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Abstract, Previous calculations of self-trapping in quartz adopt quantum chemical methods.
However, for certain purposes, for example, when more than a few atoms are involved in a
defect process, it would be helpful to use instead the shell model methods which work well
for halides. We present the first calcuiation of the self-trapped hole {sTH) in «-quartz and other
forms of silicon dioxide using the classic defect simulation technique. The calculation suggests
that the hole can be self-trapped on oxygen atom with a binding energy of 0.41 eV, The self-
trapping is accompanied by a large network distortion, in which the O~ ion on which the hole
is self-trapped shifts 0.14 A and the nearest-neighbour silicon atoms move 0.4-0.6 A away from
the O~ ion. These results are similar to those obtained from the ab initio HF calculation of STH in
amorphous Si0z. We have also estimated the effective activation energy of a sTH to be 0.12 eV
at 180 K though there will also be a significant component of conduction from excitation of the
small polaron to the delocalized large-potaron state.

1. Imtroduction

Self-trapping is a widespread phenomenon in insulators [1,2]. As Landau first recognized
[3], when there is strong electron—phonon coupling, the state of lowest energy for a carrier
can be localized; in essence, the energy gain from deforming the host solid is greater
than the energy cost of confining the carrier to a small volume. In a number of systems,
the balance between the major energies is delicate. One such is silicon dioxide, whether
quartz or some other structure. The exciton certainly self-traps, and this is the basis of
the characteristic blue luminescence, with its very large Stokes shift from the uliraviolet
band edge absorption. The rather small perturbations of Ge substituting for Si canse both
electrons and holes to localize [4]. In the amorphous silicas, self-trapped holes have been
identified, and the structural variations will be a contributing factor. Near to the interface
of thermal oxide with the silicon substrate, the image interaction will favour localization
because of the larger polarizability of Si. This case is of broader interest because the
hopping of carriers between the Si and insulating oxide is one of the sources of electrical
noise, and it is an open question as to whether the transfer is to a well-defined defect in the
oxide or simply to a self-trapped state [5].

The theory of self-trapping in silicon dioxide has concentrated on quantwn chemical
methods at several levels of sophistication. These have clarified many issues and provide
a firm basis for much of the experimental data. However, the computer needs for guantum
chemistry are substantial, and these calculations have used relatively small clusters of atoms.
What we attempt in this paper is a study by the simpler methods, based on the shell model
and interatomic potentials. What we find are predictions in acceptable accord with both
quantum chemistry and with experiment. This, in turn, means that we may sensibly apply
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these Mott-Littleton techniques to a variety of important problems in which the oxide is on
a silicon substrate. For example, the methods could be used to study certain of the defect
reactions involving the Py, centres [6,7], the characteristic silicon dangling bond defects at
silicon/thermal oxide interfaces.

Our present work concentrates on two fundamental questions that have yet to be
satisfactorily answered. First, what is the type of trapped charge, i.e. does a trapped charge
exist as a self-trapped hole (STH) or as a self-trapped electron (STE)? Secondly, how do these
free carriers (not associated with impurities or structural defects) migrate in quartz? We
shall concentrate on the problems of the $TH since the study of STE involves the conduction
bard of the Si0O; and reliable results are not available with the current methods.

Experimental evidence for the STH in Si0; comes mainly from ESR experiments; data
for the STE come from optical and associated methods. Hayes and Jerkin [8] identified
a STH in germanium-doped c-quartz, but were unable to find 2 STH in undoped «-quartz.
Griscom. [9] observed two ESR spectra {STH; and STHz) in irradiated amorphous Si0s. The
STH, signal he observed was analogous to the one arising from the Ge-trapped hole observed
by Hayes and Jenkin [8] while the STH; was assumed to arise from a hole trapped on two
oxygen atoms. In addition to the ESR data, optical data for a STH in both Ge-doped c-quartz
[10] and in amorphous SiQ; [11] were also reported. On the theoretical side, the main
efforts were concentrated on STE. Fisher et al [12] reported the first ab initio calculation
of a STE in a-quartz using a Hartree-Fock (HF) method. Shluger and Stefanovich {13, 14]
described the calculation for a STE in S-cristobalite by use of an approximate HF approach.
The first ab initio HF calculation for the STH in amorphous 5i0O; has been reported recently
by Edwards [15]. All these theoretical studies agree that the hole is Jocated on an oxygen
atom and that its two nearest-neighbour silicon atoms are found to relax away from the
defect oxygen atom. The underlying problem with these calculations is the small size of
cluster used. For example, in ab initio HWF, only two silicon and seven oxygen atoms are
included in the cluster although the cluster was embedded in an array of point charges.
However, the hole localization is mainly due to polarization and distortion energy, both of
which are long range in nature; further, many defect reactions can only be modelled by
including many more atoms explicitly.

In the present work, we choose to use the classical static siraulation package CASCADE
[16] which can treat the polarization and distortion of a large cluster explicitly. The method
incorporates the HADES code on which CASCADE is based, and has proved to be useful in
the study of STH and its migration in alkali halide [17-20] and in the study of bipolarons in
high-T, superconductors [21]. In our calculation we used a larger cluster with 630 atoms
and allowed all the atoms to be fully relaxed. We shall present results on the energies of
STH, the lattice distortion caused by STH and the activation energy of STH in pure a-quartz.

2. Computational method

Qur simulation is based on the shell model generalization of the Born model of the solid,
which treats the solid as a collection of point ions with short-range repulsive forces acting
between them. This approach has achieved a wide range of success, although, naturally,
the reliability of the simulations depends on the validity of the potential model used in the
calculations. Detailed discussion on this simulation technique can be found in [22]. Many
of the key ideas and applications are given in the papers honouring 50 years of the Mott—
Littleton methed [23]. We shall only give a brief description of the interatomic potentials
and defect energy calculation.
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The short-range potentials used in this classic simulation are described by the Born--
Mayer potential supplemented by an attractive r—¢ term:

V(r)= Aexp(—r/p) —Cr® (1

where A, p and C are constants. The polarizability of individual ions and its dependence on
local atomic environment is treated using the shell model [24}, in which the outer valence
cloud of the ion is simulated by a massless shell of charge ¥ and the nucleus and inner
electrons by a core of charge X. The total charge of the ion is thus X 4 ¥ which indicates
the oxidation state of the ion. The interaction between the core and shell of any ion is
treated as being harmonic with a spring constant £ and represented by

Vi) = skd? @)

where d; is the relative displacement of core and shell of ion i. The electronic pelarizability
of the free ion i is thus given by

o = Y2 k. ) 3)

The defect energy is defined as the energy to create a defect within the perfect lattice
(for a full discussion of the terms involved, see [20]). In this work, we treated the defective
lattice by using a two-region strategy [25]. In this approach the crystal is formally divided
into an inner region (region I) and an outer region (region II). In the inner region the lattice
configuration is evaluated explicitly while the outer region can be viewed from the defect as
a continuum. The displacements within the outer region are due solely to the electric field
produced by the total charge of the defect centred at the defect origin. The Mott—Littleton
method [22] is employed in the outer region and the polarization P can be represented by

1 1Y ZeR
P=—|l—-—}r 4

4 ( 80) R? ( )
where g is the static dielectric constant of the solid and the R is the distance from the
defect origin. In order to account consistently for the different treatment of the two regions,
an interfacial region (region IIa) is introduced between region I and region IL. This approach

provides for the considerable relaxation of the crystal structure around the defect, and the
total energy of the system can therefore be written as

E = Ef{z) + Em(x, t) + Eun(t) 3

in which Ei(zx) is the energy of the region I, Fm.(z, ) is the interaction energy between
region I and X, and Ep(t) is the energy of region II. Here, the argument a is a vector of
independent coordinates describing the region I, and ¢ is the magnitude of a corresponding
vector of the displacements in the region II.

In this work, the O ions are treated using the shell model while the Si icns are treated
using a rigid model (without shell). We used the potential parameters A, p and C and
shell parameters ¥ and k derived for the a-quartz by Sanders, Leslie and Catlow [26]. This
potential includes a three-body interaction, and it reproduced the structure of e-quartz which
is in good agreement with the experimental data and is successfully applied to calculation
of the energies of point defects in quartz [27]. We used a radius of inner region of 10.4 A
which included 630 species and a radius of interfacial region of 22.4 A which included
5612 species. All the ions in the two regions are fully relaxed in our calculation.
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3. Resulis and discussion

3.1. Self-trapped hole

In our work we are mainly concerned with the problem of stability of a hole localized on an
oxygen atom. It is assumed that the hole is on the oxygen, rather than being a prediction, so
here we are using information from quantum chemistry. Two energy terms are involved in
the self-trapping mechanism, the first being elastic energy and the other electronic energy.
The elastic energy is contributed by lattice distortion as well as lattice polarization. Again,
the polarization energy is composed of displacement and electronic components. We made
an estimate of the two components of polarization energy arising from the localized hole on
the oxygen atom by performing two calculations: (1) a ‘thermal’ calculation in which a full
equilibrium of the lattice surrounding the defect is performed; (2) an ‘optical’ calculation
in which only relaxation of the shells is allowed. The defect energies corresponding to
the ‘thermal’ and ‘optical’ calculation are listed in table 1. We may equal the result of
the second calculation to the partly electronic polarization energy surrounding the defect,
while the difference between the optical and thermal calculations gives the displacement
polarization energy. We note that the displacement polarization is substantial, with a value
of about 8.5 eV, while the electronic polarization also has a large value of about 2.3 eV.
‘We have also estimated the formation energy of a hole on an oxygen atom to be 12.64 eV,
indicating that a great deal of energy is needed to form a hole on an oxygen atom. That
the energy is so large is not a surprise, given the large bandgap (perhaps 10 eV) of quartz.

Table 1. The calculated defect energies in o-quartz.

Energy (V) Displacement  Electronic Hole
e polatization  poladzation formation
Thermal Optical energy (eV) energy (V) energy (eV)

O™ substituting at 02~ 2139 20,72 833 231 12.64

We next proceed to calculate the total defect energy E.y arising from a lattice distortion
caused by a hole localized on the oxygen atom. In examining the stability of the self-
trapped oxygen hole relative to a hole in its lowest-energy state in the valence band of an
undistorted crystal, we follow the criterion proposed by Norgett and Stoneham [15] that the
hole is self-trapped if the energy

E;=Ey+1E,— Ey (6)

is negative. Here Ey; is the calculated defect energy of the hole, E, is the width of the
valence band in the undistorted crystal, and Ey is the anjion Madelung energy. In our case
Ey = 21.39 eV and Ep = 31.80 eV; the value of E; can thus be estimated from

E; = 3E, — 10.41 eV. ™

The available experimental and calculated values of E, for a-quartz are 20 eV [28] and
20 eV [29] respectively. We, therefore, use these values for the calculation in formula (7)
and obtained E; as —0.41 V. The balance in energy is very close. The negative value of E;
indicates that self-trapping of a hole on an oxygen ion in ¢-quartz is possible. Self-trapping
would be favoured still more had we allowed the silicon ions to polarize too. Although
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our prediction is based on the difference between two large numbers, and so somewhat
uncertain, the conclusion that the sclf-trapped state is slightly more stable is plansible. This
calculation is believed to be the first calculation for a STH in pure c-quartz, although the
STH in Ge-doped a-quartz [8] and in amorphous SiQ, have been observed [9, 15].

We have also used the ab initio potential of a-quartz (this potential is referred to as
potential B and the first potential we used is referred to as potential A) [30] to calculate the
stability of the STH in ¢-quartz. The value of E; calculated using potential B is 0.55 eV (see
table 2) which is 0.8 eV higher than the value calculated using potential A. The difference
in the E; value is believed to arise from the difference between the dielectric constants
of a-quartz calculated using the two different potentials. The dielectic constant calculated
using potential B is not as good as the dielectric constant calculated using potential A (see
[30]), although the two potentials give almost the same structural parameters and elastic
constant. The dielectric constant plays an important role in defect calculation, with a small
variation in its value resulting in a significant corresponding change in defect energy.

Table 2. The energy E; of various 8i0; polymorphs (negative Eg indicates the self-trapping of

the hole}.
Energy E£; (eV)
Density (g cm™3)  Potential A Potential B
o-quartz 2.649 —041 0.55
B-quartz 2,352 —0.09 0.83
a-cristobalite  2.344 042 0.95
p-cristobalite  2.174 0.99 1.49

We have used both potentials to calculate the stability of a STH in four polymorphs of
silica (w-quartz, B-quartz, cr-cristobalite and B-cristobalite). We found that c-quartz is most
favourable for trapping a hole while 8-critobalite is least favourable (see table 2). The plot
of E; against the density of the silicas is shown in figure 1. It is found that the denser the
silica, the easier it is to trap a hole. For the amorphous silicas, the volume per molecular
unit is systematically larger (density less) than for the crystalline silicas (see, e.g., figure 2
of [5]). This means that the variation of energy from site to site is critical for the amorphous
silicas, whereas the average density is more significant in crystalline silicas.

3.2. Lattice distortion caused by a STH

Figure 2 and table 2 show core positions of some selected ions around the hole site before,
and after, hole trapping. It is observed that trappmg a hole on the O ion gives rise to the
displacement of the oxygen ion O~ itself by 0.14 A. However, the two nearest silicon
ions Si(1) and Si(2) show large displacements of (.40 A and 0.63 A respectively. It is
noted that both Si(1) and $i(2) shift away from the central oxygen ion O~ and that the
Si(2) ion shifts more than Si(1} ion. The other three oxygen ions surrounding the Si(2)
ion (O(3). O4) and O{6)) also show a large displacement compared to the three oxygen
ions surrounding the Si(1) ion (i.e. O(1), O(2) and O(3)). The other six Si ions, Si(3),
Si{4)....Si(8), which are further away from the central oxygen O~ ion, have relatively
smaller displacements compared to the jons closer to the O~ ion. We also found the
distance between the central O~ and its nearest-neighbour O ions increased, so we can rule
out the possibility of the hole pulling two oxygen atoms together, as is seen in the Vi centre
in alkali halides. We calculated the equilibrium geometries for the neutral charged cluster
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Figure 1. The variation of E; with density of silicas. The forms shown are a-quartz, 8-quartz,
«-cristobalite and B-cristobalite.

(a) (b)

Figure 2. The geometry of the central part of (a) a neutral cluster and (b) a positively charged
cluster. The differences in positions are anafysed in the text.

(see table 4) and for the positively charged cluster, which correspond to the structure before
and after hole trapping respectively. We found that both O~™-Si(1) and O~-Si(2) bond
lengths change significantly from about 1.6 A for a neutral configuration to about 2.1 A for
a positively charged configuration. It is surprising to find that the bond angle of Si(1)-O~-
Si(2) undergoes only a very small change of about 1°, compared to the large elongation in
the bond lengths of O™-Si(1) and O~-Si(2). We also calculated the bond length Rsig,—0u
and bond angle /Onnn—Sinn—Onnn (where NN denotes the nearest neighbours and NNN
next-nearest neighbours) with respect to the central O~ ion. It is found that after hole
trapping, the bond length Rg;—oy, shortened by about 0.4-0.5 A while the bond angles
ZONNN~-SiNN—Onnn increased by about 6-12° and bond angles ZOnnyn—Sinn—O; (where O,
denotes the central O~ ion) decreased by about 8-15°. The bond lengths Rogp—si, (Sio
denotes the outer silicon ions) undergo an opposite change as compared to the bond lengths
Rsig—Omo, Which increase by about 0.04-0.06 A after hole trapping. The changes of the
bond angles /Sinn-Onnn—Si, show a different pattern. After hole trapping, the bond angles
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£81(1)-0O(5)-Si(3) and £8i(2)-O(3)-Si(4) increase, the bond angles £8i(1)-0O(1)-Si(8) and
£8i(1)-0(2)-8i(7) decrease, and the bond angles £Si(2)-0(6)-Si(5) and £8i(2)-0(4)-Si(6)
remain almost unchanged.

Table 3. The core position before the hole is trapped at the O site (neutral position), the core
position: after the hole is trapped at the Q site (relaxed position) and the displacement due to O
trapping (all coordinates are given in dngstroms).

Neutral position Relaxed positions

Iom X Y z X’ Y yal Displacement

o= 0.00003 000010 000002 —0.05195 0.12685 0.01885 0.13829
Si(1y 094016 —1.12626 065089 1.16040 ~1.39641 0.84252 039775
Si(2) ~0.08103 1.12241 —I1.15091 —0.11889 1.62464 —1.52402 0.62680

O(1) 000003 —225262 130175 (.06089 —2.37011 137228 0.14994
O(2) 187158 —1.75762 —0.50005 189510 —1.81464 —047684 0.06590
O(3) —0.58642 249376 —~0.50005 0.62555 276815 —060174 (.28566
O4) —1.09352 063145 —230185 —1.11351 091148 —249168 034144
O(5) 1.87158 —049490 180182 192618 —0.51630 1.86901 0.08918
Of6) 136448 137341 —1.80178 1.38692 151150 —190574 0.17430

Si€3) 237697 0.88245 245269 241235 091546 248748 0.05560
Si(4) —-1.51784 3.13112 065089 —1.57365 322062 067455, 0.10810
Si(5) 237697 0.88245 —295272 243472 087785 -—3.01663 0.08626
Si(6) —2.53903 0.88245 —295272 —2.65774 093560 —3.04795 0.16120
Si(7y 237697 —3.13497 —1.15001 242685 —3.19093 120935 0.09505
Si(8) —0.08103 —337493 245269 —0.09410 —3.51643 254973 0.17208

We noted that after hole trapping the changes of the bond lengths O™-Si(1) and O™—
Si(2) are about 30% while the changes of Rgjp—0mge 20d Ropgp—si, are only 2-3%. This
indicates that the network relaxation is strongly localized con the three central ions (O™,
Si(1) and Si(2)), which is the same trend as that reported by Bdwards [15]. Comparing
our struciural data with Edwards’, we found the trend of the changes in the other structural
parameters due to hole trapping to be the same, but our changes are somewhat larger than
his [15]. Edwards (15] reported that network relaxation is comprised almost completely of
the motion of the two silicon nearest neighbours away from the central oxygen. We found
that some ions other than the three central ions can also experience quite large displacement
as shown in table 2 {e.g. O(3) and O(4)). The difference between BEdwards’ data and ours
is believed to arise from the fact that in Edwards® calculations only the inner seven oxygen
atoms and two silicon atoms are allowed to relax, while in our calculation more than 630
species are allowed to relax fully.

The number of atoms inside the region I plays an important role in our defect calculation.
If we include only 16 atoms in the region I then the defect energy Eu is 22.87 eV. As
the number of atoms inside the region I increases, the defect energy Ey; decreases (see
figure 3). When we include 630 atoms, Ew is 21.39 eV leading to the self-trapping of the
hole. Including more atoms inside the region I also affects the displacement polarization
energy and electronic polarization energy. If we use 16 atoms the displacement polarization
energy and electronic polarization energy are 6.94 eV and 1.55 eV respectively, while when
we use 630 atoms these values are increased to 8.33 eV and 2.31 eV respectively.
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Table 4. Equilibrium geometry for the neutral and positively charged clusters shown in figure 1.
Subscripts: c=central; NN=nearest neighbours; NNN=next-nearest neighbours; o=outer. The bond
length is given in dngstrims and the bond angle is given in degrees.

Bond length Neutral Positive Bond angle Neutral Positive
Ro,—Siny £8iNn—0c-Siny
QO~=8i(1) 1.6050 '2.1139 £8i(1)-0~-Si(2) 143.98 143.03
Q~-8i(2) 1.6096 “2.1513
Rt =Crm L0
Si(1)-0(1) 16050 15613 ZO(H-SKD-O(2) 11071 11671
Si(1)-0(2) 16096 15670  ZO(1)-Si(1)-O(5) 10892 11843
Si(1)-0(5) L6096 15539  ZO@)-SKI-O(5) 10929 11844
Si(2)-0(3) 16050  1.5540 L0G)-Si2)-04y 11071 119.83
Si(2)-0(4) 16096 15630  ZO(3)-Si(2)-0(6) 10835 12094
8i(2)-0(6) 1.6050 1.5576 L0(4)}-8i(2)-0¢ 6} 108.73 11544
ZOnnN — Sinn—0¢
OO 26018 2.8424 £O(1)-Si(1)-0~ 108.29 100.24
O—-0(2) 2.6158 2.7939 Z0(2)%-Si{1)-0~ 108.79 97.65
0~-0(3) 2.6158 2.7732 £0(5)-81(1)-0~ 110.71 97.58
O~ -0 2.6255 2.8404 LO(3)-51(2)-0~ 108.92 95,56
O~-0(5) 2.6447 2.7838 £O(4)-8i(2)-0~ 109.29 98.52
O~—-0(6) 2.6447 2.7734 LOQ)-Si(2)-0~ 110.71 25.46
RoOyn—=Siy £Sixn-Onpan—Siy
Si(3)-0(5) 1.6050 1.6636 £8i(1)-0(5)=5i(3) 143,98 153.27
Si(7)-0(2) 16050 1.6473 L8i(1)}-0(2)»-8i(T) 143.98 138.48
Si(8)-0(1) 1.6096 1.6506 £8i(1)-0O(1)-Si(8) 143,98 137,34
Si(4)-0(3) 1.6096 1.6530 £581{(2)=-0(3)-8i(4) 143.98 14785
Si{5)-O(6) 16096  1.6533 L51(2)-0(6)-8i(5) 14398 14363
Si(6)-0(4) 1.6050 1.6400 L8i(2)-0(4)-Sit6) 143.98 143.30
1.0 ¢
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Figure 3. The variation of the defect energy Evx with  Figure 4. The ratio of the effective activation energy U
the nurnber of atoms used in the calculation, to the calenlated activation energy E,, as a function of
temperature, The curve is obtained from equation (9.

3.3. Calculation of activation energy of hole

3.3.1. Normal small-polaron hopping. At high temperatures the hopping rate of a hole is
given by
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where E, is the activation energy of a hole [18]. The activation energy E, is the energy of
the ‘coincidence state’ relative to the polaron ground state [2]. It can be expressed as the
difference between the relaxation energy under the average of the initial and final forces,
Ey, and the relaxation energy in the initial configuration E; [18]

E,=E., —E,. (8)

‘We calculate the Eg,y to be 27.06 eV and E; to be 21.39 eV. The activation energy E; is
then estimated to be 5.67 ¢V, which is far larger than the expected value of a few tenths of
an eV,

There are two possible explanations. The first is that expression (7) is only valid at
high temperatures, i.e. kew/kT < 1 where @ is angular frequency of a phonon and 7T is
temperature. Because the experiment is usually undertaken at low temperatures, we need to
estimate a corresponding ‘effective activation energy” U, which is related to the experimental
data. The effective activation energy U is given by [18]

L[ § cosech(y)]

=E h*
U = E,2cosech’(y) ( Io[S cosech(y)]

cosh(y) — 1) ©

where Iy and I; are modified Bessel functions, y = fiw/&T and S = 4E,/hw. The formula
(9), with w equal to the longitudinal optical frequency, is usually used to reiate the calculated
E, to the experimental data [18, 19]. Using the experimental value v = w/27x = 36,7 THz
[31], we obtained the ratio U/E, (shown in figure 4). It is seen that U/E, is temperature
dependent. At T = 180 K, U/E, = 0.0215. This yields the effective activation energy of
0.122 eV, which is about half the energy needed to self-trap a hole on an oxygen ion. We
note that below 120 K, U/E, is close to zero, leading to a calculated effective activation
energy U close to zero. This implies that at very low temperatures (say T’ = 120 K) the
activation energy of a hole is very small, so the hopping rate of the hole will be fast enough
to prevent the observation of stable long-term self-irapping. This result seems to agree with
experimental results [8], i.e., in crystalline quartz at 4 K the hopping rate of holes is still
fast enough to prevent stable long-term self-trapping of the type of hole found in more ionic
solids such as alkali halides.

3.3.2. An alternative mechanism. Since the coincidence state energy (E,) is predicted to be
very high, the obvious question is whether the standard small-polaron hopping mechanism is
appropriate. As has been noted for other oxides (especially NiO, [2]). charge transport could
proceed via the small polaron being excited to the mobile large-polaron state. This would
have a lower activation energy, of the order of the few tenths of an eV, which we have
calculated, corrected for the lattice deformation in the large-polaron state. Experimentally,
this would lead to differences in thermopower, but this is academic in the present case
where experiments are unlikely to succeed. If the small polaron is indeed stable by such
a small amount, we should expect that there will be populations of both small and large
polarons, and it is the behaviour of this mixed population whose properties are observed.
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4. Conclusions

We have investigated the possibility of STH existing in pure o-quartz by using the classic
defect simulation technique. It is found that the hole can be self-trapped in an oxygen ion
with a binding energy of 0.41 eV, The STH gives rise to a large displacement polarization
energy of 843 eV and a large electronic polarization energy of 2.31 eV. The STH is
accompanied by a localized network distortion wherein the O~ ion, on which the hole is self-
trapped, shifts by 0.14 A and the nearest-neighbour silicon atoms move 0.4-0.6 A away from
the O~ ion. This result is similar to the ab initio HF calculation of STH in amorphous SiOs.
We also calculated the activation energy of STH and estimated the effective activation energy
to be 0.12 eV at 180 K. This small activation energy of STH may imply that the hopping rate
of the hole will be fast enough to prevent stable long-term self-trapping. However, the low
self-trapping energy does suggest that small- and large-polaron populations should coexist.
The self-trapped holes may therefore be bound to defects unless there is extra stabilization
from other causes, e.g. in amorphous silicas or where image interaction favours localization
too.
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