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Abstract
Recurrent interactions in the primary visual cortex makes its output a complex

nonlinear transform of its input. This transform serves pre-attentive visual seg-
mentation, i.e., autonomously processing visual inputs to give outputs that selec-
tively emphasize certain features for segmentation. An analytical understanding
of the nonlinear dynamics of the recurrent neural circuit is essential to harness its
computational power. We derive requirements on the neural architecture, compo-
nents, and connection weights of a biologically plausible model of the cortex such
that region segmentation, figure-ground segregation, and contour enhancement
can be achieved simultaneously. In addition, we analyze the conditions govern-
ing neural oscillations, illusory contours, and the absence of visual hallucinations.
Many of our analytical techniques can be applied to other recurrent networks with
translation invariant neural and connection structures.

1 Introduction
Recurrent neural dynamics is a basic computational substrate for cortical process-
ing. In the primary visual cortex, this recurrent dynamics is instantiated by finite
range, lateral, intra-cortical neural connections. The input to the cortex is the reti-
nal image filtered through cortical receptive fields (RFs) shaped like small edges
or bars and retinotopically distributed in visual space. The outputs of the cortex
are the cell activities, which can be viewed as a complex nonlinear transform of the
input under the recurrent interactions. Two characteristics of this transform follow
immediately. First, if we focus on cases when top-down feedback from higher vi-
sual areas does not change during the course of the transform, the primary cortical
computation is autonomous, suggesting that the computation concerned is pre-
attentive in nature. In other words, we consider cases when feedback from higher
visual areas is purely passive and its role is merely to set a background or operat-
ing point for V1 computation. This enables us to isolate the recurrent dynamics in
V1 for thorough study. Of course, more extensive computations can doubtless be
performed when V1 interacts dynamically with other visual areas; however, this

1A preliminary version of this paper was published as “Neural dynamics in a
recurrent network model of primary visual cortex” in Proceedings of ICANN99.
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is beyond the scope of the paper. The second characteristic is that the recurrent
dynamics enables computations to occur at a global scale, despite the local connec-
tivity. The output of a V1 cell depends non-locally on its inputs in a way that it
is hard to achieve in feed-forward networks with only retinotopically organized
connections.

Physiological and psychophysical data suggest that V1 implements pre-
attentive computations such as contour enhancement, texture segmentation, and
figure-ground segregation (Kapadia, Ito, Gilbert, and Westheimer1995, Gallant,
Nothdurft, van Essen 1995, Knierim and van Essen 1992). To perform these tasks,
V1 functions as a saliency circuit that gives higher responses to locations of higher
saliency in inputs, such as the borders between texture regions, pop-out figures
against backgrounds, and smooth contours (Li 1997, 1998, 1999a, 1999b). Such pre-
attentive segmentation is known to be quite difficult, especially considering that
the same cortical circuit needs to achieve both contour enhancement and region or
figure/ground segmentation, and that there is still no known general solution to
segmentation after decades of research in machine and natural visual algorithms.
Various models of the cortex have addressed particular components of the cortical
computation, such as contour enhancement, i.e., the relatively higher activities of
cells receiving inputs arising from bars belonging to smooth contours (Grossberg
and Mingolla 1985, Zucker, Dobbins, Iverson 1989, Yen and Finkel 1998). It is al-
ready very hard to model successfully contour enhancement in the cortex (Li 1998).
Previous efforts (Grossberg and Mingolla 1985) have been made to capture in a sin-
gle model both contour enhancement and texture segmentation. However, a fully
functional and dynamically well-behaved model has only recently been proposed
(Li 1997, 1999a).

Understanding the complex, recurrent, and nonlinear neural dynamics under-
lying the computation is essential to marshall its power. Li (1997, 1998, 1999a)
introduced and described the structure and behavior of a recurrent model of V1
that simultaneously achieves the desired components of the computation. In this
paper, we describe the mathematical analysis of the nonlinear dynamics that en-
abled the computational design of our model. We study issues such as network
architecture, computational constraints, and dynamic stability that are directly rel-
evant to the global scale computation. By contrast, single unit properties, such as
orientation tuning, that are less relevant to the global scale computation will not be
a focus. Some of our analytical techniques, e.g., the analysis of the cortical micro-
circuit and the stability study of the translation invariant networks, can be applied
to study other cortical areas that share the common properties of neural elements,
connections, and the canonical microcircuit (Shepherd 1990).

2 A minimal model of the primary visual cortex
A minimal model of the cortex is the one which has just enough components to ex-
ecute the necessary computations without excess details. It is essentially a subjec-
tive matter as to what a minimal model is, since there is no recipe for a minimalist
design. However, we present, as a candidate, a model that instantiates all the de-
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sired computation, but for which simplified versions fail. Throughout the paper,
we try to keep our analysis general in discussing characteristics of the recurrent
dynamics. However, to illustrate or demonstrate particular analytical results, and
approximation and simplification techniques, we often use a model of V1 whose
specifics and numerical parameters are available (Li 1998, 1999a)2, so that the read-
ers can try out our simulations.

We model only layer 2-3 cells in the cortex, which are mainly responsible for
the recurrent dynamics. A model neuron has membrane potential x and output or
firing rate gx(x), which is a sigmoid-like function of x. Model cells have orienta-
tion selective RFs arranged on a regular 2-dimensional grid in image coordinates.
At each grid point i = (mi, ni), where mi and ni are the horizontal and vertical
coordinates, there are K units, one each for preferred orientations θ = kπ/K for
k = 0, 1, ..., K − 1 spanning 180o. Unit iθ has its RF located at i and prefers orien-
tation θ. It receives external visual inputs Iiθ, which is the result of pre-processing
the visual image through the RF. Its response gx(xiθ) is the result of both Iiθ and the
recurrent interactions. The image grid and the interactions are treated as transla-
tion invariant, allowing us to use many powerful analytical techniques. However,
we should keep in mind that translation symmetry holds approximately only over
a sufficiently small portion of the visual field, since our visual system has different
resolutions at different eccentricities.

The desired computation {Iiθ} → {gx(xiθ)} gives higher responses gx(xiθ) to
input bars iθ of higher perceptual saliency. For instance, even if two input bars iθ
and jθ′ have the same input contrast Iiθ = Ijθ′, the response gx(xiθ) to iθ may be
higher if iθ (but not jθ′) is part of an isolated smooth contour, or is at the boundary
of a texture region, or is a pop-out target against a background. Conversely, if the
input bars are of the same saliency, e.g., when the input consists merely of bars
of the same contrast from a homogeneous texture without any boundary, the the
output level to every bar should be the same.

2.1 A less-than-minimal recurrent model of V1
A very simple recurrent model of the cortex can be described by equation:

ẋiθ = −xiθ +
∑

jθ′

Tiθ,jθ′gx(xjθ′) + Iiθ + Io (1)

where −xiθ models the decay in membrane potential, and Io is the background
input. The recurrent connections Tiθ,jθ′ link cells iθ and jθ′. Visual input Iiθ per-
sists after onset, and initializes the activity levels gx(xiθ). The activities are then

2In Oct. 2000, a typo was discovered in the Appendix of the published version of Li (1998, 1999a)
for the model parameter for Wiθ,jθ′ . In Li (1998, 1999a), it was mistakenly written that “Wiθ,jθ′ =
0” when “d ≥ 10” or other conditions listed in Li (1998, 1999a) are satisfied. The correct model
parameter, which have been used to produce all the published model results so far (including the
ones in Li (1998, 1999a)), should be such that the condition “d ≥ 10” printed in Li (1998, 1999a)
be changed to condition “d/ cos(β/4) ≥ 10”. Here d and β are just as defined in Li (1998, 1999a).
The typo should lead to quantitative changes in the model behavior from those published so far or
those presented in this paper.
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modified by the network interaction, making gx(xiθ) dependent on input Ijθ′ for
(jθ′) 6= (iθ). Translation invariance in the connections means that Tiθ,jθ′ depends
only on the vector i − j and the relative angles of this vector to the orientations θ
and θ′. Reflection symmetry means that Tiθ,jθ′ = Tjθ′,iθ.

Many previous models of the primary visual cortex (e.g., Grossberg and Min-
golla 1985, Zucker, Dobbins, Iverson 1989, Braun, Niebur, Schuster, and Koch 1994)
can be seen as more complex versions of the one described above. The added com-
plexities include stronger nonlinearities, global normalization (e.g., by adding a
global normalizing input to the background Io), and shunting inhibition. How-
ever, they are all characterized by reciprocal or symmetric interactions between
model units. It is well known (Hopfield 1982, Cohen and Grossberg 1983) that in a
symmetric recurrent network as in equation (1), given any stationary input Iiθ, the
dynamic trajectory xiθ(t) will converge in time t to a fixed point which is a local
minimum (attractor) in an energy landscape

E({xiθ}) = −
1

2

∑

iθ,jθ′

Tiθ,jθ′gx(xiθ)gx(xjθ′) −
∑

iθ

Iiθgx(xiθ) +
∑

iθ

∫ gx(xiθ)

0
g−1

x (x)dx (2)

Empirically, this convergence behavior to attractors still holds when the complex-
ities above are added to the network.

The fixed point x̄iθ of the motion trajectory, or the minimum energy state where
∂E/∂gx(xiθ) = 0 for all iθ, is (when Io = 0)

x̄iθ = Iiθ +
∑

jθ′

Tiθ,jθ′gx(x̄jθ′) (3)

Without recurrent interactions (T = 0), this minimum x̄iθ = Iiθ is a faithful copy
of the input Iiθ. Sufficiently strong interactions T shape x̄iθ and make them un-
faithful to the input. This happens when T is so strong that one of the eigenvalues
λT of the matrix T with elements Tiθ,jθ′ ≡ Tiθ,jθ′g′x(x̄jθ′) satisfies λT > 1 (here g′x
is the slope of gx(.)). For instance, when the input Iiθ is translation invariant such
that Iiθ = Ijθ for all i 6= j, there is a translation invariant fixed point x̄iθ = x̄jθ

for all i 6= j. Strong interactions T could make this fixed point unstable and no
longer a local minimum of the energy, and pull the state into an attractor in the
direction of an eigenvector of T which is not translation invariant, i.e., xiθ 6= xjθ

for i 6= j. Computationally, the input unfaithfullness, i.e., gx(xiθ) is not a function
of Iiθ alone, is desirable to a limited degree since this is how a saliency circuit pro-
duces differential outputs gx(xiθ) to input bars of same contrast Iiθ but different
saliencies. However, this unfaithfulness should be driven by the nature of the in-
put pattern {Iiθ} or its deviation from homogeneity (e.g., the smooth contours or
figures against a background). Otherwise, visual hallucinations (Ermentrout and
Cowan 1979) result when spontaneous or non-input-driven network behaviors —
spontaneous pattern formation or symmetry breaking — happen. Note that if {xiθ} is
an attractor under homogeneous input Iiθ = Ijθ, so is a translated state {x′iθ} such
that x′iθ = xi+a,θ for any translation a, since {xiθ} and {x′iθ} have the same energy
valueE. Hence, the absolute positions of the hallucinated patterns are random and
shiftable. When the translation a is one dimensional, such a continuum of attrac-
tors has been called a “line attractor” (Zhang 1996). For two or more dimensional
patterns, the continuum is a “surface attractor”.
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To illustrate, consider an example when Tiθ,jθ′ ∝ δθ,θ′ only links cells that prefer
the same orientation, an idealization from observations (Gilbert and Wiesel 1983,
Rockland and Lund 1983) that the lateral interactions tend to link cells preferring
similar orientations. The network contains multiple, independent, subnetworks,
one each for every θ. Take the θ = 0o subnet, and for convenience drop the
subindex θ. Consider a simple center-surround interaction, such that in a Man-
hattan grid,

Tij ∝











1 if i = j
−1 if (mj, nj) = (mi ± 1, ni) or (mi, ni ± 1)
0 otherwise

(4)

With sufficiently strong T , the network under homogeneous input Ii = Ij for all i, j
can settle into an “antiferromagnetic” state in which neighboring units xi exhibit
one of the two different activities xmi ,ni

= xmi+1,ni+1 6= xmi+1,n = xmi,ni+1. This
pattern {xi} is just a spatial array of replicas of the center-surround interaction
pattern T .

Fig (1) shows the behavior of a subnet for θ = 0, the vertical bars, when the
interaction Tij depends on the orientation of i− j and is not rotationally invariant.
Here, Tij > 0 between local and roughly vertically displaced i and j, and Tij < 0
between local and more horizontally displaced i and j. Hence, two nearby bars i
and j excite each other when they are co-aligned and inhibit each other otherwise,
as suggested by experimental observations and theoretical studies (e.g., Kapadia
et al 1995, Polat and Sagi 1993, Field, Hayes, and Hess 1993). Although the net-
work enhances an input (vertical) line relative to the isolated (short) bar, it also
hallucinates other vertical lines under noisy inputs.

The competition between internal interactions T and the external inputs I to
shape {xi} is uncompromising in such recurrent networks. For analysis, take for
simplicity Tij such that Tij 6= 0 only when i and j are in the same or nearest neigh-
bor (vertical) columns. T0 ≡

∑

j,mj=mi
Tij > 0 is the total recurrent excitation within

a vertical contour (column) for contour enhancement, and T1 ≡ −
∑

j,mj=mi+1 Tij =
−
∑

j,mj=mi−1 Tij > 0. is the total recurrent suppression between two nearby ver-
tical columns, to suppress noise and background. Both T0 and T1 should be large
for a large difference in saliency between a vertical contour and a homogeneous
background input Ii = Ij for all i, j. However, when T0 + 2T1 > 1 (for g′x = 1),
this network under homogeneous input spontaneously breaks symmetry to hallu-
cinate saliency waves — two alternate saliencies for neighboring columns. (Math-
ematically, T0 +2T1 is the eigenvalue of the matrix T with this saliency wave as the
eigenvector.) Hence, contour enhancement makes the network prone to “see” con-
tours even when there is none. The orientations and widths of the “ghost contours”
match the interaction structure T . Avoiding the hallucination forces T0 and/or T1

to be smaller, and so harms the capability of the network to enhance contours
relative to backgrounds (Li and Dayan 1999). In other words, although symmet-
ric recurrent networks are useful for associative memory computations (Hopfield
1982), for which correcting significant input errors or filling-in extensively missing
inputs is exactly what is needed, such an input distortion is too strong for early
visual tasks that require greater faithfulness to visual input.
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Figure 1: A reduced model consisting of symmetrically coupled cells tuned to ver-
tical orientation (θ = 0). Shown here are 5 gray scale images, each has a scale bar on
the right. The network has 100x100 cells arranged in a 2-d array, with wrap around
boundary condition. Each cell models a cortical cell tuned to vertical orientation,
in a retinotopic manner. The sigmoid function gx(x) of the cells is gx(x) = 0 when
x < 1, gx(x) = x − 1 when 1 ≤ x < 2, and gx(x) = 1 when x > 2. The top im-
age shows the connection pattern between the center cell and the other cells. This
pattern is local and translation invariant, it gives local colinear excitation between
cells vertically displaced, and local inhibition between cells horizontally displaced.
Middle left: 2-d input pattern I , an input line and a noise spot. Middle right: 2-d
output pattern gx(x) to the input at middle left — the line induces a response that
is ∼ 100% higher than the noise spot. Bottom left: 2-d input pattern I for noise
input. Bottom right: 2-d output pattern gx(x) to the noisy input — hallucination of
vertical streaks.

2.2 A minimal recurrent model with hidden units
The major weakness of the symmetrically connected model is the attractor dynam-
ics which strongly attract the network state {xiθ} away from the ones guided by the
visual input {Iiθ}. Since this attractor dynamics is largely dictated by the symme-
try of the neural connections, it can not be removed by introducing ion channels or
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spiking neurons (rather than firing rate neurons), for instance, nor by mechanisms
like shunting inhibition, global activity normalization, and input gating (Gross-
berg and Mingolla 1985, Zucker et al 1989, Braun et al 1994), which are used by
many models despite their questionable biological foundations. Attractor dynam-
ics is untenable, however, in the face of the well established fact that a real neuron
is either exclusively excitatory or exclusively inhibitory. It is obviously impossible
to have symmetric connections between excitatory and inhibitory neurons. Math-
ematical analysis by Li and Dayan (1999) showed that asymmetric recurrent E-I
networks with separate excitatory (E) and inhibitory (I) cells can indeed perform
computations that symmetric ones cannot. Thus we model neurons xiθ as exclu-
sively excitatory pyramidal cells, and introduce one inhibitory interneuron (hid-
den units) yiθ for each xiθ to mediate indirect, or disynaptic, inhibition between
xiθ’s, as in the real cortex (White 1989, Gilbert 1992, Rocklandand Lund 1983, also
see Grossberg and Raizada 2000 for a much more fully elaborated model). The
units xiθ and yiθ in such an E-I pair are reciprocally connected. Hence the dynami-
cal equations become:

ẋiθ = −xiθ − gy(yi,θ) + Jogx(xiθ) −
∑

∆θ 6=0

ψ(∆θ)gy(yi,θ+∆θ)

+
∑

j 6=i,θ′

Jiθ,jθ′gx(xjθ′) + Iiθ + Io (5)

ẏiθ = −αyyiθ + gx(xiθ) +
∑

j 6=i,θ′

Wiθ,jθ′gx(xjθ′) + Ic (6)

where αy and gy(y) model the interneuron yiθ, which inhibits its partner xiθ. The
longer range connections Tiθ,jθ′ (between cells in different hypercolumns i 6= j) are
now separated into two terms: (1) monosynaptic excitation Jiθ,jθ′ ≥ 0 between xiθ

and xjθ′ and (2) disynaptic inhibition Wiθ,jθ′ ≥ 0 between xiθ and xjθ′ via the in-
terneuron yiθ. Including both the monosynaptic and disynaptic pathways, the net
effective connection between xiθ and xjθ′ in stationary (but not in dynamic) states
is, for example, Jiθ,jθ′ −Wiθ,jθ′/αy if gy(y) = y, and it can be either facilitatory or in-
hibitory. Both ψ(∆θ) and Jo are explicit representations of the original interaction
Tiθ,iθ′ between units within a hypercolumn. ψ(∆θ) ≤ 1 models local inhibition and
Jogx(xiθ) models self excitation. Fig. (2C) schematically shows an example of the
network. Ic and Io are background inputs, including neural noise, feedback from
higher areas, and inputs modeling the general and local normalization of activities
(Li 1998) (which are omitted in the analysis in this paper, though are present in
the simulations). An edge of input strength Îiβ at i with orientation β in the input
image contributes to Iiθ (for θ ≈ β) by an amount Îiβφ(θ− β), where φ(θ− β) is the
orientation tuning curve.

Lateral connections link cells preferring similar orientations. To implement
net colinear facilitation and non-colinear flank inhibition (between similarly ori-
ented bars), the excitatory J connections are dominant between units preferring co-
aligned bars (θ ∼ θ′ ∼ 6 (i − j)), while the inhibitory W connections are dominant
between units preferring non-aligned (but still similarly oriented) ones (Zucker et
al 1989, Field et al 1993, Li 1998, 1999a). Such an interaction pattern has been called
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Figure 2: A schematic of the minimal model of the primary visual cortex. A: Visual
inputs are sampled in a discrete grid by edge/bar detectors, modeling receptive
fields (RFs) for V1 layer 2-3 cells. Each grid point has K neuron pairs (see C),
one per bar segment. All cells at a grid point share the same RF center, but are
tuned to different orientations spanning 180o, thus modeling a hypercolumn. A bar
segment in one hypercolumn can interact with another in a different hypercolumn
via monosynaptic excitation J (the solid arrow from one thick bar to another),
and/or disynaptic inhibition W (the dashed arrow to a thick dashed bar). See also
C. B: A schematic of the neural connection pattern from the center (thick solid) bar
to neighboring bars within a finite distance (a few RF sizes). J ’s contacts are shown
by thin solid bars. W ’s are shown by thin dashed bars. All bars have the same
connection pattern, suitably translated and rotated from this one. C: An input
bar segment is associated with an interconnected pair of excitatory and inhibitory
cells, each model cell models abstractly a local group of cells of the same type.
The excitatory cell receives visual input and sends output gx(xiθ) to higher centers.
The inhibitory cell is an interneuron. The visual space has toroidal (wrap-around)
boundary conditions.

the association field (Field et al 1993)). A simple model of this interaction is the bi-
phasic pattern as in Fig. (2B): J > 0 and W = 0 for mutual excitation and J = 0 and
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W > 0 for mutual inhibition (Li 1998, 1999a). Physiological evidence (Hirsch and
Gilbert 1991) suggests that both Jiθ,jθ′ > 0 and Wiθ,jθ′ > 0 contribute to the links
between a given pair of pyramidal cells xiθ and xjθ′ . This gives extra computa-
tional flexibility (e.g., contrast dependence of contextual influences, see section 3)
by letting the ratio Jiθ,jθ′ : Wiθ,jθ′ determine the overall sign of the interaction. For
illustrative convenience, however, the simpler bi-phasic connection is sometimes
used in this paper to demonstrate our analysis and is used for all the examples in
the figures.

As we mentioned, in principle, an E-I recurrent model can perform computa-
tions that symmetric models cannot. In practice, this is not guaranteed and has
to be ensured by designing the right model parameters, in particular, J and W ,
guided by an analytical understanding of the nonlinear dynamics.

3 Dynamic analysis
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Figure 3: A,B: examples of gx(x) and gy(y) functions. C: Input-output function
I → gx(x̄) for an isolated neural pair without inter-pair neural interactions, under
different levels of Ic. D: The overall effect of the external or contextual inputs
(∆I,∆Ic) on a neural pair is excitatory or inhibitory if ∆I/∆Ic is large or less than
g′y(ȳ), which depends on I .

The model state is characterized by {xiθ, yiθ}, or simply {xiθ}, omitting the hid-
den units {yiθ}. The interaction between excitatory and inhibitory cells makes
{xiθ(t)} intrinsically oscillatory in time. Given an input {Iiθ}, the model does not
guarantee convergence to a fixed point where ẋiθ = ẏiθ = 0. However, if {xiθ(t)}
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converges to, or oscillates periodically around, a fixed point, after the transient fol-
lowing the onset of {Iiθ}, the temporal average {x̄iθ} of {xiθ(t)} can characterize
the model output and approximate the fixed point. We henceforth use the nota-
tion {x̄iθ} to denote either the fixed point or the temporal average, and denote the
computation as I → gx(x̄iθ). Section 3.1-3.6 will analyze I → gx(x̄iθ) and derive
constraints on J and W in order to make I → gx(x̄iθ) achieve the desired computa-
tions. Other investigators have also analyzed the fixed point behavior I → gx(x̄iθ)
in such E-I networks or the corresponding symmetric ones (Ben-Yishai et al 1995,
Stemmler et al 1995, Somers et al 1998, Mundel et al 1997, Tsodyks et al 1997),
mainly to model a local circuit of a hypercolumn (or a CA1 region) with simplified
or no spatial organization beyond the hypercolumn. Our analysis emphasizes the
spatial or geometrical organization of visual inputs in order to study global visual
computations. Section 3.7 studies the stability and dynamics around {x̄iθ} and de-
rives constraints on the model parameters coming from the need to avoid visual
hallucination (Ermontrout and Cowan 1979) — the curse of symmetric networks.

3.1 A single pair of neurons
In isolation, a single pair iθ follows equations

ẋ = −x− gy(y) + Jogx(x) + I (7)
ẏ = −y + gx(x) + Ic (8)

where αy = 1 for simplicity (as in the rest of the paper), index iθ is omitted, and
I = Iiθ + Io. The input-output (I, Ic → gx(x̄)) gain at a fixed point (x̄, ȳ) is

δgx(x̄)

δI
=

g′x(x̄)

1 + g′x(x̄)g
′
y(ȳ) − Jog′x(x̄)

,
δgx(x̄)

δIc
= −g′y(ȳ)

δgx(x̄)

δI
(9)

When both gx(x) and gy(y) are piece-wise linear (Fig. (3A,B)) functions, so is the
input-output relation I → gx(x̄) (Fig. (3C)). The threshold, input gain control, and
saturation in I → gx(x̄) are apparent. The slope δgx(x̄)

δI
is non-negative, otherwise,

I = 0 gives non-zero output x 6= 0. It increases with g ′x(x̄), decreases with g′y(ȳ),
and depends on Ic. Shifting (I, Ic) to (I + ∆I, Ic + ∆Ic) changes gx(x̄) by ∆gx(x̄) ≈
(δgx(x̄)/δI)(∆I − g′y(ȳ)∆Ic), which is positive or negative depending on whether
∆I/∆Ic > g′y(ȳ). Hence, a more elaborate model could allow a fraction of the
external visual input to go onto interneurons, as suggested by physiology (White
1989) and modeled by Grossberg and Raizada (2000), provided that ∆I/∆Ic >
g′y(ȳ). Contextual inputs from other neuron pairs (via J and W ) effectively give
(∆I,∆Ic). In our example when g′y(ȳ) increases with I (or Ic), the contextual inputs
can switch from being facilitatory to being suppressive as I increases (Fig. (3 D)).
This input contrast dependence of the contextual influences has been observed
physiologically (Sengpiel, Baddeley, Freeman, Harrad, and Blakemore 1995) and
modelled by others (Stemmler, Usher, Niebur 1995, Somers, Todorov, Siapas, Toth,
Kim, Sur 1998).
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3.2 Two interacting pairs of neurons with non-overlapping recep-
tive fields

Using indices a = 1, 2 to denote the two pairs and their associated quantities (J12 =
J21 = J and W12 = W21 = W ),

ẋa = −xa − gy(ya) + Jogx(xa) + Jgx(xb) + Ia + Io

ẏa = −ya + gx(xa) +Wgx(xb) + Ic

where a, b = 1, 2 and a 6= b. Including monosynaptic and disynaptic pathways, the
net effective connection from x2 to x1, according to the gain functions δgx(x̄)/δI
and δgx(x̄)/δIc, is J − g′y(ȳ1)W . When I ≡ I1 = I2 in the simplest case, x̄ ≡ x̄1 = x̄2

and ȳ ≡ ȳ1 = ȳ2. The two bars can excite or inhibit each other depending on
whether J − g′y(ȳ)W > 0. This in turn depends on the input I through g′y(ȳ).
When I1 > I2, we have (x̄1, ȳ1) > (x̄2, ȳ2). Usually, g′y(ȳ) increases with ȳ, hence
J12−g

′
y(ȳ1)W12 < J21−g

′
y(ȳ2)W21. In particular, it can happen that J12−g

′
y(ȳ1)W12 <

0 < J21 − g′y(ȳ2)W21, i.e., x1 excites x2 which in turn inhibits x1. This implies that
two interacting pairs tend to have closer activity values x1 and x2 than two non-
interacting pairs.

Even this very simple contextual influence can already account for some per-
ceptual phenomena involving sparse visual inputs consisting only of single test
and contextual bars. Examples include the altered detection threshold (Polat and
Sagi 1993, Kapadia et al 1995) or perceived orientation (tilt illusion, Mundel et al
1997, Kapadia 1998) of a test bar when a contextual bar is present.

3.3 A one dimensional array of identical bars
An infinitely long, horizontal array of evenly spaced, identical, bars gives an input
pattern approximated as

Iiθ =

{

Iarray for i = (mi, ni = 0) on the horizontal axis and θ = θ1

0 otherwise (10)

The approximation Iiθ = 0 for θ 6= θ1 is good for small orientation tuning width
and low input contrast. When bars iθ outside that array are silent gx(xiθ) = 0
due to insufficient excitation, we omit them and treat the remaining system as one
dimensional. Omitting index θ and using i to denote bars according to their one
dimensional location, we get

ẋi = −xi − gy(yi) + Jogx(xi) +
∑

j 6=i

Jijgx(xj) + Iarray + Io (11)

ẏi = −yi + gx(xi) +
∑

j 6=i

Wijgx(xj) + Ic (12)

Translation symmetry implies that all units have the same equilibrium point
(x̄i, ȳi) = (x̄, ȳ), and

˙̄x = 0 = −x̄− gy(ȳ) + (Jo +
∑

i6=j

Jij)gx(x̄) + Iarray + Io (13)
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D

E

θ1A

C

B

Figure 4: Examples of the one dimensional input stimuli mentioned in the text.
A: horizontal array of identical bars oriented at angle θ1. B: A special case of A
when θ1 = π/2 and, in C, when θ1 = 0. D: an array of bars aligned into, or tan-
gential to, a circle, the pattern in B is a special case of this circle when the radius
is infinitely large. E: same as D except that the bars are perpendicular to the circle
circumference, the pattern in C is a special case when the radius is infinitely large.

˙̄y = 0 = −ȳ + (1 +
∑

i6=j

Wij)gx(x̄) + Ic (14)

This array is then equivalent to a single neural pair (cf. equations (7) and (8)) with
the substitution Jo → Jo +

∑

j Jij and g′(ȳ) → g′y(ȳ)(1 +
∑

j Wij). The response to
bars in the array is thus higher than that to an isolated bar if the net extra excitatory
connection

E ≡
∑

j

Jij (15)

is stronger than the net extra inhibitory (effective) connection

I ≡ g′y(ȳ)
∑

j

Wij. (16)

The input-output relationship I → gx(x̄) is qualitatively the same as that of a single
bar, with a quantitative change in the gain

δgx(x̄)

δI
=

g′x(x̄)

1 + g′x(x̄)(g
′
y(ȳ) − (E − I)) − Jog′x(x̄)

. (17)

E and I depend on θ1. Consider the case of association field connections. When the
bars are parallel to the array, making a straight line (Fig (4B)), E > I. The condition
for contour enhancement is

Contour facilitationFcontour ≡ (E − I)gx(x̄) > 0 and is sufficiently strong. (18)

12



A: Infinitely long line

B: Half infinitely long line,
ending on the left

C: Infinitely long array
of oblique bars

D: Infinitely long horizontal
array of vertical bars

E: Uneven circular
array

F: Uneven radiant
array

G: An isolated bar

Figure 5: Simulated outputs from a cortical model to corresponding visual input
patterns of 1 dimensional arrays of bars. The model transforms input Iiθ to cell
output gx(xiθ). The thicknesses of the bars iθ are proportional to temporally aver-
aged model outputs gx(xiθ). The corresponding (suprathreshold) input Îiθ = 1.5 is
of low/intermediate contrast and is the same for all 7 examples and all visible bars.
Different outputs gx(xiθ) for different examples or for different bars in each exam-
ple are caused by contextual interactions. Overall contextual facilitations cause
higher outputs in A, B, E than that of an isolated bar in G, while overall contextual
suppressions cause lower outputs in C, D, F (compare the different thicknesses of
the bars). Note the deviations from the idealized approximations in the text. Un-
even spacing between the bars (F, G) or an end of a line (at the left end of B) cause
deviations from the translation invariance of responses. Note that the responses
taper off near the line end in B, and that the responses are noticably weaker to
bars that are more densely packed in F. In A, B, cells preferring neighboring ori-
entations (near horizontal) at the line are also excited above threshold, unlike the
approximated treatment in the text.

When the bars are orthogonal to the array ( Fig (4C)), E < I and the responses are
suppressed. This analysis extends to other translation invariant one dimensional
arrays like those in Fig (4D, E), for which the index i simply denotes a bar at a
location along the array (Li 1998). The straight line in Fig (4B) is in fact the limit
of a circle in Fig (4D) when the radius goes to infinity. Similarly, the pattern in Fig
(4C) is a special case of the one in Fig (4E).

The qualities of the approximations in equations (10 -14 ) depend on the in-
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put, as shown in Fig. (5). Contextual facilitation in Fig. (5A, B, E) and contextual
suppression in Fig. (5C, D, F) are visualized by the thicker and thinner bars, re-
spectively, than the isolated bar in Fig. (5G). In Fig. (5A), cells whose RFs are
centered on the line but not oriented exactly horizontally are also excited above
threshold, unlike our approximation gx(xiθ) = 0 for non-horizontal θ. (This should
not cause perceptual problems, though, given population coding.) This is caused
by direct visual input Iiθ for θ 6= θ1 (θ ≈ θ1) and the colinear facilitation from other
bars in the line. The approximation of translation invariance x̄i = x̄j for all bars in
the array is compromised when the array has an end, e.g., Fig. (5B), or when the
bars are unevenly spaced, e.g., Fig. (5E,F). In Fig. (5B), the bars at or near the left
end of the line are less enhanced since they receive less or no contextual facilitation
from their left. In Fig. (5F), the more densely spaced bars receive more contextual
suppression than others.

3.4 Two dimensional textures and texture boundaries
The analysis of the one dimensional array also applies to an infinitely large two
dimensional texture of uniform input Iiθ1

= Itexture when i = (mi, ni) sit on a regu-
larly spaced grid (Fig. (6A)). The sums E =

∑

j Jij and I = g′y(ȳ)
∑

j Wij are taken
over all j in that grid.

Physiologically the response to a bar is reduced when the bar is part of a texture
(Knierim and van Essen 1992). This can be achieved when E < I. Consider, for
example, the case when i = (mi, ni) form a Manhattan grid with integer values
of mi and ni (Fig (6)). The texture can be seen as a horizontal array of vertical
arrays of bars, e.g., a horizontal array of vertical contours in Fig. (6B). The effective
connections between the vertical arrays (Fig. (6DEF)) distance a apart are:

J ′
a ≡

∑

j,mj=mi+a

Jij, W ′
a ≡

∑

j,mj=mi+a

Wij. (19)

Then E =
∑

a J
′
a and I = g′y(ȳ)

∑

aW
′
a. The effective connection within a single

vertical array is J ′
0 and W ′

0. One has to design J and W such that contour enhance-
ment and texture suppression can occur using the same neural circuit (V1). That
is, when the vertical array is a long straight line (θ1 = 0), contour enhancement
(i.e., J ′

0 > g′y(ȳ)W
′
0) occurs when the line is isolated, but overall suppression (i.e.,

E =
∑

a J
′
a < I = g′y(ȳ)

∑

a W
′
a) occurs when that line is embedded within a tex-

ture of lines (Fig. (6B)), as long as there is sufficient excitation within a line and
sufficient inhibition between the lines.

Computationally, contextual suppression within a texture means that the
boundaries of a texture region induce relatively higher responses, thereby mark-
ing the boundaries for segmentation. The contextual suppression of a bar within a
texture is

Cθ1

whole−texture ≡
∑

a

(g′y(ȳθ1
)W ′θ1

a − J ′θ1

a )gx(x̄θ1
) = (I − E)gx(x̄θ1

) > 0 (20)

where x̄θ1
denotes the (translation invariant) fixed point for all texture bars. Con-

sider the bars on the vertical axis i = (mi = 0, ni). Removing the texture bars on the
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B

F GED

A texture of vertical bars

Two neighboring textures of bars.

Four example pairs of vertical arrays of bars.

A A texture of bars oriented at 

θ2

θ1

θ1

θ1

C

Figure 6: Examples of the two dimensional textures and their interactions. A: tex-
ture made of bars oriented at θ1 and sitting on a Manhattan grid. This can be seen
as a horizontal array of vertical array of bars. B: a special case of A when θ1 = 0.
This is a horizontal array of vertical lines. Each texture can also be seen as a ver-
tical array of horizontal arrays of bars, or an oblique array of oblique arrays of
bars. Each vertical, horizontal, or oblique array can be viewed as a single entity,
shown as examples in the dotted boxes. C: Two nearby textures and the bound-
ary between them. D, E, F: examples of nearby and identical vertical arrays. G:
two nearby but different vertical arrays. When each vertical array is seen as an en-
tity, one can calculate effective connections J ′ and W ′ (defined in the text) between
these vertical arrays.

left i = (mi < 0, ni) removes the contextual suppression from them, and so gives
them higher responses. This highlights the texture boundary mi = 0. Now the
activity x̄iθ1

depends on mi, i.e., the distance of the bars from the texture boundary.
As mi → ∞, x̄iθ1

→ x̄θ1
. The contextual suppression of the bars on the boundary,

mi = 0, is

Cθ1

half−texture ≡
∑

mj≥0

(g′y(ȳiθ1
)W ′θ1

mj
− J ′θ1

mj
)gx(x̄jθ1

) (21)

≈
∑

a≥0

(g′y(ȳθ1
)W ′θ1

a − J ′θ1

a )gx(x̄θ1
) < Cθ1

whole−texture, (22)
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Figure 7: Simulated examples of texture boundary highlights between different
pairs of textures, defined by bar orientations. In each example, we show the input
image Iiθ above the output image gx(xiθ) averaged in time. Each image shows
a small region out of an extended input area. A: θ1 = 45o, θ2 = −45o. B: θ1 =
45o, θ2 = 90o. C: θ1 = 0o, θ2 = 90o. D: θ1 = 45o, θ2 = 60o. The texture border
is vertical in the middle of each stimulus pattern. Note how border highlights
increase with increasing orientation contrast θ1−θ2. The orientation contrast of 15o

in D is difficult to detect by the model or humans. The orientation contrast θ1−θ2 =
90o for both A and C. Note how the responses to the boundary bars decrease with
increasing orientation differences between the bars and the boundary.

where we approximate (x̄jθ1
, ȳjθ1

) ≈ (x̄θ1
, ȳθ1

) for all mj ≥ 0.
The boundary highlight persists when a neighboring, different, texture of bars

oriented at θ2 for i = (mi < 0, ni) is present (Fig. (6C)). To analyze this, define
connections between arrays in different textures (Fig. (6G)) as

J ′θ1θ2

a ≡
∑

j,mj=mi+a

Jiθ1jθ2
W ′θ1θ2

a ≡
∑

j,mj=mi+a

Wiθ1jθ2
(23)

When θ1 = θ2, J ′θ1θ2

a = J ′θ1

a and W ′θ1θ2

a = W ′θ1

a . The contextual suppression from the
neighboring texture (θ2) on the texture boundary (mi = 0) is Cθ1,θ2

neighbor−half−texture ≡
∑

mj<0(g
′
y(ȳiθ1

)W ′θ1θ2

mj
− J ′θ1θ2

mj
)gx(x̄jθ2

). For the association field connection, Jiθ1,jθ2

and Wiθ1,jθ2
tend to link similarly oriented bars θ1 ∼ θ2, we have Cθ1,θ2

neighbor−half−texture

minimum or zero when θ1 ⊥ θ2 and increasing with decreasing |θ1 − θ2|. Hence,
the boundary highlight is expected to increase with the orientation contrast |θ1 −
θ2|. The net contextual suppression on the border, contributed by both textures, is
Cθ1,θ2

2−half−textures ≡ Cθ1

half−texture + Cθ1,θ2

neighbor−half−texture. Hence, the border enhancement,
or the reduction of contextual suppression at the border relative to regions further
inside the texture is

δC ≡ Cθ1

whole−texture − Cθ1,θ2

2−half−texture (24)
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≈ Cθ1,θ2=θ1

neighbor−half−texture − Cθ1,θ2

neighbor−half−texture (25)

≈
∑

a<0

(g′y(ȳθ1
)W ′θ1

a − J ′θ1

a )gx(x̄θ1
) −

∑

a<0

(g′y(ȳθ1
)W ′θ1θ2

a − J ′θ1θ2

a )gx(x̄θ2
) (26)

Again, we made the approximation x̄jθ2
≈ x̄θ2

for mj < 0. Usually x̄θ2
6= x̄θ1

since
the fixed point should depend on the relative orientation between the bars and the
arrays (i.e., the axes). Assuming J ′θ1θ2

a ≈ 0 and W ′θ1θ2

a ≈ 0 when |θ1 − θ2| = π/2,
and noting that x̄θ1

≈ x̄θ2
when θ1 ≈ θ2,

δC ≈











0 for θ1 ≈ θ2
∑

a<0(g
′
y(ȳθ1

)W ′θ1

a − J ′θ1

a )gx(x̄θ1
) > 0 for θ1 ⊥ θ2

roughly increases as |θ1 − θ2| increases
(27)

Thus the border highlight diminishes as the orientation contrast approaches 0, see
Fig. (7). Furthermore, even at a given contrast |θ1 − θ2|, the border enhancement
δC depends on θ1. For instance, with |θ1 − θ2| = π/2 and the association field
connections, the enhancement δC for border bars parallel to the border θ1 = 0
(which form a contour) is higher than that for border bars perpendicular to the
border θ1 = π/2. This is because both the suppression g′y(ȳθ1

)W ′θ1

a − J ′θ1

a between
parallel contours (θ1 = 0 and a 6= 0) and the facilitation J ′θ1

0 − g′y(ȳθ1
)W ′θ1

0 within
a contour (Fig. (6D)) are much stronger than their counterparts for the vertical
arrays of horizontal bars (Fig. (6E)). Thus the strength of the border highlight is
predicted to be tuned to the relative orientation θ1 between the border and the bars
(Li 2000). This explains the asymmetry in the outputs of Fig. (7C), the highlight
of the vertical border is much stronger for the vertical than the horizontal texture
bars.

Clearly, the approximations x̄iθ1
≈ x̄θ1

for mi ≥ 0 and x̄iθ2
≈ x̄θ2

for mi < 0),
which are used to arrive at equation (27), break down at the border, especially at
more salient borders like that in Fig. 7C. This accentuates the tuning of the border
highlight to θ1.

Iso-orientation suppression underlies the border highlight, and by equation
(20), its strength I − E depends on contrast through g ′y(ȳ). Since g′y(ȳ) usually in-
creases with increasing ȳ, the highlight is stronger at higher contrast. Psychophys-
ically, texture segmentation does require an input contrast well above the texture
detection threshold (Nothdurft 1994). It is easy to tune the connection weights in
the model quantitatively such that iso-orientation suppression holds at all input
contrasts, or holds only at sufficient input contrast and becomes iso-orientation fa-
cilitation at very low contrast as in Li (1998, 1999a). Computationally, facilitation
certainly helps texture detection, which at low input contrast could be more im-
portant than segmentation. On this note, contour facilitation (Fcontour > 0) holds at
all contrasts (Li 1998) using the bi-phasic connection, since no W connections link
the contour segments. Non-bi-phasic connections should be employed to model
diminished contour enhancement at high contrast (Sceniak et al 1999).

3.5 Translation invariance and pop-out
In the examples above, orientation contrasts are highlighted because they mark
boundaries between textures composed of bars of single orientations. However,

17



A B C

Figure 8: Model responses to homogeneous (A, B) and inhomogeneous (C) input
images, each composed of bars of equal input contrasts. A: A homogeneous (de-
spite of the orientation contrast) texture of bars of different orientations, a uniform
output saliency results. B: Another homogeneous texture, vertical bars are more
salient, however the whole texture has a translation invariant saliency distribution.
C: The small figure pops out from the background because it is where translation
invariance is broken in inputs, and the whole figure is its own boundary.

if orientation contrasts are homogeneous within the texture itself, they will not
pop out. Fig. (8A) shows an example for which the texture is made of alternat-
ing columns of bars at θ1 = 45o (even a) and θ2 = 135o (odd a). The contextual
suppression of a bar oriented at θ1 is:

Ccomplex−texture =
∑

even a
(g′y(ȳθ1

)W ′θ1

a −J ′θ1

a )gx(x̄θ1
)+

∑

odd a
(g′y(ȳθ1

)W ′θ1θ2

a −J ′θ1θ2

a )gx(x̄θ2
)

(28)
Thus no bar oriented at θ1 is less suppressed, or more salient, than other bars ori-
ented at θ1. Note that since Ccomplex−texture 6= Cθ1

whole−texture, the value of x̄θ1
is not

the same as it would be in a simple texture of bars of a single orientation θ1. This
applies similarly to x̄θ2

. For general θ1 and θ2, x̄θ1
6= x̄θ2

. In Fig. (8A), reflection
symmetry leads to x̄θ1

= x̄θ2
or uniform saliency within the whole texture. In

Fig. (8B), bars oriented at θ1 = 0o induced higher responses than those oriented at
θ2 = 90o. Nevertheless, looking at this texture which is defined by both the vertical
and horizontal bars and their spatial arrangement, no local patch of the texture is
more salient than any other patch. This translation invariance in saliency is simply
the result of the network preserving the translation invariance in the input (tex-
ture), as long as the translation symmetry is not spontaneously broken (see section
3.7 for analysis).

A boundary between textures is one place where input is not translation invari-
ant, and is highlighted by the cortical interactions. A special case of this is when
one small texture patch is embedded in a large and different texture. The small
texture is small enough that the whole texture is its own boundary, and thus pops
out from the background (Fig. (8C)). In general, orientation contrasts do not cor-
respond to texture boundaries and thus do not necessarily pop out. Through con-
textual influences, the highlight at a texture border can alter responses to nearby
locations up to a distance comparable to the lateral connection lengths. Hence, the
response to a texture region is not homogeneous unless this region is far enough
away from the border. This is evident at the right side of the border in Fig. (7C).
These effects are not to be confused with spontaneous symmetry breaking since
they are generated by the input border and are local. See Li (2000) for more details
about these effects and their physiological counterparts.
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3.6 Filling-in and leaking-out
Small fragments of a contour or homogeneous texture can be missing in inputs due
to input noise or to the visual scene itself. Filling-in is the phenomenon that the
missing input fragments are not noticed, see Pessoa Thompson, and Noe (1998)
for an extensive discussion. It could be caused by one of the following two possi-
ble mechanisms. The first is that, although the cells for the missing fragment do
not receive direct visual inputs, they are excited enough by the contextual influ-
ences to fire as if there were direct visual inputs. (This is how (e.g.,) Grossberg
and Mingolla (1985) model illusory contours.) The second possibility is that, even
though the cells for the missing fragment do not fire, the regions near, but not
at, the missing fragments are not salient or conspicuous enough to attract visual
attention strongly. In the latter case, the missing fragments are only noticable by at-
tentive visual scrutiny/search. It is not clear from physiology (Kapadia et al 1995)
which mechanism is involved.
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Figure 9: Examples of filling-in — model outputs from inputs composed of bars
of equal contrasts in each example. A: A line with a gap, the response to the gap
is non-zero, B: A texture with missing bars, the responses to bars near the missing
bars are not significantly higher than the responses to other texture bars.

Consider a single bar segment i = (mi = 0, ni = 0) missing in a smooth contour,
say, a horizontal line like Fig. (9A), filling-in could be achieved by either of the two
possible mechanisms. To excite the cell i to firing threshold Tx (such that gx(xi >
Tx) > 0), contextual facilitation

∑

j(Jij −Wijg
′
y(ȳi))gx(x̄j) should be strong enough,

or approximately
Fcontour + Io = (E − I)gx(x̄) + Io > Tx (29)
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where Io is the background input, Fcontour and the effective net connections E and
I are as defined in equations (15 - 18), and we approximate for all contour bars
(x̄j, ȳj) by (x̄, ȳ), the translation invariant activity in a complete contour. If seg-
ments within a smooth contour facilitate each other’s firing, then a missing frag-
ment i reduces the saliencies of the neighboring contour segments j ≈ i. The
missing segment and its vicinity are thus not easily noticed, even if the cell i for
the missing segment does not fire.

The cell i = (mi = 0;ni = 0) should not be excited enough to fire if the left half
j = (mj < 0, nj = 0) of the horizontal contour are removed. Otherwise the contour
extends beyond its end or grows in length — leaking out. To prevent leaking-out

Fcontour/2 + Io < Tx (30)

since the contour facilitation to i is approximately Fcontour/2, half of that Fcontour

in an infinitely long contour. The inequality (30) is satisfied for the line end in
Fig. (5B), and should hold at any contour saliency gx(x̄). Not leaking out also
means that large gaps in lines can not be filled in. To prevent leaking-out at i =
(mi = 0, ni = 1), the side of an infinitely long (e.g.,) horizontal contour on the
horizontal axis in Fig. (4B) (thus to prevent the contour getting thicker), we require
∑

j∈contour(Jij −g
′
y(ȳi)Wij)gx(x̄) < Tx−Io for i 6∈ contour. This condition is satisfied

in Fig. (5A).
Filling-in in a texture with missing fragments i (texture filling-in) is only fea-

sible by the second mechanism — to avoid conspicuousness near i — since i can
not be excited to fire if contextual input within a texture is suppressive. If i is
not missing, its neighbor k ≈ i receives contextual suppression (I − E)gx(x̄) ≡
∑

j∈texture(g
′
y(ȳ)Wkj − Jkj)gx(x̄). A missing i makes its neighbor k more salient by

the removal of its contribution (Wkig
′
y(ȳ) − Jki)gx(x̄) to the suppression. This con-

tribution should be a negligible fraction of the total suppression to ensure that the
neighbors are not too conspicuous, i.e.,

g′y(ȳ)Wki − Jki � (I − E) ≡
∑

j∈texture
(g′y(ȳ)Wkj − Jkj). (31)

This is expected when the lateral connections are extensive enough to reach suffi-
ciently large contextual areas, i.e., when Wki �

∑

j Wkj and Jki �
∑

j Jkj. Leaking-
out is not expected outside a texture border when the contextual input from the
texture is suppressive.

Note that filling-in by exciting the cells for a gap in a contour (equation (29))
works against preventing leaking-out (equation (30)) from contour ends. It is not
difficult to build a model that achieves active filling-in. However, preventing the
model from leaking-out and unwarranted illusory contours implies a small range
of choices for the connection strengths J and W .

3.7 Hallucination prevention, and neural oscillations
To ensure that the model performs the desired computation analyzed in section
3.1-3.6, the mean or the fixed points (X̄, Ȳ) in these analysis should correspond
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to the actual model behavior. (We use bold-faced character to represent vectors or
matrices.) Section 2 showed that this is difficult to achieve in the symmetric net-
works, as the fixed points (X̄) for the desired computation are likely to be unstable,
i.e., they are saddle points or local maximums in the energy function. In that case,
the actual model output deviates drastically from the desired fixed point (X̄) or vi-
sual input, and, in particular, visual hallucinations occur. In the corresponding E-I
network, the asymmetric connections between E and I give the network a tendency
to oscillation around the fixed point. This oscillation enables our model to avoid
the motion of (X,Y) towards hallucination (Li and Dayan 1999), making it possi-
ble to correspond the desired fixed points (X̄, Ȳ) with the (temporally averaged)
model behavior. However, this correspondence is not guaranteed, and is in fact
difficult to achieve without guided model design. It requires stability conditions
on (X̄, Ȳ) to be satisfied, which constrains J and W , in addition to the conditions
placed on J and W in section 3.1-3.6 for desired contour integration and texture
segmentation (the inequalities (18), (20), (29), (30), and (31)). This section derives
these stability constraints and their implications. Specifically, we derive the con-
dition to prevent visual hallucinations or spontaneous formations of spatially in-
homogeneous outputs given translation invariant visual inputs. Ermontrout and
Cowan (1979) have analyzed the stability conditions to obtain hallucinations in a
simplified model of V1 (see Bressloff et al (2000) for a more recent analysis), and
studied the forms and dynamics of the hallucinations. Li (1998) analyzed the sta-
bility constraints to prevent hallucination under contour inputs. Here we general-
ize the analysis in Li (1998) to other homogeneous inputs, and in addition analyze
the nonlinear dynamics of (non-hallucinating) homogeneous oscillations around
(X̄, Ȳ). We omit the analysis of the emergent hallucinations since the hallucina-
tions are prevented by the model.

To analyze stability, we study how small deviations (X − X̄,Y − Ȳ) from the
fixed point evolve. Change variables (X− X̄,Y − Ȳ) → (X,Y). For small devia-
tion X,Y, a Taylor expansion on equations (5) and (6) gives the linear approxima-
tion:

(

Ẋ

Ẏ

)

=

(

−1 + J −G
′
y

G
′
x + W −1

)(

X

Y

)

(32)

where J, W, G
′
x, and G

′
y are matrices with Jiθjθ′ = Jiθjθ′g′x(x̄jθ′) for i 6= j, Jiθ,iθ =

Jog
′
x(x̄iθ), Wiθjθ′ = Wiθjθ′g′x(x̄jθ′) for i 6= j, Wiθ,iθ′ = 0, G

′
xiθjθ′ = δiθjθ′g′x(x̄jθ′). and

G
′
yiθjθ′

= δijψ(θ − θ′)g′y(ȳjθ′) where ψ(0) = 1. To focus on the output X, eliminate
(hidden) variable Y:

Ẍ + (2 − J)Ẋ + (G′
y(G′

x + W) + 1 − J)X = 0 (33)

Consider inputs of our interest which are bars arranged in a translation invari-
ant fashion along a one or two dimensional array. For simplicity and approxi-
mation, we again omit bars outside the array and their associated quantities in
equation (33), and omit the index θ, like we did in section 3.3 and 3.4. Translation
symmetry implies (x̄i, ȳi) = (x̄, ȳ), G

′
yij

= δijg
′
y(ȳ), G

′
xij = δijg

′
x(x̄), (G′

yG
′
x)ij =

g′x(x̄)g
′
y(ȳ)δij , and (G′

yW)ij = g′y(ȳ)Wij . Furthermore, Jij = Ji+a,j+a ≡ Ji−j and
Wij = Wi+a,j+a ≡ Wi−j for any a. One can now go to the Fourier domain of the
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spatial variables {Xi} and their associated quantities J,W to obtain:

Ẍk + (2 − J)Ẋk + (g′y(ȳ)(g
′
x(x̄) + Wk) + 1 − Jk)Xk = 0 (34)

where Xk,Jk,Wk are spatial Fourier transforms of X,J,W for frequency fk such
that eifkN = 1, where N is the size of the system. Xk is the amplitude of the spatial
wave of frequency fk in the deviation X from the fixed point, Jk =

∑

a Jae
ifka, and

Wk =
∑

a Wae
ifka. Xk evolves as Xk(t) ∝ eγkt where

γk ≡ −1 + Jk/2 ± i
√

g′y(g
′
x + Wk) − J 2

k /4 (35)

Denote Re(γk) as the real part of γk, Re(γk) < 0 for all k makes any deviation X

decay to zero, and hence no hallucination can occur. Otherwise, the mode with the
largest Re(γk), let it be k = 1, will dominate the deviation X(t). If this mode has
zero spatial frequency f1 = 0, then the dominant deviation is translation invariant
and synchronized across space, and hence no spatially varying patterns can be
hallucinated. Thus the conditions to prevent hallucinations are

Re(γk) < 0 for all k, or Re(γ1)f1=0 > Re(γk)fk 6=0 (36)

When Re(γ1)f1=0 > 0, the fixed point is not stable, the divergent homogeneous
deviation X is eventually confined by the threshold and saturation nonlinearity.
It oscillates (synchronously) in time when g′y(g

′
x + W1) − J 2

1 /4 > 0 or when there
is no other fixed point to which the system trajectory can approach. Denote this
translation invariant oscillatory trajectory by (x, y) = (xi, yi), which is the same for
all i. Then,

ẋ = −x− (gy(y + ȳ) − gy(ȳ)) + J1(gx(x+ x̄) − gx(x̄))

ẏ = −y + (1 + W1)(gx(x + x̄) − gx(x̄))

where J1 = J1/g
′
x(x̄) and W1 = W1/g

′
x(x̄). After converging to a finite oscillation

amplitude, the trajectory (x(t), y(t)) is a closed curve in the (x, y) space. It oscillates
with period T such that (x(t + T ), y(t+ T )) = (x(t), y(t)), and satisfies
∫ T

0
dt[(1+W1)x(gx(x+x̄)−gx(x̄))+y(gy(y+ȳ)−gy(ȳ))] =

∫ T

0
dtJ1(1+W1)(gx(x+x̄)−gx(x̄))

2,

(37)
since over a cycle of the oscillation, the oscillation energy

∫ x+x̄

x̄
(1 + W1)(gx(s) − gx(x̄))ds+

∫ y+ȳ

ȳ
(gy(s) − gy(ȳ))ds, (38)

(potential and kinetic energy, the two terms in the above expression) is dissipated
and restored to a conservation, as the readers can verify. This is because the dis-
sipation, on the left side of equation (37), is balanced by the self-excitation, on the
right side of equation (37). At smaller oscillation amplitudes, the self-excitation
dominates, as exemplified by the unstable fixed point; at larger amplitude, the
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dissipation dominates because of the saturation and/or threshold behavior in self-
excitation. Thus the oscillation trajectory converges to the balance of a periodic
nonlinear oscillation.

Since Ja = J−a ≥ 0 and Wa = W−a ≥ 0, Jk and Wk are real and have maxima
Max(Jk) =

∑

a Ja and Max(Wk) =
∑

a Wa for the zero frequency fk = 0 mode.
Many simple forms of J and W decay with fk, for example, Ja ∝ e−a2/2 gives
Jk ∝ e−f2

k
/2. However, the dominant mode is determined by the value of Re(γk),

and may have f1 6= 0. In principle, given a model interaction J and W and a
translation invariant input, whether it is arranged on a Manhattan grid or some
other grid, Re(γk) should be evaluated for all k to ensure appropriate behavior
of the model or inequalities (36). In practice, the finite range of (J , W ) and the
discreteness and the (rotational) symmetry in the image grid implies that often
only a finite, discrete, set of k needs to be examined.

Let us look at some examples using the bi-phasic connections. For 1-d contour
input like that in Fig. (4B), Wij = 0. Then Re(γk) = Re(−1+Jk/2± i

√

g′yg
′
x − J 2

k /4)

increases with Jk, whose maximum occurs at the translation invariant mode
f1 = 0, and J1 =

∑

j Jij . Then no hallucination can happen, though synchronous
oscillations can occur when enough excitatory connections J link the units in-
volved. For 1-d non-contour inputs like Fig. (4C,E), Jij = 0 for i 6= j, thus Jk = Jii,
γk = −1+Jii/2±i

√

g′y(g
′
x + Wk) − J2

ii/4. HenceRe(γk) < −1+Jii = −1+Jog
′
x(x̄) < 0

for all k, since −1 + Jog
′
x(x̄) < 0 is always satisfied (otherwise an isolated principal

unit x, which follows equation ẋ = −x + Jxgx(x) + I , is not well behaved). Hence
there should be no hallucination or oscillation.

Under 2-dimensional texture inputs, frequency fk = (fx(k), fy(k)) is a wave
vector perpendicular to the peaks and troughs of the waves. When fk = (fx(k), 0)
is in the horizontal direction, Jk = g′(x̄)

∑

a J
′
ae

ifx(k)a and Wk = g′(x̄)
∑

aW
′
ae

ifx(k)a,
where J ′

a and W ′
a are the effective connections between two texture columns as de-

fined in equation (19). Hence, the texture can be analyzed as a 1-dimensional array
as above, substituting bar-to-bar connections (J,W ) by column-to-column connec-
tions (J ′,W ′). However, J ′ and W ′ are stronger, have a more complex Fourier
spectrum (Jk,Wk), and depend on the orientation θ1 of the texture bars. Again
use the bi-phasic connection for examples. When θ1 = 90o (horizontal bars), W ′

b

is weak between columns, i.e., W ′
b ≈ δb0W

′
0 and Wk ≈ W ′

0. Then, Re(γk) is largest
when Jk is, at fx(k) = 0 — a translation invariant mode. Hence, illusory saliency
waves (peaks and troughs) perpendicular to the texture bars are unlikely. Con-
sider however vertical texture bars for the horizontal wave vector fk = (fx(k), 0).
The bi-phasic connection gives nontrivial J ′

b and W ′
b between vertical columns, or

non-trivial dependences of Jk and Wk on fk. The dominant mode with the largest
Re(γk) is not guaranteed to be homogeneous, and J and W must be tuned in order
to prevent hallucination.

Given a non-hallucinating system and under simple or translation invariant
inputs, neural oscillations, if they occur, can only be synchronous and homo-
geneous (i.e., identical) among the units involved, i.e., f1 = 0. Since γ1 =

−1+J1/2± i
√

g′y(g
′
x + W1) − J 2

1 /4, and J1 =
∑

j Jij for f1 = 0, the tendency for os-
cillation increases with increasing excitatory-to-excitatory links Jij between units
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Figure 10: Different stimuli have different tendencies to cause oscillatory re-
sponses. The pictures on the left show visual stimuli (all appear at time zero
and stay on), and the graphs on the right time course of the neural activities. A
an isolated bar, the neural response to which stablizes after an initial oscillatory
transient. B An input contour and the synchronized and sustained oscillatory neu-
ral responses of two non-neighboring neurons, all neurons corresponding to the
contour segments respond similarly. C: A horizontal array of vertical bars, and
the responses (decaying oscillations towards static values) of two non-neighboring
neurons. D: An input texture (with some holes in it), and the sustained oscillatory
responses of three neurons, whose spatial (horizontal, vertical) coordinates are (2,
2) (solid curve), (15, 2) (dotted curve), and (5, 9) (solid-dotted curve). The coordi-
nate of the bottom left texture bar is (0, 0). Note that the responses to bars next to
the holes in the textures are a little higher.
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involved (Koenig and Schillen 1991). Hence, this tendency is likely to be higher for
2-d texture inputs than for 1-d array inputs, and lowest for a single, small, bar in-
put. This may explain why neural oscillations are observed in some physiological
experiments and not others. Under the bi-phasic connections, a long contour input
is more likely to induce oscillation than an input of non-contour 1-d array, see Fig.
(10). These predictions can be physiologically tested. Indeed, physiologically, grat-
ing stimuli are more likely to induce oscillations than bar stimuli (Molotchnikoff,
Shumikhina, and Moisan, 1996).

4 Summary and Discussion
In this paper, we have argued that a recurrent model composed of interacting E-I
pairs is a suitable minimal model of the primary visual cortex performing pre-
attentive computation of contour integration and texture segmentation. We ana-
lyze the nonlinear input-output transform I → gx(x) and the stability and tem-
poral dynamics of the model. We derived design conditions on the intracortical
connections such that (1) I → gx(x) performs the desired computations, and (2)
no hallucinations occur. Such an understanding has been essential to reveal the
computational potential and limitations of the models, and led to a successful de-
sign (Li 1998, 1999a). The analysis techniques in this paper can be applied to other
recurrent networks whose neural connections are translationally symmetric.

Note that the design conditions for a functional model can be satisfied by
many quantitatively different models with qualitatively the same architecture. The
model by Li (1998, 1999a) is one of them, and interested readers can find quanti-
tative comparisons between the behavior of that model and experimental data.
Although the behavior of Li’s model agrees reasonably well with experimental
data, there must be better and quantitatively different models. In particular, as dis-
cussed in this paper, non-bi-phasic connections (unlike those in Li’s model) could
be more computationally flexible, and thus account for additional experimental
data. Emphasizing analytical tractability and a minimal design, this paper does
not survey on other visual cortical models which have more elaborate structures
and components. (See Li 1998, 1999a for such a survey.) One example is Grossberg
and Raizada’s recent model of V1 and V2, which evolved from earlier versions by
Grossberg and Mingolla (1985), in which, in particular, the neuron units are not
differentiated into excitatory and inhibitory ones.

In this paper, we have shown an example of how nonlinear neural dynamics
link computations with the model architecture and neural connections. Additional
or different computational goals, including the ones which maybe performed by
the primary visual cortex and not yet modelled by our model example, might call
for a more complex or different design. For example, our model lacks an end-
stopping mechanism for V1 neurons. Such a mechanism could highlight the ends
of, or gaps in, a contour, which in our model induce decreased responses (relative
to the rest of the contour) due to reduced contour facilitation (Li 1998). High-
lighting the line ends can be desirable, especially under high input contrasts when
the gaps are clearly not due to input noise, and both the gaps and ends of con-
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tours can be behaviorally very meaningful. Without end-stopping, our model is
fundamentally limited in performing these computations. Our model also does
not generate subjective contours like the ones that form the Kanizsa triangle or
the Ehrenstein illusion (which could enable a perception of a circle whose con-
tour connects the interior line ends of bars in Fig. (4E)). Evidence (von der Heydt
et al 1984) suggests that area V2, rather than V1, is more likely to be responsible
for these subjective contours, and this is addressed by models by Grossberg and
colleagues (Grossberg and Mingolla 1985, Grossberg and Raizada 2000). Another
desired computation is to generalize the notion of “translation invariance” to pre-
vent the spontaneous saliency differentiation even when the input is not homoge-
neous in the image plane but is generated from a homogeneous flat texture surface
slanted in depth. This will require multiscale image representations and recurrent
interactions between cells tuned to different scales. By studying the recurrent non-
linear dynamics and analyzing the link between the structure and computation
of a model, we hope to be able to better understand the computations in the pri-
mary visual cortex and in other visual or non-visual cortical areas where recurrent
network dynamics play important roles.
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