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Abstract. This paper discusses the statistical distribution of internal fields due to random 
defects in solids. It extends previous discussions by separating explicitly the contribution of 
the nearest defect from that due to all others. Possible applications include those to prefer- 
ential defect pairing, to hopping conduction in randomly doped crystals, and to questions of 
the existence of phase transitions in random dipole systems. As a by-product. we note that 
the random strains in solids have a statistically negligible probability of localising a muon 
(assumed not self-trapped) except at the sites of defects themselves. 

1. Introduction 

There are many cases in which observable effects arise from the random fields of 
statistically distributed defects in solids. The fields themselves may be strain fields, 
electric fields, or it may be the electrostatic potential or electrical field gradient which 
varies from site to site. This subject was reviewed by Stoneham (1969), who surveyed 
the methods of calculating the distribution I(&) deof an internal field E. 

Calculations of the distribution involve two main pieces of information. First, one 
needs to know the contribution E(z) to E of a single defect whose relative position and 
other defining parameters are given by z .  Secondly, one needs to know something about 
the statistical distribution. This is usually described by a straightforward generalisation 
p ( z )  of the pair distribution function of the defects causing the random field relative to 
the probe species which monitors I(&). Given expressions forp(z), E(Z) and the density 
of defects one can calculate the distribution I (&) .  One can also obtain the moments of 
the distribution M.v, where 

M,v = d &I( E) c", i 
and some special features like asymptotic expressions. The moments, however, are 
rarely useful, since they do not always correspond to what is measured, and often 
diverge, though they are simple to calculate formally. 

In this note we look at I(&) in some simple cases, and we project out the contribution 
of the closest defect. This has several advantages. One is that, if the circumstances of 
direct interest are dominated by the nearest defect, calculations can be made much 
simpler. A second is that bothp(z) and E(z) are often described by some simple form at 
large separations, with corrections at short distances only. In many such cases these 
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corrections will be important only in the case of the closest defect, and can be handled 
more easily in the separated form. But the main advantage is conceptual: one can 
identify directly the contribution of the many distant defects and separate this from the 
specific contribution of the closest defect. The main complication is, of course, the fact 
that the distance from a specific site to the nearest defect is not unique, but is itself a 
distributed quantity. One specific application we have in mind occurs in muon spin 
rotation. If a muon moves through a lattice containing point defects, and if it localises 
where the strain field (e.g. the dilatation) is a minimum, will the sites of localisation be 
at isolated sites (Yaouanc 1982) or only significantly adjacent to the defects themselves? 
Other potential applications occur in conductivity and in phase transitions (if indeed 
these occur) in systems containing random or statistically distributed defects. 

2. Theory 

2. I. The statistical method 

Here I simply quote the resuits derived by Stoneham (1969). The distribution of internal 
fields given by the statistical method is I ( & ) ,  where: 

J(x) = dzp(z){l - exp[-ix~((z)]} (2) 

and where the density of defects is p N/Jdzp(z) where N is the number of defects in 
the chosen volume of integration. For simplicity we shall usually choose symmetric cases 
where I( E) and I( - E )  are equal. The expressions then simplify: 

(3 ) 

(4) 

1 *  
n 0  

I(&) = - d~ cos(xe) exp[-p~(x)l  

J(x) = j dzp(z){l - cos[ xgz)]} 

where J(x) is now real. 
In the very simplest and most important cases, &depends only on the relative position 

of the perturber. If the perturbing defects are distributed completely at random, then 
p ( z )  dz takes the following forms: 

i p ( z )  dz + dr (1 dimension) 

(2 dimensions) 

(3 dimensions). 

+ r dr d6' 

+ ? dr dQ 

Here Jd6' = 2n  and Jdsl  = 4n when integrated over angles. If the distribution is not 
random,p(z) is multiplied by a weighting factorf ( r ) .  With the definitions ( 5 )  the density 
of defects, p, is the number per unit length (one dimension), per unit area (two dimen- 
sions) or per unit volume (three dimensions). 

2 .2 .  The nearest defect 

Here we follow the early arguments of Hertz (1909) and Chandrasekhar (1943). The 
probability P N ( r )  that the nearest defect lies between rand r + dr of a chosen site is the 
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product of two probabilities: P(r), which is the probability that there is a defect in this 
range, and q(r), the probability that there is no defect closer than r: 

PN(r) dr = P(r)q(r) dr. (6) 

The two component probabilities are related, for q(r) is clearly the product of all the 
component probabilities [l - P ( x )  dx] that there is no defect between x and x + dx for 
0 S x S r. Hence (either directly or following the discussions of Hertz and of Chandra- 
sekhar) one can show: 

PN(r) dr = exp (- i , ’ d x P ( x ) )  P(r) dr. ( 7 )  

In general p is a function of z ,  and inspection shows that p ( z )  of the present section is 
related top(z) by the simple factor p, the density of defects, plus a second factor to take 
into account internal degrees of freedom, if any. An integral over angles is implied too 
if we are only concerned with distance, irrespective of direction. In the important case 
described by ( 5 )  we find, for example, 

P ( x )  dx = p 4 n d X x 2  (8) 

Ph.(r) dr = p exp( - 4n?p)4n? dr. (9) 

in three dimensions, whence the Hertz-Chandrasekhar result: 

It is useful to give results for one, two and three dimensions. Whilst Hertz quotes 
most probable, mean and median nearest-neighbour distances in each case, the distri- 
butions are implicit only. Table 1 quotes the results, apparently given here for the first 
time, and introduces simplified notation in terms of L ,  the average nearest-neighbour 
distance. 

Table 1. 

One dimension Two dimensions Three dimensions 

Form ofp(z) dz 
integrated over angles dr 2;n dr  4;n’ dr 
Density of defects p p1 = number per m = number per 

unit length unit area unit volume 
fi E number per 

Average spacing of defect L L 1p1 = 1 .-r(L2)2pi = 1 er(L3)3fi = 1 
Form of PN(r) dr  drp, exp(-plr) drm 2m exp( - m Z p 2 )  drfi 4 m 2  exp( - 4 m 3 f i )  
Form of PV(y)  d j  withy = r/L dy exp( - y )  dL 2Y exp( -y  2, d j  3y’ exp( - i 3 )  

It may happen that the defects are not distributed completely at random. Two simple 
examples arise when there are attractive interactions, giving preferential pairing, and 
site exclusion, since two defects cannot occupy the same lattice site. If the effect of the 
interaction is to modify the pair distribution function by f ( Y ,  a) ,  where f+ 1 at large 
distances to ensure the average density p is  defined consistently, then the main change 
is the replacement 

IJW + P (r) J d~ f ( r ,  a>. (10) 

This leads to more complexity, but does not cause any serious problems. 
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2.3. Contribution of the nearest defect 

The main idea exploited in the next section is that the contribution of the nearest defect 
to the distribution of E is IN( E )  where 

IN(&) de = probability that the nearest defect lies between the contours 

Thus, if E ( Z )  is a function of r only, and if dR is defined by dR = dE/[d~(r)/dr] and R by 
E E(R), then we find 

on which it produces perturbations E and E + dE. (11) 

I N ( € )  dE= PN(R) dR. (12) 

The only technical problem is the inversion of E = ~ ( r )  to give the contours R = R ( E )  
over which the defect would give the same perturbation E.  We note that IN( E )  itself is not 
necessarily normalised; it is PN(R) which is normalised. 

For reference, it is useful to define the several distributions needed here: I (&)  = 
probability that the internal field from all defects lies between E and E + de; IN(€) = 
probability that the nearest defect contributes an internal field between E and E + de; 
Io( E )  = probability that the internal field from all defects except the nearest lies between 
€and E + de. 

2.4 .  Contribution of all defects but the nearest 

The full distribution I( E )  is simply the convolution of Is( E )  and lo( E ) ,  a second distribution 
which comes entirely from the defects other than the nearest. The simplest way to obtain 
Io(&) is from the convolution theorem. Expressing the Fourier transforms of I ,  I ,  and IO 
as 1, IN and io respectively, f = &Io. The desired distribution Io( E )  can be found from the 
back-transform of &'IN. In practice, this is complicated. However, it is clear that I N ( € )  
dominates at the large values of E ,  whilst IO(€) is the major contributor at small E ,  falling 
rapidly to zero as €rises. 

3. Examples of I N ( & )  

We now calculate the distributions of random fields due to the nearest defect only, 
beginning with simpler cases and generalising systematically. 

Case I .  Consider the simple inverse power-law potential given by 

E(Z)  = A/?. (13) 

(14) 

(15) 

The inversion of (13) gives these expressions: 
= ~ l / m  - l /m E 

d r  = -(1/m)Al/m~-(1-1/"') d E. 

Equation (12) now gives us 

where the irrelevant negative sign has been dropped. This equation is general, applying 
to all distributions of defects, and so to all forms of PN(r). We illustrate the result using 
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the simplest case of all, namely a random distribution. The results in one, two and three 
dimensions are most conveniently expressed in terms of : 

EL = AIL" (17) 

(l /m) ( EL/&) l" - '[exp( EL/&) ' "I d( &/EL ) (18a) 

IN(&) de ( ~ / ~ ) ( E L / E ) ~ ~ + '  exp [-(EL/E)' /~] d(E/EL) ( 2 D  1 (18b) 

(18c) 

the perturbation due to a defect at the average spacing. L .  Using table 1. we obtain: 

( 1 D )  1 (3 /m)  ( EL / E )  3/m * ' exp[ - ( EL / E )  "I d( &/EL) (3D). 

The results at large perturbations (large E)  reduce to the asymptotic solutions given in 
fj 4.5 of Stoneham (1969). At the small-perturbation limit (small E ) ,  IN(&) tends to zero 
very rapidly, This corresponds to the obvious point that it is rare for the nearest neighbour 
to be very far away. 

Case U. In case I ,  the perturbation always had the same sign: E ( Z )  of (13)  is always 
positive. We now consider a case in which there are two types of defect which produce 
perturbations of opposite signs. One, with density p + ,  gives a perturbation E+ = Ar-"; 
the other, with density p- ,  gives a perturbation E- = -Ar-". If the defects are again 
randomly distributed, then the resulting distribution is simply the weighted mean of the 
two components: 

I*(&) dE = dE ( p - l + ( ~ )  + p - I - ( ~ ) ) / ( p +  + p-). (19 )  

The two components are quite distinct here, giving opposite sign contributions to E.  

When p +  and p- are equal, IN(&) becomes symmetric, i.e. I N ( + & )  and IN(-&) are 
identical. In this limit we may usefully compare IN(&) with the full distribution I ( & )  from 
all defects present. In the same notation we have for the general case: 

pl(x) = 6 j d y y 2 [ l  - c o s ( x ~ o - ~ ) ]  +6ix I dyy*sin(xEQ-'") (20)  

where EL 3 AL-" and h L 3 p  = 1, with p = B(p+ + p-) and cy 3 (p- - p+)/ 
( p -  + p - ) .  For the specific case p- = p- we find: 

In practice the lower limit (strictly uL = xh, , ,  where hi, is the perturbation of the most 
distant allowed defect) can be taken as zero. Likewise, the upper limit (strictly XE,,,, 

where emax is the perturbation of the closest permitted defect) may normally be taken as 
infinite. The dependence of Jm on x is thus modest. Provided this dependence can be 
ignored, jm is just a number. So long as m is finite and bigger than 3/2, the integral 
converges satisfactorily. In the special case m = 3 ,  j, is simply n. The expressions take 
a rather simple form: 

C2-F 
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This confirms the point already made that I ( & )  tends to I N ( & )  at large y.  Close inspection 
shows a less obvious feature: IN can exceed I ,  though the difference falls to zero as E 

increases. If one writes I E I  = m L y ,  for example, 

IN(&)/I(E) = (1 + Y - 2 )  exp(-@?Y), (25)  

then IN(&) is 45% bigger than I at y = 1. the point of half maximum. The underlying 
reason is that IN(&) singles out the nearest defect which gives a specific sign of pertur- 
bation, whereas I (  E )  is a compromise between the contributions of the two species with 
opposite signs. 

In the case described by (23) and (24) we can also calculate the distribution Io(&) 
from defects other than the nearest. The cosine transforms of (23) and (24) yield: 

i ( x )  = it exp( -nx) 

IN(x) = - 2 f i  ker1(22/;;;) (27) 

(26) 

with ker'(y) as defined in Abramowitz and Stegun (1965), 8 9.9. The reverse transform 
must be carried out numerically, and gives the results shown in figure 1. 
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Figure 1. The three distributions shown are for a l / r3  interaction with defects of both signs. 
I(&) is the full distribution, Iv(E) that from the nearest defect, and IO(&) from all defects but 
the nearest. The numerical inversion for l i s  difficult technically. so that. whilst the resulting 
curve is basically correct, it may be inaccurate in detail. 

Case 111. Assume (13) is replaced by some other monotonic power law E = q ( r ) ,  so that 
q-l(&) gives a single value r .  Define V ( E )  = dq-'(&)/d&. Then we have as the analogue 
of (16): 

IN(&) d & =  f'[(q-'(&))]y(~) d&. (28) 
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Thus, if we were to assume 

E ( T )  = A exp( -pr )  

and to define er = E(L) again, we should find: 

z ~ ( E )  = ( 3 / p ~ )  [In( &&)I3 exp - [ ~ ~ ( E J E ) ] ~  

4. Discussion 

4.1. Possible applications 

The discussion so far has aimed mainly at clarifying contributions to random internal 
strain fields. In fact, such a division into components is useful in several applications. 
These include hopping conduction in randomly doped crystals, and certain ordering 
transitions for random dipolar impurities. 

Calculation of hopping conduction in randomly doped insulators and semiconductors 
involves two configuration-dependent factors. One concerns the overlap of states associ- 
ated with those nearby pairs of the dopants between which hops occur. This leads to a 
transition matrix element MI, falling off roughly exponentially with separation R,. The 
other factor involves the energy difference AEll between the initial and final states. This 
term varies exponentially with inverse temperature. The usual analyses (Mott and Davis 
1971, § 2.9) then give the limiting cases of variable-range hopping, of Miller and Abra- 
hams (1960) and so on. 

Even for a given spacing R,, both M ,  and AE,l are distributed quantities. For 
amorphous systems, the structural disorder is important. In such cases an empirical 
distribution, constant near E F ,  is usually assumed. For randomly doped crystalline 
systems, the dopant-dopant interactions may be the major factor in the spread of MI, 
and AE,, . If so, the distributions of M ,  and of AE, can be obtained using the arguments 
of 0 2.4. In principle, one can predict both the absolute value of the density of states and 
the qualitative shape of the distribution; this may permit a quantitative prediction of the 
hopping conductivity which improves on some current models. 

Cooperative phenomena involving randomly distributed dipoles have been observed 
in many cases. With elastic dipoles one sees martensitic transitions (see e.g. Nishiyama 
1978); for electric, or electric and elastic, dipoles one finds systems like alkali halides 
doped with OH- or CN- (see e.g. Potter and Anderson 1981, or Garland et a1 1982). 
One feature is that a fairly clear phase transition is observed only above a critical 
concentration. This can be understood in several ways. Stoneham and Bullough (1970) 
noted that the mean field driving alignment was much less than the fluctuations in the 
aligning field. This means, of course, that below the critical concentration, many dipoles 
are ‘frozen out’ in small clusters, each with their own high ordering temperature. Since 
the closest defects interact most strongly, and since pairs are the smallest clusters (and 
possibly the only ones of importance if the critical concentration is low) one may use 
generalisations of our present results to estimate what the critical concentration is. This 
involves the self-consistent solution of two equations. One relates the mean field causing 
alignment E to the fractional concentration of dipoles not frozen out. If c is the total 
concentration and c, is that concentration frozen out, E is roughly proportional to 
(c - c,). The second equation defines c, as the concentration fraction for which the 
local field (e.g. that of the nearest defect) exceeds the mean field 2 by some specified 
amount. Thus E =  a(c - c,) and c, JdE P(E)€l(E - E )  in which Omight be the Heav- 
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iside function. In principle, these might be solved to deduce a concentration below which 
no phase transition is expected. In practice some generalisation is needed, since site 
exclusion becomes important at about the concentrations of interest. 

4 .2 .  Related distributions 

The distributions we have calculated are those of a scalar E .  Frequently, the variable of 
interest is a vector (like an electric field) or a tensor (e.g. a strain). There are then two 
types of distribution: one is the projection of the vector onto a specific direction, i.e. 
q, = Xz a,u,, with /a, /2 = 1, the other the magnitude of the vector irrespective of direc- 
tion, i.e. ~m = (I: l~, l ’ ) ’ ’~.  Here a is a unit vector; there are obvious generalisations for 
tensor quantities. Chandrasekhar (1943, § IV.2) shows that the two distributions are 
related by: 

I,( E )  = 4Jd$lp( E )  (31) 

in three dimensions. This has one obvious consequence: unless the distribution of the 
projection q, is singular (Ip(&) - E-’ at least) then Z m ( ~ )  tends to zero with ~ m :  there are 
essentially no sites at which the magnitude Emof the vector is zero. There are, of course, 
the actual defect sites themselves, though usually these are excluded from the counting 
because the expressions for E(z) are singular when extrapolated to defect sites. 

4.2 .  A r e  there minima in &other than at defects? 

In muon spin rotation one needs to know whether there are sites remote from defects 
where the muon will find an energy minimum. Suppose the energy of interaction with 
a defect is U(r) .  Then we may seek minima in 2 Ui by looking at the distribution of forces 
2VUi  = F .  The minima correspond to zeros in IF1. We can see immediately from (31) 
and from the examples of 0 3 (and those given by Chandrasekhar (1943) or by Stoneham 
(1969)) that absolute minima in  U (zeros in IFI) are statistically negligible in common  
random systems. This excludes ( a )  minima at defects, (b )  the statistically negligible 
special cases where IF1 vanishes for fortuitous reasons, and ( c )  special potentials U(r )  
which are constant over finite volumes. We can also see from our earlier calculations 
here that it is the nearest defect which dominates in the force field. One may assume that 
the muon will move (normally by diffusion) rapidly to a nearby defect; indeed, our 
calculations suggest it will be the nearest defect with high probability. Trapping in 
isolation, other than self-trapping, is unlikely unless the strain field of an individual 
defect (e.g. the nearest) has large volumes of constant strain; surfaces of constant strain 
do not suffice. 
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