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Abstract. A dynamical relaxation procedure, coupled with a valence force potential, has 
been used to calculate the distortion around point defects in a diamond-type crystal. 
The method has been applied to the vacancy in diamond and silicon. We have calculated 
the response of the lattice to symmetrized forces on the nearest neighbours to the vacancy. 
The results can be used in estimates of point defect properties which depend on lattice 
distortion, including the Jahn-Teller effect, and formation energies. The ratios of the 
atomic displacements under uniform external stresses for the perfect lattice and for the 
lattice with a vacancy are also determined. These ratios are important in the analysis of, 
stress splitting data. The most striking feature of the results is that the effective frequencies 
(effective force constants) obtained are considerably smaller than those estimated 
previously. 

1. Introduction 
Many of the measurable properties of point defects are sensitive to the distortion of the 

host lattice by the defect. These properties include the order and detailed positions of the 
electronic energy levels, as well as the formation and migration energies. In this paper we 
discuss the distortion of diamond and silicon lattices by point defects. Although we shall 
concentrate on the neutral vacancy, the results can be used rather directly for substitutional 
defects in these lattices. 

Previous estimates of the lattice distortion from point defects in the diamond structure 
have made very restrictive assumptions (Swalin 1961, Scholz and Seeger 1965, Seeger and 
Swanson 1968, Hasiguti 1968). These authors have been principally concerned with the 
effects of distortion on formation and migration energies of vacancies. Their estimates 
assume that both the elastic properties of the perfect lattice and the forces which result 
from rebonding of the electrons at the vacancy may be adequately represented by a central 
pairwise interaction between the atoms. Schmid et al. (1968) went slightly beyond this form, 
including some bond-bending terms. A generalized Morse-type function was used, and the 
same function used to represent the perfect crystal properties and the local rebonding at 
the defect. However, the central interaction is not adequate. Smith (1948) has shown from 
dynamical matrix theory that first neighbour noncentral forces, as well as central forces, 
are necessary to predict the second order elastic constants for diamond structure crystals. 
Also, it is unreasonable to suppose that the same potential function describes both the 
rebonding at the vacancy and the interaction between the atoms of the perfect crystal. 

In the dynamic relaxation method we use a valence force potential to describe the 
interaction between the atoms in the perfect crystal, and we estimate the lattice distortion 
from forces of various symmetries applied to the atoms nearest to the defect. Two basic 
assumptions are made. First, we assume that the distortions are sufficiently small so that the 
harmonic approximation is valid. The dynamical method is not restricted to this approxi- 
mation; the limiting factor is the interatomic potential, which is determined from harmonic 
lattice properties. There is no available potential suitable for discussing anharmonic 
properties accurately. We emphasize that all treatments of distortion of which we are aware 
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are also strictly limited to the harmonic approximation, although this restriction is rarely 
explicit. Second, we assume that the distortions are produced by forces on the nearest 
neighbours to the defect. The forces result from the electronic re-organization which occurs 
in the creation of the defect. Our calculations for the neutral vacancy estimate these forces 
in two different ways, described in the following paper. With these two basic assumptions, 
we have estimated the distortion near neutral vacancies in diamond and silicon. We have 
also made more complete estimates of the vacancy formation energies in these crystals. 

The general basis of the method is developed in the next two sections. The method is then 
applied to the specific problem of the neutral vacancy. 

2. Dynamic model for the defect lattice 
The method used to determine the configuration of the atoms surrounding a point 

defect in the crystal is an adaptation of the computer simulated techniques developed by 
Bullough and Perrin (1968) using a discrete atom model. They used such a model to study 
the nucleation and growth of interstitial loops in cr-iron. Since the diamond-type lattice 
may be considered to be composed of two interpenetrating fcc sublattices, it is convenient 
to establish within the computer an array which consists of a large parallelepiped of discrete 
interacting atoms which belong to one of the two sublattices. We have used a parallelepiped 
containing 686 'atoms' and placed the point defect, in our case a vacancy, at the centre of 
this array of atoms. It is a good approximation to hold the atoms near the boundary of this 
assembly fixed. These atoms are sufficiently far from the point defect such that this constraint 
does not influence the configuration of the atoms near the vacancy. We checked this point 
in one case by using an assembly with over 2000 atoms and found no differences in the 
relaxed configuration of the atoms nearest the defect. 

The energy of the assembly of atoms in the perfect crystal was evaluated using a prescribed 
interaction between the atoms. A defect was then introduced into the system. In general, 
one may either remove an atom or atoms so as to create a vacancy or assembly of vacancies, 
or alternatively introduce extra atoms into interstitial positions. The computer program 
was developed to handle all these possibilities, although we have only considered the 
single vacancy so far. The total energy of the system including the defect may now be 
re-evaluated. 

In most systems the removal or addition of an extra atom causes the atoms in the vicinity 
of the disturbance to experience a net force and so they move to minimize the total energy 
of the system again. By integrating the classical equations of motion for the complete set of 
interacting atoms the new atomic configuration around the vacancy may be found. It is 
possible to write 

xk(t) = m-'F'(x'(t), xj( t ) ,  . . . , x"(t))  (2.1) 

where xt(t) ( x  = 1,2, 3) are the Cartesian components of the position vector x'(t)  for atom i, 
at time t, relative to a fixed laboratory system of axes. FL is the net force on atom i in the 
direction x, and depends upon the position of the other atoms j , . . n, at a particular time t ,  
which are interacting with atom i. For a system with central forces only this equation 
reduces to a sum of component terms which are each a function of the distance between 
atom i and one of the other atoms. However, when noncentral terms are included such a 
decomposition is not so readily available. We may also write 

aaj 
Fk(t)  = - - ax;( t )  

where aj is the expression for the total potential energy of the system with n interacting 
particles. 
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We solve the set of differential equations by numerical integration, writing 

.%L(t) = (At)- '{V;(t  + At/2) - V&(t - At/2)} 

= m-'F; ' (x i ( t ) ,  xj( t ) ,  . . . , x"(t))  

and 

V:(t + At/2) = ( A t ) - ' { x i ( t  + At) - xL(t)}. 

rhus from the configuration and velocity distribution after time t (the latter strictly after 
time (t  - At/2)) the coordinates and velocity of each atom at a subsequent time are 

Vi(t + At/2) = V;(t - At/2) + A t ( m - ' )  F:(x'(t), . . . , ~ " ( t ) )  (2.3) 

(2.4) x:(t + At)  = x;(t) + AtVL(t + At/2). 

While holding the atoms near the boundary fixed, each atom in the assembly is considered 
in turn and the force on it due to neighbouring atoms evaluated. From the difference 
equations (2.3) and (2.4) the mean velocity and hence new position of each atom after the 
current time step is determined. After the velocity and position of each atom is updated a 
norm proportional to the kinetic energy of the lattice is evaluated and the process considered 
for the next time step. Using a suitable choice of time step the kinetic energy passes through 
a maximum value after a few complete iterations. At this point the atoms are brought to 
rest and the iterations restarted. This dynamic procedure ensures very rapid convergence 
to the absolute minimum in total potential energy. This method also has the advantage that 
metastable configurations can usually be avoided and the true stable configuration found. 

It is a useful dynamic method for our purposes which permits us to overcome many of 
the inadequacies of previous approaches. 

3. Potential interaction between atoms 
Valence crystals have strongly directional covalent bonding between nearest neighbour 

atoms, with much weaker interactions between an atom and its second neighbours. To 
predict the properties of the diamond-type crystal satisfactorily it is necessary to use a 
function which includes noncentral as well as central force terms. Fortunately, potential 
relationships for diamond and silicon which have many of the desired characteristics have 
been determined by McMurry and co-workers (McMurry et al. 1967, Solbrig 1968, private 
communication from McMurry). 

These workers have expressed the potential energy of the diamond-type crystal in terms 
of valence coordinates which involve changes in bond lengths and bond angles. For the 
diamond crystal a valence force potential expression was derived which yields calculated 
phonon dispersion relations in extremely good agreement with experimental data obtained 
by Warren et al. (1965, 1967). The elastic stiffness constants calculated using the potential 
relation agreed very well with the data obtained by McSkimin and Bond (1957) using an 
ultrasonic method, while the Raman frequency obtained by Robertson et al. (1934) was 
used as a fitting parameter. Recently, a preliminary set of valence force constants for the 
silicon crystal have been obtained (Solbrig 1968, private communication from McMurry). 
The fit to the phonon dispersion curves obtained by Dolling (1963) and Palevsky et al. 
(1959) is not as good as for diamond, but is sufficiently accurate for our purposes. We have 
also made preliminary calculations for silicon using the valence force potentials of Singh 
and Doyal (1970). These results agree quite well with those based on Solbrig's values. 

The expression for the total deformation energy, a, for a system of n interacting particles 
may be presented in terms of the valence force coordinates as follows: 

n 
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where Di is the potential energy contribution associated with each atom in the array. Now 

Di = $F,  1 (Ari j )2  + 1 1 {3rgFo(AQ,ik)2 
4 3 4  

j =  1 j = 1  k = j + l  

where the terms represent contributions to the potential energy arising from the various 
spring constants. The change in bond length between nearest neighbour atoms i a n d j  from 
the equilibrium internuclear distance r,, is A ri j .  The change in bond angle between atoms 
j ,  i and k ,  where i is the atom at the apex, is AOjik. The force constants are defined as follows: 
F ,  is a bond stretching constant for nearest neighbour atoms i and j ;  F ,  is an angular rigidity 
constant for the angle f,, is an interaction constant for a bond pair, such that j and k 
are nearest neighbours to i ;  Lo is an interaction constant for the bond i j which forms an 
arm of the angle O j i k .  Table I shows the values of these force constants for the diamond and 
silicon crystals. 

Table 1 .  Valence force constants for the diamond and silicon 
crystal 

Force constant Diamond Silicon 

Fr 24,8220t 9.2691 
F ,  2.2360 0.1838 
"6, 0.8571 0.1684 
As 1.7497 0,2495 

i All constants in units o f e V k 2 .  

In the expression for Di we have neglected the terms containing fee and foe*, because in 
general the energy contribution from these terms will be small. To include such terms leads 
to a complicated expression for the force on each atom. It is important to note that this 
function effectively gives us the deformation potential energy, since for the perfect crystal 
configuration CD is zero. 

The force acting on the atom i in the x ,  direction (a = 1, 2, 3) at time t is as given in 
equation (2.2).  We may also write this equation as 

It should be noted that terms other than CDi are functions of xL(t). The expression for the 
force on a particular atom involves the knowledge of the derivatives o f A r i j ,  AQjik and ABiji 
with respect to xt ( t ) .  For the radial term we have 

where the terms are as defined previously. Note that we have abbreviated the symbol 
xL(t) to xt for convenience. To get the angular terms we use direction cosines to express 
cos 6jik as 

Now 
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For the perfect diamond-type lattice at equilibrium 

Since we assume that the displacements of the atoms are sufficiently small that the harmonic 
approximation is valid, we may write 

cosLiejik 1 sinA e j i k  = A ej ik .  
Hence 

cos ejik N -f - T A B j i x .  (3.5) 

By use of equations (3.4) and (3.5) we obtain 

and 

It is through terms like aAB,,,/dxh that the force on atom i depends upon the position of its 
second nearest neighbours. 

There still remains a difficulty in applying this potential function to our problem. The 
valence force function is essentially an equilibrium potential; ifwe break a bond or remove an 
atom from the crystal no relaxation of the lattice occurs unless we allow rebonding of the 
electrons. While at first sight this may seem surprising it is perhaps reasonable. In saturated 
hydrocarbons the average carbon-carbon single bond length is 1537 k 0.005 A compared 
with 1544A in the diamond crystal (Sutton 1965). If we argue that the single bond in satur- 
ated hydrocarbons is fully relaxed, then the 'tension' in the C-C bond in diamond should be 
very small, since AR is 0.007 A. Consequently the relaxation of surrounding atoms on 
breaking a bond should be small. This is, of course, a very simple-minded argument and 
ignores the effect of electron re-arrangement which may result in a change in the state of 
hybridization of the atoms nearest the defect. However, the success of the valence force 
function in predicting the physical properties of diamond suggests that it is a reasonable 
argument. A similar argument may be used to justify the use of a valence force potential 
description of the interactions between atoms in the silicon lattice. In crystalline silicon the 
Si-Si bond length is 2.35 A compared with 2.32 0.02 A in such compounds as Si,H, and 
Si,Cl, (Sutton 1965). It is likely that the valence force potential will be less accurate for 
silicon than for diamond, but it should be adequate for our purposes, and is in any case 
better founded than the potentials used by other workers. 

It follows that any distortion of the lattice in the vicinity of an isolated vacancy results 
from the rebonding of the vacancy electrons. It now remains to determine the equilibrium 
configuration of the lattice which results on application of external forces F ,  of appropriate 
point symmetry and to estimate these electronic forces. 

4. Linear response of the lattice 
4.1. General outline 

If the four nearest neighbours to the vacancy, - - -  denoted A, B, C and D, have Cartesian 
coordinates (7, 1, l), ( l , i ,  l), (1, 1 , i )  and (1, 1, 1) in the undistorted crystal, displacement of 
these atoms may be described in terms of 12 normal coordinates (Lannoo and Stoneham 
1968). Three of these coordinates represent translations and three rotations. These are of 
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no interest to us in the present problem. The six remaining normal coordinates are given in 
the Appendix in terms of the displacements X,, Y,, 2, (r  = A, B, C ,  D) of the atoms. The 
Q, mode is the 'breathing' or symmetrical mode of symmetry A,. The normal coordinates 
Q, and Qe are E modes which describe the tetragonal distortion of the atoms surrounding 
the vacancy, while theQs, Q, and Qr modes belong to the T, representation of the T, 
group and result in a trigonal distortion of the defect system. 

The energy change associated with the lattice for a particular distortion, Q,, of the vacancy 
may be represented within the harmonic approximation by writing 

AE(Q, )  = - F,Q, + $Mo~Q,Z. (4.1) 
The second term is the quasi-elastic potential energy term which represents the change in 
the total potential energy of the system when the atoms move to a new static equilibrium 
configuration with the nearest neighbours held fixed at a distortion Q,. The mass of the 
atom is M and cli, is the effective or response frequency of the lattice for the x mode. 

We now seek the displacement Q, in response to a small force F,. These forces are 
symmetrized, so a given force F ,  does not produce any distortion of different symmetry 
QB+ ,. We shall describe the linear response, 2Qz/2F,, in terms of the effective frequency, 
U,, of (4.1). In the harmonic approximation we can then determine the displacements due 
to the forces caused by rebonding, even when the forces depend strongly on the 9,. 

The energy change of the whole system under a set of constant forces, F,, is, by (4.1) 

The static equilibrium distortion is given by 

so that the linear response may be written 

and the corresponding relaxation energy is 

F,2 AE(Q,)  = - __ 
2MoZ' 

(4.4) 

(4.5) 

The linear response, described by U,, may be evaluated for any given model of lattice 
dynamics. Once known, the w, may be used for other detailed microscopic models of the 
rebonding near a vacancy, or even for other neutral substitutional defects. We have used 
the dynamic relaxation method of 5 2 and the valence force function of 5 3 to estimate 
frequencies o, for the various symmetries. Only three calculations are necessary, corres- 
ponding to the A, E and T, symmetry distortions. In addition to giving the U,, the relaxation 
program also enables us to determine the equilibrium displacements of more distant 
neighbours of the defect when the nearest neighbour distortion is given by Qa, QE and QT. 
Further, we may use the relaxation method to find the effect of the vacancy on the displace- 
ments produced by an external homogeneous stress. Many experiments on defects investi- 
gate the shifts of spectral lines under external stress. In interpreting the results it is usual 
to assume that the atoms in the crystal with a defect are displaced by the external stress by 
the same amount that they would move in a perfect crystal. This assumption is not generally 
valid. We may estimate the error by finding the displacements Q, per unit external uniform 
stress for both the perfect lattice and for the lattice with a vacancy. 

4.2. Results for  the valence force potential 
The equilibrium positions of the first and second neighbours to a vacancy before and 
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after the application of symmetrized forces F ,  are given in tables 2 and 3. Table 2 gives the 
results for diamond with forces F,, Fe and F ,  taking the value lev A-'. Table 3 gives the 
corresponding results for silicon, but with the forces reduced by 0.5 because of the greater 
deformability of the silicon lattice. 

Table 4. Effective response frequencies associated with the nearest neigh- 
bour atoms to the vacancy in the diamond-type lattice for distortion modes 

of certain symmetries 

Frequency Diamond crystal Silicon crystal 

( 4 3  0.95 x 101~7 0.18 x 1014 
1.13 x 1014 0.21 x 1014 

UT 0.98 x 1014 0.18 x 1014 
W E  

Raman frequency 249 x iOI4  0.985 x 1014 

f. All frequencies in rad s- '. 

From these displacements and the atomic mass we may obtain the various effective 
frequencies. They are given in table 4. The values used by previous workers used one of two 
approximations. Friedel et al. (1967) assumed that the frequencies should be close to the 
Raman frequencies 

Diamond 

Silicon 

oR = 2-49. l O I 4  rad s - '  

wR = 0.985. 1014 rads-'. 
Lidiard and Stoneham (1967) estimated frequencies from a simple model which used 
central forces between nearest neighbours and assumed only the nearest neighbours to the 
vacancy moved. The simple model gives (after correction of a small numerical error) 

Diamond 

Silicon 

oE = 2.02. 1014 rad s - '  

oE = 0,825. l O I 4  rad s-  ' 
and oE/oT = 4 2  N 1.41. Elkin and Watkins (1968) have also used a similar model for a 
different defect. There is poor agreement between these figures and the values in table 4. 
Also the ratio oE/oT is only 1.15 for diamond and 1.17 for silicon. Since the frequencies are 
smaller than on any of these simple models, the lattice distorts more easily than the simple 
treatments suggest. 

Finally, we determine the nearest neighbour displacements under a uniform external 
stress for the perfect lattice (Q,") and for the lattice with a vacancy (9:). The ratios for silicon 
which are needed in the analysis of stress-splitting data, are 

Q:/Q," = 10.6 & 1.0 

Q:/Q," = 1.4 f 0.1 

QE/Qi = 1.8 & 0.1 

while for diamond 

It is remarkable that these ratios are so large-especially for the A mode in silicon, and it is 
clear that it is a poor approximation to use the perfect lattice displacements. The large 
differences for the Q;/Q," ratio in diamond and silicon indicate the greater relative 
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importance of the radial terms in the potential for silicon. This is also evident from table 1. 
We are now able to calculate the extent of distortion for various estimates of electronic 

rebonding forces associated with the vacancy electrons. This is done in the following paper. 

5. Conclusion 
We have examined the linear response of the diamond and silicon lattices to symmetrized 

forces on the nearest neighbours to a particular site. The calculations have been made for 
both a perfect lattice and for a lattice with a neutral vacancy at the site. The results can be 
applied rather directly to estimate properties of defects which depend on the local lattice 
distortion. Such properties include the Jahn-Teller instability, the vacancy formation 
energy and the volume of solution of a defect: these features are discussed in detail in the 
following paper. Further, we have examined the distortion under a uniform external stress 
for both a perfect lattice and for a lattice with a neutral vacancy. 

The most significant feature in our results is that the effective frequencies (or effective 
force constants), which measure the response of the lattice to the external forces, are much 
smaller than previous estimates. The lattice is much softer than previously assumed, and 
the distortion for a given force is correspondingly greater. 

The reasons for this difference lie partly in the method of calculation. The previous results 
which can be compared most directly with ours are those of Lidiard and Stoneham (1967). 
In this earlier work it was assumed that all atoms except the nearest atoms to the vacancy 
were fixed. Effectively the frequencies which were obtained measure the response to forces 
applied suddenly, in a time much less than the periods of the 1atticemodes.Our present work 
allows all atoms to move, and we seek the static equilibrium configuration. Thus we calcu- 
late what is essentially the adiabatic response to the applied forces. The results which we 
have derived here are the ones appropriate to the defect properties discussed later. Physically 
the difference between the two sets of results means that it is very easy for the distant 
neighbours of the vacancy to adjust their positions so that the motion of the near neighbours 
is only slightly impeded. It is possible to give a specific example. The nearest neighbours to 
the vacancy respond to a totally symmetric force FA by. moving radially outward towards 
the centre of a triangle of next-nearest neighbours, The distance between the near neighbour 
and the next-nearest neighbours changes very little ( N 6 at most) even if the next neigh- 
bours are fixed. Thus very slight next-nearest neighbour motion can profoundly affect the 
strain energy. This is particularly true for silicon, where bond-bending forces are weak. 

In addition to these changes of method there are also changes resulting from the different 
interatomic potential. The potential used here is considerably better than those used 
previously, in that it gives a good fit to phonon dispersion data. We have also verified that 
small changes in the potential leave the results largely unaffected. 
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Appendix. The normal coordinates for the vibrational modes of the tetrahedral group 
- _ _  The neighbours to the vacancy A, B, C, D have coordinates (T, 1, l), (1: 7, l), (1, 1 , i )  and 
(1, 1, 1) respectively. Writing the x displacement of A as X,, and so on, the Q ,  are given 
below. 
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