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IN HONOR OF SIR JOHN MEURIG THOMAS ON HIS 60TH BIRTHDAY

The operation of solid-state gas sensors and of certain types of catalyst depends on the energy of free
cairiers in one phase relative 1o some state in another medium. Here special problems arise in
determining the electron affinity of ionic crysials. These are discussed, together with some of the
issues which cause similar problems in different types of systems, here including aqueous solutions and
conducting polymers. For ionic solids, knowledge of which charge states are stable for substitutional
transition metal ions gives a powerful tool, giving predictions in accordance with electrochemical data,
It appears that MgO has a negative electron affinity.

1. Introduction

In many circumstances there is a need
to understand how electrons are distributed
between different types of defects or be-
tween different media. Important examples
are solid-state gas sensors and certain types
of catalyst. In sensor operation, the mecha-
nism cxploits adsorption of some molecule,
its passible reaction with another adsorbed
species (like the molecular oxygen ion (1)),
and transfer of a carrier into the substrate,
thus affecting the electrical properties. In
catalyst operation, one of the four main
classes of mechanism is for the solid catalyst
to provide an electron (or to act as an elec-
tron sink) in a critical step. The question we
address concerns ““free” carriers, those not
localized at any specific defect: What encrgy
should we assign to free electrons in the
bulk of the solid when we wish to calculate
the equilibria?

The question may seem trivial: ‘‘free”’
electrons in a solid are at the bottom of the
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conduction band. Does the band picture not
give us all we need? Let us ignore for the
present two basic problems, namely the in-
adequacies of one-electron models (most
people’s idea of band theory (2)), and
whether or not equilibrium is actuoally
achieved in low-conductivity insulators. We
must still ask where is the bottom of the
conduction band in a form useful when we
want Lo equilibrate two media, ¢.g., relative
to an imaginary stationary electron at infin-
ity? There are several twists to the tale.
First, the interface between media can cause
problems: a dipole layer at the interface will
change the energy needed to take a charge
across that interface (3-5). Second, we may
wish to use the free carrier energy in an
energy cycle in which some energies are
calculated, and need to be combined with
other data in a consistent way. Third, we
may need to combine more than one theoret-
ical model when we treat two very different
types of media in contact (e.g., ionic solid
and conducting polymer) and this requires
particular care. There are no special diffi-
culties other than band offsets when free
carriers are delocalized and where defect
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energies are measurable relative to band en-
ergies (the traditional semiconductor situa-
tion); there are no major problems when
carriers are localized (e.g., transition metal
oxides, if both electrons and holes are small
polarons). The cases which cause most dif-
ficultics arc those where carriers are delo-
calized, and where, for good reasons, defect
energies are not simply located relative to
band edges. We shall use MgO : X (X being
4 transition metal ion) for much of our dis-
cussion, since there are extensive results
from theory (6—8). Some of the analysis has
been outlined before in an unpublished re-
port ({10).

2. Redox Energies in Ionic Solids

The main condition for charge transfer is
one of energy. Exothermic reactions pro-
ceed; endothermic reactions occur only at
a high encugh temperature. For free atoms
or molecules, the ionization potential T is
sufficient to define the energy. For reasons
which will become clear, we shall write 1 in
the form I(N/N + 1}, meaning that the tran-
sition:

M(N+])+ 1 e MN+ (])

for the capture of an electron with zero ki-
netic energy at infinity (the so-called vac-
uum reference state) emits energy I(N/N +
1). An electron with energy —I(N/N + )
relative to the vacuum reference level (the
— sign means below it) could combine with
MW=D* or be removed from M* with zero
energy change. The redox potential in elec-
trochemistry is very closely related. For a
reaction like Fe’™ — Fe?t 4 ¢, with the
electron state defined normally by a chosen
half reaction, the standard expression for
the redox potential is

e — g = —(RT/F) Inf[Fe?*)/[Fe’*]}, (2)

If we choose e as a stationary electron at

infinity, then & — g, is just —~I2+/3+).
The same concept occurs in the solid.

However, there are four main types of cor-

rection. By far the largest correction is from
polarization and distortion of the host lattice
because of the altered local charge. Cova-
lency needs careful definition (11), but there
is no evidence for large covalent contribu-
tions to charge transfer energies in the ionic
systems we discuss. Crystal field energies
can usually be estimated to acceptabie pre-
cision from optical spectra. The changes in
total crystal field energy with charge state
are often quite small. Finally, Jahn-Teller
energies are small except in special cases
which are easily identified.

The leading correction to —I(N/N + 1)
is thus that from polarization and distortion.
The correction can be estimated by methods
originaily due to Mott and Littleton (72),
embodied in the Harwell HADES codes,
and applied to related problems in (6). The
result is an energy of the form (where the
N + 1 state is the more positive):

EN + 1/N) = E(ININ + 1)

=Wy, — Wy —IIN/N + 1), (3

which corresponds roughly to a Redox po-
tential. Here wy, is the energy required to
remove a host ion (e.g. Mg’*) and replace
it by the impurity ion M in its N+ charge
state, all states being fully relaxed to equilib-
rium. An electron whose energy lies above
E(N/N + 1) can be captured exothermically
by MW™*D*. an empty state below energy
E(N/N + 1) will accept an electron from
MN* In particular, stable states MY will
correspond to E(N/N + 1) below the con-
ductiorn band and E(N/N — 1) above the
valence band (Fig. 1). These energies are not
the one-electron energies of band theory,
though they give rise to apparently very sim-
ilar energy diagrams. However, they have
a different meaning. In one-electron theory,
stability means merely a level in the band
gap, and E(N/N — 1) and F(N/N + 1) are
presumed effectively equal. The Hubbard &/
parameter, which is a measure of electron-
electron interaction is given by

U=ENN-1)-ENN<+1 @&

in our notation.
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FiG, 1. Energetics and redox potentials for transitior metal ions in MgQ. These approximate results
are based on Egs. (3, 5) and use {N/N + 1) = 16N eV, A = 24 eV, and B = 6 eV. More accurate

values are given in Fig. 2.

3. Stability of Different Charge States
in MgO

We now illustrate these ideas with data
for transition metal ions in MgO. For clarity,
we shall estimate energies in an oversimple
way. The results we have given in our earlier
work {6, 7) go substantially further, and it is
these more accurate results which are used
when specific predictions are given.

Charge state stability requires three main
processes to be endothermic: the loss of an
electron to the conduction band; the gain
of an electron from the valence band; and
charge disproportionation, in which one ion
gains an electron from another. We now turn
to the main energy terms involved.

3.1. Ionization Energies

The broad trends in ionization energy for
free ions (available from standard sources
(13)) may be summarized thus. For the iron
group (3d series), I(N/N + 1) is approxi-

mately 16N eV for ¥ = 1, 2, 3. For the
rare earths (4f series), IIN/N + 1) is about
22(N — IDeVfor N = 2,3, 4. The variations
from ion to ion within each series are modest
but big enough to matter for any detailed
study. For our purposes, the trends suffice.
There is, of course, no need to assume free-
ion data, for modern quantum chemistry ap-
proaches {c.g., the Harwell ICECAP code)
can evaluate all the key energies. This has
been done by (9), and confirms many of the
points we make here.

3.2. Ion Replacement Energies

These are the energies to remove a host
ion and to replace it by the impurity in its
chosen charge state, the host lattice being
polarized and relaxed to equilibrium at each
step. Values of these replacement energies
wy, are best discussed in terms of the net
charge Z (e.g., for Fe’™ (N = 3) replacing
Mgt (N = 2) the net charge is 3 — 2 =
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1). There are three main terms for a given
species:

wy = Wy + AZ + BZ*. (5)

The difference contributing to E(N + 1/N)
is given by:

— Wy + Wyl = (A + B) + BZ (6)

In Eq. (5) W, is determined mainly by ion
size, and is mainly an elastic energy. Term
A comes from the Madelung energy, which
depends on c¢rystal structure. Term B comes
from the polarization energy. In a simple
cavity model we have

B~ (e22R)(1 — &1, (N

where R is not, in fact, the nearest neighbor
distance (see later). For MgO, A ~ 24 eV,
B~ 6¢eV, and it is easily seen that wy,, —
wy can be tens of eV, i.e., a very large en-
ergy indeed.

We may use the same figures to estimate
U(Eq. 4). Suppose an iron-group ion substi-
tutes for a host cation of charge N, (so N, =
2 for MgO and N, = 4 for TiO,). If we
combine (6) with the expression for the ion-
ization potential from Section 3.1:

E(NIN + 1)
= [A + (1 = 2Ny)B] — [16 — 2B]N,

and UV = [16 — 2B] eV, from Eq. 4. Thus
[/ is usually positive and (with B ~ 6 eV)
around 4 eV, in agreement with (7), irre-
spective of many details of the oxide. For
a rare-earth, U/ is larger, of order {22 —
2B] eV, As is obvious, the larger ionization
potentials will reduce the number of stable
charge states.

Is the value B ~ 6 eV typical of other
hosts t00? The data for TiO, of (14, 15) sug-
gest that E(2+4/3+) is near the conduc-
tion band edge for Cr and Fe, whercas
E@B+/4+) is near the valence band edge.
This would imply B ~ 6.4 ¢V, a sensible
value. However, V and Mn levels indicate
this simple picture is rather too simple,
though only modest ion-dependent terms in
B would be necessary to make all consistent.

Full calculations by (/6) suggest B ~ 6.1eV
for the replacement of Ti** by Ti’*.

We remark here the enormous differences
in mechanism between ionic solids like MgO
and semiconductors like the III-V’s. In
MgO covalency and charge transfer from an
impurity !o its oxygen neighbors is essen-
tially negligible (and indeed this is confirmed
in many ways, cf. (11); it is Coulomb ener-
gies and polarization which dominate. For
the III-V’s ({7) the dominant term is charge
transfer through hybridization (indeed the
number of electrons associated specifically
with the transition metal changes very
slowly with nominal charge state) and the
Madelung terms are largely negligible. De-
spite these huge differences, as well as the
differences in band gap, hosts like MgO and
GaAs support typically three or even four
charge states of most 34 transition metal
ions (see (I8, p. 255)).

3.3. Approximations for the
Polarization Energy

If we had used Eq. (7) with nearest neigh-
bordistance and static dielectric constant for
MgO, we should have found B about 3 ¢V,
roughly half the correct value. Since Eq. (7)
isregarded as standard for complex systems,
and for aqueous solutions, it is essential to
realize its weakness and to understand the
reasons. This can be done by revisiting the
original work of Mott and Gurney (/9, p. 60).

The general approach is the following.
The crystal is divided into an inner region
1, close 1o the defect, and a distant region
II. In region II, dipole moments are calcu-
lated in terms of the electrical displacement
due to the net charge of region 1. In region
I, the dipole moment g of any ion is induced
by the sum of three contributions to the field
which polarizes it: that due to other dipoles
in the same shell of ions, that due to other
dipoles and charges in region I, and that
from region II. The field is itself linear in u,
so one has to solve an equation of the sort

= alap + b} 3)
It is simple to calculate the potential at the
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central defect site due to the induced di-
poles, which is directly related to the polar-
ization term we calculate.

As a working approximation, we take the
smallest possible region I, and we assume
there are only two types of ion: type 2 (here
cations), normally occupying the substitu-
tional site at which the impurity occurs, and
type | (here anions), the usual neighbor
which is the species most strongly polar-
ized. Carrying through the arguments gives
R, the effective cavity radius, in terms of
a, the nearest neighbor distance. If we as-
sign polarizabilities «,, a, to the two host
species, we obtain:

Rm«/a = (a| + az)ll((rlal —+ 0-20-2), (9)

where the o; = (37) Z; (a/r,)* are sums over
sublattices (i = 1, 2); for the MgQO structure
oy = 1.6230 and o, = 1.0082. For a defect
on the cation site, we find these limiting
cases:

Only anion polarizable (a reasonable
approximation for MgO): R, = 0.616a
Only cation polarizable: R,z = 0.99a
Equal anion and cation polarizabilities:
Ry = 0.76a

We see Ry is significantly smaller (and the
polarization energy significantly larger) than
the simple cavity model suggests. Presum-
ably an extended region I would go over
systematically towards the value R./a ~
0.5 found from HADES calculations.

The results imply two rules. First, the
commeon approximation givenin Eq. (7) may
be adequate when the impurity is placed
on that sublattice which is itself especially
polarizable. Second, Eq. (7) underestimates
polarization energies badly when it is the
nearest-neighbor sublattice which is highly
polarizable. It is interesting that (20) found
empirically that, for TiO, : Mo™*, the charge
states observed required a change in cavity
radius (in effect, this was not the way he
described it) to (3.7/6.0) = 0.62 of the near-
est neighbor distance, i.e., almost exactly
the value from R 4/a above, albeit fora crys-
tal of different structure.

3.4. Comments on the Madelung Energy

For solid-state sensor applications, we
may need to evaluate Eq. (3) for very com-
plex crystal structures. It is therefore help-
ful to look at underlying trends. Here, there
is guidance from some results due to Profes-
sor R. Pandey (given in (10)) for various
charge states of Eu in the oxides of Mg, Ca,
Sn, Ce, and U. What is striking is that the
lattice contributions to E(N + [/N) vary
rather little from host to host. Even though
the individual energy terms difter by tens of
¢V, the lattice terms in E(1/0) spread by
oniy 3 eV and those for E(5/4) by just over
4 ¢V, Some of the insensitivity to structure
comes from the relationship between coor-
dination and interatomic distance (21),
which means that the Madelung terms do
not vary quite as much as expected. How-
ever, the compensation is not accurate
enough for detailed assessment.

3.3. Dependence on Crystal
Electron Affinity

If we compare the charges of stable spe-
cies in MgO, Ca0, and SrTiO, (22), we see
mainly a shift in their charge states. In both
cases about the same number of stable states
is obtained (i.e., three or perhaps four in
cases like Fe) but spanning different actual
charges. Thus for Ni in MgO, one sees the
1+, 2+, and 3 + states, and in SrTiO; the
2+, 3+, and 4+ states. Similar results (al-
beit with gaps) occur throughout the iron
group. This suggests (as Miller observes)
that a large part of the difference stems from
the electron affinity. In Mg0O a change of
about 4 ¢V (namely from —1 eV to +2.5
eV) would change the stable charge state
by one unit in the simplest model. Such a
change would lead to essentially complete
agreement with experiment {see Fig. 2).
This change is roughly consistent with the
extrapolation of some of the standard esti-
mates of the differences between MgO and
SrTi0; from clectrochemistry (23-25).
These are based on some direct measure-
ments of flat band potentials, a location of
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FiG. 2. Energies E(N/N + 1) for Mn, Fe, Co, and Ni (from left to right) in MgO, calculated by
Stoneham et al. (1981). The marked points indicate observed charge states, the different symbols
describing the range of stability (O above valence band maximum, @ below conduction band, ® within
gap). At the right the consequences of different host electron affinities are shown. Onty for the value
of —2.5 eV (conduction bam above vacuum) are observed data consistent with predictions.

the potential for the standard hydrogen elec-
trode, and a very approximate empirical the-
ory (Table I).

Table I shows that there is very respect-
able accord between electron affinities ob-
tained from electrochemistry, from the But-
ler and Ginley rules, and from observed
charge state stability, when all such data are
available (strontium and barium titanates
and tin dioxide). For MgO, electrochemical
data are not available; Butler and Ginley
predict a trend from other oxides consistent
with the observed charge states, but their
estimate does not go far enough to agree
with this new class of experiment. Second-
ary electron emission (27) appears to match
the transition metal ion data; the ‘‘usual”
values from thermionic emission disagree,
but refer to surfaces which are normally un-

characterized or perhaps dirty (hence likely
to give an upper bound to the crystal elec-
tron affinity).

At this point, it is useful to be reminded
of the differences in principle between dif-
ferent measures of ‘‘clectron affinity”” and
the like. We shall not duplicate van Vech-
ten’s excellent review (3}, but remark that
there is a real need for care in comparing
energies obtained from different experi-
ments (e.g., Fowler plots of photoemission,
Richardson plots of thermionic emission,
contact potentials, low-energy electron dif-
fraction, et¢). In our present case, we re-
mark that observing which states of a transi-
tion metal ion are stable does not involve
any crystal surface, ideal or real. We simply
define an energy common to all dopants
which allows us to collate observed charge
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TABLE I
Electron affinity (eV) MgO SrTi0, BaTiO, 5n0,
Empirical theory (Butler and 1.42 3.71 3.60 4.49
Ginley)
Electrochemistry (Butler not observed 38 3.7 4.5
and Ginley)
Charge state stability of -1to -2.5 Probably around Probably close +25t0 +5
dopants (Stoneham 3 eV (see text) to SrTi0, (Pandey and
and Sangster) Stoneham)
“Usual’” list values e.g. +1
thermionic emission
Secondary e¢lectron emission —4

(Namba and Murata}

states quantitatively. The difficult issues re-
emerge when this energy is to be related to,
say, electrochemical energies. Fortunately,
the results appear to be identical to within
the accuracy available at present.

In one class of systems, the crystal affinity
problem becomes simpler. This is the case
for those nonstoichiometric oxides for
which the carriers are small polarons. Es-
sentially, the electron might change a host
cation from a 2+ to a 1+ state, and the
hole might change a 2+ ion to 3+. This
description has been used for ions in ura-
nium (26) to show, for instance, that iodine
may be stable in the 1+ charge state at a
U site or in the 1 — state at the O site when
there is excess oxygen, but only at the oxy-
gen site as the 1 — charge state otherwise.
The dependence on oxygen/uranium ratio
arises because an electron released from an
impurity will go to a 3+ uranium (self-
trapped electron) for stoichiometric or sub-
stoichiometric uranium,

4. Further Systems

4.1. Charge Stare Stability in
Aqueous Solution

The choices of reference state and even
the sign of the potentials traditionally as-
signed by electrochemists inevitably lead to
confusion of the physicist, despite clear dis-
cussions like that of (28), We may, however,

follow some choices directly. Thus (29) de-
fine AG, and AG by:

l/zHZgﬁHa; +e — AGH

HY + AN = 12H,, + AN+ — AG

Adding these equations, we find by com-
parison:

E(NIN + 1) = —AGy + AG

Using the value of AG, = 4.48 ¢V and the
values of A listed by Delahay and Dzied-
zic, we oblain the several values in Table
I1. These data refer, of course to, thermody-
namic equilibrium. The associated optical
transitions have thresholds at higher energy.
Thus the optical thresholds for the 2+ ions
exceed F(2/3) by 2.59 eV (V), 2.99 eV (Cr)
and 2.05 eV (Fe), (28) observes that the reor-
ganization energy (his A,, essentially our B)
is of order | ¢V for many inorganic aqueous
redox couples; i.e., much less than the 6 eV
discussed earlier for MgQ. So, while water
has a band gap of 7 ¢V, similar to MgO, far
fewer charge states are stable.

4.2. Surface Reactions with
Adsorbed Species

In sensor operation, a gas molecule may
be adsorbed on a crystal surface, then
change its charge state by transfer of an
electron to some site within the crystal. The
same processes can occur during the first
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TABLE 11

VaLuUEs OF E(N/N + 1) FOR SOLVATED
[oNS IN WATER

EQ2/3)
Ti —4.11 (—4.13)
V (0.5 M) —-4.23 (—4.24)
Cr (1 M) -4.07 (—4.00)
Mn —6.04
Fe (1 M) —5.25 (=5.27)
Ru —5.34

E(1/2)
Ag —6.48 (—6.46)
TI —6.68

E(1/3)
Au —-T.18

E(3/4)
Ce -6.08

Note. The values are in eV. Note that, for
Au, the 2+ state is unstable against dispro-
portionation, so the value quoted does in-
deed refer to 1+ and 3+. Resulis are from
Delahay and Dziedzic (29), who take Gy =
4.48 eV. Bracketed numbers are from other
sources of data,

stages of oxidation too. For the present illus-
trative example, we shall combine them
and, for our own convenience in defining
redox energies, we shall regard adsorption
as occurring in the ultimate charge state,
so that any electron capture or loss by the
species to be adsorbed occurs in the gas
phase. This is more easily understood from
a specific example. Suppose we are inter-
ested in O; on MgO. There are three key
energies: the energy e (O5) released on ad-
sorbing O3, ~ 1.6 eV; the very small energy
g (0O3) released on absorbing 05, and the
electron affinity of free O3 (i.e. {0/ 1) =
0.44 eV),

When we consider charge exchange reac-
tions involving OF and O, both adsorbed
(so the molecule remains on the surface
throughout the process), the redox energy
is given by

E(0/—1) = £(0%) — e(03) — 10/ — 1).

Assuming (03} is negligible, and with the
estimate £(Q3) ~ 1.6 eV (this is primarily
Coulombic as the anions lic above host cat-
ions, (30)) we obtain E(0/—1) = —2.04 eV.
Thus, if we consider Fe** in bulk MgO (a
common impurity), for which EQ2+/3+) is
around —(.6 eV, we see that electron trans-
fer to Of is exothermic:

2+ ] I+ —
Fegai + 0200 — Fega + Oags -

This type of reaction is typical of one com-
ponent of gas sensor operation.

A key feature here is the relatively high
energy of the electron in the oxide. If we
consider SnQ,, where the bottom of the con-
duction band is believed below vacuum by
about 4 eV, we see the energy cost of the re-
action:

ec + (OZ)D‘_) (OE)

is about 3.5 eV. This energy would have to
be found from surface processes, whether
by chemical reaction, polarization, or as a
result of some effect of a surface dipole
layer.

4.3. Equilibria [nvolving
Conducting Polymers

For MgO, our working assumption was
that the bottom of the ¢conduction band had
a well-defined energy, and that our problem
was to establish just what it was. The carrier
concentrations would always be low too, so
interactions between free carriers could be
ignored, though clearly experiments ex-
ploiting space-charge regions would need
more careful treatment (e.g., Hayes and
Stoneham, Chap. 7 (/8)). This simplicity
disappears in several important cases,
where the electron affinity changes signifi-
cantly with carrier number. One example
is supported small metal catalyst particles;
another which we discuss, is a conducting
polymer comprising short chains (perhaps
100 carbons) of various lengths.

Conducting polymers like trans-polyacet-
ylene (t-PA) introduce new features. Two of
the most important are the large relaxation
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energies associated with free or bound carri-
ers and the dependence of such energies on
chain length, at least for short chains. The
most important role of establishing absolute
energies is perhaps in understanding carrier
injection and the efficiency of electrolu-
minescence. However, other areas of im-
portance include the interpretation of scan-
ning tunnelling microscope images (31, 32).
Happily, there are electrochemical data
available too (33). For an initial analysis,
we shall consider just a single molecule of
t-PA with 2n carbons. For properties sensi-
tive to n, we must make an ensemble aver-
age over chain lengths before comparison
with experiment.

It is especially important here to go be-
vond the usual one-¢lectron band pictures.
What we need is a chemical potential, and
specifically what a physicist would identify
as the difference between the Fermi level
and the vacuum level. This we obtain by
self-consistent molecular dynamics, using
the Harwell CHEMOS code, which yields
the ground state energy E(N) of the (re-
laxed) chain with different numbers N of
electrons. This energy is essentially the
zero-temperature limit of the Helmholz free
energy. The electron affinity A(N) (energy
gain on adding an electron), and ionization
energy I{(N) (energy to remove an electron)
can be combined to yield the work function
W(N), the arithmetic average of I(N), and
A(N),

For many applications, it is useful to have
an analytic fit to E(N), or better E(Q) as a
function of net charge @ of the chain. The
work function found (32} is then essentially
W(Q) = [4.67 + 3.9Q] eV, and it is this
quantity which is needed to establish how
much charge will flow when the molecule is
(for example) put into contact with a metal
electrode. The electrode acts as a reservoir,
with Fermi level below the vacuum by an
energy equal to the metal work function.
Charge flows until the two Fermi levels are
equal. Our results can be obtained both by
the self-consistent expression for W(Q} just
given, or by the more approximate form us-
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F1c. 3. Variation of the work function of trauns-poly-
acetylene (+-C,,Hy,,4) as a function of chain length.
The circles are obtained from the electren affinity and
ionisation potential calculated explicitly from total en-
ergies for different charge states; the squares are ob-
tained from the energies of the highest occupied and
lowest unoccupied molecular orbitals. In all cases there
was full geometric relaxation and self-consistency. The
experimental value (for an unstated chain length) is
about 4.6 eV (33).

ing Koopmans theorem, in which the work
function is the arithemetic mean of the ener-
gies of the highest occupied and lowest un-
occupied levels. The two approaches agree
very well, and also agree with electrochemi-
cal data (Fig. 3).

These results could be used to calculate
the equilibrium charge distribution in the
presence of transition metal ions, as in the
cases discussed above. This is not of great
experimental interest, but the predictions do
have several implications. First, using the
values of W(Q) with the accepted band gap
of 1.7 eV for +-PA, we can predict for p-type
t-PA (with Fermi level close to the highest
occupied molecular orbitals) that low work-
function metals (like Al or In) will form a
rectifying junction, whereas high work-
function metals (e.g., Au or Pt) should form
an ohmic contact. This is reflected in charge
transfer at contact. At an Al contact, equi-
librium corresponds to about one electron
is injected per 10 -PA chains; at an Au con-
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tact, about one electron per 10 chains is
transferred to the metal. Experiments on
organic field effect transistors are consistent
with a low density of carriers. Second, we
can show that the change in dimerization
pattern is very similar to polaron injection.
Third, we can go further, and examine the
effects of interactions between carriers on
two nearby chains. At this stage it is both
important (and practical) to include the im-
age interaction of the injected charge with
the metal electrode. These two factors (car-
rier—carrier interactions and image terms)
are also important in nonstoichiometric ox-
ides and electrolytes, and hence correspond
to common ground between the systems dis-
cussed.

5. Conclusions

We have addressed some of the issues
involved in estimating the electron affinity
of ionic solids and understanding which
charge state of dopants will be stable. This
leads to the surprising (but apparently con-
sistent) conclusion that MgO has a negative
electron affinity. Emerging from the analy-
sis too were comparisons with other sys-
tems. The definition of electron affinity is by
no means so straightforward for conducting
polymers. The similarities of observed
charge state stability for MgO and, say
GaAs, underlie major differences. In the
ionic solids it is ionic polarization which
stabilizes so many states. For the IIl-
V’s it is hybridization and charge transfer.
Other systems altow far fewer charge states
to be stable, For the rare earths (as op-
posed to iron group) this is an issue of
ionization potential (10, 34). For water (as
opposed to MgQ) it is the lower reorganiza-
tion (relaxation) energy which is respon-
sible.
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