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Abstract. The coupling to lattice vibrations affects the photoionisation spectra of defects in 
semiconductors. This is especially important for deep defects. The effects are characterised 
mainly by a Huang-Rhys factor So and by a spectral moment. These are calculated for a 
variety of electron-photoncoupling mechanisms as a function of the observable ionisation 
energy E, rather than the unobservable effective radius used by previous workers. For 
Frohlich coupling a good approximation for the Huang-Rhys factor is S,(x)/S,(O) = 

x / J [ ( 5  + x)/6] with x = E,  / (effective Ryd for a purely hydrogenic centre). 

1. Introduction 

It is well known that optical transitions between bound states of defects in solids usually 
involve the absorption or emission of phonons. Despite this, it is almost universally 
assumed that photoionisation does not involve phonons other than the momentum- 
conserving phonon for indirect gap materials. This belief is a consequence of theoretical 
complexity, experimental uncertainties and the relatively small electron-photon- coup- 
ling in semiconductors rather than a demonstrated result. The present note gives some 
estimates of the degree of phonon participation in a form which should prove convenient 
in the analysis of the properties of deep defects as well as shallow ones. 

Almost two decades ago, Hopfield (1958) demonstrated the relation between the 
radial extent of a Gaussian bound-state wavefunction and the mean number of phonons 
emitted in the transition. This useful result has two drawbacks: defect wavefunctions are 
not accurately represented by Gaussians, nor are their spatial distributions measured 
directly. Instead, the photoionisation threshold E,  and something about the type of 
binding potential (eg Coulombic, isovalent, etc) might be known, with the associated 
implications for the wavefunction. Thus the two key properties calculated will be ex- 
pressed in terms of E, for certain standard situations. These properties are the Huang- 
Rhys factor So, the mean number of phonons emitted at zero temperature, and the first 
moment relative to the transition energy with no phonon emission. If Soa is the Huang- 
Rhys factor for mode CI, then the first moment pl is 

P I  = C S J q .  (1) 
2 

The various SON can be calculated in terms of the wavefunction of the defect electron and 
the electron-lattice coupling. For simplicity, continuum models of the lattice and electron- 
lattice coupling will be used, paralleling work by Duke and Mahan (1 965) on analogous 
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properties. The generalisation to other cases is not very different in principle and most 
aspects are discussed by Stoneham (1 975,s 3.6). 

2. Expressions for Sod 

We assume an isotropic elastic continuum of density p and sound velocity U ,  with dielec- 
tric constants em and c0.  The longitudinal optic phonons are assumed to be dispersionless 
and of energy hw,; the acoustic phonons are taken to belong to a threefold degenerate 
branch of energy hklv for wavevector k. The cut-off wavevector is taken as Q = (67c2N)' 
where N is the number of atoms per unit volume. 

Vk and M,, which depends on the change in charge density in the transition : 
The general expression for So, involves an electron-lattice coupling coefficient 

' 0 ,  = lVk/21Awk12 (2)  

M ,  = d3v[pi(u) - p,(v)] exp( - i k .  v). (3) s 
s 

Here the charge densities pi and pf refer to the initial and final states; if the final unbound 
state can be regarded as constant in space, M ,  may be written 

M ,  = d3r/$i(v))2 exp( - ik ,  v) (4) 

in terms of the bound-state wavefunction. The electron-lattice coupling terms can be 
written in the form 

ivk12 = f ( k ) / n c  (5 )  

where flc is the crystal volume and k = Ik/. The important point about continuum forms 
of Vk is that they depend solely on the properties of the host material. Indeed, for present 
purposes only the qualitative dependence on k is needed. These dependences are given 
by Duke and Mahan: 

Frohlich coupling to LO phonons f ( k )  = A,k-2  (64  

Deformation potential coupling f ( k )  = A&-' (6b) 

Piezoelectric coupling to acoustic f ( k )  = Ap/[k3(l + k 2 / ~ 2 ) 2 ] .  (64 

to acoustic phonon 

phonons, with screening 

The materials constants A,, A ,  and A,  can be derived from the Duke-Mahan paper, 
e.g. A ,  = 271(e2/hm,)(~, - E; '). The screening wavevector is IC. 

The effects of phonon coupling are now determined by equations (2), (4), (5) and (6) 
in terms of materials properties and the Fourier transform of the ground-state charge 
density. We now relate this Fourier transform to E, and the known features of the defect 
and examine the observable consequences. 

3. Expressions for M(k) 

The M ( k )  are Fourier transforms of the charge density, not of the defect wavefunction. 
They have some general properties which are worth mentioning. First, normalisation 
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of tji(r) ensures 

M(0) = d3rI$Jr)l2 = 1. s (7) 

Secondly, if Fi(k) is the Fourier transform of $Jr ) ,  then the convolution theorem gives us 

M(k) = ( l / 2 7 ~ ) ~  d3k'F*(k') F(k' - k) .  s 
This expression is useful for shallow defects with short-range potentials in hosts with 
non-parabolic bands E,(k), for which F(k) -v [E ,  + E,(k)]-l (see e.g. Stoneham 1975, 
equation (5.2.22)). Thirdly, for small k 

/M(k)I2 1 - C B , k t  (9) 
2 

can be written for wavefunctions of definite parity. Here, omitting a numerical factor 
which depends solely on the angular part of $Jv), one finds BZ - ( r : > ,  i.e. BZ depends 
on the 'moment of inertia' of the charge. For s functions the BZ are all the same, with 

( 1  0 4  

( 1 Ob) 

M ( k )  = ( t / k ) l  dr r l $ I 2  sin kr /J  dr r2 l+ l2  

B = S dr.r4(Ij / i(r)/2/Sdr,r2/~i(r)12. 

Equation (9) is a convenient simple approximation. Since 11111' is positive definite, the 
equation must be modified when xEB,kz > 1. In practice it usually suffices to set 
lMIZ = 0 in that regime, so that relatively weak coupling to phonons with wavelengths 
much shorter than the orbital radius is ignored. 

Table 1, 

Form of radial 

(unnormalised) 

Relationship betheen E, 
Wavefunction type wavefunction M(k) and a Value of B 

Hydrogenic 1s exp( - ria) [l + ( k a , / 2 ) 2 ] - 2  E,  E E,, = (m*/m,).  Ry a' 
a = (m,,/m*)~oau 

(ka!2) a = (h2/2m*E,) ' /2 
Delta function T - '  exp( -r,G) tan-'(kii/2) E ,  = h 2 / 2 m * i 2  0 

= a(E,/E,)'12 
sin[2v tan - '(+kvu)J 

v'ka[l + (:kvu)L]'  related as for hydrogenic 
exp( __ _ _ _ _ _ -  E ,  = E,/?; a and E ,  

function 

aZv2[i(1 + 5 v 2 ) ]  Quantum defect rl- 1 

Gaussian 1s exp( - r 2 / a Z )  exp( -u 'k ' /8 )  No simple prescription :a2 

Specific expressions for M ( k )  can be obtained in quite a few cases. Only s states will 
be discussed, although other examples are simply found. The most useful are listed in 
table 1. Some comments are necessary. First, the quantum defect method (e.g. Bebb 
1969) gives a wavefunction which interpolates between the hydrogenic (v  = 1)  and delta 
function (v  -+ 0) forms. However, the delta function limit is automatically deep, for 
E, = E,/v2 with E, given by host properties. Thus E,  and v cannot be varied separately. 
The delta function can be defined separately, of course, and this is done in table 1. 
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Secondly, there is no satisfactory way of defining E ,  for Gaussian wavefunctions; they 
correspond to potentials V(r) N r2 without unbound states. Thirdly the values of the 
orbital radius a for which the shortest wavelength is determined by the zone boundary 
Q rather than B of equation (10) can be found. This is achieved by writing BQ2 = 1. 
For the quantum defect method, for example, this gives 

(1 1 )  

and defines a value of vo; for deeper, more delta function-like defects the zone boundary 
provides the cut-off. For most III-V and II-VI hosts Qa is in the range 10-50, so that 
the zone boundary is relatively unimportant for all but the deepest defects. We return 
to this point in $6. Finally, E,  and a are properties of the host alone. Thus the quantum 
defect prescription gives 

Q2a2 = 6/[v;(l + 5v;)] 

Beff = ia2(E, /E, ) [ I  + 5(E,/E,l (12) 
so that Beff decreases monotonically with E,. 

5. Observable effects 

We consider only effects at zero temperature. It is useful to recall that, if a photoionisa- 
tion cross section Go(E - E J  is observed without phonon cooperation, then emission 
of a single phonon of energy E x  and fractional intensity So, gives an extra component 
in the cross section of SoJGo(E - E,  - E,) with a corresponding reduction in the original 
component. We shall not discuss momentum-conserving phonons here. 

There are three main factors of interest. 
(i) The Huang-Rhys factor So: 

r 
So = C So, -+ (1127~~) dk k ? f ( k ) / M ( k ) l 2 . .  . 

k branches J 
which is a measure of the degree of phonon cooperation. When So is appreciable, any 
structures in G(E - E , )  reflecting critical points in the conduction band are likely to  be 
negligible. 

(ii) The first moment p1 : 

2 (1/2n2) dk.k2f(k)ln/r(k)12ho,. . . . (14) s = S,,huk ---t 

k branches 

If the photoionisation cross section has the standard form with a broad maximum, the 
peak Emax is shifted by p1 relative to the threshold. A direct fit of the quantum defect 
lineshape in this case would suggest a potential more like a delta function than appro- 
priate. 

(iii) The precise form of So, as a function of the phonon energy affects the threshold 
of photoionisation and the slope of the cross section. For weak coupling 

(15) 

with only one-phonon processes. Coupling to optical phonons only shows at energies 
exceeding ho, above threshold in our model. Coupling to acoustic phonons shows at 
threshold and is especially significant for piezoelectric coupling, where 1 Ti has a peak 
related to the screening. Whether the threshold is significantly affected or not depends 

G(E - E,) = (1  - S,)Go(E - E,) + C So,Go(E - E ,  - hw,) 
h 
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also on how close to the threshold experiments are carried out. The main effect is a 
curvature of G(E - E,) whose character tends to suggest a higher threshold than the 
true one. 

6. Results 

The results can be summarised in two parts: firstly, the dependence on E, that is expected 
from the approximation of equation (10) to lM(k)I2 and secondly, the accuracy of the 
approximation based on equation (9). The qualitative dependence on E, follows from 
equation (12) and dimensional analysis of the integrals in So and ,u, unless BQ2 > 1, 
when the conclusions are more complex. There are also complications when there is 
piezoelectric coupling, when So has a logarithmic singularity involving phonons with 
wavevector k - 31c, i.e. with wavelength comparable with the screening length. As 
disussed by Duke and Mahan (1 965), the observable consequences depend on the precise 
details of both piezoelectric and deformation-potentia1 coupling. Since these vary from 
case to case, generalisations will not be attempted here, except to note that more than 
So and ,ul will be needed to give a useful description of threshold behaviour. 

Table 2. 

Type of coupling so Pl Comment 

Frohlich A,;3n2JB A,hw,/3nZ,;B Only one frequency; all moments 

Deformation potential (3A,/B)/8n2 [A,,lB)(tii'.!\'B)]/5n2 Most important phonon energies 

Piezoelectric (screened) Roughly Roughly X = B K ~ .  So, has a peak of 

vary as 1/,/B 

- hv/JB.  

order K-' at k - 3 ~ .  Higher 
moments are well behaved. 

(3/22)2,(hv/,/B) 

Table 2 gives the approximate results. For pure Frohlich coupling So and ,ul (and 
indeed all higher moments) vary as Be;:'2. For deformation potential coupling So - B;: 
and ,uN - Be;!-("2). Piezoelectric coupling gives So - X - 2  111(3Xl'~) and ,u, - Be;,"2 
with X = Beffic2. In all cases the value of So increases as E ,  rises, with a saturation at 
large E,. This can be seen from equation (12) where Be;,"2 varies roughly linearly with 
(EI/EH) when E,  - E,, yet varies as (EJE,)'12 for deeper centres; there is, in any case, 
an upper bound when IM(k)l2 N 1 throughout the zone. 

The remaining results are conveniently summarised in figure 1 .  For reference, 
(E,/E,) can range up to 50 or 100 in the 111-V semiconductors, although clearly the 
bandgap puts an upper bound on E,. In the 111-V compounds, the product Qa tends to 
lie in the range 10-50, i.e. the Bohr radius for a hydrogenic defect is much larger than the 
lattice spacing. The results show the expected dependence of So on ionisation energy, 
which is intermediate between E:" and E:''. No simple power. law fits well. However, 
the approximation (9) works well qualitatively. When scaled to agree with the numerical 
results in the hydrogenic limit, very satisfactory agreement is obtained for deeper centres 
(curve D). The expression here is 

So - (E,/E,)/[35 + EI/E,)]' 2. 

Obviously, more exact results can be obtained by interpolation 
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Figure 1. So in units (AFE,/2nE,a) as a function of E,/E,. Curve A limiting case, So cc E , ;  
curve B exact, Qa = w ; curve C exact, Qa = 100; curve D approximate, Qa = r.c ; curve 
E exact, Qa = 10; curve F limiting case, So cc E,"*. Exact means that numerical integration 
was used without the approximation of M ( k ) ;  for the approximate curve, equations (9) 
and (12) were used but the curve was scaled to fit the exact curve in the hydrogenic limit. 

Finally, we return to equation (11) and the circumstances in which the shortest- 
wavelength phonons of importance are determined by BQ2 = 1 rather than by k = Q. 
For the zone boundary to be relatively unimportant (i.e. So negligibly dependent on Q), 
equation (11) gives v o  = 0.22 for Qa = 10 and v o  = 0.024 for Qa = 100. Values listed 
in the Appendix show these estimates of v o  are slightly optimistic for Frohlich coupling. 
A significant dependence on Q appears around v = 0.4 for Qa = 10 and v = 0 1  for 
Q a =  10. 
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Appendix. Values of integrals appearing in So 

The values listed here are of the integral 

JoQdk k2  fi(k)1~,12 

using equations (6) and table 1. The integrals were evaluated numerically and are in 
units of the appropriate power of a. 
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Table A l .  

Wavefunction or type Frohlich coupling, withf,(k) Deforma- Piezoelectric coupling (Qa = m) 
of potential tion withf,(k) 

potential 
(Qa = CO) 
with 

Qa = r-c Qa = 100 Qa = 10 f,(k) K a  = 0 2  K a  = 0.1 K a  = 0.01 
~~~~~ 

Delta-function 
Quantum defect 
v = 0.1 
v = 0.2 
v = 0.4 
v = 0.6 
v = 0.8 
Hydrogenic 
v = 1.0 

~ 

4.355 

31,790 27.707 
12.585 12409 
4,480 4,479 
2.333 2333 
1.441 1.441 

0.98175 098175 

2099 2.772 5,065 

9,351 4,161 4.853 7.156 
7.628 3.298 3.989 6.290 
4,171 222.39 2.345 3.028 5.326 
2318 16,112 1.753 2.420 4710 
1.440 2.880 1.330 1.973 4.251 

098175 0,7854 1.012 1,624 3.882 
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