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Abstract. Internet based parallel genetic programming (GP) creates
fractal patterns like Koch’s snow flake. Pfeiffer, http://www.cs.ucl.ac.uk
/staff/W.Langdon/pfeiffer.html, by analogy with seed/embryo devel-
opment, uses Lindenmayer grammars and LOGO style turtle graphics
written in Javascript and Perl. 298 novel pictures were produced. Images
are placed in animated snow globes (computerised snowstorms) by www
web browsers anywhere on the planet. We discuss artificial life (Alife)
evolving autonomous agents and virtual creatures in higher dimensions
from a free format representation in the context of neutral networks,
gene duplication and the evolution of higher order genetic operators.

1 Introduction

For two years we have been running an experiment in distributed evolution in
which small local populations within each user’s web browser communicate via
Javascript with a central server holding a variable sized global population (see
Figure 1). Pfeiffer is intended as a prototype to show the feasibility of evolving
agents on many small computers running across the Internet under the user’s
actions as a fitness measure. (A Java based model, albeit without interactive
evolution, is sketched in [Chong and Langdon, 1999].) The agents are intended
to be attractive and therefore they are animated in a snowstorm. Their form is
given by a simple deterministic Lindenmayer grammar, whose initial seed is a
Koch fractal snow flake (see Table 1).

The Biomorphs of [Dawkins, 1986] and the work of Karl Sims [Sims, 1994] in
evolving virtual creatures are well known. Christian Jacob [Jacob, 2001] used the
Mathematica language to evolve many classic Lindenmayer based virtual plants.
The Wildwood system [Mock, 1998] allows interactive evolution of static plants,
while [Hemberg et al., 2001] uses it for architectural design. More recently [Or-
tega et al., 2003] has used a linear genetic programming system (grammatical
encoding [O’Neill and Ryan, 2001]) to force syntactic correctness of their Linden-
mayer grammar. Note these constraints may possibly prevent massive neutral
networks from forming in the fitness landscape.

The next two sections describe the GP L-system. Section 4 describes the
two month trial. Section 5 describes the results. Section 6 is concerned with
implementation problems. (After the trial, some of these were addressed.) The
penultimate section (7) discusses where evolutionary agents might lead us. We
conclude, in Section 8, that worldwide interactive evolution is feasible.
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Fig. 1. Overview of Pfeiffer. The user interacts via HTML and Javascript run
in their web browser (left hand side). Initial seeds (chromosomes) are either
stored locally as a cookie or down loaded via the Internet via cgi program seed
running on our web server. Seed returns a randomly chosen member of the global
population. Evolution occurs in the user’s browser. To visualise modified seeds
they are passed to cgi script test.bat which interprets them as Lindenmayer
grammars driving turtle graphics. The resulting graphic is convert to a .GIF file
and returned to the user’s browser for display. Should a user elect to save a seed,
it is duplicated, stored on the user’s machine as a cookie and added to the global
population by cgi program harvest.

2 How Pfeiffer Works

Pfeiffer (cf. Figure 1) evolves agents and displays them moving in two dimensions
across the screen of a www browser. The visual phenotype of each agent is
given by a Lindenmayer system grammar. As the agents are moved across the
screen they are subject to random encounters and changes which may effect their
grammar. Each time the grammar is changed the agent’s new shape is drawn on
the screen. The user can save pretty shapes and delete ugly ones.

2.1 User Interaction

The primary goal of the user intervention is to use the user to provide selection
pressure to drive the evolution of the agents. The user can save an agent by
clicking on it. This causes an additional copy of the agent to be stored in the
local population, overwriting a deleted agent (if any). Since the local population
cannot hold more than 25 agents, if there are no deleted agents, adding an agent
means overwriting an existing one. The agent selected by the user is stored
in its “cookie” and appended to the global population. (Cookies allow the local
population to be stored off line between sessions.) Once in the global population,
the agent can be down loaded by other users and so distributed across the world.
These user initiated actions exert selection pressure on the local and global
populations.

The user can also use the cursor to “freeze” selected individuals. I.e. prevent
them moving for ten seconds. This does not prevent them crossing over. As such
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it gives the user limited abilities to steer individuals towards each other and so
perform mate selection.

While apparently simple, one must bear in mind that all the agents are
updated and moved asynchronously. Thus the actual agent’s seed can be different
(for a short time) from the seed which grew into the fractal (phenotype) displayed
on the screen. Time outs are used to make it clearer which user action has been
initiated before starting a new one.

2.2 Central Server

The code running on the UCL server splits into two parts. Seed and harvest,
which read and write seeds from and to the global population and test.bat.

Javascript has very limited graphics capabilities. It is designed to display
predetermined graphics, which it down loads. Pfeiffer needs to be able to display
arbitrary Lindenmayer grammars. This cannot be done in Javascript, instead
it is done on the server and the results are down loaded. Test.bat interprets
each new seed as a Lindenmayer grammar, generating a series of drawing in-
structions, which are immediately obeyed. The resulting picture is compressed
and converted to .GIF format and passed back to the user’s browser for dis-
play. Because of the data compression, this takes only a few seconds even on
low band width connections. The delay appears to be mainly due to network
latency, rather than lack of bandwidth.

3 Genetic Programming Configuration

The (up to) 25 individuals in the local population move across the user’s web
browser display and may run into each other. When this happens and if both
individuals are mature (i.e. more than 25 seconds old) crossover occurs and the
first parent’s seed (chromosome) is replaced by that of its offspring. The new
offspring closes up to and remains with the second parent for ten seconds. The
10s delay gives time for the offspring’s .GIF to be down loaded from UCL. After
10s the child and parent randomly drift apart.

3.1 Genetic Representation

Each agent seed is a variable length linear text string. The default seed grows
into the Koch snow flake (row 6 in Table 1). It is the 56 character string
v=60&str=F++F++F & it=2 & sc =5 & rules=(’F’,’F-F++F-F’). So it is no
surprise that these characters appear often in both the local and global popula-
tions.

Spaces and control codes are removed before each seed is passed across the
Internet to be interpreted. The string is split by & characters into parameters.
They are are processed left to right. Thus if any parameter is repeated, the
second “gene” is “dominant”. Note with more flexible genetic operations (only
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a slight change to our crossover would be needed), this representation would
support “gene duplication” and “translocation” [Goldberg, 1989].

Four parameters are recognised. They are v (angle), str (start string of
grammar), it (depth of recursive expansion) and sc (side, in units of 0.2 pixels).
rules is fixed. Each substring formed by splitting the seed at the & is further
split by =. If the first part of the substring exactly matches one of the parameter
names then its value is set to the text between the first and second (if any) =. If
a parameter is missing, its default is used. The use of the defaults is effectively
the same as if the default text where inserted at the start of every seed (albeit
protected from genetic operators).

Once parameters have been decoded the Lindenmayer grammar is inter-
preted. First the start string srt Lindenmayer grammar is expanded it times.
At each step every character which matches the left hand symbol of a rule is
replaced by the corresponding right hand side. This yields a potentially very
long string. To avoid tying up our server with infinite or very long recursions an
arbitrary complexity limit of 2000 line segments steps was imposed.

The string is interpreted as a series of “turtle” drawing instructions:

F move forward sc/5 pixels
+ turn clockwise by v degrees,
- turn anti-clockwise by v degrees,

3.2 Example of Interpreting a Grammar

Suppose the initial seed is the 59 characters
v=60 & str=F++F++F3t5F+r c sc=5 & rules = (’F’,’F-F++F-F’).
After removing spaces we are left with 51 characters
v=60&str=F++F++F3t5F+rcsc=5&rules=(’F’,’F-F++F-F’). This splits (at &)
into two parameters v=60 and str=F++F++F3t5F+rcsc=5. Defaults are given
for missing parameter values (it and sc), while rules is fixed. So the grammar
is v=60, str=F++F++F3t5F+rcsc, it=2, sc=5 and rules=(’F’,’F-F++F-F’).
Note how the original value of sc had been corrupted but is restored by the
default. The start string is expanded twice (it=2) to give the final image.

Iteration Size Expansion Line segments
0 3×3 F++F++F3t5F+rcsc 4
1 6×7 F-F++F-F++F-F++F-F++F-F++F-F3t5F-F++F-F+r

csc
16

2 15×17 F-F++F-F-F-F++F-F++F-F++F-F-F-F++F-F++F-F
++F-F-F-F++F-F++F-F++F-F-F-F++F-F++F-F++F
-F-F-F++F-F++F-F++F-F-F-F++F-F3t5F-F++F-F
-F-F++F-F++F-F++F-F-F-F++F-F+rcsc

64
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3.3 GP Genetic Operations and other Parameters

Only crossover was active during the two month period. However mutation had
been used extensively in the previous two years. Crossover is “homologous” in
the sense that the start of the parents’ seeds are aligned before two cut points are
randomly selected. However to allow seeds to change length, 50% of the time the
segment cut from the middle of the second parent is either one character longer or
one shorter than the segment in the first parent it replaces. If the second parent
is shorter than the second cut point, the inserted fragment must be shorter than
the segment it replaces. Leading to a bias towards creating shorter offspring.
The first parent is replaced by its offspring.

Wildwood [Mock, 1998] only allows crossover within the L-system production
rules and chooses crossover points to ensure [] brackets are matched. Our robust
interpreter ensures operation even if crossover violates syntactic rules and allows
all the parameters to evolve.

First parent
v =l-72&strF+’+F+4+F+F&&st F+2& ’c s 5tetulF+ =-F Fe ,- F&F(Fl+&=

Second parent
v =l=72&&strF ’+F+4+F+F&&st F+2& ’c s 5tetulF+ =-F Fe,,- F&F(Fl++=

Offspring, replaces first parent
v =l-72&strF+’+F+4+F+F&&st F+2& ’c s 5tetulF+ =-F Fe ,- F&F(Fl+&=

Fig. 2. Example crossover. Length of first parent 67, first cut point at 37, remove
10 characters, insert 11 characters. 68 characters in offspring.

4 How Much Has Pfeiffer Been Used

From December 2001 to November 2003, 43,681 Lindenmayer grammars were
evolved by 740 user sessions from 171 different sites. Usage of Pfeiffer has
been highly non-uniform. The length of individual sessions is approximately
log-normal. However activity also varies in time reflecting the system’s develop-
ment. E.g. usage increased after July 2003 when support for additional browsers
(Mozilla, Netscape 6 and Microsoft) was implemented.

In the two months from Wednesday 10 September 2003 to Sunday 9 Novem-
ber, 5,653 Lindenmayer grammars were evolved, interpreted and down loaded
by 87 user sessions from 69 different domains. Surprisingly “commercial” sites
dominate with only eight obviously academic sites. Usage has been truly inter-
national and covers at least 14 countries (be, ca, com edu net org, dk, it, lb, lt,
mx, nl, pl, sa, sg, uk, za). The mean number of .GIF down loaded per session
was 65. 50% of sessions down loaded 18 or more (corresponding to loading all or
nearly all of the initial population from the network). It is disappointing to note
that half user sessions last 39 seconds or less. This suggests a serious problem in
starting Pfeiffer. Possibly many users are not prepared to wait the 38 seconds on
average needed to down load the initial population and start the HTML page.
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5 What Has Pfeiffer Learnt

The global population grew roughly linearly during the two month trial. Table 1
tabulates the changes. Of the 43 new seeds, 29 can be attributed to genuine
users and 14 to web spiders. 298 totally new phenotypes were evolved by local
populations however only one was saved in the global population by a user.

Most users added none or only one seed to the global population but two users
added five each. If we group the seeds in the global population by their appear-
ance (phenotype) the new members have been allocated roughly in proportion to
the the increase in population (145/102). This suggests no clear user preference.
Perhaps this was in part due to poor user interface, leading the Javascript to
misinterpret the user’s intention.

The asynchronous nature of the update of the agent’s phenotype after crossover
leads to a lack of direct connection between the user and the system. After the
trial the user interface was improved. E.g. various measures such as time outs
and visual cues have been implemented to address the problems of the user
“clicking but nothing happens” and to overcome the inherent delay in updating
an agent’s appearance after crossover.

While there were fluctuations in program size, lengths did not change dra-
matically. This lack of bloat is also consistent with noisy or weak selection.

During the two months, 5653 seeds were interpretted and down loaded. Apart
from a few special cases, these contained the same characters as the initial global
population, in the same proportions (within 2%). Most (3279 58%) of the .GIF
images were copies of the default Koch snow flake. 1531 (27%) images where
identical to another image held in the global population. 843 (15%) new images
were down loaded. As usual there was a degree of overlaping phenotypes, with
these 843 down loads consisting of 298 totally new .GIF files. The usage of these
novel shapes was very varied. Two novel .GIF files account for 307 (36%) of
down loads but others were evolved just once.

Three .GIF are evolved much more often than their frequency in the initial
global population. These are the given in rows 6 (default, Koch, 10× 12), 3 (in-
visible, 49× 1) and 4 (10× 3) of Table 1). While this may be a response to user
preference, another explanation is that crossover is finding many different Lin-
denmayer grammars with these phenotypes. E.g. by damaging the parameters,
so either the defaults are used or v is set to a small value.

14 junk seeds were inserted into the global population by software robots
or web spiders. Spider unknown.thorn.net was responsible for inserting rogue
characters <PLAINTEXT> into the global population. Similarly % managed to
slip in. Note while unwanted, Pfeiffer continues to function satisfactorily despite
these.

6 Practicalities

The server software needs greater protection against web spiders and software
agents. (This was added after the trial.)
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Table 1. Global population at start and end of the two month trial.

Where a grammar does not specify a value, or the value is illegal the default (Koch)
is used. There are considerable variations in start symbol str but in most cases
the specified value is illegal and so replaced by the default. Size is the number of
characters in the seed. (Where different grammars yield the same .GIF, minimum-
median-maximum values are given.) v is the angle through which the turtle is turned
(left or right, - or +). sc is the number of 0.2 pixels to move forward (on F). Steps is
the number of turtle moves to interpret the grammar (at depth it).

Used Image Number Grammar
size bytes Sep Nov inc Size v str it sc Steps

38 28×32 140 1 2 1 58 60 3 5 192

110 28×42 140 2 5 3 66-119-119 60 1.† 2 10 64

877 49×1 47 25 29 4 56-68-69 0 † 2 5 48

249 10×3 49 2 2 0 56 5–6 2 4 48

24 82×94 491 1 1 0 55 60 4 5 768

3279 10×12 64 59 91 32 0-64-69 60 † 2 5 48

170 15×14 73 6 7 1 57 60 2 5 48

31 14×14 76 2 3 1 67 -72 2. 2 5 80

11 45×16 90 1 1 0 93 9 2 5 48

21 24×17 98 0 1 1 56 60 3. 2 5 96
Default start string str is F++F++F.
1. F+F+F+F
2. +F+F+F+F+F
3. F++F++F3t5F+rc34+c++’l44FrF’15

†A few start symbols differ, sometimes radically, yet yeild the same image.

During the trial evolution was allowed to exploit a hole where by it generated
997 (2%) invisible agents. Crossover created these by ensuring v=0. The hole was
fixed after the trial.
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The evolution of large and complex fractal patterns suggest that Pfeiffer is
already pressing up against the 2000 steps limit. After the trial, this limit was
relaxed significantly without undue hardship.

We must admit to having been caught out by the significant start up delay.
This was not a feature of the original Netscape 4 implementation but arose
as a “finishing touch” during porting to other browsers. One of the original
motivations for using Javascript as opposed to using Java was that Java applets
had come with a painful start up overhead. This delay was removed after the
trial.

6.1 Real time performance

On average each .GIF takes 300mS to generate and occupies 66 bytes. On average
each seed takes 60 bytes. On a fast link (2Mb/S) the time to process each each
new seed should be dominated by drawing the .GIF. Even on a 9k6 baud line, the
average data transfer time should be only 140mS. Thus, ignoring processing time
in the user’s web browser and network latency, Pfeiffer should be able to process
between 2 and 3 fractal images per second. In contrast typical maximum rates
are 0.5-1.0 per second (mean 0.73). This suggests performance is dominated by
network (including server) latency and browser overhead. To some extent these
are outside our control. Together these suggest there is little performance gain
to be had within the existing system design.

Pfeiffer gathers a lot of data but some additional data might be helpful.
For example the type of computer/browser being used. Also mostly the data
gathered is about successful operation, little is said about things that failed. On
a less technical front, there is no attempt to gather user feed back. E.g. what
did they think about it? Was it difficult to use? Why did they stop? Did they
find it boring?

Surprisingly the computational power of a standard (350MHz) PC is only
just sufficient. Smoothly animating the movement of a population of 25 .GIF
images across a browsers screen can fully load it. One reason for moving to a
Java implementation would be to display the L-system directly thus removing
the network delays associated with crossover. However one could expect similar
CPU loading issues with Java animations as with Javascript animations. This
would need careful investigation.

6.2 Non-portability

It was somewhat disappointing to discover that so recent a language as Javascript
is seriously non-portable. Not between different computers. (Almost all develop-
ment was on computers of the same type, running the same or similar operating
systems) but between different browsers. So code running in one browser would
behave radically differently when run on the same machine in a different browser.

Portability was less of an issue on the server. Debugging and development
tools are problematic in both server and browser. Development of Javascript was
much the more painful.
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7 Future: Breeding “Intelligent” agents

Our agents are very limited. We feel they need to be able to evolve to react to
their environment. They need to be able to evolve to predict their environment.
Of course this makes requirements of both the agent and the environment. Also,
perhaps crucially, it needs to be able to effect the environment, and predict
what those effects will do for it (and for others). While L-systems have been
mainly used (as we have done here) to create static structures, they can de-
scribe networks. Those networks could contain sensory and active elements, they
could contain processing elements (as in artificial neural networks [Gruau, 1994;
Hornby and Pollack, 2002], or even GP like communicating computational pro-
cesses).

There is a strand of thought in which intelligence came from a co-evolutionary
struggle between members of the same species [Ridley, 1993]. If true, can intelli-
gence arise in isolated agents? Or are interacting/communicating agents needed?

A problem with simulated worlds has been hosting sufficient complexity so
as to be challenging but still allowing agents to be able make predictions about
what will happen next and what will happen to me or to others if I do this. The
Internet hosts tides of data. This data is not random. It aught to be possible to
harness it to give a suitable virtual environment.

We have fallen for the usual trap of constructing a two dimensional world (on
the computer screen). However is there any hope of evolving artificial life (and
thereby artificial intelligence) in two dimensions? Obviously three dimensions
are sufficient but computer simulations offer many dimensions (N�3).

8 Conclusions

Lindenmayer grammars can be used as the basis for a linear genetic programming
(GP) system and evolve interesting fractal like patterns. Many new patterns
have been evolved, some exploiting the L-system to produce some regularities
and re-use of motifs. It is feasible to represent individual agent’s genetic mate-
rial (seed/chromosome) with a variable length text string without defined fixed
semantic fields and using crossover at the character level. The representation
allows a huge degree of redundancy to evolve. The “fitness landscape” clearly
contains a huge degree of “neutrality” [Smith et al., 2002] and evolution is using
it. Yet, we are still only using a small part of a complete Lindenmayer grammar
(e.g. the seeds do not use branching primitives, [ or ]). This loose representation
allows the location etc. (as well as the meaning) of the L-system to evolve. Gene
duplication, translocation and other genetic operations could be supported by
such a general representation.

One of the original hopes was that “fitness” would arise intrinsically from the
simulation. As well as user actions, one could imagine selection being based on
aspects of the fractal patterns, their production or transfer across the Internet
and their interaction with other agents. However, perhaps due to poor user
interface exacerbated by the asynchronous nature of the image update system,
evolution appears to have been undirected.
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In terms of harvesting spare CPU cycles, the project confirms it can be done
using Javascript and user’s web browser but this experiment did not show it to
be worthwhile. The project does hint at some successes. World wide distributed
evolution is clearly feasible. (A single server prooved suficient but this must
represent a bottleneck for much bigger experiments.) Perhaps more importantly
one can recruit users (which are much more valuable than their CPUs) to assist
in guided evolution. Finally animated tools are an attractive way to spread
evolutionary computation.
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