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Abstract. Ionic models are commonly used in defect studies in sixfold-coordinated I-VI1 
and II-VI compounds. We discuss the use of models of this type for defects in ZnSe, notably 
for the cation vacancy centre. We show that methods based on the shell model plus empirical 
interatomic potentials provide a powerful and important tool, complementary to the com- 
moner studies of defect electronic structure. The new method is particularly effective 
quantitatively in calculations of (i) energies of closed-shell interstitials, (ii) optical charge- 
transfer energies, (iii) Stokes shifts, e.g. band gap excesses, (iv) thermodynamic energies, 
such as internal energies and entropies (though entropies are not calculated in the present 
paper), and (v) the distortion and polarisation fields near defects needed as a preliminary to 
fuller studies of electronic structure. 

Our specific application to the zinc vacancy centre in ZnSe predicts successfully the 
nature of the ground state, the mean optical charge-transfer energy, and other properties. 
We also calculate the energies of Frenkel and Schottky disorder. 

1. Introduction 

The II-VI compounds form in two main types of structure: those which exhibit the 
close-packed, sixfold coordination, like MgO and NiO, and those which exhibit one of 
the more open, fourfold-coordinated structures, like ZnO and ZnSe. The structural 
differences reflect differences in crystal cohesion, and there are several studies of the 
systematics of structure and its dependence on ionicity, on covalency (both variously 
defined) and their relative importance. 

For the sixfold-coordinated structures, most studies are agreed that an ionic picture 
is a good first-order description. Such systems would include oxides like MgO and NiO. 
The properties of the perfect hosts, notably lattice dynamics, elastic and dielectric 
properties, and thermochemistry, are all satisfactorily described. Quantitative agree- 
ment with observed defect energies is also obtained. The ionic approach does not mean 
covalency is absent. It means instead that covalency is modelled (in part, at least) by the 
empirical potentials within the ionic model. Those features of covalency not modelled 
can be added separately, for the important situations are usually easy to identify. 
Experimental neutron and spin resonance data show that covalency is small, except 
possibly for interstitial defects, for which there are short interatomic spacings, and for 
special aspects like covalent contributions to crystal-field splittings. 

For the fourfold-coordinated II-VI compounds, the position is much less clear. Both 
experiments and detailed calculations are less comprehensive. Our present paper tests 
the extent to which methods used for the sixfold-coordinated systems apply to less-ionic, 
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fourfold-coordinated crystals. We have two main aims. First, we wish to verify that one 
can obtain a satisfactory quantitative description of some of the basic defects. Secondly, 
we show that for what we term 'simple' defects, one can get satisfactory estimates of 
important defect energies without explicit solution of the Schrodinger equation. We 
obtain these estimates using a well established defect modelling system based on the 
Harwell HADES code (Lidiard and Norgett 1972, Norgett 1972). We emphasise that our 
approach does not give a universal solution of the semiconductor defect problem. It does 
offer new possibilities in a restricted but important class of problems. Moreover, it can 
exploit existing codes which treat defects and regions around them far too large for any 
current or immediately foreseeable methods based directly on the Schrodinger equation. 
The type of method we use, based on empiricalinteratomic potentials and polarisabilities 
(not to be confused with empirical molecular orbital parameters), has been used by 
several workers for fourfold-coordinated 11-VI compounds (Neumark 1980, Harding 
1981, Mackrodt er a1 1980, Walker 1979). We extend this work and discuss it in a broader 
context. 

The defects of most interest to us are closed-shell systems, including the alkali 
interstitials treated previously (Harding 1981). However, any point defect property is 
acceptable provided that the energy of importance is dominated by the polarisation and 
distortion of the surrounding lattice, rather than the precise form of a localised defect 
wavefunction. Thus we can predict charge-transfer energies between different ions A 
and B: 

(1) 
A"' + B M +  ~ A(N+1)+ + B(hf-l)+ 

(of which a special case defines the Mott-Hubbard gap: 

(2) 2MN+ + M"+ I ) +  + M(N- I ) + )  

or the band-gap excess energies in the process involving some defect C: 

e, + C"+ - c(~-')- c"+ + e, 
optical optical (3) 

as opposed to the direct (intrinsic) transition of an electron from the valence to the 
conduction band: 

e,- e,. 
thermal 

Clearly, there are some defects we can handle and some we cannot. The cation vacancy 
V- (a hole trapped at an M2+ vacancy; see Schirmer and Schnadt (1976) and Watkins 
(1972,1977)) is one we may expect to be able to treat. The anion vacancy F+ (an electron 
trapped at an X2- vacancy), on the other hand, is one where other methods (Harker 
1976, Kauffer et a1 1976) are essential. In this paper we use the V- centre as a test case, 
since there are good experiments, and the predictions are a rather sensitive test of the 
model assumed. 

2. The perfect crystal and interatomic potentials 

We obtain suitable interatomic potentials by fitting to the known bulk properties of zinc 
selenide. We take a fully ionic model, based on Zn2+ and Se2-, and assume that the 
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Table 1. Shell-model parameters. 

( a )  Short-range interactions A exp( - r ip )  - CIP 

Zn-Se 2518.7 0.31895 2.0 
Se-Se 1238.2 0.34019 10.0 

(b)  Shell charges and shell-core force constants 

Y(Zn) = -8.621e/, K(Zn) = 975.0 eV A-' 
Y(Se) = -2.51e(,K(Se) = 6 . 7 3 e V k 2  

short-range part of the interatomic potential may be represented by a function of the 
form 

v ( r )  = A exp( - r /p)  - Cir'. (4) 
Such a form gives an adequate description for the potential except at small r .  Potentials 
for the short-range Zn-Se and Se-Se interaction were obtained by fitting to the elastic 
constants Cll and ClZ while also requiring the bulk strain on the lattice at the equilibrium 
spacing to be low (less than 2%). The short-range Zn-Zn interaction was assumed 
negligible, since the Zn-Zn distance is much larger than the sum of the Pauling radii. 

In the shell model, the shell parameters represent the polarisation and distortion of 
the valence electrons of the ions at the level of a dipole approximation. The sign of the 
anion shell charge should be negative, but that of the cation could be positive because 
of overlap polarisation (Bilz et a1 1975). We fit the shell parameters to the dielectric 
constants and C44 while requiring the anion shell charge to be negative and both shell 
charges to be reasonably small. In order to obtain a reasonable value for h, the atomic 
polarisabilities of Zn2+ and Se2- have to be rather high. Values calculated from the fitted 
shell parameters give azn2- = 1.1 A3, ase2- = 13.5 A3, compared with the Pauling 

Table 2. Calculated and experimental bulk properties. 

Property Calculation Experimental Reference 

Elastic constants 
Cl 1 

G 2  
C44 

Dielectric constants 
Eo 

E,  

Piezoelectric constant 
e14 

Cohesive energy 

Lattice strain 

9.08 x 10" dyn cm-* 
7.19 x 10" dyn cm-2 
1.73 x 10') dyn cm-' 

7.42 

5.60 

- 130 x 10' esu cm-' 

-33.85 eV 

1.38% (a, = 5.6676 A) 

8.72 x 10" dyn cm-2 
5.24 X 10" dyn 
3.92 x 10" dyn cm-2 

Hodges and 
Irwin (1975) 

8.80 (0 K) 

5.60 (OK) 

Strzalkowski 
er a1 (1976) 
Hite er a1 
(1967) 

1.47 x 10' esu cm-* Berlincourt er ai 
(1963) 

-37.43 eV Waddington 
(1959) 
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values (Pauling 1927) of @zn2+ = 0.3 A’. @se?- = 10.6 A3. Even with these values the 
fitted is low, and so the long-range polarisation will be underestimated. This shows, 
together with the poor fit to C4J and e14, that the model we are using is too simple. The 
main failing is that the model ignores bond-bending forces which will be of importance 
in ZnSe and will particularly affect C44. However, the potential does give a reasonable 
representation of the bulk modulus and dielectric constants, and should therefore give 
fairly accurate values for defect energies whenever they do not depend sensitively on 
details of the bonding. 

Aprevious empirical potential has beenobtainedfor ZnSe (Harding 1981); however, 
this does not give acceptable results for defect energies involving holes binding to 
vacancies. Both potentials give similar results for Frenkel and Schottky defects showing 
that, as observed for many systems, the exact form of the interatomic potential is not 
normally of crucial importance in obtaining reasonable defect energies provided that 
the required energy involves sums or differences of the HADES calculations. 

In some calculations it is necessary to consider different charge states of Zn or Se. In 
many analogous calculations the difference in short-range interionic potential has been 
ignored, it being assumed that the only term of importance is the Coulomb term. Here 
we shall correct for this short-range contribution, 6, calculating changes in I/J by an 
electron gas method (Harker 1980). Results will be quoted both including this correction 
(model 11) and ignoring it (model I). 

3. The zinc vacancy centre in ZnSe 

3.1. Ionic and covalent descriptions 

There are two extreme ways of thinking of ZnSe. One is as a purely ionic system, with 
Zn2+ and Se2- ions. The other is as a covalent system in which covalent bonds between 
sp3 hybrids are formed; here one has Zn2- and Sez+. Whatever one’s views, it is clearly 
better to define defect charge states operationally. Thus the zinc vacancy we consider 
here is that which would be produced by removing a (Zn’) ion. 

We now note (following Stoneham 1975, p 618) that the important features can be 
described in a strictly parallel way in both the covalent and ionic limits. In the ionic 
picture one removes both an ion. Zn”, and an electron. The energy is lowest when the 
hole left is localised on a single Se neighbour (giving an Se- ion), since this optimises the 
lattice strain and polarisation terms. In the covalent picture one removes an ion, Zn2-, 
and adds three electrons. Removing the ion leaves four sp3 hybrid orbitals, each pointing 
into the vacancy, and each containing one electron. Adding the electrons pairs the 
electrons in three of the hybrids, leaving a single hole on one of the seleniums. Once 
lattice relaxation has occurred, one is left with a situation essentially identical in both 
pictures, with a hole localised on a single selenium, next to the cation vacancy. 

3.2. Relation to V -  centres in oxides 

It has been stressed, notably by Schirmer (see especially Schirmer and Schnadt 1976) 
and Watkins (1977) that centres like that obtained by removing Zn’ from ZnSe are very 
similar to the V- centres in oxides as well as to the silicon vacancy centres. We support 
this view, and indeed our quantitative calculationscorrespond to those for MgO (Norgett 
et a1 1977) and other oxides (Harding 1980). 
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For fourfold coordination, the main features are given by the tight-binding model 
system of Schirmer and Schnadt. We note these points: 

(i) In the ground state, the hole will localise on a single selenium, rather than equally 
on four neighbours, provided the relaxation energy (EJT of Schirmer and Schnadt) 
exceeds 3J, where J is the resonance integral. 

(ii) The optical charge-transfer transitions are ones in which the hole moves from 
the single selenium to the other three selenium neighbours. Symmetry analysis shows 
there to be two transitions. One is excited by axially polarised light; this is to the 
symmetric state with energy ~ E J T  - U. The other, to a doubly degenerate state, is 
induced by light polarised perpendicularly to the defect axis, and occurs at energy 

(iii) there may be also intra-ionic ('crystal-field') transitions involving mainly the 
single selenium. 

Our calculations go slightly beyond this model. The main differences are first that 
we calculate separately the relaxation energy EJT and the centroid (!EJT) of the optical 
band using a rather more general atomistic model; the ratio 813 is valid only in somewhat 
restrictive circumstances. Likewise, the J which enters the relative stability criterion 
((i) above) is actually appropriate to a slightly different relaxed geometry to the J which 
enters the optical splitting ((ii) above). The distinction is important here: within the 
Schirmer-Schnadt model stability of the ground state with localisation on a single 
neighbour requires the centroid of the optical band to be at an energy greater than 813 
times the energy separation of the two components. The criterion is violated by the 
experimental values for ZnSe. Further, we shall calculate several observable defect 
parameters other than those discussed by Schirmer and Schnadt. These include ionisa- 
tion and capture energies, formation energies, motion energies and response to stress. 

One further deduction using the Schirmer model concerns the optical linewidth and 
its temperature dependence. The full width at half maximum of each band at the lowest 
temperatures becomes 2(ln 2)1'2(9 E J T ~ o o ) " ~ ,  i.e. 3.8454 (EJThm)"2.  This defines a 
phonon energy hwo which also occurs in the factor [coth(hdkT)]"* describing the 
temperature dependence of the width. 

~ E J T  + J. 

3.3. Observed and predicted energies 

Results are collected in table 3 using each of the potentials described in 0 2. We shall 
concentrate on model 11, which we believe to be the most realistic. The results for model 
I show mainly what a stringent test of a theory is provided by predictions for this type of 
centre. 

Watkins' data give the following information. First, the hole is localised on a single 
selenium, i.e. 

where the prime relates to the different geometries involved in the optical and stability 
expressions discussed earlier. Secondly the two bands observed at 1.4 eV and 2.65 eV 
have the expected polarisations, and are separated by 

EjT > 3J' ( 5 )  

3J" = 1.25 eV. (6) 
The centroid of the levels is at 

$ETT = 2.23 eV (7) 
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Table 3. Predictions for the V- centre. 

Experiment Theory 

Model I Model I1 

Thermal ionisation 
energy 
V- + V2- + h 

Splitting under stress 
eV/A symmetrised displacement 

Thermal ionisation energy 
V Q + V -  + h 

>1.25 eV 
from the stability 
criterion if J’  = J” 
0.84 eV 
from splitting of 
optical bands 
0.45 eV 
from Stokes shift of 
V2- e V- + e, 

Not known directly 
0.41 eV 

33 meV 
from EL;T and linewidth 
23 meV 
from E ~ T  and linewidth 
LO phonon frequency 
26 meV 
TA(X) 8.8 meV 

0.7 eV 

1 . 2 6 e V . k ’  

not known 

2.19 1.08 eV 

2.01 eV 0.59 eV 

not calculated 
not calculated 

1.4 eV 1.16eV 

0.3 eV A-‘ 

1.07 eV 0.79 eV 

allowing for the double degeneracy. The optical linewidth, measured from the figure in 
Watkins (1971) is about 0.64 eV, whence 

(ELfrhw)”’ 1 0.17 eV (8) 

with fiw the effective phonon frequency. From these experimental data we deduce the 
values given in table 3. 

We note the large difference between EjT and EYT. Both theory and experiment are 
consistent with E ~ T  being about 50% larger than E[;7. This is partly because EjT includes 
both electronic and lattice (ionic) polarisation energies, whereas the optical charge 
transfer only involves changes in the electronic component. In the context of a HADES 
calculation, the energy is the difference in thermal energy (i.e. cores and shells 
relaxed) between the case where the hole is spread out over the four nearest-neighbour 
Se atoms and the case where the hole is localised on a single Se. E ~ T  is 3/8 of the optical 
transition energy, calculated as the difference between the ground state and the state in 
which the hole is distributed on the other three selenium atoms; the shells are allowed 
to follow the hole in the transition, but the cores remain fixed. We also note how close 
hwis to the longitudinal optic frequency, i.e. close to what one would have guessed. We 
also include a recent estimate (Lee er a1 1980b) of the Jahn-Teller energy obtained from 
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the Stokes shift in the transitions involving capture of an electron by the V- centre. 
Again, this is a slightly different quantity. 

Watkins (1981) has also measured the stress response of the optical absorption, from 
which is deduced the ground-state splitting 6€ as a function of (111) stress. It is con- 
venient to describe the results in terms of Q, the magnitude of the symmetrised combi- 
nation of displacements of the nearest neighbours as calculated by elasticity theory for 
stress applied to a perfect ZnSe crystal. The definition of Q corresponds to 
(Qs + Q, + Q$d3  in the notation of Larkins and Stoneham (1971). Watkins deduces 
the following: 

d(6€)/dQ = 1.26 eV A-' 
whereas we find 0.3 eV A-'. This result is not as accurate as the energies of the 
charge-transfer transitions. The reason is easily understood: the charge-transfer energies 
are dominated by polarisation, and the relatively accurate predictions reflect the satis- 
factory values of the dielectric constants in our model. The ground-state splitting under 
stress, however, depends on some of the same factors as the piezoelectric constant e14, 
which is far less well predicted within our model. An improvement in the potentials 
(e.g. to include some resistance to bond angle changes) would improve both e14 and 

We may also predict energies for the binding energies in which the V- centre captures 
a( d€)/d Q . 

an electron or a hole: 

V2- + h + V -  

V- + h +  Vo. 

We have calculated these on the assumption that the hole is a small polaron localised on 
the Se2- (i.e. the hole is regarded as Se- instead of Se2-). In fact the large-polaron form 
is more stable by an energy ASL which is not readily estimated and which we shall leave 
explicit. In oxides ASL appears to be small (Colbourn and Mackrodt 1981), and for ZnSe 
may be only a few tenths of an eV. Both reactions are exothermic: for (9) the energy 
given out is (1.16 eV - AsL), which can be compared with the reported 0.7 eV. For 
reaction (10) we predict (0.79 eV - AsL); no experimental data exist for comparison. 

4. Other intrinsic properties, including Frenkel and Schottky disorder 

In this section we consider the basic reactions of Schottky disorder, anion and cation 
Frenkel disorder, and electronic disorder. We shall make two working assumptions: 
firstly, in the spirit of the ionic model, we shall assume the species involved are Zn2+ and 
Se2-; secondly, we recognise the significant covalent contributions to the observed 
cohesive energy: so, whenever a cohesive energy is used in the energy cycles, we use the 
theoretical energy obtained with the PLuTocode using the same potentials as in the other 
energy terms. 

4. I .  Schottky disorder 

Here a Zn2+ and a SeZ- are separately moved from the bulk to the surface. 

Cation component 3.25 eV 
Anion component 3.44 eV 
Total 6.69 eV 
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We may usefully compare these results with those of Van Vechten (197.9, who obtains 
equal individual components of 3.09 eV, and a total Schottky energy of 6.18 eV. His 
results are strikingly close to ours, though his arguments have an entirely different basis. 
Van Vechten's results are strictly enthalpies, whereas ours are internal energies, and 
Van Vechten implies his results are for neutral individual defect components (i.e. Zno 
rather than Zn2+), though this assumption does not appear to be essential so long as the 
Schottky pair is neutral. 

4.2 .  Frenkel disorder 

For the cation Frenkel defect, a substitutional Zn2+ is moved to an interstitial site. There 
are two obvious inequivalent sites: one (the t 1 4  site) surrounded by four Se ions, the 
other (3 3 3) by four Zn ions. The most stable is determined by the balance between the 
Madelung terms (which favour Se neighbours for Zn) and repulsive terms (which favour 
Zn neighbours). 

We have calculated both cases, and find both factors significant. 

Cation Frenkel 
( a )  Zn neighbours 7.05 eV 
Anion Frenkel 
( a )  Zn neighbours 5.90 eV 

( b )  Se neighbours 6.33 eV 

( b )  Se neighbours 7.39 eV. 

These energies (and the Schottky energies) are sufficiently large that these defects can 
play no important part in lattice disorder in ZnSe. 

4.3.  Band-gap excess 

Since the polarisation and relaxation energies will depend on the precise atomic nature 
of the environment, the energy of the sequence (3) depends on the species C through its 
repulsive interactions and on its environment; it does not depend on ionisation potentials 
or on the intrinsic band gap. We have calculated the band-gap excess in four cases: 

C = Se substitutional 1.66 eV 
C = Zn substitutional 3.93 eV 
C = Se interstitial, Se neighbours 2.61 eV 
C = Se interstitial, Zn neighbours 3.45 eV. 

These are quite large energies, comparable with those for MgO and CaO (Stoneham 
and Sangster 1981). 

4.4.  Mott-Hubbard gap 

There are several contributions to this quantity (see equation (2) and Stoneham and 
Sangster 1981) : Jahn-Teller, crystal-field, ionisation potentials and covalency correc- 
tions, together with the polarisation and distortion term which we calculate. The polar- 
isation and distortion contribution for 2Ni2' + Ni' + Ni3+ is -9.92 eV, i.e. this contri- 
bution is exothermic; for comparison, values in oxides are -11.90eV (MgO) and 
- 12.79 eV (CaO) (Stoneham and Sangster 1981). There is a compensating stabilisation, 
of course. If one were to use free-ion ionisation potentials (Moore 1952), these give a 
contribution of + 18.15 eV, though covalency corrections are necessary. The Jahn- 
Teller and crystal-field terms are modest. Experimentally, the Mott-Hubbard gap for 
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ZnSe:Ni2+isknowntobelessthan(E,,, - 1.0 eV)i.e. lessthanabout 1.8 eV(Szawe1ska 
eta1 1981). We have already noted three possible sources of error in the calculation. The 
errors in the calculation of polarisation and distortion are probably less than 1 eV, so 
presumably the main source of error is in the use of free-ion ionisation potentials, rather 
than those appropriate for Ni2+ embedded in a host lattice. 

4.5. Antisite defects 

In the antisite defect one has either a Zn ion at an Se site or an Se ion at a Zn site. There 
are three main components in the energy, only one of which can be estimated with 
significant reliability by our methods. 

The first component, clearly outside our present methods, is the covalent bonding 
term. The second, the Madelung term, is more subtle. In an ionic picture, two different 
definitions of effective charge appear. One, Z say, concerns the dipole moment for unit 

Table 4. Antisite defects 

HADES defect 
energy 
(Model 11) 

11.82 eV 
19.88 eV 
20.51 eV 
13.29 eV 
20.04 eV 
20.71 eV 

Zn2' on Se site 
Zn' on Se site 
Zno on Se site 
SeZ- on Zn site 
Se- on Zn site 
Seo on Zn site 

Unrelaxed defect Polarisation/ 
energy distortion energy 

72.35 eV -60.53 eV 
53.13 eV -33.25 eV 
33.9 eV -13.4 eV 
75.89 eV -62.6 eV 
56.67 eV -36.63 eV 
37.45 eV - 16.74 eV 

[Zn2*]zn + [ S e 2 - l ~ - t  [Se2-1zn + [Zn*+l~, 25.1 eV 
--, [Se-],, + [Zn+l~ ,  39.94 eV 
-+ [Se'lz, + [Zno1se 41.30eV 

These reaction energies are HADES energies, uncorrected for ionisation 
energies 

Ionisation potentials for Zn Zn' --* Zn + 9.39 eV 
(Moore 1952) Zn' -+ Zn2+ 17.96 eV 

We assume that electron affinities for Se are about the same as those for S .  These are 
(Crossley 1964) 

S + e - t S -  -2.07 eV 
S- + e-  S2- +5.51 eV 

displacement of an ion; the separate shell and core components are the ones used in our 
descriptions of lattice dynamic and dielectric properties. The other, Z' say, enters in the 
cohesive energy of the perfect rigid lattice, and is determined by the spatial distribution 
of charge in that case. Most ionic models assume Z = Z ' ,  since this avoids possible 
inconsistencies. Such an assumption is not always valid even in ionicsystems and covalent 
bonding will certainly contribute to differences between Z and Z' .  In the present paper 
we have fitted Z .  The Madelung part of the antisite formation energy reflects principally 
Z',  and this energy contribution may be overestimated in consequence. The third 
contribution, from lattice distortion and polarisation, is probably more reliably 
predicted. 

The relevant HADES energies for the antisite defects are given in table 4. It is to be 
noted that the defect energies go in the opposite direction to what one might naively 



4658 J H Harding and A M Stoneham 

expect. As the table shows this is due to trends in the polarisation and distortion terms 
dominating the opposite trend in the Madelung term. 

It is helpful, though not especially accurate, to obtain energy estimates for the singly 
charged and uncharged ions in the antisite positions within a purely ionic model. For 
this we require the ionisation potentials for Zn and electron affinities for Se. As an 
estimate we take the free-ion Zn ionisation potentials from Moore (1952) and assume 
that the Se electron affinities are of the same order as the affinities for sulphur, which 
may be obtained from the collection of Crossley (1964). This gives energies for the 
antisite defect pairs as: 

Se2- on Zn site and Zn2' on Se site 
Se- on Zn site and Zn' on Se site 
Seo on Zn site and Zn'on Se site 

25.1 eV 
16.5 eV 
10.5 eV. 

All these energies are large. Even with the considerable uncertainties in the calculation 
discussed above it seems reasonable to predict that such defects are unlikely to be 
observed. One can argue that covalent corrections are likely to be of the order of the 
errors in the crystal cohesive energy, i.e. 3-4 eV; even at this level, there seems no way 
of bringing our predictions into agreement with Van Vechten's (1980) estimate of 1.9- 
2.5 eV. 

5. Discussion 

We have now quite a range of results to allow us to assess an ionic model for ZnSe. As 
we remarked at the outset, it is clear that there are some cases where the model is 
expected to be weak. Centres where the Schrodinger equation must be solved for a 
trapped carrier are an obvious example. Also the model might be expected to be 
unreliable where covalent energies are critical or the absolute value of the Madelung 
potential important. However in many cases of interest (e.g. Frenkel and Schottky 
defects, bound hole systems) there may be compensation between various terms in the 
required energy, so as to give a reliable final result. 

The ionic model appears to work well in cases where the defects involve only 
closed-shell ions (see especially Harding's (1981) work on alkali interstitials) and also 
gives acceptable results for charge-transfer calculations. Of the various calculations on 
the V- centre only the calculation of the stress coupling coefficient is very sensitive to 
the ionic assumption through the precise details of the potential, and this is associated 
with the poor representation of the piezoelectric constant. We may therefore conclude 
that in a useful, if limited, range of problems, the ionic model can be used to obtain 
reasonable estimates for defect energies. In this it can be an adjunct to other methods 
which encounter problems where the ionic model can be used. Indeed, one possible use 
of our methods is to provide relaxed atomic positions for use in problems in which 
solution of the Schrodinger equation is necessary. 
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