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INTERATOMIC POTENTIALS FOR CONDENSED MATTER 
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Theoretical Physics Division, Atomic Energy Research Establishment, Harwell, Didcot, Oxon, UK 

This paper forms an introduction to a discussion of interatomic forces. As such, it comments on the basic principles, and 
on some of the problems which underly present formulations, the ways in which future work should develop, and the 
classes of physical problem for which difficulties remain. 

1. Introduction 

Interatomic potentials provide a substitute for 
explicit solution of the SchrSdinger equation. If 
one wants the total energy of a system as a 
function of the positions of the ionic nuclei, one 
approach is direct solution of the SchrSdinger 
equation to some degree of sophistication. Any 
algorithm which allows one to avoid this heavy- 
weight approach constitutes an interatomic (or 
interionic) potential. 

Several points are clear. First, there is no 
reason to expect or require the potential to be a 
two-body interaction, a purely radial interaction, 
or even (e.g. if we can have electronic 
degeneracy) a single-valued function. We may 
desire these special features (or decide to ignore 
tricky terms) but these hopes and fears do not 
limit the existence of a potential. Secondly, the 
potential itself may be obtained from restricted 
solutions of the Schr6dinger equation, restricted 
by number of atoms, by approximations, or both. 
Whilst there are very few calculations starting 
from the SchrSdinger equation which could 
honestly be called "a  priori", those potentials 
derived from fitting experimental data to chosen 
analytic forms are clearly "empirical" to some 
degree, and these two terms illustrate extreme 
approaches to potentials. It is worth stressing 
that, at present, the best empirical forms give 
more accurate predictions than the best a priori 
forms. 

Most of the potentials described at this meet- 
ing, and indeed most listed in the two Hand- 

books [1,2] are pairwise, radial, interatomic 
potentials intended to describe energies of rear- 
rangement at constant volume. They may have 
wider validity (e.g. volume changes are described 
too, or small molecules are described [3]) or they 
may need supplementary terms (e.g. volume- 
dependent,  or free electron gas). The most prob- 
lematic, mainly in the sense that confusion can 
arise, are special-purpose potentials. Examples 
include those for the total energy as a structure is 
uniformly expanded without distortion (e.g. [4]) 
or those relating interactions of one ion with 
rows of others (as in the Lindhard potential 
describing a channelling ion), and those describ- 
ing interactions between two extended defects 
like shear planes or between two surfaces. 

2. Requirements for potentials 

Much of this section will be concerned with 
features which should be obvious. Regrettably, 
many potentials have not recognized, let alone 
satisfied, important criteria, so that users should 
always be cautious. 

2.1. Accuracy 

Accuracy in representing experiment (or 
representing a SchrSdinger equation solution, 
which is a different criterion) should not be con- 
fused with precision, i.e. the number of 
significant figures quoted or reproducibly cal- 
culated. The accuracy of some empirical poten- 
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tials is considerable when used as a means of 
extrapolation (see e.g. [5]). Note that quite dis- 
tinct physical assumptions may be involved in 
changing particle (ion or electron) numbers and 
in simply moving ions around at constant 
volume. At present, direct solutions of the 
Schr6dinger equation do not have adequate ac- 
curacy for many calculations, but have real value 
in suggesting the character of empirical potential 
needed. 

2.2. Transferability 

This underlies almost all use of the concept of 
interatomic potentials. Within a defined range of 
phenomena and geometries, the same algorithm 
for the total energy should hold without any 
special readjustment.  This criterion is so im- 
portant and so often misunderstood that some 
examples are useful. 

First, suppose we wish to model a simple 
NaCI-structure ionic crystal. Then, as known to 
Born, its cohesion can be described by point-ion 
interactions and short-range repulsions alone. 
These interactions also suffice for the bulk com- 
pressibility where ions remain at fully symmetric 
sites. It took 40 years to realise that the shell 
model was needed for an adequate description 
for lattice dynamics and cases where sites of low 
symmetry mattered. Not only are ions polaris- 
able (distortable) but the polarisability and the 
short-range interactions with close neighbours 
matter. The significant qualitative differences 
when there are low symmetry sites are often 
ignored by semiconductor and metal scientists. 

Secondly, suppose an all-electron calculation is 
replaced by a pseudopotential  calculation. Here  
the algorithm consists of using an electron-core 
interaction potential to obtain an interatomic 
potential. Then the same pseudopotential  should 
describe both energy changes under volume 
change and under mere rearrangement  at con- 
stant volume; it should also work for sites of high 
and of low symmetry, e.g. at surfaces and in the 
bulk; it should also work when there is charge 
transfer. However,  if there is appreciable charge- 
transfer, it would be foolhardy not to use a 
self-consistent algorithm. 

Thirdly, suppose a potential V 0 describes phy- 
sical properties well at T = 0. If one wants pro- 
perties at, say T =  1000K, there are various 
options open. One common choice is to do a 
static lattice calculation at an expanded lattice 
parameter.  Since this is prone to instability, it is 
tempting to calculate a new potential, V10~0, from 
the physical properties at the elevated tem- 
perature. Herein lies a subtle problem. V 0 and 
V1~ differ mainly because of the extra apparent 
ionic size due to larger thermal vibrations at the 
higher temperature.  It is by no means clear that 
the same degree of thermal size change is going 
to be the same for an ion in a perfect crystal and 
for an ion near a vacancy. This type of difficulty is 
one reason for going from purely static models to 
those which include dynamics, whether explicit 
(as in molecular dynamics) or implicit (as in 
self-consistent phonons). 

Fourthly, many empirical potentials are 
derived from bulk equilibrium data at low tem- 
peratures. These are then used and when there is 
massive distortion, e.g. in shock wave conditions, 
or with high disorder. Here  transferability must 
be checked explicitly, e.g. by direct prediction of 
a range of observed quantities. There is no way 
to deduce the extent of transferability from 
general arguments alone; sometimes nature is 
more cooperative than anticipated [3, 5, 6]. 

2.3. Stability 

Many published potentials are unstable, i.e. 
give bizarre and unphysical configurations in 
some circumstances. Some fail on simple tests, 
e.g. they do not give real vibration frequencies 
for perfect lattices. Others show the polarisation 
catastrophies or van der Waals catastrophies 
( - U r  N always dominates over e x p ( - a r )  at small 
enough r). Thermally-expanded lattices often 
show both defect and bulk shear instabilities. 
However,  it is molecular dynamics which is an 
especially stringent test, for even bizarre atomic 
geometries can arise occasionally. 

2.4. Convenience 

Convenience is determined by the codes with 
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which the potentials are to be used. Most such 
codes will accept shell models; some will accept 
bond-bending forces or simple volume-depen- 
dent forces [7]. If a potential is to be useful, it 
should conform to these codes or be so good that 
it is worthwhile rewriting the codes. 

2.5. Needs 

We may identify a few of the many gaps in our 
knowledge of potentials. First, there are classes 
of system like ice for which one would expect 
conventional approaches to work. Another 
example, though probably harder, concerns the 
transition-metal silicides, whose role in large- 
scale integrated circuits gives them importance. 
Secondly, there are the systems for which stan- 
dard empirical approaches cannot be applied and 
where the local chemistry makes one doubt 
simple electron-gas methods. Examples would be 
C, Si, N, O or H in transition metals, or C and 
H in oxides. Thirdly, there are excited states, 
both electronic and vibrational. In particular 
theories like self-consistent phonons methods 
and molecular dynamics, and experimental 
studies of radiation damage or of solid-state pro- 
cesses like self-trapping, all involve systems far 
from equilibrium, in some cases with further 
complexities. 

3. General aspects of potentials 

The idea of ionic radii is universally under- 
stood in a qualitative way. Metallurgists, chem- 
ists, physicists, electrochemists, all have their 
favourite lists. In fact, the use of interatomic 
potentials is the quantitative extension of the 
same qualitative notions. Some aspects should 
carry over, e.g. one would expect certain "uni- 
versal" features of potentials, and one would 
anticipate certain general chemical trends. Thus 
almost all short-range repulsions are represent- 

I o 
able as A exp(-r/p) with p ~ A ,  insensitive to 
the system. The classical hard-sphere radius R is 
usually such as to make the repulsion energy of 
order 1 eV, so A ~ 1340 eV corresponds to R 
2.4,~. There is an apparent dependence of ap- 

parent ionic radii on coordination N which is 
only loosely (if at all) related to covalency; 
roughly, bond lengths L in oxides and halides 
vary as a - f l  In N [8]. Note neither these radii 
nor interatomic spacings should be used as cavity 
radii in estimating polarisation energies (Mott 
and Gurney [9] page 56 et seq.) 

Universal behaviour is also suggested in ad- 
sorption [10]. Suppose the Thomas-Fermi 
screening length for a metal substrate is a, and 
that a chemisorbed atom is in equilibrium at 
distance a* above the substrate with binding 
energy E*. Then, to a certain accuracy, there is a 
universal interaction form E([a-a*]/A)/E*. 
The assumption of such a universal form has also 
been proposed for physisorption of rare gas 
atoms onto rare-gas solids [11], where the 
characteristic length scale is a given in terms of 
the ratio of the dispersion force coefficient and 
the well depth. 

Behaviour of plane-plane interactions is more 
complex. Other workers [12] have analysed in- 
teractions between two halves of a crystal being 
separated in terms of perfect lattice phonons 
(low spacings) and the bulk frequency-dependent 
dielectric constant (large spacings). Qualitatively, 
this is quite effective, and indeed suggests uni- 
versal behaviour for metal. For metal/non-metal 
interfaces, and apparently general dependence of 
wetting on non-metal refractive index [13] may 
have a common origin. However, there is no 
reason to believe that there is a universal sur- 
face-surface interaction scaling accurately with 
surface (lateral) interatomic spacing, as proposed 
in segregation studies by Seah [14]. 

More complex interplanar potentials are 
found, and this complexity is itself universal in 
some aspects. One case concerns the short-range 
forces between hydrophilic surfaces in water, 
where pronounced oscillations are observed [15] 
between mica surfaces. The origin is presumably 
the same as that discussed generally for crystal- 
lographic shear planes by Stoneham and Durham 
[161. 

Covalency and ionicity continue to cause con- 
fusion, often unnecessarily. Since a recent review 
[17] covers this in detail I merely note first that, 
for the purposes of this meeting, charges should 



72 A.M.  Stoneham / Interatomic potentials for condensed matter 

usually be defined as dipole moment  per unit 
displacement (and not as a charge within some 
volume) and secondly that one may often choose 
arbitrarily to adopt an ionic (covalent)framework 
without ignoring the physically-present covalency 
(ionicity). Whichever framework is chosen, the 
interatomic forces must properly reproduce the 
relatively rigid inter-bond angles characteristic of 
covalency. Such interactions can be para- 
meterised in many ways, and are reviewed 
by Stoneham and Harding [18]. These inter- 
actions are normally short-ranged, few-body (i.e. 
3-body or 4-body) terms which are defined 
readily only for a given coordination. One im- 
portant problem is how one evaluates such terms 
when the coordination can change. 

Many-body forces can, of course, include more 
complex crystal-field, Jahn-Tel ler  and covalent 
(bond-bending) contributions. As an example, 
the crystal field energy of a transition metal ion 
is often conveniently expressed in terms of a 
symmetrised combination of displacements of 
the N neighbours (N = 4 for tetrahedral,  6 for 
octahedral, etc.) from an ideal geometry) i.e. 
tetrahedral or octahedral,  etc.). It is these terms 
too which cause problems when there are 
changes in coordination (see [18]) and which can 
lead to multi-valued or otherwise complicated 
potentials. 

Volume-dependent  forces always cause prob- 
lems, since the "volume"  at a surface or dis- 
location is not well-defined. One important sug- 
gestion (happily independent of detailed physical 
models) is that of Finnis and Sinclair [7}. Here  
the energy is a sum of ordinary pairwise inter- 
actions and a many-body term which, for a given 
atom can be written -A f (p )  with A and the 
(non-linear) form of f independent of site, and 
p=~ic~(r--Ri) a sum of short-range terms 
depending on the relative positions of nearby 
atoms. 

4. Defects and potentials: strategies and other 
general aspects 

Here  I describe some of the aspects which are 
especially important when there are trapped 

carriers. In particular, the use to which potentials 
are put is of central importance, since this 
determines what is an acceptable calculation. 

This can be seen for instance from the two 
quite distinct strategies for handling defects in 
semiconductors. Suppose one has some code for 
solving the Schr6dinger equation and also a 
conventional (e.g. valence force) potential which 
are to be used together to calculate lattice dis- 
tortions. Strategy I (e.g. [19])comprises 
-calculat ion of defect forces F by the electronic 

structure code; 
-calculation of (lattice) Greens '  function G, i.e. the 

response of the lattice to unit force; 
-calculat ion of the relaxation - G - F  and of the 

1 relaxation energy - ~F .  G .  F as the sum of the 
strain energy and the work done by the defect 
forces. 

Note that one term of the final energy comes 
explicitly from the valence-force potential. Also, 
since linear defect forces F are involved, without 
higher-order terms, this strategy cannot predict 
the mixed-symmetry distortions seen for the 
negative vacancy in silicon. 

Strategy II (e.g. [20]) uses the valence force 
potential only to relate displacements v in an 
outer region to those (w) in an inner region, e.g. 
nearest neighbours. One then uses the electronic 
structure code to evaluate the total energy for 
various w, allowing the outer atoms to move to 
v(w). Here  (unlike strategy I) the energy 
obtained is normally an upper bound, and the 
non-linear terms giving mixed symmetry dis- 
tortions are not eliminated. Both these strategies 
are, of course, much simpler than ones being 
applied to ionic crystals (e.g. [21], which is based 
on the Mott-Lit t le ton strategy, [22] which adopts 
a Kanzaki (or supercell) approach, and [23] 
which follows a strategy similar to Strategy II). 

The displacements of the nearest-neighbour (v 
above) are themselves usually symmetrised. Thus 
there is the "breathing" motion of the near 
neighbours, with A, symmetry, etc. These 
motions are reaction coordinates as a rule, and 
not the dynamically-independent normal modes 
of the theory of small vibrations. The distinction 
is far from academic, with especial importance in 
the study of non-radiative transitions [24]. We 
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note also that the generalised forces correspond- 
ing to symmetrised displacements are, by their 
nature, few-body forces. 
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