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Dimension changes in a solid containing anisotropic defects 
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Abstract. Aligned anisotropic defects in a solid cause different changes in macroscopic 
dimensions and in lattice parameters along the different crystal axes. A simple general 
method is given for relating these differences to the microscopic forces associated with the 
individual defects. Explicit results are given for isotropic, cubic and hexagonal host lattices. 

1. Introduction 

When an asymmetric defect is placed in a solid, the mean lattice parameters, external 
dimensions, and shape of the solid are changed. Experimentally, one can measure the 
change in total volume and the changes in mean length along three orthogonal directions. 
In principle more anisotropic effects can be detected, but they are largely cancelled out 
by the combined effects of the many defects actually present. Here we concentrate on the 
differences among the fractional changes in dimension along the different crystal axes 
from the presence of the anisotropic defect. Since we are concerned solely with differences, 
there is no distinction between predictions for lattice parameter measurements and for 
macroscopic dimension measurements. The usual terms arising from the creation of new 
lattice sites (eg Simmons and Balluffi 1960) cancel out exactly. The method we use is 
similar to Temkin’s (1970) earlier treatment of the volume change due to a defect. 

2. General method 

Consider a block of material with flat orthogonal faces. When an anisotropic defect is 
placed in the crystal, the effective forces Fi exerted on the host atoms i lead to lattice 
distortion. The position of the defect in the host is not important provided the Fi have 
a finite range which does not reach the surface. It will appear that the only position 
dependence occurs because the defect forces should be calculated at the relaxed atomic 
configuration, and the degree of relaxation is modified when the defect is near the surface. 
This dependence is usually negligible. The axes of the defect need not coincide with those 
of the (macroscopic) specimen, nor with those of the (microscopic) host lattice structure. 
The components of the Fi will always be referred to the (microscopic) lattice axes. 

- d1), where a, ,  is the increase in mean length of the specimen 
along one axis, and 6, is the average of the increases along the two perpendicular axes. 
In general the displacements 6, normal to the I faces vary over the face; 6 , 1  and 6, are 

We now calculate 
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surface averages of the 6,. For convenience we may relate 6,, and d1 to the fractional 
changes in length, xl ,  and xl. If A,  is the area of face I and Vis the crystal volume, then 
for the three orthogonal directions : 

We shall also use xI = (xL1 + xL2)/2. 

2.1. The reciprocity theorem 

External forces P due to applied uniaxial stresses cause displacements U in the perfect 
solid. In the absence of applied stresses, the defect forces F give surface displacements 6,. 
The Betti reciprocity theorem (Betti 1872, Love 1944), valid for any harmonic system, 
allows us to relate these two sets of forces and displacements. The theorem states that : 

2 P I .  6 ,  = 2 F i  . Ui. (2) 
I I 

Since the stresses P are uniform over the surfaces, only the mean displacements 6 or CY, 
contribute to the left hand side. 

Suppose a pressure - 2P is applied to the faces normal to a chosen axis, and + P to 
the other four faces. Positive values indicate compression. Then the left hand side of (2) is: 

PI. 6,  = 2 P A l 1 4  - PA,, - PA126,, 
I 

= 2VP ( X I ,  - XI). 

C:,(R,) = 1 e@ (Ria + #Yip) 

(3) 
The displacements U i  associated with the uniaxial stress can be related to e, the uniform 
strain throughout the specimen, by 

(4) 
D 

where Ri gives the position relative to the defect, yi gives the internal strain: and 
ex, 3 (?Uzj t R p  + i?Up,$?Rz)/2. Thus the right-hand side of (2) takes the form: 

.Fi * uj = c 1 FiZ eap (Rip + r i p )  
i i z,P 

Here en,/? is, of course, independent of ? and merely a combination of the host elastic 
constants. Combining (2) (3) and (5) we obtain: 

( 6 )  
i 

PI, - XI) = - c (e,,lP) (RLP + &?). 
2 V z  i 

So far we have considered a single defect only. If there is a density of p = N/V defects 
per unit volume, all with parallel orientations, then their contributions to (6) simply add. 
The only change is that the (1/2V) factor becomes ( p / 2 ) .  If there are several different 
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orientations, then (6) may be summed for each orientation separately; these contribu- 
tions are then added. 

3. Examples of dimension changes 

It is completely straightforward to use equation (6). One axis is singled out as the 1 1  
axis by the experiment under consideration. The uniform strain induced by pressures 
-2P on the faces corresponding to this axis and by P on the others is then calculated 
by ordinary elasticity theory. Equation (6) can then be used directly. We shall assume 
zero internal strain in these examples, although it is trivial to extend the theory to this 
case. 

3.1. Force dipole in an isotropic medium 

Choose the / /  axis to have direction cosines (L,  M ,  N ) ,  and let the two I axes be (1, m, n) 
and (A,  p, v). The strain components are: 

with other components related by symmetry. p is the rigidity modulus. 
If the force dipole is parallel to the chosen axis, it may be represented by forces 

k F ( L ,  M ,  N) at sites i-(d/2) (L, M ,  N ) .  When the density of aligned dipoles is p, the 
fractional dimension change is 

As expected, there is no dependence on (L,  M ,  N). 

3.2. Defects in a cubic host 

We consider three choices of axis; (loo), (1 11) and (1 10). The results given are valid for 
any defect symmetry, although it is natural to adopt a sample axis (L, M ,  N )  for defects 
with symmetry axes (L, M ,  N) .  The reason is most easily seen for force dipoles. If one 
chooses (1 11) dipoles, then from reasons of symmetry alone they give no contribution 
to the relative changes in length the (loo), (010) and (001) directions, irrespective of the 
degree of alignment. 

In all cases, the correct isotropic limit is achieved by putting c44 = (cl - c1 J / 2  = p. 

3.2.1 Tetragonal case: (001) axis. The faces are (OOl), (010) and (100). The nonzero strain 
components are: 

(10) 

E2 
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and the fractional displacements from aligned defects satisfy 

3.2.2. Trigonal case: ( I l l )  axis. The faces are ( l l l ) ,  
components are: 

P - -  exY - eyz - ezx = -. 
c44 

The fractional displacements from aligned defects 

170) and (TT2). The nonzero strain 

(12) 

satisfy : 

P 
(XI1 - Xi) = - 1 {Fxi(Ryl + RZi) + Fyi(Rxl  + RZi) + FJR,, + RYJj 

4c44 1 

(13 )  

3.2.3. (110) axis. The faces are ( l l O ) ( l T O )  and (001). In this case xL1 and x12 are not equal. 
The nonzero strains are 

$P 
2exr = 2e 

3P 

= - ezz = 
YY ( C l 1  - 5 2 )  

-- 
4c44 

exy - 

The difference in fractional mean parallel and perpendicular displacements due to 
aligned defects is : 

3.3 Defects in a hexagonal host lattice 

The chosen axis here is the hexagonal axis, The results obtained are relevant for defects 
in graphite, for example, and, since they concentrate on xI rather than xll and xL2, 
may be used for pyrolytic graphite as well as for single crystals. The hexagonal lattice 
is isotropic in the basal plane. 

The nonzero strains are 

E S l l  + S 1 2  - 2S13 '33 + 2c13 

'33('ll + ' 1 2 )  - 2c13 
YI = 

Yll  = 
'11 + '12 + '13 

s33 - S13. 
'33('ll + ' 1 2 )  - 2c13 
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The resulting fractional displacements due to aligned defects satisfy 

(20) P 
(Xi1 - X i )  = - c {2FZiRZiY,, - (FxiRx, + FyfRyi)YJ 

2 i  

3.3.1. Simple defects in the hexagonal lattice. For force dipoles parallel to the hexagonal 
axis, we have forces & (0, 0, F) at positions f (0, 0, d/2). This gives 

(XI1 - X i )  = PYllFd. (21) 

Similarly, for force dipoles within the basal plane, we have forces f (0, F ,  0) at positions 
f (0, d/2,0), for example. Hence 

(22) 
PY 
2 

( x I l  - xi)  = - 2 F d .  

If there are densities pl, along and pI normal to the hexagonal axis, then the overall 
fractional displacements are: 

There is no change in shape (x,, = xL) when pI, and pL are related by: 

2PlI(c11 + ' 1 2  + ' 1 3 )  = p i ( ' 3 3  + 2c13)* (24) 

More general defects are readily treated. The simplest generalization is to represent 
a defect by three orthogonal dipoles described by F I I d i l ,  F,,d,, and F,,d,,. The result 

(X,l  - X I )  = ( P F ~ l d ~ , ~ ~ ~ ,  - ;F,,d,, + F J , ,  YI (25) 

has the same form as the equations of Henson and Reynolds (1965) and Reynolds 
(1966) used in analysing radiation damage in graphite. Their results can be expressed 
in the form : 

( 1 

( X I ,  - X i )  = PCY 1 1  - P,YI. (26) 

Comparison with (10) shows that in general 

pc  = P c FziRzi 
i 

There is no need to suppose that all defects can be simply described by force dipoles. 
The force arrays may lack appropriate centres of inversion. The vacancy in graphite is 
an example. If there is no asymmetric Jahn-Teller distortion, the defect can be represented 
approximately by three radial forces F on the nearest neighbour sites (U, 0, 0) and 
( - a/2, f J%/2,0). The fractional changes in dimension satisfy : 
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4. Conclusion 

We have shown that the anisotropic changes in external dimensions of a solid due to 
the presence of aligned anisotropic defects can be written as simple functions of the 
microscopic forces due to the individual defects. Explicit formulae have been given for 
simpler cases involving isotropic, cubic and hexagonal lattices. It has also been possible 
to see how these changes vary with the position of the defect within the crystal. It can 
be seen directly from (6) that the only effects arise from modifications of the R, at which 
the forces should be calculated, or in situations where the range of the forces F ,  goes 
beyond the crystal boundary. Neither situation is likely to be very important in practice. 
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