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Abstract. Previous calculations of self-trapping in q u m  adapt quantum chemical methods. 
However, for certain purposes, for example, when more than a Cew atoms are involved in a 
defect process, it would be helpful IO use instead the shell model methods which work well 
for halides. We present the first calculation of the self-trapped hole (mi) in a-quartz and other 
forms of silicon dioxide using the classic defect simulation technique. The calculation suggesm 
that the hole can be self-trapped on oxygen atom with a binding energy of 0.41 eV. The self- 
tnpping is accompanied hy a large network distortion. in which the 0- ion on wvch the hole 
is self-trapped shifts 0.14 A and the nearest-neighbour silicon atoms move 0.4-0.6 A away from 
the 0- ion. These resulu q similar to those obtained from the ab initio HF calculation of sm in 
emorphous ,902. We have also estimated the effective aciivation energy of a STH IO be 0.12 eV 
at 180 K though there will also be a significant component of conduction from excitation of the 
small polaron to the delocalized large-polamn s m .  

1. Introduction 

Self-trapping is a widespread phenomenon in insulators [1,2]. As Landau first recognized 
[3], when there is strong electron-phonon coupling, the state of lowest energy for a camer 
can be localized; in essence, the energy gain from deforming the host solid is greater 
than the energy cost of confining the canier to a small volume. In a number of systems, 
the balance between the major energies is delicate. One such is silicon dioxide, whether 
quartz or some other structure. The exciton certainly self-traps. and this is the basis of 
the characteristic blue luminescence, with its very large Stokes shift from the ultraviolet 
band edge absorption. The rather small perturbations of Ge substituting for Si cause both 
electrons and holes to localize [4]. In the amorphous silicas, self-trapped holes have been 
identified, and the structural variations will be a contributing factor. Near to the interface 
of thermal oxide with the silicon substrate, the image interaction will favour localization 
because of the larger polarizability of Si. This case is of broader interest because the 
hopping of carriers between the Si and insulating oxide is one of the sources of electrical 
noise, and it is an open question as to whether the transfer is to a well-defined defect in the 
oxide or simply to a self-trapped state [SI. 

The theory of self-trapping in silicon dioxide has concentrated on quantum chemical 
methods at several levels of sophistication. These have clarified many issues and provide 
a firm basis for much of the experimental data. However, the computer needs for quantum 
chemistry are substantial, and these calculations have used relatively small clusters of atoms. 
What we attempt in this paper is a study hy the simpler methods, based on the shell model 
and interatomic potentials. What we find are predictions in  acceptable accord with both 
quantum chemistry and with experiment. This, in turn, means that we may sensibly apply 
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these Matt-Littleton techniques to a variety of important problems in which the oxide is on 
a silicon substrate. For example, the methods could be used to study certain of the defect 
reactions involving the Pb centres [6,7], the characteristic silicon dangling bond defects at 
silicodthermal oxide interfaces. 

Our present work concentrates on two fundamental questions that have yet to be 
satisfactorily answered. First, what is the type of trapped charge, i.e. does a trapped charge 
exist as a self-trapped hole (STH) or as a self-trapped electron (SE)? Secondly, how do these 
free carriers (not associated with impurities or structural defects) migrate in quartz? We 
shall concentrate on the problems of the STH since the study of STE involves the conduction 
band of the Si02 and reliable results are not available with the current methods. 

Experimental evidence for the STH in Si02 comes mainly from ESR experiments; data 
for the STE come from optical and associated methods. Hayes and Jenkin 181 identified 
a STH in germanium-doped cy-quartz, but were unable to find a STH in undoped a-quartz. 
Griscom 191 observed two ESR spectra (STHI and STHz) in irradiated amorphous SiO2. The 
STHI signal he observed was analogous to the one arising from the Getrapped hole observed 
by Hayes and Jenkin [SI while the S T H ~  was assumed to arise from a hole Uapped on two 
oxygen atoms. In addition to the ESR data, optical data for a STH in both Gedoped or-quartz 
[IO] and in amorphous Si02 [l l]  were also reported. On the theoretical side, the main 
efforts were concentrated on STE. Fisher et al 1121 reported the first ab initio calculation 
of a STE in cy-qumz using a Hartree-Fock (w) method. Shluger and Stefanovich 113,141 
described the calculation for a STE in p-cristobalite by use of an approximate HF approach. 
The first ab initio HF calculation for the sTH in amorphous Si02 has been reported recently 
by Edwards 1151. All these theoretical studies agree that the hole is located on an oxygen 
atom and that its two nearest-neighbour silicon atoms are found to relax away from tbe 
defect oxygen atom. The underlying problem with these calculations is the small size of 
cluster used. For example, in ab initio WF, only two silicon and seven oxygen atoms are 
included in the cluster although the cluster was embedded in an array of point charges. 
However, the hole localization is mainly due to polarization and distortion energy, both of 
which are long range in nature; further, many defect reactions can only be modelled by 
including many more atoms explicitly. 

In the present work, we choose to use the classical static simulation package CASCADE 
1161 which can treat the polarization and distortion of a large cluster explicitly. The method 
incorporates the HADES code on which CASCADE is based, and has proved to be useful in 
the study of STH and its migration in alkali halide [17-201 and in the study of bipolarons in 
high-T, superconductors [21]. In our calculation we used a larger cluster with 630 atoms 
and allowed all the atoms to be fully relaxed. We shall present results on the energies of 
STH, the lattice distortion caused by STH and the activation energy of STH in pure q u a r t z .  

2. Computational method 

Our simulation is based on the shell model generalization of the Born model of the solid, 
which treats the solid as a collection of point ions with short-range repulsive forces acting 
between them. This approach has achieved a wide range of success, although, naturally, 
the reliability of the simulations depends on the validity of the potential model used in the 
calculations. Detailed discussion on this simulation technique can be found in [22]. Many 
of the key ideas and applications are given in the papers honouring 50 years of the Mott- 
Littleton method [23]. We shall only give a brief description of the interatomic potentials 
and defect energy calculation. 
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The short-range potentials used in this classic simulation are described by the Bom- 
Mayer potential supplemented by an attractive r-6 term: 

V ( r )  = Aexp(-rjp) - Cr-6 (1) 

where A, p and C are constants. The polarizability ofindividual ions and its dependence on 
local atomic environment is treated using the shell model [24], in which the outer valence 
cloud of the ion is simulated by a massless shell of charge Y and the nucleus and inner 
electrons by a core of charge X. The total charge of the ion is thus X + Y which indicates 
the oxidation state of the ion. The interaction between the core and shell of any ion is 
treated as being harmonic with a spring constant k and represented by 

where di is the relative displacement of core and shell of ion i. The electronic polarizability 
of the free ion i is thus given by 

The defect energy is defined as the energy to create a defect within the perfect lattice 
(for a full discussion of the terms involved, see [20]). In this work, we treated the defecfive 
lattice by using a two-region strategy [?I. In this, approach the crystal is formally divided 
into an inner region (region I) and an outer region (region U). In the inner region the lattice 
configuration is evaluated explicitly while the outer region can be viewed from the defect as 
a continuum. The displacements within the outer region are due solely to the electric field 
produced by the total charge. of the defect centred at the defect origin. The Mott-Littleton 
method [22] is employed in the outer region and the polarization P can be represented by 

1 ~ZeR P = -!- (1 - ,) - 
4H R3 

(4) 

where EO is the static dielectric constant of the solid and the R is the distance from the 
defect origin. In order to account consistently for the different treatment of the two regions, 
an interfacial region (region na) is introduced between region I and region II. This approach 
provides for the considerable relaxation of the crystal structure around the defect, and the 
total energy of the system can therefore be written as 

in which Er(=) is the energy of the region I, En&, I )  is the interaction energy between 
region I and U, and is the energy of region 11. Here, the argument I is a vector of 
independent coordinates describing the region I, and t is the magnitude of a corresponding 
vector of the displacements in the region 11. 

In this work, the 0 ions are eeated using the shell model while the Si ions are treated 
using a rigid model (without shell). We used the potential parameters A, p and C and 
shell parameters Y and k derived for the a-quartz by Sanders, Leslie and Catlow [26]. This 
potential includes a three-body interaction, and it reproduced the structure of a-quartz which 
is in good agreement with the experimental data and is successfully applied to calculation 
of the energies of point defects in quartz 1271. We used a radius of inner region of 10.4 A 
which included 630 species and a radius of interfacial region of 22.4 A which included 
5612 species. All the ions in the two regions are fully relaxed in our calculation. 
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3. Results and discussion 

3.i. Self-trapped hole 

In our work we are mainly concerned with the problem of stability of a hole localized on an 
oxygen atom. It is assumed that the hole is on the oxygen, rather than being a prediction, so 
here we are using information from quantum chemistry. Two energy terms are involved in 
the self-trapping mechanism, the first being elastic energy and the other electronic energy. 
The elastic energy is contributed by lattice distortion as well as lattice polarization. Again, 
the polarization energy is composed of displacement and electronic components. We made 
an estimate of the two components of polarization energy arising from the localized hole on 
the oxygen atom by performing two calculations: (1) a ‘thermal’ calculation in which a full 
equilibrium of the lattice surrounding the defect is performed; (2) an ’optical’ calculation 
in which only relaxation of the shells is allowed. The defect energies corresponding to 
the ‘thermal‘ and ‘optical’ calculation are listed in table 1. We may equal the result of 
the second calculation to the partly electronic polarization energy surrounding the defect, 
while the difference between the optical and thermal calculations gives the displacement 
polarization energy. We note that the displacement polarization is substantial, with a value 
of about 8.5 eV, while the electronic polarization also has a large value of about 2.3 eV. 
We have also estimated the formation energy of a hole on an oxygen atom to be 12.64 eV, 
indicating that a great deal of energy is needed to form a hole on an oxygen atom. That 
the energy is so large is not a surprise, given the large bandgap (perhaps 10 eVj of quartz. 

Table 1. The dculaled defect energies in =quark. 

Energy (eV) Displacement Electronic Hole 
polarization polmization formation 

Thermal Optical energy (eV) energy (eV) energy (ev) 

0- substituting at 02- 21.39 29.72 8.33 2.31 12.64 

We next proceed to calculate the total defect energy Evk arising from a lattice distortion 
caused by a hole localized on the oxygen atom. In examining the stability of the self- 
trapped oxygen hole relative to a hole in its lowest-energy state in the valence band of an 
undistorted crystal, we follow the criterion proposed by Norgett and Stoneham [15] that the 
hole is self-trapped if the energy 

Es = Evk + f E,  - EM (6) 

is negative. Here Evk is the calculated defect energy of the hole, E, is the width of the 
valence band in the undistorted crystal, and EM is the anion Madelung energy. In our case 
EVk = 21.39 eV and EM = 31.80 eV; the value of E,  can thus be estimated from 

E ,  = 4 E,  - 10.41 eV. (7) 

The available experimental and calculated values of E, for cr-quartz are 20 eV [28] and 
20 eV [29] respectively. We, therefore, use these values for the calculation in formula (7) 
and obtained E, as -0.41 eV. The balance in energy is very close. The negative value of Es 
indicates that self-trapping of a hole on an oxygen ion in a-quartz is possible. Self-trapping 
would be favoured still more had we allowed the silicon ions to polarize too. Although 
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our prediction is based on the difference between two large numbers, and so somewhat 
uncertain, the conclusion that the self-trapped state is slightly more stable is plausible. This 
calculation is believed to be the first calculation for a STH in pure or-quartz, although the 
STH in Ge-doped a-quartz [SI and in amorphous Si02 have been observed [9,15]. 

We have also used the ab initio potential of or-quartz (this potential is referred to as 
potential B and the first potential we used is referred to as potential A) [30] to calculate the 
stability of the STH in a-quartz. The value of Es calculated using potential B is 0.55 eV (see 
table 2) which is 0.8 eV higher than the value calculated using potential A. The difference 
in the E. value is believed to arise from the difference between the dielectric constants 
of a-quartz calculated using the two different potentials. The dielectic constant calculated 
using potential B is not as good as the dielectric constant calculated using potential A (see 
[30]), although the two potentials give almost the same structural parameters and elastic 
constant. The dielectric constant plays an important role in defect calculation, with a small 
variation in its value resulting in a significant corresponding change in defect energy. 

Table 2. The energy E, of various Si01 polymorphs (negative E, indicates the self-apping of 
the hole). 

Energy fiS (eV) 

Density (g cm-’) Potential A Potential B 
nquanz 2.649 -0.41 0.55 
p-qunz 2.352 -0.09 0.83 
n-cristobalite 2.344 0.42 0.95 
8-cristobalite 2.174 0.99 1.49 

We have used both potentials to calculate the stability of a STH in four polymorphs of 
silica (or-quartz, j3-quartz, or-cristobalite and j3-cristobalite). We found that or-quartz is most 
favourable for trapping a hole while j3-critobalite is least favourable (see table 2). The plot 
of E,  against the density of the silicas is shown in figure 1. It is found that the denser the 
silica, the easier it is to trap a hole. For the amorphous silicas, the volume per molecular 
unit is systematically larger (density less) than for the crystalline silicas (see, e.g., figure 2 
of 151). This means that the variation of energy from site to site is critical for the amorphous 
silicas, whereas the average density is more significant in crystalline silicas. 

3.2. Lattice distortion caused by a STH 

Figure 2 and table 2 show core positions of some selected ions around the hole site before, 
and after, hole trapping. It is observed that trapping: hole on the 0 ion gives rise to the 
displacement of the oxygen ion 0- itself by 0.14 A. However, the- two nearest silicon 
ions Si(1) and Si(2) show large displacements of 0.40 A and 0.63 A respectively. It is 
noted that both Si(1) and Si(2) shift away from the central oxygen ion 0- and that the 
Si(2) ion shifts more. than Si(1) ion. The other three oxygen ions surrounding the Si(2) 
ion (0(3), O(4) and O(6)) also show a large displacement compared to the three oxygen 
ions surrounding the Si(1) ion (i.e. 0(1), O(2) and O(3)). The other six Si ions, Si(3), 
Si(4),. . .Si(8), which are further away from the central oxygen 0- ion, have relatively 
smaller displacements compared to the ions closer to the 0- ion. We also found the 
distance between the central 0- and its nearest-neighbour 0 ions increased, so we, can rule 
out the possibility of the hole pulling two oxygen atoms together, as is seen in the VK centre 
in alkali halides. We calculated the equilibrium geometries for the neutral charged cluster 
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Density (6/" 1 

Figure 1. The variation of E, with density of silicas. The forms shown are o(-quaTtz, B-quanz, 
a-crirtobalite and p-cristobalite. 

Figure 2. The ~eometry of the central part of (a) a neutral cluster and (b) a positively charged 
duster. The differences in positions are analysed in the text. 

(see table 4) and for the positively charged cluster, which correspond to the structure before 
and after hole trapping respectively. We found that both 0-Si (1)  and 0 - S i ( 2 )  bond 
lengths change significantly from about 1.6 A for a neutral configuration to about 2.1 A for 
a positively charged configuration. It is surprising to find that the bond angle of S i ( l ) 4 - -  
Si(2) undergoes only a very small change of about lo, compared to tbe large elongation in 
the bond lengths of 0 - S i ( 1 )  and 0-Si(2).  We also calculated the bond length Rsi,,,,-% 
and bond angle LOmNSiNN4JNNN (where NN denotes the nearest neighbours and NNN 
next-nearest neighbours) with respect to the central 0- ion. It is found that after hole 
trapping, the bond length RSiPRI-O" shortened by about 0.4-0.5 A while the bond angles 
LONNN-Si"aNNN increased by about 6-12" and bond angles LONNNSiNN-Oc (where 0, 
denotes the central 0- ion) decreased by about 8-15", The bond lengths R*-sjn (Si, 
denotes the outer silicon ions) undergo an opposite change as compared to the bond lengths 
RSiNN-* which increme by about 0.04-0.06 A after hole trapping. The changes of the 
bond angles LSiNN-O"N-Sio show a different pattern. After hole trapping, the bond angles 
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LSi(1)4(5)Si(3) and LSi(2)-0(3)Si(4) increase, the bond angles LSi(l)-O(I)Si(8) and 
LSi(l)-0(2)Si(7) decrease, and the bond angles LSi(2)-0(6)Si(5) and LSi(2)4(4)Si(6) 
remain almost unchanged. 

Table 3. The core position before the hole is trapped as the 0 site (neubal position), the core 
position after the hole is trapped at the 0 site (relaxed position) and the displacement due to 0 
trapping (all coordinates a~ given in bpscriims). 

Neuual position Relaxed positions 
~ ~. 

IO" x Y z X' Y' 2' Disolacement 

0- 0.00003 O.WO10 0.0002 -0.05195 0.12685 0.01885 0.13829 
Si(1) 0.940 16 -1.12626 0.65089 1.16040 -1.39641 0.84252 0.39775 
Si(2) -0.08103 1.12241 -1.15091 -0.11889 1.62464 -1.52402 0.62680 

O(1) O.OW03 -2.25262 1.30175 0.06089 -2.37011 1.37228 0.14994 
O(2) 1.87158 -1.75762 -0.50005 1.89510 -1.81464 -0.47684 0.06590 
O(3) -0.58642 2.49976 -0.50005 0.62555 2.768 15 -0.601 74 0.28966 
O(4) -1.09352 0.63145 -2.30185 -1.11351 0.91148 -2.49168 0.34144 
O(5) 1.87158 -0.49490 1.80182 1.92618 -0.51630 1.86901 0.08918 
O(6) 1.36448 1.37341 -1.80178 1.38692 1.51150 -1.90574 0.17430 

Si(3) 2.37697 0.88245 2.45269 2.41235 0.91546 2.48748 0.05960 
Si(4) -151784 3.13112 0.65089 -1.57365 3.22062 0.67455, 0.10810 
Si(5) 2.37697 0.88245 -2.95272 2.43472 0.877 85 -3.01663 0.08626 
Si(6) -253903 0.88245 -2.95272 -2.65774 0.93560 -3.04795 0.16120 
Si(7) 2.37697 -3.13497 -1.15091 2.42685 -3.19093 -1.20935 0.09505 
Si(8) -0.081 03 -3.37493 2.45269 ~-0.09410 -3.51643 2.54973 0.17208 

We noted that after hole trapping the changes of the bond lengths O-Si(I) and 0-- 
Si(2) are about 30% while the changes of RSim+- and R o , , ~ - s ~ ,  are only 2-3%. This 
indicates that the network relaxation is strongly localized on the three central ions (0-, 
Si(1) and Si(2)). which is the same trend as that reported by Edwards [15]. Comparing 
our structural data with Edwards', we found the trend of the changes in the other structural 
parameters due to hole wapping to be the same, but our changes are somewhat larger than 
his [15]. Edwards [15] reported that network elaxation is comprised almost completely of 
the motion of the two silicon nearest neighbours away from the central oxygen. We found 
that some ions other than the three central ions can also experience quite large displacement 
as shown in table 2 (e.g. O(3) and O(4)). The difference between Edwards' data. and ours 
is believed to arise from the fact that in Edwards' calculations only the inner seven oxygen 
atoms and two silicon atoms are allowed to relax, while in our calculation more than 630 
species are allowed to relax fuNy 

The number of atoms inside the region I plays an important role in our defect calculation. 
If we include only 16 atoms in the region I then the defect energy EVk is 22.87 eV. As 
the number of atoms inside the region I increases, the defect energy Evk decreases (see 
figure 3). When we include 630 atoms, E,x is 21.39 eV leading to the self-trapping of the 
hole. Including more atoms inside the region I also affects the displacement polarization 
energy and electronic polarization energy. If we use 16 atoms the displacement polarization 
energy and electronic polarization energy are 6.94 eV and 1.55 eV respectively, while when 
we use 630 atoms these values are increased to 8.33 eV and 2.31 eV respectively. 
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Table 4. Equilibrium geometry for the neuual and positively charged clusters shown in figure 1. 
Subscripts: e=central; NNaeaTeSt neighbours: NNN=neXt-neareSt neighbours: o=outer. The bond 
length is given in &~gmijms and the bond angle is given in degrees. 

1.6050 
1.6096 

1.6050 
1.6096 
1.6096 
1.6050 
1.6096 
1.6050 

26018 
2.6158 
2.6158 
2.6255 
2.6447 
2.6447 

1.6050 
1.6050 
1.6096 
1.6096 
1.6096 
1.6050 

Bond length Neuual Positive Bond angle NeuM Positive 

LSi"-O,Si" 
'2.1139 LSi(l)-O--Si(2) 143.98 143.03 
1.1513 

1.5613 
1.5670 
1.5539 
1.5540 
1.5630 
1.5576 

2.8424 
2.7939 
2.7732 
28404 
2.7838 
2.7734 

1.6636 
1.6473 
1.6506 
1.6530 
1.6533 
1.6400 

110.71 
108.92 
109.29 
110.71 
108.35 
108.73 

108.29 
108.79 
110.71 
108.92 
109.29 
110.71 

143.98 
143.98 
143.98 
143.98 
143.98 
143.98 

116.71 
118.43 
118.44 
119.83 
120.94 
115.44 

100.24 
97.65 
97.58 
95.56 
98.52 
95.46 

15327 
138.48 
137.84 
147.85 
143.63 
143.30 

0.0 
0 200 400 600 800 1000 1200 

20 
0 ZOO 400 604 8W IWO 

Number of atoms Temperature (K) 
Figure 3. The variation of the defect energy Evk with 
the number of atoms used in the calculation. 

Figure 4. The ratio of the effective activation energy U 
to the ulculated activation energy E,, as a function of 
tempenrure. The curve is obtained from equation (9). 

3.3. Calculation of activation energy of hole 

3.3.1. Normal small-polaron hopping. At high temperatures the hopping rate of a hole is 
given by 



Stabiiig of a self-trapping hole in a-quartz 5655 

where E, is the activation energy of a hole [18]. The activation energy Ea is the energy of 
the 'coincidence state' relative to the polaron ground state [2]. It can be expressed as the 
difference between the relaxation energy under the average of the initial and final forces, 
Ea", and the relaxation energy in the initial configuration Ej [I81 

We calculate the Ea" to be 27.06 eV and Ej to be 21.39 eV. The activation energy Ea is 
then estimated to be 5.67 eV, which is far larger than the expected value of a few tenths of 
an eV. 

There are two possible explanations. The first is that expression (7) is only valid at 
high temperatures, i.e. fiw/kT < 1 where w is angular frequency of a phonon and T is 
temperature. Because the experiment is usually undertaken at low temperatures, we need to 
estimate a corresponding 'effective activation energy' U ,  which is related to the experimental 
data. The effective activation energy U is given by [I81 

I1[Scosech(y)] 
h [ScosWy) l  

cosh(y) - 1 U = E,2cosech2(y) 

where IO and I1 are modified Bessel functions, y = hwjkT and S = 4E,/fiw. The formula 
(9), with o equal to the longitudinal optical frequency, is usuaUy used to relate the calculated 
E, to the experimental data [18,19]. Using the experimental value U = w/2x = 36.7 THz 
[31], we obtained the ratio U/E, (shown in figure 4). It is seen that U/E, is temperature 
dependent. At T = 180 K, U / E ,  = 0.0215. This yields the effective activation energy of 
0.122 eV, which is about half the energy needed to self-trap a hole on an oxygen ion. We 
note that below 120 K, U/E, is close to zero, leading to a calculated effective activation 
energy U close to zero. This implies that at very low temperatures (say T = 120 K) the 
activation energy of a hole is very small, so the hopping rate OF the hole will be fast enough 
to prevent the observation of stable long-term self-trapping. This result seems to agree with 
experimental results [8], i.e., in crystalline quartz at 4 K the hopping rate of holes is still 
fast enough to prevent stable long-term self-trapping of the type of hole found in more ionic 
solids such as alkali halides. 

3.3.2. An alternative mechanism. Since the coincidence state energy (E,) is predicted to be 
very high, the obvious question is whether the standard small-polaron bopping mechanism is 
appropriate. As has been noted for other oxides (especially NiO, 121). charge transport could 
proceed via the small polaron being excited to the mobile large-polaron state. This would 
have a lower activation energy, of the order of the few tenths of an eV, which we have 
calculated, corrected for the lattice deformation in the large-polaron state. Experimentally, 
this would lead to differences in thermopower, but this is academic in the present case 
where experiments are unlikely to succeed. If the small polaron is indeed stable by such 
a small amount, we should expect that there will be populations of both small and large 
polarons, and it is the behaviour of this mixed population whose properties are observed. 
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4. Conclusions 

We have investigated the possibility of STH existing in pure cy-quartz by using the classic 
defect simulation technique. It is found that the hole can be self-trapped in an oxygen ion 
with a binding energy of 0.41 eV. The STH gives rise to a large displacement polarization 
energy of 8.43 eV and a large electronic polarization energy of 2.31 eV.' The STH is 
accompanied by a localized network distoaion wherein the 0- ion, on which the hole is self- 
trapped, shifts by 0.14 8, and the nearest-neighbour silicon atoms move 0.4-0.6 8, away from 
the 0- ion. This result is similar to the ab initio wp calculation of STH in amorphous %OZ. 
We also calculated the activation energy of STH and estimated the effective activation energy 
to be 0.12 eV at 180 K. This small activation energy of STH may imply that the hopping rate 
of the hole will be fast enough to prevent stable long-term self-trapping. However, the low 
self-trapping energy does suggest that small- and large-polaron populations should coexist. 
The self-trapped holes may therefore be bound to defects unless there is extra stabilization 
from other causes, e.g. in amorphous silicas or where image interaction favours localization 
too. 
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