
Efficient Monitoring of Web Service SLAs∗

Franco Raimondi, James Skene, Liang Chen, and Wolfgang Emmerich
Dept. of Computer Science
University College London
London WC1E 6BT, U.K

{f.raimondi|j.skene|b.chen|w.emmerich}@cs.ucl.ac.uk

ABSTRACT
Web services are increasingly used in inter-organizational
settings. If an organization depends on the service quality
provided by another organization it often enters into a bi-
lateral service level agreement (SLA) to precisely determine
service quality and permitted service use. SLAs then also
determine penalty payments as risk mitigation against poor
service quality and overuse of the service. Once these agree-
ments are entered into, it becomes necessary to monitor for
both poor service quality and also abuse of the provision
beyond the agreed limits. We address the question of how
service level agreements can be monitored efficiently and
automatically. We show how timeliness constraints, such
as latency, throughput, availability and reliability, in for-
mal service level agreements can be translated into timed
automata. We attach time stamps to SOAP messages and
consider these messages as timed letters. We are then able
to reduce the question of detecting SLA violations to ac-
ceptance of timed words by the timed automata that have
been derived from the SLA. Acceptance of a timed word
by a timed automaton can be decided in polynomial time
and because the timed automata can operate while SOAP
messages are exchanged at run-time there effectively is only
a linear run-time overhead. We evaluate the efficiency and
scalability of this approach using a large-scale case study in
a service-oriented computational grid.

1. INTRODUCTION
There is a growing trend for IT systems to be integrated
across organizational boundaries. Examples include supply-
chain management using RosettaNet [10] and outsourcing of
non-core business, for example the use of specialist providers
for managing human resources and account payable services.
These services are frequently implemented using web ser-
vices technologies. When organizations do rely on the web

∗The work described in this paper was partially funded
by EU IST Grant 2005-026955 (PLASTIC) and EPSRC
Grants GR/S90843/01 (OMII Managed Programme) and
EP/C534891 (Divergent Grid).

services provided by other organizations for the implemen-
tation of their business processes they usually want contrac-
tual guarantees on service quality. Likewise, the providers
want assurances that their clients are not abusing the ser-
vice. These guarantees are often provided using service
level agreements (SLAs), which determine provided and re-
quired quality of service and associate penalty payments
with agreement violations. These penalty payments can be
seen as an insurance policy against poor service provision
and over-use.

In previous work, we have investigated how SLAs can be
defined precisely. In [31], we have presented how the seman-
tics of languages for service level agreements can be devised
using a model-denotational approach. We have used this ap-
proach and published the SLAng language for defining SLAs
for web services [29] as these web services are often used
in inter-organizational settings. The relevant web services
specifications include the Simple Object Access Protocol
(SOAP), the Web Services Description Language (WSDL),
the Universal Directory and Discovery Interfaces (UDDI)
and the Business Process Execution Language (BPEL).

Testing the quality of provided web services using, for ex-
ample, performance and reliability tests is necessary but in-
sufficient. The service quality fundamentally depends on
the provision of computational resources that the service
provider maintains for the web service during the lifetime
of the service, as well as the demand on those resources by
other users of the same service. Service providers cannot
make reliable quality of service guarantees without restrict-
ing the consumption of these services by concurrent users.
In order to police a service level agreement, it is therefore
necessary for the service user to monitor constantly, or at
least in statistically significant intervals, the service quality
that is provided at run-time. Likewise the service provider
will have to monitor service quality at run-time in order
to detect usages that exceed the utilization levels agreed in
the SLA. The service provider will also have to monitor to
protect itself against false claims of poor services.

In [32] we have delineated how systems of SLAs between
a web service provider, an Internet Service Provider and
a web service user should be arranged in a manner that
they are principally monitorable. We have also sketched
in [30] how model driven architecture techniques can be used
to derive a monitoring implementation fully automatically
from the semantics definition of the SLA language. However,

the approach relies on OCL interpretation of the semantics
definition and is too inefficient for production use.

The principal contribution of this paper is the presentation
of how Time Continuous Temporal Logic (TCTL) and timed
automata [2] can be used as a formalism to support efficient
monitoring of timeliness constraints expressed in SLAs for
web services. We derive a TCTL formula timed automa-
ton for each timeliness constraint expressed in an SLA and
compile the formula into a timed automaton. We times-
tamp SOAP messages that are exchanged as part of web
service requests and responses and consider these as timed
letters. We are then able to reduce the question whether
the SLA is violated to acceptance of a timed word by the
timed automata. This is decidable in polynomial time and
because we can process each message on the fly the approach
introduces only a linear run-time overhead into a web ser-
vice environment. We have implemented the approach using
Apache Axis handlers, the XML-based definition of Timed
Automata and related parser of Uppaal [21], and an exten-
sion of the automata-based model checking procedure for
LTL [7] for the verification of real-time requirements. We
have evaluated the performance overhead and scalability of
this implementation using a case study that monitors SLAs
in a service-oriented grid.

This paper is further structured as follows. Section 2 re-
views the theoretical analysis of SLAs presented in [31, 29],
the formalism of timed automata and the syntax of the logic
TCTL to reason about time. Section 3 extends TCTL with
an additional operator to count events and investigates the
problem of verifying traces against real-time requirements.
Section 4 presents a translation from a subset of SLAng
[29] to Timed Automata. Section 5 introduces a methodol-
ogy for the on-line verification of Timed Automata against
traces generated by web services. The results of the evalua-
tion of this approach using a case study that monitors SLAs
in a grid are presented in Section 6. Section 7 discusses re-
lated work, and concluding considerations are presented in
Section 8.

2. BACKGROUND
We first review the theoretical analysis of SLAs as presented
in [32]. In particular, primitives for parties, actions and
events are introduced to define the scope of SLAs.

We then review the syntax of the temporal logic TCTL to
reason about real-time, as defined in [2], and then we present
the formalism of timed automata.

2.1 A formalism for Service Level Agree-
ments

Consider the scenario from [32] depicted in Figure 1. In this
scenario, a Client (C) communicates with a Service Provider
(S) using a network provider (I) to request some operation,
the result of which is returned from S to C using the same
network provider I. The Service Provider S may additionally
interact with other services (either external or internal to its
structure) to provide the required result to C.

The scenario presented above can be formalised using:

Figure 1: The three party scenario.

• A set of Participants P = {C, I, S}.

• A set of actions A that can be performed by the par-
ticipants. For instance, in the three party scenario, A
may contain the actions A = {request, send, process,
respond}. The party performing an action a ∈ A is
denoted by α(a). As an example, α(send) = I.

• A set of events E; intuitively, events are the outcomes
of actions that are observable by one or more partic-
ipants. The set of events associated to an action is
denoted by ε(a).

• The set of participants able to observe a given event e
is denoted by ρ(e); the set ρ(e) ⊆ P is called the set
of respondents to e. It is assumed that for all e ∈ ε(a),
α(a) ∈ ρ(e) (i.e., at least those who perform an action
a are responders).

Central to the definition of Service Level Agreements is the
notion of observations:

Definition 1 (Observations). Observations are logi-
cal predicates concerning the values of attributes of observed
events [32].

Let O be the set of all possible observations (i.e., the set of
all possible logical predicates over events), and let o ∈ O be
an observation. We denote by π(o) ⊆ E the set of events
(with the required attributed) related to o.

In this paper we restrict ourselves to time attributes: specif-
ically, we assume that the only attributes of events are time
attributes. Under this assumption, we can write observa-
tions using TCTL, a temporal logic to reason about real
time (see [1] and Section 2.2).

Following [32], we define an SLA to be a tuple (p, c, o), where
p, c ∈ P and o ∈ O. Intuitively, (p, c, o) denotes the fact
that a provider p provides to a client c the guarantee that
an observation o ∈ O holds and vice-versa. The language
defined in [29] enables the definition of SLAs and associated
penalties when violations occur. Additionally, the language
provides features to schedule different SLAs to hold at dif-
ferent times, possibly related to changes in the context.

We refer to Section 4 for a simple example of an SLA in
SLAng, and to the files available at [29] for more details.

2.2 TCTL, a logic for real time
TCTL [1] is a temporal logic which allows to reason about
durations and time intervals.

Definition 2 (Syntax of TCTL). Let AP be a set of
atomic propositions; let I be an interval in R; let ∼ denote
any of the binary relations <,≤, >,≥,=. TCTL formulae
are defined inductively by:

ϕ ::= p | ¬ϕ | ϕ ∨ ψ | E [ϕ U ∼cψ] | A [ϕ U ∼cψ]

where p ∈ AP and c ∈ R.

A formula of the form E [ϕ U ≤5ψ] is read as “there exists
an execution (of the system) such that within 5 time units
ψ will hold, and until then ϕ holds”. The A quantifier
expresses the universality of the formula following it (i.e.,
“for all possible executions”).

Traditionally, the syntax of TCTL includes unary operators
to express that a formula will hold eventually, and that a
formula will hold globally (even though these can be de-
rived from the minimal set presented above). Specifically,
the additional operators are EF ∼cϕ and AF ∼c to express
that “there exists an execution such that within a time
bound c ϕ will eventually hold” (resp.: for all executions).
These operators are equivalent to EF∼cϕ ≡ E [>U∼cϕ] and
AF ∼cϕ ≡ A [> U ∼cϕ]. The additional pair of operators
EG ∼cϕ and AG ∼cϕ express that “there exists an execution
such that ϕ globally holds withing the time bound c” (resp.
for all executions). These two operators are equivalent to
EG ∼cϕ ≡ ¬AF ∼c¬ϕ and AG ∼cϕ ≡ ¬EF ∼c¬ϕ

The semantics of TCTL can be given using timed automata
(see next Section); we refer to [1] for more details. Efficient
algorithms and tools have been developed for model checking
TCTL, using various techniques; see, for instance, [11, 12,
4, 26].

For the purpose of this paper, we are interested in TCTL as
a formalism to express temporal requirements: those used
in observations of SLAs. To this end, we use the idea of
specification patterns. These are defined as “the description
of a commonly occurring requirement” [14]; a classification
scheme for real-time specification patterns has been defined
in [20].

In Section 4 we present a translation from SLAng clauses
to TCTL formulae using patterns. In turn, TCTL formulae
can be encoded as timed automata. Intuitively, the timed
automaton associated to a given TCTL formula encodes all
the possible computations in which the formula TCTL holds.
We refer to [1] for further details on the semantics of TCTL
using timed automata.

2.3 Timed automata
A simple automaton is a tuple A = (Σ, Q,Q0, δ, F). As an
example, consider Figure 2 where Σ = {a, b} is an alphabet,
Q = {0, 1} is a set of states, Q0 = {0} is the initial state,
F = {1} is the final state, and the transition relation δ
enables the transitions depicted.

Figure 2: A simple automaton.

Figure 3: A timed automaton.

Automata recognise languages: given an automaton A,
L(A) ⊆ Σ∗ is the language accepted by the automaton. For
the automaton of Figure 2, L(A) includes the words
{a, ab, abb, abaaaaabaab, . . . }.

A time sequence is a sequence of real numbers τ = τ1τ2 . . .
s.t. τi > τi−1 and the sequence is non-Zeno (i.e., the se-
quence is not bounded). A timed word is a pair (σ, τ)
where σ is a standard word and τ is a time sequence, e.g.,
{(aab . . .), (0.1, 0.3, 1.2, . . .)}.

Timed automata [2] extend simple automata by introducing
a set of clocks x, y, . . . , a set of time constraints over tran-
sitions, and clock reset operations over transitions. As an
example, consider the timed automaton in Figure 3: here
two clocks appear (x and y). Clock x is reset to 0 with the
operation x := 0 when a transition is performed from state
0 to state 1. Analogously, clock y is reset from state 1 to
state 2. The label (x < 1)? from state 2 to state 3 imposes
that the transition has to be performed when the value of
clock x is less than 1; similarly, the transition from 3 back
to 0 has to be performed when the value of clock y is greater
than 2.

Timed automata accept timed words, i.e. they recog-
nise timed languages. For instance, the timed au-
tomaton in Figure 3 recognises the language L(TA) =
{((abcd)ω, τ)|(τ4j+3 < τ4j+1 + 1) ∧ (τ4j+4 > τ4j+2 + 2)}

Our idea is to encode specification patterns for Service Level
Agreements as timed automata, so that the correctness (or
the violation) of an execution can be verified by checking its
inclusion in the language accepted by the automata. The
details of this methodology are presented in Section 3.1.

3. COUNTING EVENTS AND VERIFICA-
TION TECHNIQUES

A number of requirements involving time can be encoded
as TCTL formulae. However, TCTL has no operators for
“counting” events, and such requirements appear often in

Figure 4: A timed automaton for counting events.

SLA
(negated)

NOYES

Execution trace
(from Web Service)

TCTL formula
Timed Automaton

Acceptance checker

Figure 5: A timed automaton for counting events.

Service Level Agreements. For instance, a typical observa-
tion appearing in an SLA could be “there are never more
than 10 requests in a given minute”. There does not seem
to be an easy way to express this kind of property in TCTL;
moreover, counting events in an interval does not appear as
a specification pattern, neither “qualitative” [14] nor “quan-
titative” [20].

In this paper we propose an extension of the syntax of TCTL
by means of an additional operator EC to “count” proposi-
tions in a time interval: the operator EC (p, n, t) is read as
proposition p happens (at least) n times in the next t time
units (in the formula above, n ∈ N is a positive natural
number, and t ∈ R is a real number).

Formally, given a timed automaton TA and a formula of the
form EC (p, n, t), the formula is satisfied by the automaton
(written TA |= EC (p, n, t) if there exists an execution of the
automaton in which all the time constraints are satisfied and
such that at least n states in which p holds are traversed
consecutively, within a time bound of t.

As an example, Figure 4 depicts an automaton which accepts
runs for EC(p, 3, 5), i.e., runs where p happens 3 times within
5 times unit.

Notice that, in general, an automaton accepting the formula
EC (p, n, t) has n+ 2 states.

Based on the observations above, we rewrite the definition
of observations presented in Section 2.1 as follows

Definition 3 (Timed observations). Observations
are formulae of TCTL extended with the additional operator
EC (p, n, t).

3.1 Verification of traces

Figure 5 summarises the proposed methodology for verifica-
tion of traces. Given an SLA between two participants over
the execution of some service (in particular, over a Web Ser-
vice):

1. The SLA is translated into an extended TCTL formula
representing its negation. For instance, if the SLA re-
quests that the client is not allowed to perform more
than 3 requests in 5 seconds, the SLA is translated
into the formula EC (request, 3, 5).

2. The formula is translated into the appropriate timed
automaton accepting all the timed words in which the
(negated) formula holds. The automaton accepting
EC (request, 3, 5) is presented in Figure 4, where “re-
quest” is substituted by the proposition p.

3. The execution trace of a Web Service can be seen as
a timed word: indeed, it is sufficient to timestamp
events (in the sense of Section 2.1) with their time of
occurrence to generate the timed word corresponding
to a particular execution.

4. The key observation is the following: an SLA is vio-
lated by an execution when the timed automaton cor-
responding to the SLA via a TCTL formula accepts
the timed word encoding the execution trace. In our
methodology, an “acceptance checker” is responsible
for this verification.

The problem of verifying a TCTL formula in a given model
for TCTL has been investigated using model checkers. How-
ever, for our purposes we do not need the full machinery
of model checking a generic temporal formula in a generic
model for TCTL. Indeed, our aim is to check acceptance.
We exploit this fact in two ways in the definition of the
acceptance checker:

• Verification can be performed “on the fly” (i.e., while
the trace is being built): this is a standard optimi-
sation technique for model checking, for instance see
[25]). See the next section for considerations about the
length of traces.

• Instead of using traditional techniques for real time
logics (e.g., clock regions and equivalence classes), we
suggest an extension of the model checking technique
used in the SPIN model checker [19]. In particular, to
check acceptance, we check whether or not the timed
word W corresponding to the actual execution is a
member of the language L(TAϕ), where TAϕ is the
timed automaton corresponding to an extended TCTL
formula (see [7] and references therein for an introduc-
tion to automata-based model checking).

An implementation of this methodology is presented in Sec-
tion 5 and an experimental evaluation can be found in Sec-
tion 6.

3.2 Maximum counterexample diameter
Some devices may have limited storage capabilities (e.g.,
mobile phones). Storing the full log of timestamped events

of executions for a long period of time may be too space
demanding, but at the same time it may be required to
keep evidence of the possible violations in order to obtain
the compensation prescribed by SLAs. The methodology
presented in the previous section permits considerations on
the size of the logs.

In particular, what is the amount of data needed to verify
whether W ∈ L(TAϕ)? By estimating this, it is possible to
discard or compress non-relevant data.

The problem of investigating the length of witness paths for
temporal formulae has been investigated for Bounded Model
Checking (BMC) techniques [5] for CTL and LTL. The idea
is that, given a temporal formula ϕ, it is possible to compute
a number giving the maximum number of steps needed in
a model to verify that formula. There is no work in this
direction for TCTL; moreover, there is a negative result for
CTL: the required length of a path might be infinite for
certain formulae [33], which clearly extends to TCTL.

However, if we consider only particular specification pat-
terns, we are able to place a bound on the length of traces,
called the maximum diameter for a counter-example. In
particular, consider the formula ϕ = EC (p, n, t). Let’s sup-
pose this formula is monitored by a certain automaton: the
amount of data required to evaluate ϕ is bounded in two
ways. Firstly, if no events happen for t time units, then the
process can “forget” the past events. Secondly, if less than
n events happened in the last t+ ε time units (with ε > 0),
then the first of the n events can be discarded. Thus, it
is possible to place a bound on the length of traces to de-
tect failures on the fly for EC formulae. Similarly, bounds
can be computed when checking request-response patterns,
and reliability patterns, depending on the actual parameters
used.

Additional considerations. In fact, the management of
traces and the administration of SLAs might need to take
into account more parameters: it is possible that the vi-
olation of an SLA is detected by one party only, and the
violation might be reported only after a certain period of
time. In this case, if the other party has discarded the
traces, there is no possibility of reconciliation. Thus, the
evaluation of the data required to validate SLAs on-the-fly
need to be integrated with additional parameters, such as
the maximum time allowed for violation reporting. But, as
mentioned above, historical data not required for on-the-fly
validation may be compresses and stored more efficiently.

3.3 The complexity of the approach
The problem of checking whether a given (timed) word is
recognised by a given timed automaton can be solved in
polynomial time, similarly to the problem of model check-
ing a TCTL formula [23]. This result implies that the accep-
tance checker presented above only needs at most a polyno-
mial amount of time to check acceptance (polynomial in the
size of the automaton), because the additional operator EC
generates an automaton which is only polynomially larger
than an automaton for a generic TCTL formula.

In fact, we can compute the worst case time complexity
of the approach as follows. The acceptance checker does

not have to explore the full automaton: when an event and
its occurrence time are reported, the checker has to verify
whether or not a successor state exists. This step requires
at most time n (i.e., the size of the automaton). If slid-
ing time windows are being used, then the verification has
to be performed at most n times, recording a trace of at
most n steps: this is due to the fact that a failure trace
cannot contain more steps than the number of states of the
automaton for th kind of properties corresponding to SLA
patterns. Therefore, the verification process has to be re-
peated at most n times, taking a different state of the trace
as the initial state of the execution. Consequently, the total
time required for verification is at most n2.

On a different note, the problem of satisfiability for TCTL
is undecidable [15], i.e., given a generic TCTL formula ϕ,
the problem of deciding the existence of a model for it un-
decidable. This implies that the satisfiability problem for
the extended TCTL is undecidable as well. However, the
problem of checking satisfiability does not arise in our ap-
proach, for which formulae and models (or execution traces)
are given explicitly.

4. SLANG AND TIMED SPECIFICATIONS
SLAng [29] is a language for Service Level Agreements de-
veloped in the Department of Computer Science, Univer-
sity College London. Its design aims are understandability,
precision, practicality, and monitorability : the language is
intended to be understood by participants, to give unam-
biguous interpretation of the events, and to be useful in the
definition of contracts in different contexts.

The syntax and semantics of SLAng are defined using
EMOF models (a language similar to UML class diagrams),
by associating a model of the language with a model of ser-
vice usage. The precise semantics of SLAng clauses is de-
scribed using the Object Constraint Language (OCL).

Previous attempts in monitoring SLAng employed OCL
checkers to verify that SLAng clauses (expressed as OCL ex-
pressions) were satisfied. Effectively, this approach does not
scale with the number of messages exchanged, because cur-
rent OCL checkers do not recognise the temporal structure
of events. Therefore, each new event added to the system is
compared to all the previous events by an OCL checker.

In this section we present examples of the reduction of a Ser-
vice Level Agreement defined in SLAng to TCTL formulae,
and then to timed automata. This reduction enables the
continuous monitoring of events, irrespective of the number
of messages previously exchanged (see Section 6 for experi-
mental results).

Notice that in this paper we consider timeliness properties
only. While SLAng allows for the definition of agreements
involving other measures (such as data size etc.), here we
focus on temporal properties only. In particular, SLAng
include the following clauses:

• InputThroughputClause: this clause defines the max-
imum number of requests that can be submitted in a
given time window.

inputThroughputClause = {
FailureModeDefinition[f1]() {

// Max 10 requests in 1 min
[...]
inputWindow = ::types::Duration(1, min)
inputConcurrency = 10;
[...]

}
}

failureModeDefinition = {
// A failure if latency > 5s
[...]
maximumLatency = ::types::Duration(5, S)
[...]

}

[...]

reliabilityClause = {
// A failure is the thing defined above
failureModes = { FailureModeDefinition[f1] }
[...]
// Reliability requested: 90% over 1 min intervals.
reliabilityCount = 2
window = ::types::Duration(1, min)
[...]

}

Figure 6: HUTN code for SLAng (excerpts)

• Latency: this clause defines the maximum latency for
a service.

• ReliabilityClause: this clause defines the maximum
number of failures in a given time window.

• FailureModeDefinition: a failure is defined as the
violation of one of the clauses described above.

In a typical instance, these clauses are included in a bigger
specification involving definitions for participants, schedules,
penalties, etc. We refer to [29] for more details. As an exam-
ple, excerpts from an SLA written in SLAng are reported
in Figure 6 using OMG’s HUTN (Human-Usable Textual
Notation) for an instance of the EMOF model defining the
syntax of SLAng. Essentially, this is a reliability clause for
a service provider, which is required to have less than 2 fail-
ures in any sliding time window of one minute. Additionally,
the client is subject to an inputThroughputClause: no more
than 10 requests per minute can be submitted to the service
provider.

We start by analysing inputThroughputClause: the require-
ment in the Figure demands that no more than 10 requests
can be performed in 1 minute. The requirement corresponds
to (the negation of) the formula EC (request, 10, 60). This
formula, in turn, can be represented using an automaton
similar to the one in Figure 4, against which execution traces
can be validated.

failureModeDefinition is a standard bounded response
pattern [20]: a response should follow a request within a
certain time. This is translated into the TCTL formula
AG (request → AF <5sresponse). The negation of this for-

Figure 7: Timed automaton for the reliability
clause.

Figure 8: A possible implementation of an
automata-based monitor.

mula, in turn, is translated into a simple automaton where
the transition to the accepting state is labelled with the
guard “(x > 5)?”.

The reliability requirement imposes that, in any given
minute, a failure mode (denoted by the proposition fm) can-
not occur more than 2 times. Thus, reliability (in fact,
its negation) can be expressed using the automaton in Fig-
ure 7. Notice that this automaton accepts all the sequences
of events in which two failure modes (fm) occur within 60
seconds: an execution trace satisfying this automaton would
be a violation of the reliability requirement.

Overall, all the temporal properties that can be expressed
in SLAng can also be encoded as TCTL formulae and, con-
sequently, as timed automata.

Location of the monitors: the issue of mutual moni-
torability of SLAs has been addressed in [32], investigating,
among other things, where monitors should be installed. In
our example, the acceptance checker takes a timed automa-
ton as input: it seems natural to install the monitors for
failure modes and for reliability on the client, and on the
server for inputThroughputClause.

The details of the implementation of this methodology are
presented in the next section.

5. ON-LINE MONITORING METHOD
Our implementation of an automata-based online monitor
for Web Services is presented in Figure 8. We use the Open
Source Axis engine from Apache to process SOAP messages
and use its handler mechanism for monitoring, as detailed
below.

<?xml version=’1.0’ encoding=’UTF-8’?>
<!ELEMENT ta (name,clocks,location+,init,end,transition+)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT clocks (clock*)>
<!ELEMENT clock EMPTY>
<!ATTLIST clock id ID #REQUIRED>

<!ELEMENT location (comment?)>
<!ELEMENT comment (#PCDATA)>
<!ATTLIST location id ID #REQUIRED>
<!ELEMENT init EMPTY>
<!ATTLIST init ref IDREF #IMPLIED>
<!ELEMENT end EMPTY>
<!ATTLIST end ref IDREF #IMPLIED>

<!ELEMENT transition(source,target,label?,reset*,guard*)>

<!ELEMENT source EMPTY>
<!ATTLIST source ref IDREF #REQUIRED>
<!ELEMENT target EMPTY>
<!ATTLIST target ref IDREF #REQUIRED>
<!ELEMENT label (#PCDATA)>
<!ELEMENT reset EMPTY>
<!ATTLIST reset ref IDREF #REQUIRED>
<!ELEMENT guard (#PCDATA)>

Figure 9: DTD for timed automata in XML.

An SLA between two participants (top left) is first trans-
lated into a timed automaton following the procedure pre-
sented in Section 4. The automaton is represented as an
XML file. We use a slightly modified (and simplified) ver-
sion of the XML syntax for timed automata used in the
model checker UPPAAL1. The DTD for our definition of
timed automata is presented in Figure 9.

We have developed a parser to translate an XML definition
of a timed automaton into an acceptance checker, imple-
menting the method presented in Section 3. Essentially, the
acceptance checker starts from the initial state of the au-
tomaton and accepts an action and a timestamp as input;
based on the input, a transition may be performed to a
“next” state, and clocks are updated accordingly. If a final
(accepting) state is reached, then a violation has occurred
and some form of action is taken. Currently, the checker
writes violations to a file, but it could be easily modify to
send emails to participants or to perform other kinds of ac-
tions. An example trace representing the evidence for the vi-
olation of an InputThroughputClause is shown in Figure 10
(time is in milliseconds since Jan 1st 1970). The violated
InputThroughputClause prescribes that no more than two
calls can be performed in a given second. This is translated
into an automaton with four states, with a clock condition
on the last transition prescribing that the time elapsed from
the first transition has to be less than 1 second. The execu-
tion reported in Figure 10 is a violation because the service
was called for the first time at T=*626, then a second time
at T=828 (this was a valid call), and then a third time at
T=*910, i.e. less than 0.3 seconds from the first call, and
this violates the SLA.

The Java Acceptance Checker is a stand-alone application
which receives events from an event dispatcher we have im-
plemented. The event dispatcher is a Java class invoked

1See http://www.cs.auc.dk/∼behrmann/utap/libutap-0.90.tar.gz.

ITC1: FIRST CALL, SETTING INIT. STATE = l0
at time=1170166745626

ITC1: TRANSITION FOUND, GOING TO l1
at time=1170166745626

ITC1: TRANSITION FOUND, GOING TO l2
at time=1170166746828

ITC1: TRANSITION FOUND, GOING TO l3
at time=1170166746910

ITC1: EXECUTION ACCEPTED: *** VIOLATION ***
at time 1170166746910

Figure 10: Evidence trace for SLA violation.

by Axis handlers in the message chain of communication
between a client and a target service. The handlers (and
the event dispatcher with the acceptance checker) can be
installed at the client side, at the server side (see previous
section), or both. The handlers for the events dispatcher are
injected both in the request and in the response flow. The
event dispatcher performs a first selection of the messages
to be processed, based on the name of the participants and
the kind of events to be monitored (e.g., InputThroughput-
Clause, Latency, etc.)

In summary, our SLA monitors is deployed as follows:

1. The SLA is expressed as a timed automaton using
XML.

2. The timed automaton is parsed and a Java Acceptance
Checker is generated.

3. The class file for the Acceptance Checker is deployed
on the web server in conjunction with the Event Dis-
patcher.

4. Axis handlers are injected in the message chain of the
service to be monitored

Notice that it is also possible to install an event dispatcher
and an acceptance checker outside a server, using the system
property axis.ClientConfigFile for Axis clients.

The code for the parser and for the event dispatcher, to-
gether with example files are available from the authors upon
request.

6. EVALUATION
We evaluate the SLA monitoring method described in this
paper using a grid computing case study. This appears ap-
propriate as there are several grids that use web service
technologies, and computational grids typically span across
different organizations, which might have service level agree-
ments with each other. Moreover, the computational load
in a service-oriented grid may be very significant.

The particular grid application that we use to evaluate our
approach is in the area of computational chemistry and de-
scribed in detail in [16]. In this application, a client com-
ponent is used to submit searches to a web service that is
implemented as a BPEL workflow. The BPEL workflow
then eventually calls a number of web services to submit

Client

Workflow

GridSAM Plotting

chem.ucl.ac.uk

cs.ucl.ac.uk

doc.ic.ac.uk omii.ac.uk

Figure 11: Web services in the Grid Case Study

different Fortran executables to compute resources, to visu-
alize results and to upload the consolidated search result to
a data portal. Figure 11 shows an overview of the differ-
ent services involved and their deployment across different
organizational domains.

The reason why SLAs need to be defined and monitored is
because the service providers do not wish to be subjected to
load that they could not bear, and clients require a certain
level of service quality. To this end, the following Service
Level Agreements can be put in place:

• Because a full search in this application takes about 8
hours an SLA between chem.ucl.ac.uk and cs.ucl.ac.uk
would have a InputThroughputClause that limits the
total number of searches for a given client to 3 per 24
hour period.

• Likewise the job submission service at doc.ic.ac.uk can
be brought down by a client if jobs are constantly sub-
mitted and we effectively need to demand a Input-
ThroughputClause of no more than two submissions
per second for the service GridSAM and for the service
Plotting.

• Moreover, a client is interested in latency of job sub-
mission and plotting services. For instance a client
may require the latency for job submission is less than
1000 milliseconds.

• Finally, we are also interested reliability constraints
and would not wish to see more than 1 failure in 10
invocations of either the job submission or the plotting
web service.

Timed automata for these agreements can be defined us-
ing the XML syntax presented in the previous Section and
similarly to the patterns presented in Section 4. Figure 12
presents the timed automaton corresponding to the Input-
Throughput clause of no more than two requests in a second
(i.e., a third request would reach the accepting state; notice
that time is given in milliseconds). The XML files for the
remaining agreements are defined in a similar way and are
available from the authors upon request.

To evaluate the run-time overhead of our approach, we have
deployed two additional handlers in Axis to print a time

<?xml version=’1.0’ encoding=’UTF-8’?>
<!DOCTYPE ta SYSTEM "ta-dtd.dtd">
<!-- violation if 3 or more request in 1s -->
<ta>

<name>doc.ic.ac.uk</name>
<clocks>

<clock id="x" />
</clocks>
<location id="l0" />
<location id="l1" />
<location id="l2" />
<location id="l3" />
<init ref="l0" />
<end ref="l3" />
<transition>

<source ref="l0" />
<target ref="l1" />
<label>request</label>
<reset ref="x" />

</transition>
<transition>

<source ref="l1" />
<target ref="l2" />
<label>request</label>

</transition>
<transition>

<source ref="l2" />
<target ref="l3" />
<label>request</label>
<guard>x < 1000</guard>

</transition>
</ta>

Figure 12: XML timed automaton for Input-
ThroughputClause.

stamp to a log file before and after the invocation of the
handler for monitoring SLAs: by taking the difference of the
two timestamps we can evaluate the time overhead for the
SLA monitor. The experiment was conducted on a grid of
commodity Linux servers with hyper-threaded CPUs, 2GB
of Memory and Tomcat 5.0 that hosts Axis 1.2.

We have installed monitors at the boundaries between
cs.ucl.ac.uk and omii.ac.uk, and between cs.ucl.ac.uk and
doc.ic.ac.uk (see Figure 11). At the first boundary we check
an InputThroughputClause for the Plotting service, at the
second boundary we check InputThroughputClause and La-
tency for the GridSAM service. The pattern of the remain-
ing SLA for reliability do not differ from these and could be
analysed in the same way.

We set an InputThroughputClause of no more than 2 re-
quests per second for the Plotting Service and we created
a simple Java client to invoke the service at random inter-
vals between 0.3 and 3 seconds, in order to obtain some
violations. All the violations where correctly identified and
reported to the log file (see Figure 10 for an example of
a report). Figure 13 reports the experimental results for 1
run: the elapsed processing time (in millisecond) is reported
on the vertical axis, while the total duration of the exper-
iment (30 seconds) is reported on the horizontal axis. As
shown in the graph, the first call to the service took the
longest time (4 millisecond), while the remaining calls took
between 1 and 2 milliseconds for an average of 1.6 millisec-
onds. The violations occurring between seconds 10 and 15

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20 25 30

Figure 13: Time (in mS) for monitoring Input-
ThroughputClause of the Plotting service.

did not modify the overall time required.

We installed two similar monitors for the GridSAM service.
The first monitor validates that the latency of messages from
a client’s point of view is less than 1000 milliseconds and the
second monitor validates with an inputThroughput clause
that the load a client puts on the job submission provider
does not exceed two requests per second. For this experi-
ment, we used the BPEL workflow on cs.ucl.ac.uk (see Fig-
ure 11) to generate around 2,220 invocations, each consisting
of a request and a reply over a duration of 50 minutes. The
invocations are divided into five batches of 100 job submis-
sions. This can be seen from Figure 14 in that towards the
end of each batch the measurement density is reduced.

Java can measure time in increments of one millisecond. In
the data set observed in this experiment there are 2,718 data
points (of the total 4,440) with a value of 0. This means
that the actual time that was used for the validation of the
latency and inputThroughput constraint was less than the
measurement precision of Java for 61% of the total messages
considered. The average time for the validation per message
is 0.8 milliseconds. The standard deviation is 2.18. 93 data
points were above 4 milliseconds with the largest one being
under 60 milliseconds. The explanation for this distortion
is that the time measurement of the validation overhead is
not the only load on the machines, as they also perform the
computational services of the experiment.

We consider these results extremely encouraging. We can
measure the overhead of our monitoring approach in the per-
centage of time used for validation over the total duration
of the experiment. The total time spent validating SLAs in
this experiment was 3.514 seconds and with a total exper-
iment duration of 3055 seconds, this gives an overhead of
only 0.1%. We have been able to effectively monitor SLAs
on a production environment, with an average of under 1
millisecond on commodity machines that were under signif-
icant computational load. In order to deploy the validation
we did not have to modify any of the web services and could

0

10

20

30

40

50

60

0 500 1000 1500 2000 2500 3000 3500

Experiment duration [sec]

V
a
li

d
a
ti

o
n

 t
im

e
 [

m
S

]

Figure 14: Overhead of validating latency and
throughput

just configure the SOAP engine to add our handler.

7. DISCUSSION OF RELATED WORK
We build upon the work of Alur et al on TCTL and timed
automata [2], as well as the implementation of Timed Au-
tomata in the Uppaal library [21]. TCTL and timed au-
tomata have been used for verifying timeliness constraints
in specifications in, for example [6, 13, 1]. To the best of
our knowledge, timed automata have not been used before
at run-time for the monitoring of service quality.

SLAs are formal and precise statements of non-functional re-
quirements. Thus our work is related to requirements mon-
itoring that was first proposed by Fickas and Feather [18].
The implementation of this approach was demonstrated
in [9], where Cohen et al use a “Formal Language for Ex-
pressing Assumptions”, which in essence is a temporal logic.
However, their implementation relies on triggers in the AP5
active database [8], which is written in LISP. We have used
FLEA and the AP5 implementation for monitoring purposes
in [17] and based on this experience are able to assert that
the monitoring approach presented in this paper is both
more lightweight and significantly more efficient.

Our approach presented in this paper has the same aims
as that of Robinson [27], who argues on the importance of
monitoring web service quality. Robinson proposes the use
of temporal logic and KAOS to define timeliness constraints.
Robinson does not indicate, however, how these temporal
logic formulae can be monitored efficiently.

Baresi et al have proposed various techniques for monitoring
BPEL web service compositions [3]. This work is related as
they are able to monitor for timeouts, for external failures
and for functional contracts. They propose two different
approaches. Their first approach uses hand-coded moni-
tors written in C# to process intercepted messages. Our
approach simplifies the monitor construction considerably
by deriving timed automata implementations that perform
the monitoring automatically from a TCTL formula that is
derived from a SLAng timeliness constraint. Their second
approach uses our xlinkit rule engine [24]. It is aimed at
monitoring functional contracts. Xlinkit executes first order
logic rules but does not support temporal operators that

would be required to express timeliness constraints.

Mahbub and Spanoudakis proposed a framework for mon-
itoring web service compositions in [22]. They use Event
Calculus [28] to express temporal constraints for service ex-
ecutions. The approach relies on an interpretation of events
from an event database that is fed from a BPEL engine.
However, there are SLA constraints (such as the input-
Throughput clauses we discussed above) that require knowl-
edge about events that are not observable by a BPEL engine.
Moreover, the paper makes no statements as to how efficient
these monitors are. Our evaluation on the other hand has
demonstrated by way of a scalable experiment that we can
decide whether a constraint is violated within a few millisec-
onds.

Song Dong et al report on their use of timed automata and
the Uppaal libraries for the verification of web service orches-
trations in [13]. The main difference between their work and
the approach we have presented in this paper is that they in-
tend to analyze properties of orchestrations prior to deploy-
ment, while we are monitoring the timeliness constraints of
web services and their orchestrations at run-time.

8. CONCLUSIONS AND FUTURE WORK
We have presented a methodology for online monitoring Ser-
vice Level Agreements based on timed automata and Web
Services. We have presented a Java implementation using
Axis and Axis handlers.

Our methodology is non intrusive: there is no need to in-
strument existing services with new code. Instead, we inject
handlers in the message chain and we reason on the kinds
of messages exchanged (and their timestamp) to look for
violations of the agreements.

The approach presented in this paper can be deployed
quickly even without knowledge of the underlying applica-
tion: the case study presented in Section 6 involves services
operating on complex scientific data and workflows. Never-
theless, monitoring SLAs between participants only required
the knowledge of the level of service required and the loca-
tion of the services. We have been able to implement our
solution in a production environment in less than a day.

Differently from previous approaches, the performance of
our acceptance checker does not depend on the total number
of messages in the system. Moreover, each SLA checker is
very small (the .class file is typically less than 10Kb). By
using an on-the-fly verification technique we have been able
to handle a few hundreds of events per second nad obtain
average verification times of a few milliseconds.

Our aim here was to provide an efficient methodology and
to prove its feasibility, and thus various extensions remain
to be investigated. For instance, as mentioned in Section 3,
in the scope of this paper we considered only time attributes
of events. Therefore, we considered only SLAs dealing with
timeliness issues of services, but SLAs may also impose re-
quirements on non-temporal properties. Additionally, in our
implementation we did not consider scheduled SLAs, i.e.,
SLAs varying over time. For instance, one could think of
SLAs changing with the day of the week, or with other con-

textual parameters. To this end, we are currently work-
ing with the industrial and academic partners of the Eu-
ropean project PLASTIC (http://www.ist-plastic.org)
and of the UK EPSRC project Divergent Grid to extend
our methodology.

9. REFERENCES
[1] R. Alur, C. Courcoubetis, and D. Dill. Model checking

in dense real-time. Information and Computation,
104(1):2–34, 1993.

[2] R. Alur and D. Dill. A theory of Timed Automata.
Theoretical Computer Science, 126(2):183–235, 1994.

[3] Luciano Baresi, Carlo Ghezzi, and Sam Guinea. Smart
monitors for composed services. In ICSOC ’04:
Proceedings of the 2nd international conference on
Service oriented computing, pages 193–202, New York,
NY, USA, 2004. ACM Press.

[4] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson,
W. Yi, and C. Weise. New generation of Uppaal. In
Proceedings of the International Workshop on
Software Tools for Technology Transfer, 1998.

[5] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic
model checking without BDDs. In Proc. of TACAS’99,
volume 1579 of LNCS, pages 193–207.
Springer-Verlag, 1999.

[6] V. Braberman, A. Olivero, and F. Schapachnik. Issues
in Distributed Timed Model Checking. Int. Journal on
Software Tools for Technology Transfer, 7(1):4–18,
2005.

[7] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, Cambridge, Massachusetts,
1999.

[8] D. Cohen. Compiling complex database transition
triggers. SIGMOD Rec., 18(2):225–234, 1989.

[9] Don Cohen, Martin S. Feather, K. Narayanaswamy,
and Stephen S. Fickas. Automatic monitoring of
software requirements. In Proceedings of the 19th
international conference on Software engineering,
pages 602–603, New York, NY, USA, 1997. ACM
Press.

[10] S. Damodaran. B2B Integration over the Internet with
XML – RosettaNet Successes and Challenges. In Proc.
of the World-Wide-Web Conference, 2004, pages
188–195, 2004.

[11] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The
tool KRONOS. In Hybrid Systems III, volume 1066 of
LNCS, pages 208–219. Springer-Verlag, 1995.

[12] P. Dembiński, A. Janowska, P. Janowski, W. Penczek,
A. Pólrola, M. Szreter, B. Woźna, and A. Zbrzezny.
VerICS: A tool for verifying Timed Automata and
Estelle specifications. In Proc. of the 9th Int. Conf. on
Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’03), volume 2619 of
LNCS, pages 278–283. Springer-Verlag, 2003.

[13] J. S. Dong, Y. Liu, J. Sun, and X. Zhang. Verification
of Computation Orchestration via Timed Automata.
In Z. Liu and J. He, editors, Proc. of the 8th Int.
Conference on Formal Engineering Methods, volume
4260 of Lecture Notes in Computer Science, pages
226–245. Springer Verlag, 2006.

[14] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett.
Property specification patterns for finite-state

verification. In Mark Ardis, editor, Proceedings of the
2nd Workshop on Formal Methods in Software
Practice (FMSP’98), pages 7–15, New York, 1998.
ACM Press.

[15] E. Allen Emerson, Aloysius K. Mok, A. Prasad Sistla,
and Jai Srinivasan. Quantitative temporal reasoning.
In CAV ’90: Proceedings of the 2nd International
Workshop on Computer Aided Verification, pages
136–145, London, UK, 1991. Springer-Verlag.

[16] W. Emmerich, B. Butchart, L. Chen, B. Wassermann,
and S. L. Price. Grid Service Orchestration using the
Business Process Execution Language (BPEL).
Journal of Grid Computing, 3(3-4):283–304, 2005.

[17] W. Emmerich, A. Finkelstein, C. Montangero,
S. Antonelli, S. Armitage, and R. Stevens. Managing
Standards Compliance. IEEE Transactions on
Software Engineering, 25(6):836–851, 1999.

[18] S. Fickas and M. Feather. Requirements Monitoring in
Dynamic Environments. In Proc. of the 2nd IEEE Int.
Symposium on Requirements Engineering, York, pages
140–147. IEEE Computer Society Press, 1995.

[19] G. J. Holzmann. The model checker SPIN. IEEE
transaction on software engineering, 23(5):279–295,
1997.

[20] Sascha Konrad and Betty H. C. Cheng. Real-time
specification patterns. In ICSE ’05: Proceedings of the
27th international conference on Software engineering,
pages 372–381, 2005.

[21] K. G. Larson, P. Pettersson, and W. Yi. Uppaal in a
nutshell. Int. Journal on Software Tools for
Technology Transfer (STTT), 1(1-2):134–152, 1997.

[22] K. Mahbub and G. Spanoudakis. A framework for
requirents monitoring of service based systems. In
ICSOC ’04: Proceedings of the 2nd international
conference on Service oriented computing, pages
84–93, New York, NY, USA, 2004. ACM Press.

[23] Nicolas Markey and Jean-François Raskin.
Model checking restricted sets of timed paths. Theor.
Comput. Sci., 358(2):273–292, 2006.

[24] C. Nentwich, L. Capra, W. Emmerich, and
A. Finkelstein. xlinkit: A Consistency Checking and
Smart Link Generation Service. ACM Transactions on
Internet Technology, 2(2):151–185, 2002.

[25] D. Peled. Combining partial order reductions with
on-the-fly model-checking. In Proceedings of the 6th
International Conference on Computer Aided
Verification (CAV’94), volume 818 of LNCS, pages
377–390. Springer-Verlag, 1994.

[26] P. Pettersson and K. G. Larsen. Uppaal2k. Bulletin
of the European Association for Theoretical Computer
Science, 70:40–44, February 2000.

[27] W. N. Robinson. Monitoring Web Service
Requirements. In RE ’03: Proceedings of the 11th
IEEE International Conference on Requirements
Engineering, page 65, Washington, DC, USA, 2003.
IEEE Computer Society.

[28] M. Shanahan. The Event Calculus explained. In
Artificial Intelligence Today, volume 1600 of Lecture
Notes in Computer Science, pages 409–430. Springer
Verlag, 1999.

[29] J. Skene. The SLAng SLA Language. UCL,
http://uclslang.sourceforge.net, version 1.1 edition,

2006.

[30] J. Skene and W. Emmerich. Engineering Runtime
Requirements-Monitoring Systems using MDA
Technologies. In IFIP Symposium on Trustworthy
Global Computing, volume 3705 of Lecture Notes in
Computer Science, pages 319–333. Springer, 2005.

[31] J. Skene, D. Lamanna, and W. Emmerich. Precise
Service Level Agreements. In Proc. of the 26th Int.
Conference on Software Engineering, Edinburgh, UK,
pages 179–188. IEEE Computer Society Press, May
2004.

[32] J. Skene, A. Skene, J. Crampton, and W. Emmerich.
The Monitorability of Service-Level Agreements for
Application-Service Provision. In Proc. of the 6th Int.
Workshop on Software and Performance (WOSP),
Buenos Aires, Argentina. ACM Press, February 2007.
To appear.

[33] M. W. Whalen, A. Rajan, M. P. E. Heimdahl, and
S. P. Miller. Coverage metrics for requirements-based
testing. In ISSTA’06: Proceedings of the 2006
international symposium on Software testing and
analysis, pages 25–36, New York, NY, USA, 2006.
ACM Press.

