,π) =
o(1); that is, to first order the posterior predictive loss is identically zero for every
smooth prior π . It is therefore necessary to develop further the asymptotic expan-
sion in (4.1). Let θ̂ denote the maximum likelihood estimator based on the data X

and assume that the observed information matrix J = −nl′′(θ̂) is positive definite
over the set S for which P θ(S) = 1 + o(n−1), uniformly in compact subsets of �.

Let �∞ be the class of priors π ∈ � for which π ∈ �X for all n and let
C ⊂ �∞ be the class of priors in �∞ that possess densities having continuous
second-order derivatives throughout �. Then, under suitable additional regularity
conditions on f and π ∈ C to be discussed in Section 5, the marginal density of X

is

pπ(x) = (2πs2
B)p/2|J |−1/2p(x|θ̂ )π(θ̂){1 + o(n−1)},

where s2
B = (1 + bB)2 is a Bayesian Bartlett correction, with bB = O(n−1); see,

for example, [22]. Therefore, we can write

log
{
p(x|θ)

pπ(x)

}
= p

2
log

(
n

2πe

)
+ log

{ |i(θ)|1/2

π(θ)

}
− pbB −

[
n{l(θ̂ ) − l(θ)} − p

2

]

− log
{
π(θ̂)

π(θ)

}
+ 1

2
log

{ |J |
|I (θ)|

}
+ o

(
1

n

)
.

Since Eθ [n{l(θ̂ ) − l(θ)}] = ps2
F (θ)/2 + o(n−1), where s2

F (θ) = {1 + bF (θ)}2 is a
frequentist Bartlett correction, with bF (θ) = O(n−1), it follows from (3.1) that

dX(θ,π) = p

2
log

(
n

2πe

)
+ log

{ |i(θ)|1/2

π(θ)

}
− hn(θ,π),(4.2)
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where

hn(θ,π) = p{Eθ(bB) + bF (θ)} + Eθ

[
log

{
π(θ̂)

π(θ)

}]

− 1

2
Eθ

[
log

{ |J |
|I (θ)|

}]
+ o

(
1

n

)
.

(4.3)

Under suitable regularity conditions, the leading term in (4.3) turns out to
be O(n−1), since both the Bayesian and frequentist Bartlett corrections
are O(n−1), as are all the expectations on the right-hand side of (4.3). We will
therefore suppose that hn is of the form

hn(θ,π) =
{
D(θ,π)

2n

}
+ rn(θ,π),(4.4)

where D(θ,π) is continuous in θ and the remainder term rn(θ,π) satisfies one of
the following three successively stronger conditions:

R1. rn(θ,π) = o(n−1) uniformly in compacts of �;
R2. rn(θ,π) = O(n−2) uniformly in compacts of �;
R3. rn(θ,π) = E(θ,π)n−2 +o(n−2) uniformly in compacts of �, where E(θ,π)

is continuous in θ .

The above three forms of remainder require successively stronger assumptions
about both the likelihood p(·|θ) and the prior π(θ). Suitable sets of regularity
conditions for the validity of (4.4) will be discussed in Section 5. In particular,
π ∈ C is a sufficient condition on the prior for the weakest form R1 of remainder.
The form of D(θ,π) for π ∈ C will be derived in Section 5.

Throughout the remainder of the paper we assume that πJ ∈ C and define, for
all π ∈ C,

L(θ,π) = D(θ,π) − D(θ,πJ ).(4.5)

We note that L(θ,π) is well defined when π is improper since the arbitrary nor-
malizing constant in π does not appear in D(θ,π). We will study the asymptotic
behavior of the posterior predictive loss (2.5) as n → ∞ for an arbitrary num-
ber mn ≥ 1 of predictions Yi . Let cn = 2n(n + mn)/mn. The next theorem gives
conditions under which

cnLY |X(θ,π) → L(θ,π)(4.6)

uniformly in compacts of � under each of the forms R1–R3 of remainder.

THEOREM 4.1.

(a) Suppose that R1 holds. Then (4.6) holds whenever lim infn→∞ mn/n > 0.
(b) Suppose that R2 holds. Then (4.6) holds whenever mn → ∞.
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(c) Suppose that R3 holds. Then (4.6) holds for every sequence (mn) of positive
integers.

PROOF. First note that (3.2), (4.2), (4.4) and (4.5) give, on taking πJ (θ) =
|i(θ)|1/2,

LX(θ,π) = log
{ |i(θ)|1/2

π(θ)

}
−

{
L(θ,π)

2n

}
− r̄n(θ,π),(4.7)

where r̄n(θ,π) = rn(θ,π) − rn(θ,πJ ). Also note that, since π ∈ �∞, Lemma 3.1
applies for all n.

(a) From (3.4), (4.7) and R1, we have LY |X(θ,π) = c−1
n L(θ,π) + o(n−1)

and (4.6) follows since n−1cn = 2(m−1
n n + 1) and lim supn→∞ m−1

n n < ∞.
(b) From (3.4), (4.7) and R2, we have LY |X(θ,π) = c−1

n L(θ,π) + O(n−2)

and (4.6) follows since n−2cn = 2(m−1
n + n−1) → 0.

(c) From (3.4), (4.7) and R3, we have LY |X(θ,π) = c−1
n {L(θ,π) +

d−1
n E(θ,π)} + o(n−2), where dn = {2(2n + mn)}−1n(n + mn) and

E(θ,π) = E(θ,π) − E(θ,πJ ). (4.6) follows since d−1
n = O(n−1) and n−2cn =

2(m−1
n + n−1) is bounded. �

Theorem 4.1 tells us that, although the predictive loss function (2.5) covers an
infinite variety of possibilities for the amount of data to be observed and predic-
tions to be made, it is approximately equivalent to the single loss function (4.5),
provided that a sufficient amount of data X is to be observed. Although this is not
surprising given the form of (4.7) and the relation (3.4), it considerably simplifies
the task of assessing the predictive risk arising from using alternative priors. We
will refer to L(θ,π) as the (asymptotic) predictive loss function. A special case of
interest arises when mn = n, which corresponds to prediction of a replicate data
set of the same size as that to be observed. Note that in this case (4.6) holds under
the weakest condition R1. More generally, Laud and Ibrahim [18] refer to the pos-
terior predictive density of Y in this case as the “predictive density of a replicate
experiment,” which they study in relation to model choice.

Now let �∞ be the class of priors τ ∈ � for which τ ∈ �X for all n. Al-
though the expected predictive loss LY |X(τ,π) is well defined (possibly +∞)
when π ∈ �∞ and τ ∈ �∞, in general, the expected asymptotic predictive loss∫

L(θ,π)dτ(θ) may not exist, and when it does, additional conditions will be
needed for it to be the limit of the expected loss cnLY |X(τ,π). In order to re-
tain generality, we will extend the domain of definition of the asymptotic pre-
dictive loss (4.5) so that it is defined for all π ∈ �∞ and τ ∈ �∞. Thus, for
π ∈ �∞, τ ∈ �∞ and a given sequence (mn) of positive integers, we define the
(asymptotic) predictive loss to be

L(τ,π) = lim sup
n→∞

cnLY |X(τ,π),(4.8)
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which always exists (possibly +∞). Thus, L(τ,π) represents the asymptotically
worst-case predictive loss when the prior π is used in relation to the alternative
proper prior τ . Since the degenerate prior τ = {θ} is in �∞, (4.8) also provides
a definition of L(θ,π) for all π ∈ �∞, θ ∈ �, which agrees with (4.5) whenever
π ∈ C ⊂ �∞ and one of the conditions R1–R3 holds.

Now define the (asymptotic) predictive information contained in τ ∈ �∞ ∩�∞
to be

ζ(τ ) = −L(τ, τ ) = lim inf
n→∞ cnζY |X(τ)(4.9)

and let 	 ⊂ �∞ ∩�∞ be the class of τ for which ζ(τ ) < ∞. Finally, for π ∈ �∞
and τ ∈ 	, define

d(τ,π) = L(τ,π) + ζ(τ ),(4.10)

which is the asymptotic form of equation (2.8). The next lemma implies that the
predictive loss function (4.8) is a 	-proper scoring rule and that d(τ,π) is the
regret associated with L(τ,π).

LEMMA 4.1. For all τ ∈ 	,

inf
π∈�∞

L(τ,π) = L(τ, τ ) = −ζ(τ ).

PROOF. Let τ ∈ 	. By construction, d(τ, τ ) = 0, so we only need to show
that d(τ,π) ≥ 0 for all π ∈ �∞. Since π ∈ �∞ and τ ∈ �∞ ∩ �∞, we have
π ∈ �X,Y and τ ∈ �X,Y ∩�X,Y for all n and, hence, the quantities LY |X(τ,π) and
LY |X(τ, τ ) are both well defined. But LY |X(τ, τ ) ≤ LY |X(τ,π) and multiplying
both sides of this inequality by cn and taking the lim supn→∞ on both sides of the
resulting inequality gives L(τ, τ ) ≤ L(τ,π). The result follows from the definition
of d(τ,π). �

When π ∈ C, L(θ,π) is independent of the sequence mn. In general, however,
both L(τ,π) and ζ(τ ) may depend on the particular sequence (mn), although we
have suppressed this dependence in the notation. Nevertheless, the minimax results
of Section 6 will be independent of (mn).

5. Derivation of the asymptotic predictive loss function. In this section we
obtain the form of the function D(θ,π) arising in the O(n−1) term in the as-
ymptotic expansion of the prior predictive regret dX(θ,π). This then leads to an
expression for the asymptotic predictive loss function L(θ,π) for all π ∈ C via
relation (4.5). The computations involved in the determination of D(θ,π), which
are similar in nature to computations in [14], are technically quite demanding. Fi-
nally, we deduce expressions for the asymptotic posterior predictive regret (4.10)
and predictive information (4.9) under certain conditions.
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Theorem 5.1 below is the central result of this section. Write Dj = ∂/∂θj ,

j = 1, . . . , p. Let ρ = ρ(θ) = logπ(θ) and write ρr = Drρ. We use the sum-
mation convention throughout.

THEOREM 5.1. Assume that one of the conditions R1–R3 holds. Then

D(θ,π) = A(θ,π) + M(θ),(5.1)

where

A(θ,π) = irsρrρs + 2Ds(i
rsρr)(5.2)

and M(θ) is independent of π .

We will prove Theorem 5.1 via four lemmas, each of which evaluates the lead-
ing term in one of the terms on the right-hand side of equation (4.3). We discuss
suitable sets of regularity conditions following the proof.

For 1 ≤ j, k, r, . . . ≤ p, define Djkr··· = ∂
∂θj

∂
∂θk

∂
∂θr · · · , ajkr··· =

{Djkr···l(θ)}
θ=θ̂

, cjr = −ajr ,C = (cjr ),C
−1 = (cjr ), ρjk = Djkρ, ρ̂jk··· =

ρjk···(θ̂) and

kjkl···,rst ··· = kjkl···,rst ···(θ) = Eθ {Djkl··· logf (Xi; θ)Drst ··· logf (Xi; θ)}.
Also define

k∗
1 = ijr (ρjr + ρjρr), k∗

2 = 3kjrsui
jr isu,

k∗
3 = 3kijrρsi

ij irs, k∗
4 = 15kjrskuvwijr isuivw

and

Q1 = Drsi
rs, Q2 = k∗

2 , Q3 = 3Ds(kijr i
ij irs), Q4 = k∗

4 .

LEMMA 5.1.

nEθ(bB) → 1

2p

(
k∗

1 + 1

12
k∗

2 + 1

3
k∗

3 + 1

36
k∗

4

)
.

PROOF. Comparing with the Bayesian Bartlett correction factor as given in
equation (2.6) of [13], we obtain

bB = 1

2pn

(
H1 + 1

12
H2 + 1

3
H3 + 1

36
H4

)
+ o(n−1),(5.3)

where

H1 = cjr(ρ̂jr + ρ̂j ρ̂r ), H2 = 3ajrsuc
jrcsu,

H3 = 3aijr ρ̂sc
ij crs, H4 = 15ajrsauvwcjrcsucvw.

Noting that Eθ(Ha) = k∗
a + o(1), a = 1, . . . ,4, the lemma follows from (5.3). �
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LEMMA 5.2.

nbF (θ) → 1

2p

(
Q1 + 1

12
Q2 − 1

3
Q3 + 1

36
Q4

)
.

PROOF. Comparing with the frequentist Bartlett correction factor as given in
equation (2.10) of [13], we obtain

bF (θ) = 1

2pn

(
Q1 + 1

12
Q2 − 1

3
Q3 + 1

36
Q4

)
+ o(n−1),

from which the result follows. �

LEMMA 5.3.

nEθ

[
log

{
π(θ̂)

π(θ)

}]
→ ρrb

r + 1

2
ijrρjr ,

where br = ijr ikt kjk,t + 1
2 ijr ikt kjkt .

PROOF. From [20], page 209, we see that

Eθ(θ̂ r ) = θr + n−1br + o(n−1),(5.4)

Covθ (θ̂ r , θ̂ s) = n−1irs + o(n−1).(5.5)

By applying Bartlett’s identity,

kjkt + kj,kt + kk,j t + kt,jk + kj,k,t = 0

(cf. equation (7.2) of [20]), it can be seen that our expression for br agrees with
that of McCullagh. From (5.4), (5.5) and the Taylor expansion of ρ(θ̂) around θ ,
we obtain

Eθ {ρ(θ̂)} = ρ(θ) + n−1brρr + 1
2n−1ρrsi

rs + o(n−1),

from which the lemma follows. �

LEMMA 5.4.

nEθ

[
log

{ |J |
|I (θ)|

}]

→ −ijr

(
kjrsb

s + iskkjrs,k + 1

2
kjrst i

st

)

− 1

2
ij livi{(kji,lv − ij i ilv) + kjisi

tsklv,t + klvwitwkji,t + kjit klvwitw}.
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PROOF. By the Taylor expansion of ajr = ljr (θ̂ ) around θ , we get

ajr = kjr(θ) + ejr + o(n−1),(5.6)

where

ejr = ljr − kjr + kjrs(θ̂
s − θs)

+ (ljrs − kjrs)(θ̂
s − θs) + 1

2kjrst (θ̂
s − θs)(θ̂ t − θ t ).

(5.7)

From (5.6) and (5.7), we obtain

C = i(θ) − E∗ + o(n−1),

where E∗ = (ejr ). Noting that J = nC, I (θ) = ni(θ), i(θ) positive definite and
E∗ is a matrix with elements of order O(n−1/2), from the above expression for C

and standard results on the eigenvalues and determinant of a matrix, it follows by
the Taylor expansion that

log
{ |J |
|I (θ)|

}
= − tr{i−1(θ)E∗} − 1

2
tr{i−1(θ)E∗i−1(θ)E∗} + o(n−1/2).(5.8)

Using an expansion for θ̂ s − θs as in [20], Chapter 7, we obtain

θ̂ s − θs = ijs{lj + iuklu(ljk − kjk) + 1
2kjkt i

ukiwt lulw
} + o(n−1/2).(5.9)

Substituting (5.9) into (5.7) and using (5.4) and (5.5), it follows that

Eθ(ejr) = n−1(
kjrsb

s + kjrs,ki
sk + 1

2kjrst i
st ) + o(n−1)(5.10)

and

Eθ(ejreku) = n−1{(kjr,ku − ijr iku)

+ (kjrt kku,w + kkuwkjr,t + kjrt kkuw)itw} + o(n−1).
(5.11)

While all four terms on the right-hand side of (5.7) are required in evaluat-
ing (5.10), only the first two terms on the right-hand side of (5.7) are required in
evaluating (5.11). The lemma follows on taking expectations on both sides of (5.8)
and using (5.10) and (5.11) on the right-hand side. �

PROOF OF THEOREM 5.1. First, putting Lemmas 5.1 and 5.2 together gives

np{Eθ(bB) + bF (θ)} → 1
2

{
(Q1 + k∗

1) − 1
3(Q3 − k∗

3) + 1
6

(
Q2 + 1

3Q4
)}

.

Along with Lemmas 5.3 and 5.4, this gives equation (5.1) with

A(θ,π) = irs(ρrρs + 2ρrs) + 2(kjku + kjk,u)i
kuijrρr .

Now note that Drikj = −DrE
θ(lkj ) = −(kkjr + kkj,r ) so that

A(θ,π) = irs(ρrρs + 2ρrs) − 2Du(ijk)i
kuijrρr .
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Finally, Du(ijk)i
kuijr = −Du(i

ku)ijki
jr = −Du(i

ru) and so

A(θ,π) = irs(ρrρs + 2ρrs) + 2Ds(i
rs)ρr = irsρrρs + 2Ds(i

rsρr),

as required. �

We briefly discuss suitable regularity conditions on the likelihood and prior
for the validity of the three forms of remainder R1–R3, although we will not
dwell on alternative sets of sufficient conditions in the present paper. There are
broadly two sets of conditions required, those for the validity of the Laplace ap-
proximation of pπ(x) and those for the validity of the approximation of each
of the terms in (4.3). Consider first the form of remainder R2, ignoring for the
moment the uniformity requirement. A suitable set of conditions for this form
of remainder is given in Section 3 of [15], which constitutes the definition of a
“Laplace-regular” family. Broadly, one requires l(θ) to be six-times continuously
differentiable and π(θ) to be four-times continuously differentiable, plus addi-
tional conditions controlling the error term and nonlocal behavior of the integrand.
Since additionally we require uniformity in compact subsets of � in R2, we need
to replace the neighborhood Bε(θ0) in these conditions by an arbitrary compact
subset of �. In addition to these conditions, for the approximation of the terms
in (4.3) we require the expectations of the mixed fourth-order partial derivatives
of logf (X; θ) to be continuous and also conditions guaranteeing the expansions
for the expectation of θ̂ needed in the proofs of Lemmas 5.3 and 5.4, as given in
[20], Chapter 7. From an examination of the relevant proofs, it is seen that a slight
strengthening of the above conditions will be required for the stronger form R3
of remainder. For example, l(θ) and π(θ) seven-times and five-times continuously
differentiable, respectively, will give rise to a higher-order version of Laplace-
regularity. Finally, the weaker form of remainder R1 would apply when l(θ) and
π(θ) are only four-times and twice continuously differentiable, respectively, again
with additional regularity conditions controlling, for example, the nonlocal behav-
ior of the integrand in the Laplace approximation and giving uniformity of all the
o(n−1) remainder terms.

Returning to the predictive loss function, it follows from Theorem 5.1 that, for
π ∈ C, the asymptotic predictive loss function (4.5) is given by

L(θ,π) = A(θ,π) − A(θ,πJ ),(5.12)

where A(θ,πJ ) = irsνrνs +2Ds(i
rsνr) and ν = logπJ = 1

2 log |i|. It is interesting
to note that (5.12) is of the same form as the right-hand side of the first expression
in Theorem 4 of [14], which relates to the comparison of estimative predictive
distributions based on Bayes estimators. In the case of a single prediction (m = 1),
the connection can be understood from Theorem 7 of [14], which establishes that,
to the asymptotic order considered here, the Kullback–Leibler difference between
the posterior and the associated estimative predictive distributions is independent
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of the prior. The derivation of Theorem 5.1 given here is more direct, as it does not
involve Bayes estimators. Moreover, our result applies for an arbitrary amount of
prediction.

Note that L(θ,π) only depends on the sampling model through Fisher’s in-
formation. The quantity M(θ), however, involves components of skewness and
curvature of the model. We do not consider M(θ) further in this paper, although
its form, which may be deduced from the results of Lemmas 5.1–5.4, may be
of independent interest. It may be verified directly that L(θ,π) is invariant un-
der parameter transformation, as expected in view of (4.6) and the invariance of
LY |X(θ,π). Furthermore, since all the terms in (4.2) are invariant, it follows that
M(θ) ≡ M(θ) + A(θ,πJ ) must also be an invariant quantity. In the case p = 1,
we obtain the relatively simple expression

M(θ) = 1
12α2

111 + 1
2γ 2,(5.13)

where α111 is the skewness and γ 2 = α22 − α2
12 − 1 is Efron’s curvature, with

αjk···(θ) = {i(θ)}−(j+k+···)/2Eθ {lj (θ)lk(θ) . . .},
where lj is the j th derivative of l.

EXAMPLE 5.1. Normal model with unknown mean. As a simple first exam-
ple, suppose that Xi ∼ N(θ,1). Here i(θ) = 1 and α111(θ) = γ 2(θ) = 0 so that
L(θ,π) = (ρ′)2 + 2ρ′′ and M(θ) = 0 from (5.13). By construction, L(θ,πJ ) = 0,
but note that the improper priors πc ∝ exp{c(θ − θ0)}, c ∈ R, also deliver constant
loss, with L(θ,πc) = c2 > 0. We will see in Section 6 that Jeffreys’ prior is mini-
max in this example. Since here M(θ) = 0 and πJ (θ) ∝ 1, this result also follows
from the exact analysis of the criterion (2.1) in [19].

Now let � be the class of priors having compact support in � and let � =
� ∩ C. It follows from (4.6) that if π ∈ C and τ ∈ �, then L(τ,π) is equal
to the expected predictive loss

∫
L(θ,π)τ(θ) dθ . Since τ ∈ C, we also have

ζ(τ ) = − ∫
L(θ, τ )τ (θ) dθ , which is finite since L(θ, τ ) is continuous and, hence,

bounded on compact subsets of �. The next result gives expressions for the pre-
dictive regret d(τ,π) and predictive information ζ(τ ) when π ∈ C and τ ∈ �. The
expression for ζ(τ ) here is similar to that given in Theorem 5 of [14] for the Bayes
risk of bias-adjusted estimators.

LEMMA 5.5. Suppose π ∈ C and τ ∈ �. Then

d(τ,π) =
∫

irs(ρr − µr)(ρs − µs)τ dθ(5.14)

and

ζ(τ ) =
∫

irs(µr − νr)(µs − νs)τ dθ,(5.15)

where µ = log τ .
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PROOF. From (5.2), integration by parts gives∫
A(θ,π)τ(θ) dθ =

∫
irsρrρsτ dθ − 2

∫
irsρrµsτ dθ + 2β(τ,π),(5.16)

where

β(τ,π) =
p∑

s=1

∫
[irsρrτ ]θ̄ s (θ(−s))

θs(θ(−s))
dθ(−s)

and θs(θ(−s)) and θ̄ s(θ (−s)) are the finite lower and upper limits of integration
for θs for fixed θ(−s), the vector of components of θ omitting θs . But β(τ,π) = 0,
since both π and τ are in C. Therefore,∫

A(θ,π)τ(θ) dθ =
∫

irsρr(ρs − 2µs)τ dθ.(5.17)

Evaluating (5.17) at π = τ ∈ C gives∫
A(θ, τ )τ (θ) dθ = −

∫
irsµrµsτ dθ.(5.18)

It now follows from (5.17) and (5.18) that

d(τ,π) = L(τ,π) − L(τ, τ ) =
∫

{A(θ,π) − A(θ, τ )}τ(θ) dθ

=
∫

irs{ρr(ρs − 2µs) + µrµs}τ dθ,

which gives (5.14). Since ζ(τ ) = d(τ,πJ ), (5.15) follows on evaluating the above
expression at π = πJ . �

The expression (5.15) for the predictive information ζ(τ ) is seen to be invariant
under reparameterization, as expected. It might appear at first sight that ζ(τ ) will
attain the value zero at τ = πJ , but this is not necessarily the case since πJ may
be improper and there may be no sequence of priors in � converging to πJ in the
right way: see the next section. Finally, note that the form of d(τ,π) in Lemma 5.5
implies that L(θ,π) is a �-strictly proper scoring rule since d(τ,π) attains its
minimum value of zero uniquely at π = τ ∈ �.

6. Impartial, minimax and maximin priors. As expected, for a given prior
density π ∈ �∞, from (4.10) the posterior predictive regret will be large when the
predictive information (4.9) in τ is large. Therefore it is not possible to achieve
constant regret over all possible τ ∈ 	, nor minimaxity since the regret is un-
bounded. Instead, as discussed in Section 2, we consider the predictive regret as-
sociated with using π compared to using Jeffreys’ prior and study the behavior of
the predictive loss function

L(τ,π) = d(τ,π) − d(τ,πJ ),(6.1)
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which is the asymptotic form of the normalized version of equation (2.4).
Adopting standard game-theoretic terminology, the prior π ∈ �∞ is an equal-

izer prior if the predictive loss L(θ,π) is constant over θ ∈ �. This is equivalent
to the predictive loss (6.1) being constant over all τ ∈ �. We will therefore re-
fer to an equalizer prior as an impartial prior. The prior π0 ∈ �∞ is minimax if
supτ∈	 L(τ,π0) = W , where

W = inf
π∈�∞

sup
τ∈	

L(τ,π)

is the upper value of the game. To obtain minimax solutions, we will adopt a stan-
dard game theory technique of searching for equalizer rules and showing that they
are “extended Bayes” rules; see, for example, Chapter 5 of [4]. This is also the
strategy used by Liang and Barron [19] for deriving minimax priors under the
predictive regret (2.2) for location and scale families. In the present context the
relevant result is given as Theorem 6.1 below.

Let 	+ ⊂ �∞ be the class of priors π in �∞ for which there exists a
sequence (τk) of priors in 	 satisfying (i) L(τk,π) = ∫

L(θ,π)dτk(θ) and
(ii) d(τk,π) → 0. Since L(τ,π) is a proper scoring rule, each τk is a Bayes so-
lution and, hence, 	+ can be regarded as a class of extended Bayes solutions.
If π ∈ 	+ is an equalizer prior, then we can unambiguously define its predictive
information as

ζ(π) = lim
k→∞ ζ(τk)

for any sequence τk ∈ 	 satisfying (i) and (ii) above. This is true since L(θ,π) = c,
say, for all θ ∈ �, and so for every such sequence we have L(τk,π) = c for all k

from (i). Therefore, from (4.10),

ζ(τk) = d(τk,π) − c,(6.2)

which tends to −c as k → ∞.
Finally, we define the class U ⊂ �∞ of priors π for which

lim sup
n→∞

cn sup
θ∈�

LY |X(θ,π) < ∞(6.3)

for every sequence (mn). Clearly, priors in Uc have poor finite sample predictive
behavior relative to Jeffreys’ prior.

LEMMA 6.1. Suppose that π ∈ C ∩U , that R1, R2 or R3 holds and that (mn)

is any sequence satisfying the conditions in Theorem 4.1(a), (b) or (c), respectively.
Then

sup
τ∈	

L(τ,π) ≤ sup
θ∈�

L(θ,π).
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PROOF. Let τ ∈ 	,ε > 0 and choose a compact set K ⊂ � for which∫
Kc dτ(θ) ≤ ε. Then

LY |X(τ,π) ≤ sup
θ∈K

LY |X(θ,π) + ε sup
θ∈Kc

LY |X(θ,π)

so that

L(τ,π) = lim sup
n→∞

cnLY |X(τ,π) ≤ sup
θ∈K

L(θ,π) + kε

from (4.6) since π ∈ C, where k = lim supn→∞ cn supθ LY |X(θ,π) < ∞ since
π ∈ U . The result follows since ε was arbitrary. �

We now establish the following connection between equalizer and minimax pri-
ors.

THEOREM 6.1. Suppose that π0 ∈ 	+ ∩ C ∩ U is an equalizer prior, that
R1, R2 or R3 holds with π = π0 and that (mn) is any sequence satisfying the
conditions in Theorem 4.1(a), (b) or (c) respectively. Then π0 is minimax and
ζ(π0) = infτ∈	 ζ(τ).

PROOF. Define

W = sup
τ∈	

inf
π∈�∞

L(τ,π)

to be the lower value of the game. Then W ≤ W is a standard result from game the-
ory. Next, since π0 is an equalizer prior, we have L(θ,π0) = c, say, for all θ ∈ �.
Therefore, W = infπ∈�∞ supτ∈	 L(τ,π) ≤ supτ∈	 L(τ,π0) ≤ supθ∈� L(θ,

π0) = c from Lemma 6.1 since π0 ∈ C ∩ U . Therefore, W ≤ c.
Since from Lemma 4.1 L(τ,π) is a 	-proper scoring rule, we have

infπ∈�∞ L(τ,π) ≥ L(τ, τ ) = −ζ(τ ) for every τ ∈ 	. Therefore, W ≥
− infτ∈	 ζ(τ). Since π0 ∈ 	+, there exists a sequence (τk) in 	 with d(τk,

π0) → 0. Therefore, since ζ(τk) ≥ infτ∈	 ζ(τ) ≥ −W and, from (6.2), ζ(τk) →−c

as k → ∞, we have c ≤ W . These relations give W ≤ c ≤ W and it follows that
W = c = W . The result now follows from the definitions of minimaxity and ζ(π0).

�

We see that, under the conditions of Theorem 6.1, the minimax prior π0 has
a natural interpretation of containing minimum predictive information about Y ,
since the infimum of the predictive information (4.9) is attained at τ = π0. Equiva-
lently, π0 is maximin since it maximizes the Bayes risk −ζ(τ ) of τ ∈ 	 under (4.8)
and, hence, is a least favorable prior under predictive loss. Notice also that The-
orem 6.1 implies that supτ∈	 L(τ,π0) = c, regardless of the particular sequence
(mn) used.
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We note that for the assertion of Theorem 6.1 to hold we require that π0 sat-
isfies condition (6.3). There may exist a prior π1 ∈ Uc which appears to domi-
nate the minimax prior π0 on the basis of the asymptotic predictive loss function
L(θ,π). However, this prior will possess poor penultimate asymptotic behavior
since LY |X(θ,π) will be asymptotically unbounded. This will be reflected in the
value of supτ∈	 L(τ,π), which will necessarily be greater than supθ∈� L(θ,π).
This phenomenon will be illustrated in Example 6.1.

COROLLARY 6.1. Assume the conditions of Theorem 6.1 and additionally
that π0 is proper. Then if ζ(π0) = −c, where c is the constant value of L(θ,π0),
then π0 is minimax and ζ(π0) = infτ∈	 ζ(τ).

PROOF. Since d(π0, π0) = 0 and
∫

L(θ,π0) dπ0(θ) = c = −ζ(π0) =
L(π0, π0), it follows on taking τk = π0 that π0 ∈ 	+. The result now follows
from Theorem 6.1. �

Suppose that π0 ∈ C ∩ U is an improper equalizer prior. One way to show that
π0 ∈ 	+ is to construct a sequence (τk) of priors in � for which d(τk,π0) → 0,
where d(τ,π0) is given by formula (5.14). As noted just prior to Lemma 5.5, the
condition L(τk,π0) = ∫

L(θ,π0) dτk(θ) is automatically satisfied when τk ∈ �.
We consider first the case p = 1. In this case it turns out that Jeffreys’ prior

is a minimax solution, and, hence, the assertion at the end of Example 5.1. Let
H be the class of probability density functions h on (−1,1) possessing second-
order continuous derivatives and that satisfy h(−1) = h′(−1) = h′′(−1) = h(1) =
h′(1) = h′′(1) = 0 and ∫ 1

−1
{g′(u)}2h(u)du < ∞,(6.4)

where g(u) = logh(u); that is, the Fisher information associated with h is finite.
The class H is nonempty, since the density of the random variable U = 2V − 1,
where V is any beta (a, b) density with a, b > 3, satisfies these conditions.

COROLLARY 6.2. Suppose that p = 1. Then Jeffreys’ prior is minimax and
ζ(πJ ) = infτ∈	 ζ(τ).

PROOF. Since L(θ,πJ ) = 0, Jeffreys’ prior is an equalizer prior. We therefore
need to show that πJ ∈ 	+ ∩C ∩U . Recall that πJ ∈ C was an assumption made
in Section 4. Also, since LY |X(θ,πJ ) = 0 for all n from (2.5), πJ ∈ U .

If πJ is proper, the result now follows immediately from Corollary 6.1 since
ζY |X(πJ ) = 0 for all n. Suppose then that πJ is improper. Without loss of gen-
erality, we assume that i(θ) = 1, so that Jeffreys’ prior is uniform. Since πJ is
improper, without loss of generality we take � to be either (−∞,∞) or (0,∞)
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by a suitable linear transformation. Now let U be a random variable with density
h ∈ H .

Suppose first that � = (−∞,∞) and let τk be the density of θ = kU . Clearly,
τk ∈ �, τk has support [−k, k] and µ′

k(θ) = g′(u)/k, where µk = log τk and u =
θ/k. Therefore, from (5.14),

d(τk,π
J ) = 1

k2 E{g′(U)}2 → 0

as k → ∞ from (6.4) so that πJ ∈ 	+. The result now follows from Theorem 6.1.
Next suppose that � = (0,∞) and let τk be the density of θ = k(U + 1) + 1.

Then τk ∈ �, τk has support [1,2k + 1] and µ′
k(θ) = g′(u)/k, where u = (θ −

1)/k − 1. Therefore, from (5.14),

d(τk,π
J ) = 1

k2 E{g′(U)}2 → 0

as k → ∞ from (6.4), so that πJ ∈ 	+ and again the result follows from Theo-
rem 6.1. �

EXAMPLE 6.1. Bernoulli model. Here Jeffreys’ prior is the beta (1/2,1/2)

distribution, which is therefore minimax from Corollary 6.2. The underlying
Bernoulli probability mass function is f (x|θ) = θx(1−θ)1−x, x = 0,1,0 < θ < 1.
Let πa be the density of the beta (a, a) distribution, where a > 0. It is straightfor-
ward to check from (5.12) that

L(θ,πa) =
(
a − 1

2

){
−4

(
a − 1

2

)
+ a − 3/2

θ(1 − θ)

}
,

from which we see that L(θ,π1) = −4, where π1 = π3/2, the beta (3
2 , 3

2) distri-
bution. Hence, the prior π1 would appear to dominate Jeffreys’ prior. In view of
Corollary 6.2, however, we conclude that condition (6.3) must break down for this
prior. Indeed, it can be shown directly that cnLY |X(0, π1) is an increasing function
of m for fixed n and that, when m = 1, we have cnLY |X(0, π1) = n + O(1). By
the continuity of LY |X(θ,π1) in (0,1), it follows that cn supθ LY |X(θ,π1) → ∞ as
n → ∞ for every sequence (mn) and so π1 /∈ U . Therefore, π1 exhibits poor finite
sample predictive behavior relative to Jeffreys’ prior for values of θ close to 0 or 1.

It is of some interest to compare this behavior with the asymptotic minimax
analysis under the prior predictive regret (4.1). Under (4.1), Jeffreys’ prior is as-
ymptotically maximin [8], but not minimax due to its poor boundary risk behavior.
However, a sequence of priors converging to Jeffreys’ prior can be constructed
that is asymptotically minimax [26]. Under our posterior predictive regret crite-
rion, Jeffreys’ prior is both maximin and minimax. In particular, it follows that it
is not possible to modify the beta (3

2 , 3
2) distribution at the boundaries to make it

asymptotically minimax.
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In the examples below our strategy for identifying a minimax prior will be
to consider a suitable class of candidate priors in C, compute the predictive
loss (5.12), identify the subclass of equalizer priors in U and choose the prior π0

in this subclass, assuming it is nonempty, with minimum constant loss. Clearly,
π0 will be minimax over this subclass of equalizer priors. If, in addition, it can be
shown that π0 ∈ 	+, then the conditions of Theorem 6.1 hold and π0 is minimax
over 	. In particular, we will see that in dimensions greater than one, although
Jeffreys’ prior is necessarily impartial, it may not be minimax. This is not surpris-
ing, since we know that in the special case of transformation models the right Haar
measure is the best invariant prior under posterior predictive loss (see Section 2).
Exact minimax solutions for Examples 6.2 and 6.3 under the predictive regret (2.2)
have recently been obtained by Liang and Barron [19]. Finally, all these examples
are sufficiently regular for the strongest form R3 of remainder to hold for the pri-
ors π0 that are obtained. Hence, from Theorem 4.1(c), all the results will apply for
an arbitrary amount of prediction.

EXAMPLE 6.2. Normal model with unknown mean and variance. Here X ∼
N(β,σ 2) and θ = (β, σ ). We will show that the prior π0(θ) ∝ σ−1 is minimax.
This is Jeffreys’ independence prior, or the right Haar measure under the group of
affine transformations of the data.

Consider the class of improper priors πa(θ) ∝ σ−a on �, where a ∈ R. Trans-
forming to φ = (β,λ), where λ = logσ , these priors become πa(φ) ∝ exp{−(a −
1)λ} in the φ-parameterization. Here we find that i(φ) = diag(e−2λ,2). Since
ρa(φ) = logπa(φ) = −(a − 1)λ, it follows immediately from (5.2) that A(φ,

πa) = 1
2(a − 1)2. Furthermore, since |i(φ)| = 2e−2λ, we have πJ (φ) ∝ e−λ =

π2(φ) so that A(φ,πJ ) = 1
2 . It now follows from (5.12) that L(φ,πa) = 1

2{(a −
1)2 − 1}. Therefore, all priors in this class are equalizer priors and L(φ,πa) at-
tains its minimum value in this class when a = 1, which corresponds to π0(φ) ∝ 1,
or π0(θ) ∝ σ−1 in the θ -parameterization. Note that the minimum value −1

2 < 0,
which is the loss under Jeffreys’ prior.

We now show that π0 ∈ 	+ ∩ C ∩ U . Clearly, π0 ∈ C, while π0 ∈ U follows
because LY |X(θ,π0) is constant for all n since π0 is invariant under the transitive
group of transformations of � induced by the group of affine transformations of
the observations (see Section 2). It remains to show that π0 ∈ 	+. Let U1,U2 be
independent random variables with common density h ∈ H and let τk be the joint
density of φ = (β,λ), where β = k1U1, λ = k2U2 and k1, k2 are functions of k

to be determined. Let µk = log τk . Then µkr = k−1
r g′(Ur), r = 1,2, where g =

logh. Write α = ∫ 1
−1{g′(u)}2h(u)du < ∞ since h ∈ H . Since ρ0(φ) = logπ0(φ)

is constant, it follows from (5.14) that

d(τk,π0) = E
[
k−2

1 e2λ{g′(U1)}2 + 1
2k−2

2 {g′(U2)}2] ≤ α
{
k−2

1 e2k2 + 1
2k−2

2

}
,
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since λ ≤ k2. Now take k1 = kek, k2 = k. Then d(τk,π0) ≤ 3α
2k2 → 0 as k → ∞

and, hence, π0 ∈ 	+. It now follows from Theorem 6.1 that π0 is minimax and
that ζ(π0) = 1

2 .

EXAMPLE 6.3. Normal linear regression. Here Xi ∼ N(zT
i β, σ 2),

i = 1, . . . , n, where Zn = (z1, . . . , zn)
T is an n × q matrix of rank q ≥ 1 and

θ = (β, σ ). Using a similar argument to that in Example 6.2, we can show that
again Jeffreys’ independence prior, or the right Haar measure, π0(θ) ∝ σ−1 is
minimax.

Since the variables are not identically distributed in this example, it is not
covered by the asymptotic theory of Sections 4 and 5. However, under suitable
stability assumptions on the sequence (zi) of regressor variables, at least that
Vn ≡ n−1ZT

n Zn is uniformly bounded away from zero and infinity, then a version
of Theorem 5.1 will apply.

Proceeding as in Example 6.2, we again consider the class of priors πa(θ) ∝
σ−a on �, where a ∈ R. Transforming to φ = (β,λ), where λ = logσ , these pri-
ors become πa(φ) ∝ exp{−(a − 1)λ}. Here we find that in(φ) = diag(e−2λVn,2)

and, exactly as in Example 6.2, we obtain A(φ,πa) = 1
2(a − 1)2. Here |in(φ)| =

2|Vn|e−2qλ so πJ (φ) ∝ e−qλ = πq+1(φ) for all n, giving A(φ,πJ ) = 1
2q2 and,

hence, L(φ,πa) = 1
2{(a − 1)2 − q2}. Therefore, all priors in this class are equal-

izer priors and L attains its minimum value in this class when a = 1, which cor-
responds to π0(φ) ∝ 1, or π0(θ) ∝ σ−1 in the θ -parameterization. Notice that the
drop in predictive loss increases as the square of the number q of regressors in
the model. Note also that the ratio |in|−1|in+1| is free from θ , so that a version of
Theorem 4.1 will hold.

Exactly as in Example 6.2, π0 ∈ C ∩U and it remains to show that π0 ∈ 	+. Let
p = q + 1 and Uj , j = 1, . . . , p, be independent random variables with common
density h ∈ H . With the same definitions as in Example 6.2, let βr = k1Ur, r =
1, . . . , q, λ = k2Up , so that µkr = k−1

1 g′(Ur), r = 1, . . . , q,µkp = k−1
2 g′(Up).

Then it follows from (5.14) that, with the summations over r and s running from
1 to q ,

d(τk,π0) = E
{
e2λV rs

n µkrµks + 1
2µ2

kp

}
= E

{
k−2

1 e2λV rs
n g′(Ur)g

′(Us) + 1
2k−2

2 g′(Up)2}
≤ α

{
k−2

1 e2k2 trace(V −1
n ) + 1

2k−2
2

}
,

using
∫ 1
−1 g′(u)h(u)du = 0. Now take k1 = kek, k2 = k. Then, as before, d(τk,

π0) → 0 as k → ∞ and, hence, π0 ∈ 	+. It follows from Theorem 6.1 that π0 is

minimax and ζ(π0) = q2

2 .
Interestingly, we note that the priors π0 identified in Examples 6.2 and 6.3 also

give rise to minimum predictive coverage probability bias; see [12]. The next ex-
ample is more challenging and illustrates the difficulties associated with finding
minimax priors more generally.
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EXAMPLE 6.4. Multivariate normal. Here X ∼ Nq(µ,�), with θ comprising
all elements of µ and �. Write �−1 = T ′T , where T = (tij ) is a lower trian-
gular matrix satisfying tii > 0. Let µ = (µ1, . . . ,µq)

′,ψi = tii ,1 ≤ i ≤ q,ψ =
(ψ1, . . . ,ψq)

′, βij = t−1
ii tij ,1 ≤ j < i ≤ q and β(i) = (βi1, . . . , βi,i−1)

′,2 ≤ i ≤ q .
Then γ = (ψ ′, β(2)′, . . . , β(q)′,µ′)′ is a one-to-one transformation of θ . The log-
likelihood is

l(γ ) =
q∑

i=1

logψi − 1
2

[ q∑
i=1

ψ2
i

{
i∑

j=1

βij (xj − µj)

}2]
,

writing βii = 1, i = 1, . . . , q . One then finds that the information matrix i(γ ) is
block diagonal in ψ1, . . . ,ψq,β

(2)′, . . . , β(q)′,µ′ and is given by

diag(2ψ−2
1 , . . . ,2ψ−2

q ,ψ2
2 �11, . . . ,ψ

2
q�q−1,q−1,�

−1),

where �ii is the submatrix of � corresponding to the first i components
of X. Using the fact that |�ii | = ∏i

j=1 ψ−2
j , i = 1, . . . , q , we obtain |i(γ )| =

2q ∏q
i=1 ψ

4i−2q−2
i .

Consider the class of priors πa(θ) ∝ |�|−(q+2−a)/2 on �, where a ∈ R. In
the γ -parameterization, this class becomes πa(γ ) ∝ ∏q

i=1 ψ
2i−q−a−1
i . Noting that

the case a = 0 is Jeffreys’ prior, it is straightforward to show from (5.12) that
L(γ,π) = q

2 {(a − 1)2 − 1}. Therefore, all priors in this class are equalizer priors
and L attains its minimum value within this class when a = 1. From invariance
considerations via affine transformations of X, it can be shown that these priors
are also equalizer priors for finite n and, hence, are all in the class U . These results
therefore suggest that the right Haar prior π0(θ) ∝ |�|−(q+1)/2 arising from the
affine group is minimax. However, in this example it does not appear to be possi-
ble to approximate π0 by a sequence of compact priors, as was done in the previous
examples. We conjecture, however, that π0 can be approximated by a suitable se-
quence of proper priors so that Theorem 6.1 will give the minimaxity of π0, but
we have been unable to demonstrate this. This example does show, however, that
Jeffreys’ prior is dominated by π0.

Interestingly, further analysis reveals that the prior π1(γ ) ∝ ∏q
i=1 ψ−1

i is also
an equalizer prior and that it dominates π0. In the θ -parameterization this prior
becomes π1(θ) ∝ {∏q

i=1 |�ii |}−1. However, this prior is seen to be noninvari-
ant under nonsingular transformation of X and, furthermore, does not satisfy the
boundedness condition (6.3).

In the case q = 2, in the parameterization φ = (µ1,µ2, σ1, σ2, ρ), where σi is
the standard deviation of Xi, i = 1,2, and ρ = Corr(X1,X2), Jeffreys’ prior and
π0 become, respectively,

πJ (φ) ∝ σ−2
1 σ−2

2 (1 − ρ2)−2,

π0(φ) ∝ σ−1
1 σ−1

2 (1 − ρ2)−3/2.
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Therefore (see the paragraph below), π0 is Jeffreys’ “two-step” prior. In the con-
text of our predictive set-up, marginalization issues correspond to predicting only
certain functions of the future data Y = (Xn+1, . . . ,Xn+m). In general, the associ-
ated minimax predictive prior will differ from that for the problem of predicting the
entire future data Y unless the selected statistics just form a sufficiency reduction
of Y . Such questions will be explored in future work. Thus, if we were only inter-
ested in predicting the correlation coefficient of a future set of bivariate data, then
we might start with the observed correlation as the data X and use Jeffreys’ prior
in this single parameter case, which is π(ρ) ∝ (1 − ρ2)−1. For further discussion
and references on the choice of prior in this example, see [6], page 363.

Finally, we note the corresponding result for general q in the case µ known.
Again, considering the class of priors πa(θ) ∝ |�|−(q+2−a)/2 on �, we find that
the optimal choice is a = 1, so π0 is as given above and in this case coincides with
Jeffreys’ prior. This was also shown to be a predictive probability matching prior
in [12] in the case q = 2.

Under the conditions of Theorem 6.1, it is possible to change the base measure
from Jeffreys’ prior to π0, since π0 is neutral with respect to πJ under L(θ,π).
Denoting quantities with respect to the base measure π0 with a zero subscript,
since L(θ,π0) = c ≤ 0 and ζ(π0) = −c, we have, for π ∈ �∞,

L0(θ,π) = L(θ,π) − L(θ,π0) = L(θ,π) − c

and for τ ∈ 	,

ζ0(τ ) = ζ(τ ) + c.

Therefore, with respect to the base measure π0, the predictive loss under π0 be-
comes L0(θ,π0) = 0 and the minimum predictive information, attained at π = π0,
is zero.

7. Discussion. In this paper we have obtained an asymptotic predictive loss
function that reflects the finite sample size predictive behavior of alternative pri-
ors when the sample size is large for arbitrary amounts of prediction. This loss
function is related to that in [14] for the comparison of estimative predictive dis-
tributions based on Bayes estimators. It can be used to derive nonsubjective priors
that are impartial, minimax and maximin, which is equivalent here to minimizing
a measure of the predictive information contained in a prior. In dimensions greater
than one, unlike an analysis based on prior predictive regret, the maximin prior
may not be Jeffreys’ prior. A number of examples have been given to illustrate
these ideas.

As discussed in [23], as model complexity increases, it becomes more difficult
to make sensible prior assignments, while at the same time the effect of the prior
specification on the final inference of interest becomes more pronounced. It is
therefore important to have sound methodology available for the construction and
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implementation of priors in the multiparameter case. We believe that our prelim-
inary analysis of the posterior predictive regret (2.1) indicates that it should be a
valuable tool for such an enterprise. More extensive analysis is now required, par-
ticularly aimed at developing general methods of finding exact and approximate
solutions for the practical implementation of this work and investigating connec-
tions with predictive coverage probability bias. Local priors (see, e.g., [23, 24])
are expected to play a role. It would also be interesting to develop asymptotically
impartial minimax posterior predictive loss priors for dependent observations and
for various classes of nonregular problems. In particular, all the definitions in Sec-
tion 2 for nonasymptotic settings will apply and could be used to explore predictive
behavior numerically.

Acknowledgments. We would like to thank two referees and an Associate
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