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Abstract 19 

 20 

A Bayesian approach to palaeoecological environmental reconstruction deriving from the 21 

unimodal responses generally exhibited by organisms to an environmental gradient is 22 

described. The approach uses Bayesian model selection to calculate a collection of 23 

probability-weighted, species-specific response curves (SRCs) for each taxon within a 24 

training set, with an explicit treatment for zero abundances. These SRCs are used to 25 

reconstruct the environmental variable from sub-fossilised assemblages. The approach 26 

enables a substantial increase in computational efficiency (several orders of magnitude) 27 

over existing Bayesian methodologies. 28 

The model is developed from the Surface Water Acidification Programme 29 

(SWAP) training set and is demonstrated to exhibit comparable predictive power to 30 

existing Weighted Averaging and Maximum Likelihood methodologies, though with 31 

improvements in bias; the additional explanatory power of the Bayesian approach lies in 32 

an explicit calculation of uncertainty for each individual reconstruction. The model is 33 

applied to reconstruct the Holocene acidification history of the Round Loch of Glenhead, 34 

including a reconstruction of recent recovery derived from sediment trap data.  35 

The Bayesian reconstructions display similar trends to conventional (Weighted 36 

Averaging Partial Least Squares) reconstructions but provide a better reconstruction of 37 

extreme pH and are more sensitive to small changes in diatom assemblages. The validity 38 

of the posteriors as an apparently meaningful representation of assemblage-specific 39 

uncertainty and the high computational efficiency of the approach open up the possibility 40 

of highly constrained multiproxy reconstructions. 41 

42 



Introduction 42 

 43 

In order to understand future environmental and climatic changes, it is necessary to 44 

understand how they may have changed in the past; the demand for such data is 45 

increasing to define the boundary conditions and validate the predictions of Earth System 46 

models (Birks 2003). Species require particular environmental conditions for 47 

reproduction and growth, so a species assemblage is likely to reflect the local 48 

environment.  By applying the principal of Uniformitarinism (Rymer 1978), the analysis 49 

of sub-fossilised assemblages preserved in e.g. lake and ocean sediments can be a 50 

powerful tool to derive past conditions. Since the development of the first quantitative 51 

approach of Imbrie and Kipp (1971) who applied principal component regression to 52 

reconstruct sea surface temperatures and ocean salinity from foraminifera assemblages, a 53 

number of statistical techniques have been developed in order to more accurately quantify 54 

uncertainty and to take account of ecologically realistic responses of organisms to their 55 

environment (ter Braak et al. 1993). 56 

There are two philosophically distinct approaches to statistical analysis. 57 

Conventional, or frequentist, statistics assumes that the parameters being estimated (the 58 

“model”) are fixed and that measured data are random observations distributed about 59 

these values; conversely, Bayesian statistics assumes that the model is the unknown and it 60 

is the measured data which are fixed (Box and Tiao 1992, Dennis 1996). Almost all of 61 

the reconstruction methodologies routinely used by palaeolimnologists apply frequentist 62 

statistics. Although very powerful tools, the major weakness of these approaches is that 63 

they do not explicitly model the uncertainty associated with individual reconstructions, 64 



but rather assume a dataset-specific RMSEP error calculated by cross-validation 65 

techniques (see e.g. Birks 1995). Sample-specific calculations of RMSEP are 66 

occasionally performed in an attempt to address this issue (e.g. Birks et al 1990). A 67 

Bayesian approach, in contrast, considers all possible solutions and ascribes a probability 68 

to each of them, thus calculating not only the most likely reconstruction but also the 69 

uncertainty associated with that reconstruction. Although natural variability limits 70 

reconstruction accuracy, so that alternative transfer functions generally provide broadly 71 

similar performance statistics for a given training set (see e.g. Birks et al. 1990), the 72 

additional explanatory power of a Bayesian approach lies in this explicit calculation of 73 

uncertainty.  74 

Individual reconstructions may be associated with an uncertainty that differs 75 

greatly from that implied by RMSEP. If for example there is a strong representation of a 76 

few species in a “pioneering” late-glacial assemblage, the assemblage may have no 77 

modern analogues, leading to reduced confidence in the reconstruction (Birks 1998). 78 

Conversely, an assemblage in equilibrium with the local environment and dominated, for 79 

example, by species with narrow tolerances might be expected to provide a relatively 80 

precise solution. Although multivariate techniques and best analogue coefficients can 81 

provide a useful assessment of reliability (Birks et al. 1990), they do not quantify this 82 

uncertainty.  83 

A number of groups have developed detailed Bayesian models to reconstruct 84 

climate from ecological proxies. The BUMMER model (Vasko et al., 2000, Korhola et 85 

al., 2002) has been developed for chironomid-based temperature reconstructions. The 86 

model assumes that the probability that a random individual from a site is of a particular 87 



taxon is a random variable with a Dirichlet distribution derived from a multinomially 88 

distributed Gaussian response: a Bayesian analogue for the multinomial logit model 89 

(MLM) (ter Braak et al. 1993). The posterior is integrated with a Markov Chain Monte 90 

Carlo (MCMC) methodology.  Haslett et al. (2006) extended these ideas and developed 91 

an approach similar in spirit to the response surface method (Huntley 1993) via the 92 

MCMC modelling of pollen response functions in two-dimensional climate space. 93 

The method described here applies Bayesian model selection to derive a 94 

collection of probability-weighted, species-specific response curves for each taxon within 95 

a training set, with an explicit treatment for zero abundances. This enables an analytical 96 

solution to be derived from species abundance data, avoiding the need for MCMC 97 

integration, resulting in a very substantial (several orders of magnitude) increase in 98 

computational efficiency over the approaches of Vasko et al. (2002) and Haslett et al. 99 

(2006). The model is applied to the diatom-based reconstruction of the Holocene 100 

acidification history of the Round Loch of Glenhead, Scotland, including a reconstruction 101 

of recent recovery derived from sediment trap data. This site has been chosen because a 102 

comprehensive set of analyses already exist with which to compare our model 103 

development. The concepts described are far more widely applicable, both in terms of 104 

organism types and the environmental variables that can be reconstructed. 105 

 106 

Methods 107 

 108 

The n training set sites and the m taxa found within the training set sites are represented 109 

by the (n×m) matrix of percentage abundances Y, where yik represents the abundance of 110 



taxon k, k = 1,…,m at site i, i=1,…,n. The measured environmental variable is represented 111 

by the matrix X, where xi is the value in site i and the reconstructed value. The 112 

percentage abundance of taxon k in the fossil sample is yk0 and the reconstructed value 113 

.  114 

 115 

Probability distribution of species counts 116 

 117 

The probability pik that taxon k is present in site i is assumed to follow a Gaussian 118 

distribution about some optimum value uk of the environmental variable xi (c.f. Kühl et al. 119 

2002): 120 

 121 

       (1) 122 

 123 

where pk is the probability that the species is present at its optimum and tolerance τk is a 124 

measure of how far away from its optimum a species can survive. The probability that the 125 

species is absent is given by (1 – pik). Although alternative unimodal response curves 126 

could be fitted, a Gaussian model represents a compromise between ecological realism 127 

and simplicity (ter Braak and van Dam 1989). The Gaussian model does not preclude a 128 

uniform probability of presence; a hypothetical species found in all training set lakes 129 

would, for instance, be described with pk=1 and τk→∞, so that the probability of presence 130 

is 1 for all values of xi. 131 



If a species is present, the expected abundance Nik is also assumed to follow a 132 

Gaussian distribution (c.f. Vasko et al. 2000) about the same optimum, although not 133 

necessarily with the same tolerance: 134 

 135 

       (2) 136 

 137 

The second measure of tolerance tk describes of how far away from its optimum a species 138 

can exist at high abundance. Nk is the expected abundance (given presence) at the species 139 

optimum. Although it is not a requirement of the methodology to assume that pik and Nik 140 

are both maximised at uk, it seems reasonable to assume that any pH related process 141 

which maximises the probability of species presence is also likely to maximise the 142 

expected species count; analysis of the Surface Water Acidification Program training set 143 

(SWAP; Stevenson et al 1991) does not suggest this is a poor assumption.   144 

As the expressions for pik and Nik are of the same analytical form, Equation 1 can 145 

be written (using Equation 2) in terms of the squared ratio of the tolerances, Pk = tk
2/τk

2: 146 

 147 

         (3) 148 

 149 

This enables a convenient representation to couch the models in terms of parameters 150 

which are presumably independent (so that the joint prior distribution can be determined 151 

from the individual priors). 152 

The variable Pk allows different distributions for Nik and pik. Low values (Pk <1) 153 

are required to model species which are common across the environmental gradient but 154 



exhibit clear abundance peaks, suggesting that although they need near optimum 155 

conditions in order to flourish and dominate an assemblage, they can survive even when 156 

conditions are far removed from this optimum. In contrast, the need to allow high values 157 

(Pk >1) is less clear, on the assumption that any pH related process which reduces the 158 

ability of a species to survive would also affect its ability to flourish in high numbers. 159 

Data for Achnanthes marginulata is plotted in Figure 1 as an example of a distribution 160 

described by Pk <1. With a modelled optimum uk=5.07 pH units, the taxon is found in 161 

77% of the 117 SWAP lakes of pH <6 at an average abundance of 5.5% (maximum 162 

46.9%). It is still found in 56% of the 50 lakes of pH >6, although at a much reduced 163 

average abundance of 0.9% (maximum 3.6%) i.e. while the probability of presence is not 164 

substantially reduced in the more alkaline lakes, the expected count is greatly reduced, 165 

implying Pk<1 (so that τk>tk).  166 

The probability of a non-zero count yik of species k in site i at a given value of xi is 167 

assumed to follow an exponential decay, with decay constant 1/Nik (from Equation 2), 168 

normalised so that the total probability of all non-zero counts is equal to the probability of 169 

presence pik (from Equation 3): 170 

 171 

   (present)  (4a) 172 

 173 

with the probability of a zero count given by; 174 

 175 

     (absent)  (4b) 176 

 177 



Alternative distributions for non-zero counts are possible; the exponential profile 178 

is essentially empirical, having been found to provide the best fit SWAP as determined by 179 

Bayesian model selection (i.e. maximising the posterior ratio of alternative distributions). 180 

Alternative probability distributions considered were a Gaussian distribution about the 181 

expected abundance and a uniform distribution. The exponential distribution reflects the 182 

observation that most species counts are lower than the expected abundance, presumably 183 

because other variables and/or inter-species competition often limit species abundance, 184 

even near the pH optimum for the species (Lancaster and Belyea 2006). The exponential 185 

distribution may not necessarily provide the best model for all organism types and/or 186 

environmental variables. 187 

The model does not enforce the constraint Σk=1,m yik=1 and the individual species 188 

counts are assumed to be independent. The average expected total, 1/n Σi=1,n Σk=1,m E(yik), 189 

where E(yik)=pikNik, in the SWAP lakes is 0.922 (i.e. 92.2% of the SWAP diatom counts 190 

are expected to be from the 225 included species). The actual percentage of SWAP 191 

counts that are from these 225 species is 91.6%, suggesting that the model performs 192 

realistically in this respect. 193 

 194 

Calculation of Species Responses Curves (SRCs) 195 

 196 

Each of the five SRC variables are discretised and form a collection of s Species 197 

Response Curves SRCjk for each taxon k, where all combinations of the species-specific 198 

variables are represented by the index j, j=1,…,s. The model here considers s=8,000 199 

SRCs for each taxon, derived from a matrix of dimensions (20,4,5,5,4) for (uk, Nk, tk, pk 200 



and Pk) respectively. The a priori probabilities of each SRC are assumed equal and these 201 

are progressively refined using Bayes’ Equation for each of the n species samples (or (n- 202 

1) samples in a jack-knifed calculation):  203 

 204 

   (5) 205 

 206 

where prob (yik | SRCjk, xi) is given by Equation 4a or 4b (depending upon whether the 207 

count is non-zero or zero), introducing the conditionality on SRCjk. 208 

SRC probabilities are normalised from the constraint Σj=1,s prob (SRCjk | Y, X) = 1 209 

so that a series of SRCs are ascribed to each species, each of different probability, which 210 

we write as prob(SRCjk). The mechanics of this procedure are described in some detail in 211 

the Appendix. 212 

Common species are well constrained by the training set and are associated with a 213 

few SRCs of high probability whereas rare species, especially those which do not exhibit 214 

a clear unimodal response, can be associated with many significant SRCs. We define 215 

“significant” for these purposes, somewhat arbitrarily, by a probability > 10% of the most 216 

likely SRC, but note that all SRCs are included in the reconstruction so this choice does 217 

not affect the calculation. Although conventional statistics quantify uncertainty through 218 

the standard errors of the regression coefficients for each taxon, these errors are not 219 

incorporated into the reconstruction. In contrast, by assigning a probability to each SRC 220 

and using them all in the reconstruction, the uncertainty, in particular the uncertainty 221 

associated with rare taxa, is explicitly incorporated into the Bayesian reconstruction.  222 

 223 



Reconstruction 224 

 225 

A likelihood function for x0, Ly(x0|yk0), given a count of yk0 of species k is constructed 226 

from all SRCs, weighted according to their relative probability: 227 

 228 

    (6) 229 

An alternative likelihood function Lp(x0|presencek0) is also calculated. This 230 

ignores the species count, assuming the species presence alone provides a valid, although 231 

less constrained, solution: 232 

 233 

  (7) 234 

 235 

where prob(presencek0|SRCjk, x0) is given by Equation 3, introducing the conditionality 236 

on SRCjk.  237 

Although the likelihood function of Equation 6 may be justifiable, a more 238 

conservative form for the likelihood function is derived by combining Equations 6 and 7: 239 

 240 

     (8) 241 

 242 

where 0≤η≤1. A value of η=0.5 is assumed for the base case analysis presented here. This 243 

allows the reconstruction to be dominated by Ly, but broadens the likelihood function to 244 

allow for the possibility of outlying species counts. RMSEP was found to be only weakly 245 



dependent upon η, suggesting that presence/absence data alone contains sufficient 246 

information to derive a useful predictive model.  247 

The likelihood function that derives from the species count (Equation 6) can 248 

produce bimodal likelihood functions (when both yik<Nk and Pk<1, where the low count 249 

suggests environmental conditions are likely to be away from the species optimum). This 250 

is illustrated in Figure 1c for Achnanthes marginulata and reflects the increased 251 

frequency of low counts towards the tails of the distribution (Figure 1b). In contrast, the 252 

presence-absence likelihood function (Equation 7) is always unimodal; presence always 253 

implies optimum conditions are most likely in this simpler model. Although the 254 

likelihood function derived from a single SRC (whether unimodal or bimodal) is always 255 

symmetrical, asymmetric likelihood functions arise in the full calculation which 256 

combines all possible SRCs. This is apparent in Figure 1c; species response for pH<4.5 is 257 

not well defined by the training set and an asymmetric likelihood function which allows 258 

for the possibility of a low pH results, even when the species is observed at high 259 

abundance. 260 

The likelihood functions of the species comprising an assemblage are combined to 261 

give the posterior probability distribution for the reconstructed variable: 262 

 263 

    (9) 264 

 265 

This is calculated across the environmental range and normalised. The term prob(x0) is 266 

the a priori probability distribution for the environmental variable. A uniform prior 267 

between the limits 3→9pH units is applied in the calculations described here; these limits 268 



are sufficiently distant that the prior for lake pH has no impact upon the solution. Only 269 

species with an abundance ≥2% are included in the reconstructions presented here 270 

(although all species counts, including zero counts, are incorporated into the SRC 271 

calculation). The inclusion of species below 2% does not improve performance statistics 272 

in this data-set, presumably because very low abundance species exhibit broad likelihood 273 

functions (see e.g. Figure 1c) which contribute relatively little to the solution, and 274 

additionally their inclusion significantly increases computational demands. Furthermore, 275 

the absence of an explicit error structure in the model is likely to limit the reliability of 276 

likelihood functions derived from very low counts. The inclusion of very low count and 277 

possibly absent species, which would necessitate the incorporation of a binomial error 278 

structure, may be more useful in species-poor assemblages 279 

A calculation on a modern PC requires approximately 10 minutes to derive the 280 

8,000 SRC probabilities for each of the 225 species using the SWAP training set (167 281 

lakes) and perform a 101 data point core reconstruction. Although computationally 282 

expensive, the model compares favourably with BUMMER (Vasko et al. 2000) which 283 

requires 1-2 days for a 150 data point reconstruction with a 63 lake, 52 taxa training set. 284 

The computational demands of BUMMER scale linearly with the number of sites and 285 

quadratically with the number of taxa, suggesting a 100 data-point core reconstruction 286 

using SWAP would require approximately 1 month of CPU time on a (2000) PC. The 287 

additional demands of BUMMER can presumably be attributed largely to the additional 288 

complexity associated with the multinomial assumption and MCMC integration; the 289 

model described here assumes (less robustly) that species counts are independent. 290 

 291 



Alternative reconstruction methodologies 292 

 293 

The Bayesian reconstructions are compared with several alternative methodologies (see 294 

e.g. Birks 1995): weighted averaging with classical deshrinking (WA Cla) and inverse 295 

deshrinking (WA Inv), weighted average partial least squares (WA-PLS) and Gaussian 296 

logit regression / maximum likelihood (GLR/ML).  These models were developed using 297 

the C2 software (Juggins 2003). The 1st component WA-PLS model (equivalent to WA 298 

Inv) was selected as the minimum adequate model (ter Braak and Juggins 1993).  299 

 300 

Data Set 301 

 302 

A substantial benefit of European acid rain research has been the development of the high 303 

quality SWAP training set (Stevenson et al. 1991), in part achieved through the use of 304 

taxonomic workshops which resolved a number of problems associated with differing 305 

nomenclature, splitting/ amalgamation of species and identification criteria (Munro et al. 306 

1990). The full SWAP training set consists of 267 taxa present in surface sediment 307 

samples from 178 European lakes. Approximately 500 counts per sample were made. 308 

This data set was screened to derive a pruned training set of 167 lakes (Birks et al. 1990), 309 

outliers being removed using multivariate techniques or if the error of prediction was 310 

greater than 0.75pH units in weighted averaging both with and without tolerance 311 

downweighting. pH explains 8.1% of the total variance in the diatom assemblages (Birks 312 

1994). The pruned SWAP training set was used to generate the model and derive 313 

performance statistics. 314 



The model is applied to reconstructions of acidification in the Round Loch of 315 

Glenhead which has played a key role in acidification studies for 25 years (Battarbee et 316 

al. 2005). Since 1988, when the Loch was included in the Acid Waters Monitoring 317 

Network (AWMN; Monteith and Evans 2005), it has been closely monitored for both 318 

biology and chemistry. The loch is naturally acidic (Jones et al. 1989) but suffered post- 319 

industrial acidification (Flower and Battarbee 1983) to a minimum pH of ~4.7 in the 320 

1980’s (Flower et al 1987). Since EU directives limiting S and N emissions, the loch has 321 

exhibited some recovery to its current annual pH of ~5.2; in the last 2-3 years the pH has 322 

varied between about 5.5 in September and 5.1 during winter months (Monteith pers 323 

comm.). A long term reconstruction is performed on core RLGH3 (Jones et al. 1989), 324 

spanning the entire Holocene, dated from a combination of 210Pb and 14C measurements 325 

(Jones et al. 1989). Reconstructions are also performed on sediment trap data taken since 326 

1991 (Battarbee et al. 2005) and on surface sediment assemblages from the K05 core 327 

(Allott et al. 1992) which was taken to investigate recovery from acidification. 328 

 329 

Model Evaluation 330 

 331 

The five SRC variables are each assigned uniform priors with limits provided in Table 1. 332 

The most important prior is that of the SRC optima; mathematically valid but 333 

ecologically unrealistic SRCs exist well beyond the limits of the training set. Vasko et al. 334 

(2000) assumed a normally distributed prior for uk centred upon the observed modern 335 

mean with the observed modern variance. The a priori assumption made here is a 336 

uniform probability for uk within the range (xmin–xr) to (xmax+xr), where xmin and xmax are 337 



the extremes of the training set data and xr is some constant. Although species-specific 338 

priors derived from consideration of large diatom data-sets such as the European Diatom 339 

Database (EDDI) (Battarbee et al. 2001) might enable a more robust form for the uk 340 

priors, a global value of xr=0.5 pH units was selected as the model exhibits negligible 341 

systematic bias with this prior. This value is thus assumed to approximate the transition 342 

from a regime in which species optima are ecologically realistic but over-constrained by 343 

the environmental range of the training set to a regime in which the solutions are not 344 

constrained but may be ecologically unrealistic. Detrended Canonical Correspondence 345 

Analysis (DCCA) with pH as the sole constraint reveals a gradient length of 2.56 over the 346 

pH range (2.92) of the training set, indicating a species turnover of ~1.1 pH units. Optima 347 

>~0.5 beyond the extremes of the environmental gradient are therefore presumably 348 

unlikely for species that exhibit clear maxima and high abundances within the training 349 

set. 350 

The model exhibits little dependence on the tolerance prior, provided tolerances tk 351 

as low as ~0.6 pH units are allowed. A conservative minimum value for tk=0.4 was 352 

applied here; although lower values reproduce the SWAP training set equally well, they 353 

allow low tolerances for rare species which may not be justified and hence may produce 354 

erroneous reconstructions on fossilised data. The performance of tolerance downweighted 355 

models shows substantial improvements when species with narrow tolerances are 356 

ascribed a minimum value of 0.1×environmental gradient (~0.3pH units), preventing very 357 

high tolerance weights for rare taxa (Köster et al. 2004). 358 

  The performance characteristics of the base model, which allows 5 values for Pk 359 

= 0.4→1.0 (allowing tolerance τk = 0.4→2.7), are very similar to those of a model which 360 



allows 40 values in the range Pk = 0.0→4.0 (allowing tolerance τk = 0.2→∞). This 361 

suggests that there is little, if any, merit to the more demanding model and that the 362 

decision to restrict Pk≤1 on ecological grounds has not impaired model performance. In 363 

fact, a model which restricts Pk to a single value also exhibits similar performance 364 

statistics when optimised at Pk ~0.7. Although the model does not appear to be sensitive 365 

to the exact form of the Pk prior, further investigation of different proxies and/or 366 

environmental variables may enable a fuller understanding of the role of this variable. 367 

The Bayesian approach does not define a specific predicted value, but rather 368 

ascribes a probability to all possible values. For comparative purposes it is useful to 369 

define the point prediction as the expectation of the posterior: 370 

 371 

         (10)  372 

 373 

The model is evaluated in terms of five performance criteria: (i) root mean 374 

squared error (RMSE), (ii) root mean squared error of prediction (RMSEP), obtained by 375 

leave-one-out (jack-knifed) cross validation (Efron 1983) and a more realistic measure of 376 

performance than RMSE, (iii) coefficient of determination (r2) between measured and 377 

jack-knifed reconstructed pH, (iv) maximum bias, calculated as the maximum of the 378 

average jack-knifed bias within 10 equal intervals across the environmental gradient (ter 379 

Braak and Juggins 1993) and (v) the linear least squares error slope parameter (LLSESP) 380 

between the jack-knifed residuals and the observed values (Vasko et al. 2000). More 381 

computer intensive error measures, such as bootstrapping (Efron 1983), have not been 382 

considered due to the high computational demands of the approach; the precise choice of 383 



cross-validation method may be of less importance in a Bayesian approach as the statistic 384 

is not used to define reconstruction error. Performance characteristics are generally 385 

similar to existing methods (see Table 2), although an improvement in systematic bias is 386 

apparent. Although this reduction in systematic bias derives in part from the choice of the 387 

SRC optima prior, all reasonable priors produce a model with low LLSESP (below 388 

~0.05); the approach is an example of classical calibration (as are WA Cla and GLR/ML) 389 

and as such is expected to exhibit reduced systematic bias at the expense of slightly 390 

higher RMSEP (ter Braak 1995). The jack-knifed Bayesian point predictions and 391 

residuals are plotted against measured pH in Figure 2. 392 

A measure of the uncertainty implied by the posterior is given by: 393 

  394 

        (11) 395 

 396 

analogous to the calculation of RMSEP. The posteriors (though not the individual 397 

likelihood functions) approximate well to a Gaussian in these calculations, so that ±∆ 398 

approximates the 68% confidence level and ±2∆ the 95% confidence interval; this is 399 

largely a consequence of the species-rich diatom assemblages and should not be assumed 400 

to be generally the case.  401 

Taking η = 0.5 (Equation 8), the average jack-knifed posterior width  of the 402 

SWAP lakes is 0.311 pH units (compared to RMSEP = 0.328 pH units) with individual 403 

posterior widths ranging from 0.175 to 0.554pH units (c.f. WA Cla sample-specific 404 

bootstrapped error which varies from 0.314 to 0.376, Birks et al 1990). With this value 405 

for η, 68.3% of the training set lakes have a measured pH that lies within the 68% 406 



confidence interval of their respective jack-knifed posterior distributions; 92.2% of the 407 

training set lakes have a measured pH that lies within the 95% confidence interval. These 408 

figures suggest that the posteriors do meaningfully quantify the uncertainty of the 409 

reconstruction. 65.9% of the lakes have a measured pH in the range and 92.2% in 410 

the range , demonstrating that (reconstruction-specific) ∆ is a useful measure of 411 

the uncertainty. Although the calculation of uncertainty appears to slightly underestimate 412 

the predictive error at the 95% level, the comparison is between predicted pH and 413 

measured pH and both of these terms are associated with uncertainty; it is well known 414 

that RMSEP is likely to overstate predictive error for this reason (ter Braak and van Dam 415 

1989).  416 

Taking η = 0.0 reduces  to 0.232 pH units. With this value for η, only 52.1% of 417 

the training set lakes have a measured pH that lies within the 68% confidence interval of 418 

their respective jack-knifed posterior distributions, with 79.6% predicted to the 95% 419 

confidence interval. Although these figures may appear to suggest that the model 420 

performs better with η = 0.5, again this conclusion may not be valid due to pH 421 

measurement errors. An assumed average error  = ±0.23 pH units in the measurement 422 

of pH would be sufficient to reconcile the apparent failure of the model with η = 0.0 423 

(assuming ). The choice of η = 0.5 for the calculations described 424 

here is conservative, ascribing almost all of the error implied by RMSEP to the 425 

reconstruction.  426 

The jack-knifed reconstructions were separated into two subsets with ∆<0.3 (87 427 

lakes) and ∆>0.3 (80 lakes). Figure 3 compares the residual histograms for the two 428 

subsets with the expected residual distribution (as defined by the average ∆). These 429 



comparisons clearly demonstrate the relationship between broad posteriors and large 430 

residuals, although some caution should be exercised, especially with more tightly 431 

constrained solutions; 3 of the 87 lakes with ∆<0.3 pH units are not predicted to the 99% 432 

probability interval. 433 

 434 

The Round Loch of Glenhead Reconstructions 435 

 436 

Figures 4a and 4b compare WA-PLS1 and Bayesian point predictions for the RLGH3 437 

core, with upper and lower bounds defined by WA-PLS1 sample-specific RMSEP and 438 

Bayesian posterior width ∆. The trends in the two reconstructions are strikingly similar. 439 

The gradual acidification of the loch during the early Holocene (due to the development 440 

of organic soils) is apparent in both, as are the rapid fluctuations between 4,000 and 2,000 441 

cal BP, thought to be a result of the spread of blanket mire and declining tree cover at 442 

~4,000 cal BP and the erosion of peat at ~3,000 cal BP (Jones et al. 1989). Both 443 

reconstructions exhibit a rapid post-industrial pH decline to levels unprecedented in the 444 

Holocene.  445 

The Bayesian reconstruction of pre-acidification baseline pH (~5.6) is comparable 446 

to the WA based reconstructions of Battarbee et al. (2005) and does not help reconcile 447 

differences with numerical simulations of historical surface water chemistry using 448 

MAGIC (Cosby et al 2001), although the improved quantification of the discrepancy may 449 

be of use: the Bayesian posterior ascribes a probability of 7.4% to a pH equal to or 450 

greater than the MAGIC prediction of 6.1pH units.  451 

The RLGH3 assemblage-specific Bayesian Δ is plotted illustrated in Figure 4c, 452 

and suggests far greater variability in uncertainty (0.231 to 0.475pH units) than sample- 453 



specific WA-PLS bootstrapping (0.312 to 0.319pH units). A sample-specific range (0.314 454 

to 0.322pH units) was derived in the WA Cla RLGH3 reconstructions of Birks et al 455 

(1990).  Although it may not be appropriate to assume a causal relationship, it is 456 

interesting to note that the two periods of greatest Bayesian uncertainty are also periods 457 

associated with environmental and consequent catchment instability; the late glacial/early 458 

Holocene (rapid climate change) and ~3,000BP (changing vegetation). The Bayesian 459 

temperature reconstructions of Korhola et al. (2002) also indicated large uncertainties 460 

during the early Holocene which they associated with chironomid assemblages that were 461 

not in equilibrium with the local environment as a consequence of catchment instability 462 

and high erosion rates. The period of post-industrial acidification is not associated with 463 

increased uncertainty. The uncertainty does not exhibit any appreciable increasing trend 464 

at depth, despite the fact that assemblages below 48.5cm (~1,200 cal BP) all lack close 465 

modern analogues (Birks et al. 1990).   466 

Surface sediment and sediment trap reconstructions are illustrated in Figure 5. 467 

The Bayesian surface sediment reconstruction of 4.66 pH units is consistent with pre- 468 

AWMN measurements which ranged from 4.50 to 4.86 (Flower et al. 1987) and improves 469 

on both the WA inverse calculations (~4.9) of Battarbee et al. (2005) and, to a lesser 470 

extent, the WA classical calculations (~4.75) of Birks et al. (1990). This is presumably a 471 

reflection of lower systematic bias and consequently improved performance at the 472 

extremes of the environmental gradient. The earliest diatom assemblages in the sediment 473 

traps are almost identical to those in the uppermost sediment, and are generally 474 

representative of the epilithic flora (Jones and Flower 1986). Although the changes in 475 

species composition of sediment trap assemblages from 1991 to 2004 are not statistically 476 



significant as a whole (Monteith et al. 2005), they are sufficient to produce a significant 477 

(>Δ) shift in the Bayesian reconstructed pH.  The principal changes are a progressive 478 

reduction in the relative abundances of Tabellaria quadriseptata and Navicula 479 

cumbriensis and progressive increases in Navicula leptostriata, Frustulia rhomboides 480 

var. viridula and Eunotia vanheurckii var. intermedia. These changes are all indicative of 481 

increasing pH and result in Bayesian reconstructed values increasing by 0.36pH units (c.f. 482 

Δ2004=0.27pH units) from 4.66 to 5.02 in 2004; this recovery is only weakly observed in 483 

WA reconstructions to 2002 (Battarbee et al. 2005). The recovery displayed by the 484 

Bayesian reconstructions is delayed with respect to the measurements; it is not possible to 485 

say whether this results from the finite response time of diatom assemblages to their 486 

environment or simply reflects inaccuracies in the reconstruction as there is in each case a 487 

substantial overlap between the posterior and the measured pH range. 488 

 489 

Discussion 490 

 491 

Although the improvements in bias are welcome, the primary motivation for the 492 

development of a Bayesian model lies in the quantification of reconstruction uncertainty, 493 

and the potential applications that this may enable. The validity of the posterior width as 494 

a measure of reconstruction uncertainty has been demonstrated in Figure 3. The principal 495 

requirements for an assemblage that minimises reconstruction uncertainty can be 496 

summarised: 497 

i) The ecological response of common species are the most well defined as the model 498 

selection process is highly constrained, resulting in fewer significant SRCs. Species with 499 



few significant SRCs provide more precise reconstruction information, manifested by 500 

narrow likelihood functions. Conversely, rare species are characterised by many possible 501 

SRCs, particularly when they do not exhibit clear unimodal responses, and produce 502 

broader likelihood functions which contribute less information to the posterior. 503 

ii) Species that are present at relatively high abundances are suggestive of near-optimum 504 

conditions and strongly constrain the solution. Some species are only ever found at low 505 

abundances in the training set and, as such, even a low count of such species may 506 

produce a narrow likelihood function. WA-based approaches may not adequately capture 507 

this effect for these “low count” species. 508 

iii) Species-rich assemblages provide the most precise solutions, especially when low 509 

tolerance species are present. This is not in conflict with Racca et al. (2002) who 510 

concluded that 85% of species can be removed without a reduction in predictive power 511 

and that tolerance is not a good criterion for species inclusion. Intelligent pruning might 512 

well give the same result for this model, although it would inevitably result in poorly 513 

constrained posteriors which would not provide a realistic measure of the uncertainty 514 

implied by the entire assemblage. 515 

 Two of the training set lakes have reconstructed values that differ by substantially 516 

more than RMSEP when evaluated using alternative methods: Loch Doon (WA Inv 5.46, 517 

GLR/ML 4.91) and Hagasjon (WA-PLS1 6.95, GLR/ML 7.40). These lakes both exhibit 518 

broad posteriors (∆ = 0.497 and 0.493pH units respectively) again suggesting that broad 519 

posteriors are associated with sites that are less reliably reconstructed. The uncertainty 520 

associated with the core reconstructions does not appear to increase for poor analogue 521 

assemblages. This is a surprising result and suggests the need for further analysis of the 522 



reconstructions for poor analogue sites within the training set. In contrast, periods of 523 

environmental instability do appear to be associated with high uncertainty although it 524 

may not be appropriate to assume a causal relationship at this stage.  525 

The power that derives from an explicit calculation of uncertainty is the ability to 526 

combine reconstructions from independent data, in particular from independent proxies to 527 

derive a multiproxy reconstruction. Although smoothing techniques such as LOESS 528 

(Cleveland 1979) can be applied to combine frequentist reconstructions derived from 529 

different proxies (Birks and Birks 2003), the absence of an explicit uncertainty limits the 530 

reliability of such an approach.  Haslett et al. (2006) utilise this power of a Bayesian 531 

methodology in a different way by modelling temporal autocorrelation through a core. 532 

These authors note the potential, in theory at least, for a Bayesian approach to perform a 533 

self-consistent, multiproxy, multi-core analysis, modelling climate as a stochastically 534 

structured space-time process, whilst simultaneously resolving dating uncertainties.  535 

A secondary benefit of the Bayesian approach is the transparency of the solutions. 536 

Each species can be removed from the reconstruction in turn and the contribution of that 537 

species to the posterior quantified in terms of both its contribution to the expected pH and 538 

to the uncertainty.  Figure 6 plots the data for the uncommon (observed in 12 of the 167 539 

SWAP lakes) species Aulacoseira ambigua which dominates the assemblage of 540 

Hagasjon; the poorly characterised response of the dominant taxon in the assemblage 541 

explains the large uncertainty associated with Hagasjon and the very different 542 

reconstruction values derived from alternative methodologies. Fig 6a plots the training set 543 

species counts, the black point being the count in Hagasjon, and the curve the Nik 544 

distribution defined by the most probable jack-knifed SRC. Very many significant SRCs 545 



(126, as defined by a probability >10% of the most probable SRC) produce the relatively 546 

broad likelihood function (given the very high abundance) that is plotted as the dashed 547 

line in Fig 6b; there are few counts of the species so the SRCs are poorly constrained. 548 

The solid black line in Fig 6b plots the jack-knifed posterior for the lake, and the solid 549 

grey line the posterior that would be derived if Aulacoseira ambigua were not included; 550 

the difference between these curves provides a quantifiable representation of the 551 

contribution of the species to both the value and the precision of the reconstruction. 552 

The Bayesian reconstructions are generally similar to those derived from WA- 553 

based approaches. In particular, the trends displayed by the full Holocene reconstruction 554 

are very similar to the WA-PLS1 reconstruction, although there is some evidence that the 555 

Bayesian approach is better able to reconstruct extreme values as a consequence of 556 

improved bias. The recent pH recovery (Figure 5) is only weakly apparent in the WA 557 

reconstructions (Battarbee et al. 2005); the improvements here can be attributed to the 558 

increased sensitivity of the Bayesian approach to “low count” species. WA estimates are 559 

dominated by the highest abundance species, in this case Eunotia incisa and  Frustulia 560 

rhomboides var. saxonica. The species that most tightly constrain the Bayesian 561 

reconstruction are those which have high abundances relative to expected abundance. In 562 

addition to the dominant species, the “low count” species Eunotia vanheurckii var. 563 

intermedia and Frustulia rhomboides var. viridula are also present at relatively high 564 

abundances (5.5% and 3.0% respectively in 2004) and both significantly shift the 565 

posterior to higher pH. 566 

 567 

 568 



Conclusions 569 

 570 

A Bayesian model for the reconstruction of surface water acidification has been 571 

developed which displays comparable performance to existing methodologies, although 572 

with improvements in systematic bias. The Bayesian reconstructions of the Round Loch 573 

of Glenhead display similar trends to WA-PLS reconstructions but the Bayesian approach 574 

reconstructs extreme pH more accurately and is more sensitive to small changes in the 575 

diatom assemblage. The transparency of the Bayesian solutions reveal that this increased 576 

sensitivity derives from “low-count” species which are only ever found at low 577 

abundances (and hence have little effect on WA-based reconstructions) but can result in 578 

narrow Bayesian likelihood functions when relatively high counts are made.  579 

The posteriors appear to meaningfully quantify assemblage-specific uncertainty, 580 

although some caution should be exercised with very tightly constrained solutions; 3 581 

from 87 lakes with ∆<0.3 pH units are not predicted to the 99% probability interval in 582 

jack-knifed reconstructions. The Bayesian calculations here exhibit substantially greater 583 

variability in reconstruction uncertainty than is implied by sample-specific RMSEP. 584 

The incorporation of a binomial error structure into the model may improve 585 

performance by enabling the incorporation of very low abundance, and possibly absent, 586 

species into the reconstruction, although substantial improvements are presumably 587 

unlikely for species-rich (e.g. diatom) assemblages. Any performance improvements 588 

would need to be weighed against the inevitable reduction in computational efficiency. 589 

The model is relatively simple, although apparently adequate, and substantial 590 

increases in computational efficiency are displayed over existing Bayesian approaches, 591 



opening up the possibility for application to multiproxy studies. Independent proxies 592 

provide independent reconstructions of an environmental variable; the Bayesian approach 593 

enables a quantitative evaluation of the consistency of these different reconstructions, 594 

potentially assisting the validation of palaeoreconstructions in general and helping to 595 

identify potential problems that may be associated with migrational lags, disequilibriated 596 

assemblages, taphonomy, taxonomy or evolution of species response. Independent 597 

reconstructions can be combined into a single multiproxy reconstruction; this is, in theory 598 

at least, more robustly achievable in a Bayesian framework due to the assemblage- 599 

specific probability distributions associated with each proxy. Several (potentially species- 600 

poor) assemblages could be combined to yield a single “organism-rich” assemblage and 601 

provide a very well constrained solution. Holocene temperature reconstructions are 602 

notoriously difficult as variability generally lies within reconstruction errors (Korhola et 603 

al. 2002); the ability to further constrain reconstructions through the combination of 604 

several proxies suggests a potentially fruitful way forward. 605 
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Appendix 615 

 616 

The calculation of SRC probabilities and reconstruction methodology is demonstrated in 617 

the following example, which considers a single species with two possible SRCs derived 618 

from a training set of three lakes. The calculation is directly analogous to the full 619 

calculation which considers 8,000 SRCs derived from 167 SWAP training set counts for 620 

each of 225 diatom species. 621 

Training set pH is measured at x1 = 4.5, x2 = 5.5 and x3 = 6.5pH units and the 622 

taxon k has fractional abundances of y1k = 5, y2k = 20 and y3k = 0. For the purpose of the 623 

illustration, it is assumed that the only variable not known with certainty is the species 624 

optimum uk. SRC1k variables are arbitrarily assigned the values u1
k = 5.0pH units, N1

k  = 625 

15, t1
k  =1.2pH units, p1

k=50% and P1
k=0.7 (introducing the superscript to represent the 626 

SRC index j). SRC2k variables are identical with the exception u2
k = 6.0pH units. The two 627 

SRCs are assumed to have equal apriori probabilities of 0.5. We might conclude 628 

qualitatively that the SRC with the lower optimum (SRC1k) is more likely due to the 629 

presence of the taxon in the 4.5pH lake; the approach enables a quantification of the 630 

relative probabilities of the two optima.  631 

The expected fractional abundance (given presence) of taxon k in lake 1 given 632 

SRC1k is given by (Equation 2): 633 

 634 

 635 

 636 



The probability of occurrence of taxon k in site 1 given SRC1k is given by 637 

(Equation 3): 638 

 639 

 640 

 641 

The probability of the measured abundance y1k (given SRC1k and x1) is thus given 642 

by (Equation 4a): 643 

 644 

645 
 646 

For the second lake, a similar calculation gives prob(y2k | SRC1k, x2) = 0.80%.  647 

The first two steps of the calculation are the same for the third lake, but the zero count 648 

requires Equation 4b to be used, giving prob(y3k | SRC1k, x3) = (1-p1
3k) = 71.05%. Bayes’ 649 

Equation (Equation 5) is used to combine the data from the three lakes to derive an 650 

expression for the probability of SRC1k given the training set: 651 

 652 

653 
 654 

 655 

 656 

where the normalisation constant C has been introduced (and incorporates the uniform 657 

prior of 0.5). 658 

An identically analogous calculation gives prob(SRC2k | Y, X) = 8.61 x 10-5 C.  As 659 

the two SRCs are the only two possibilities allowed in this hypothetical example, their 660 



probabilities sum to unity and the normalisation constant C is defined (i.e. 1.35 x 10-4 C + 661 

8.61 x 10-5 C =1) giving posterior probabilities for the two optima of 61.1% and 38.9% 662 

respectively. Note: the probabilities of the two optima are a function of the values 663 

assigned to the other four SRC variables; for instance, a tolerance assumption tk  = 0.75pH 664 

units reduces the probability of uk=6.0pH units to 12.6% as presence in the acidic lake 665 

suggests uk=6.0pH is far less probable under an assumption of narrow tolerance. The full 666 

calculation allows all five SRC variables to vary simultaneously. 667 

The reconstruction is illustrated considering a fossilised sediment sample with 668 

y0k=10. The likelihood function Ly(x0|yk0) for x0=5.0pH units is given by Equation 6: 669 

  670 

 671 

 672 

 673 

 674 

This calculation is performed for all possible pH values and the normalisation 675 

constant  calculated to define Ly(x0|yk0) across the environmental gradient. Under these 676 

highly illustrative assumptions, the likelihood function peaks at 5.41pH units. The 677 

assemblage reconstruction is performed by combining the likelihood functions of all 678 

species in the fossilised sample (which may include both Ly and Lp terms, combined 679 

according to Equation 8), together with the assumed prior for lake pH according to 680 

Equation 9, and normalising the solution.  681 

 682 

Please contact the authors for a copy of the FORTRAN source code. 683 

684 
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Figure Captions 837 

 838 

Figure 1 Example species Achnanthes marginulata in the SWAP training set. a) 839 

Calculated probability of presence pik compared to observed percentage presence. b) 840 

Expected count Nik (given presence) compared to observed counts. c) Example likelihood 841 

functions Ly. illustrating that low counts produce broader likelihood functions and can be 842 

bimodal (when Pk<1). 843 

 844 

Figure 2 Plots of a) the relationship between observed and jack-knifed diatom-inferred 845 

lake pH and b) the jack-knifed residuals and their linear least squares fit.  846 

 847 

Figure 3 Residual histograms for lakes with a) ∆<0.3 pH units (87 lakes) and b) ∆>0.3 848 

pH units (80 lakes). The curves are the expected residual distributions as defined by the 849 

average ∆ of lakes within the subset. A clear relationship between broad posteriors and 850 

large residuals is apparent. 851 

 852 

Figure 4 Holocene pH reconstructions of the Round Loch of Glenhead from the RLGH3 853 

core (Jones et al. 1989). a) WA-PLS1 reconstructions (upper and lower bounds defined 854 

by sample-specific RMSEP), b) Bayesian point predictions (upper and lower bounds 855 

defined by posterior width ∆), and c) Bayesian posterior width ∆. Variations in the WA- 856 

PLS1 sample-specific error are almost negligible, with values ranging from 0.312 to 857 

0.319pH units. 858 

 859 



Figure 5 Comparison between measured and Bayesian reconstructed pH since 1979. 860 

Curves represent time integrated Bayesian posteriors from a) 1979-1989 K05 surface 861 

sediment (Allott at al. 1992) and b,c,d,e) 1991-2004 sediment trap data (Battarbee et al. 862 

2005, Monteith pers. comm.). Horizontal lines represent the range of measured values 863 

from a) 1980-1981 (Flower et al. 1987) (data not available for entire period) and b,c,d,e) 864 

1991-2004 (Battarbee et al. 2005, Monteith pers. comm.). The recovery from 865 

acidification is apparent in the reconstructions, though apparently delayed with respect to 866 

the measured recovery.  867 

 868 

 869 

Figure 6 Illustrative pH reconstruction for Hagasjon, focussing on the uncommon species 870 

Aulacoseira ambigua (present in 12 of 167 SWAP sites) which dominates the 871 

assemblage. a) SWAP data for Aulacoseira ambigua in Hagasjon (filled square) and in 872 

other training set sites (open squares). The Nik distribution for the most probable jack- 873 

knifed SRC is plotted as the black curve. b) Vertical black line: measured pH in 874 

Hagasjon. Dashed curve: likelihood function for Aulacoseira ambigua  in Hagasjon. 875 

Black curve: pH posterior derived from the Hagasjon diatom assemblage. Grey curve: pH 876 

posterior if Aulacoseira ambigua is not included in the reconstruction. 877 

 878 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 1 SRC variables: minimum and maximum values allowed for each variable and the 

number of values (“resolution”) tested at even intervals across this range. See Equations 

1-3 for a description of the SRC variables. xmin and xmax are the extremes of the training 

set pH measurements, Nk max is the maximum percentage abundance of a given species 

within the training set,  %occk is the percentage of training set sites in which a given 

species is present. These values define 8,000 (20x4x5x5x4) SRCs for each species. These 

SRCs are assigned an equal a priori probability which is refined by Bayes’ Equation for 

each training set count (including zero counts). 

SRC Variable Minimum Maximum Resolution 

uk xmin – 0.5 = 3.83 xmax + 0.5 = 7.75 20 

Nk 0.2 Nk max Nk max 4 

 tk 0.4 1.7 5 

Pk 0.4 1.0 5 

pk 1.0 × %occk 2.5 × %occk 4 

 



Table 2 Comparison of performance statistics for various models applied to the SWAP 

training set. WA Inv: weighted averaging with inverse deshrinking. WA Cla: weighted 

averaging with classical deshrinking. WA-PLS1: weighted averaging partial least squares 

1st component. GLR/ML: Gaussian logit regression/maximum likelihood. For description 

of these models see e.g. Birks (1995). See main text for description of performance 

characteristics.  

 RMSE RMSEP R2 Maximum 
Bias 

 LLSESP 

WA Inv 0.276 0.307 84.2% 0.278 -0.180 

WA Cla 0.295 0.317 84.3% 0.169 -0.058 

WA-PLS1 0.276 0.310 83.9% 0.322 -0.187 

GLR/ML 0.274 0.334 82.5% 0.235 -0.072 

Bayesian 0.295 0.328 84.7% 0.180 0.004 

 


