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Abstract. A unified treatment of phonon bottleneck theory is given, using a 
thermodynamic method which includes both the direct and Orbach processes. 
The key parameter is the phonon relaxation time, which is calculated in a variety 
of cases, includmg several in which it is determined by magnetic impurities. The 
theory is extended to include arbitrary spin resonance line shapes and cases where 
the phonon relaxatjo:: &me is energy dependent. 

1. Introduction 

Spin-lattice relaxation rates are usually calculated for a single ion relaxing to a phonon 
system which is not appreciably perturbed by the interaction. Although this is often 
valid, it is not a good model when the rate-determining process is some process in the 
phonon system rather than the transfer of energy from the spin to the lattice. This 
situation is known as the 'phonon bottleneck' (Van Vleck 1951 a) and the theory of this 
effect is the subject of this paper. 

The model we use is a thermodynamic model, which has been used in related con- 
texts by Casimir (1939) and by Gorter, Van der Marel and Bolger (1955). It assumes that 
the complete experimental arrangement may be thought of as consisting of three parts- 
the spins, the band of phonons which are responsible for spin-lattice relaxation (the 
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Figure 2. Energy level diagram 
for the spin species discussed; 

A >  kT> 6. 

lattice system) and a bath of supposedly infinite heat capacity-and that each of these 
three parts may be described by a temperature. This arrangement is shown in figure 1. 
The equations which describe the transfer of energy between these parts are then written 
down and solved. We shall also aSsume that we may linearize our equations by neglecting 
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high powers of temperature differences between the three parts. This is a valid assump. 
tion, as most measurements of relaxation times are made when the temperature differences 
are about 5% or less of the bath temperature. 

To be specific, we consider a system of spins whose energy levels are shown infigure2; 
this is the simplest system that shows all the points of interest. The numbers of 

spins per unit volume in states la) and Ib) are N, and Nb respectively; the energy 
separation of these states may be caused by an applied magnetic field or by a crystal 
field of low symmetry. We are interested in the recovery of N,  and Nb when their popu- 
lations have been disturbed. The spin temperature Ts is defined by 

N,  = Nb exp(8/kTs). 

We shall assume A 9 KT B S throughout this article, as this simplifies many formulae 
and retains all the physically important features. Thus 

When phonons of a single energy are responsible for spin-lattice relaxation, the lattice 
temperature TL is defined in terms of their Einstein-Bose occupation number 

Thus, for E = 6, 
6 

T - -n(S). 
L - k  

Experimentally, one measures the rate at which Ts returns to TB after the spin sys- 
tem has been disturbed. The observed relaxation time, defined by 

1 Ts = - -(Ts- TB) 

depends on both the rate at which energy is transferred from the spins to the lattice 
system and on the rate at which the lattice system transfers energy to the bath. These 
two rates are described, respectively, by the spin-lattice relaxation time T~ defined by 

and the phonon relaxation time Tph defined by 

1 

7ph 

In  the equation defining T ~ ~ ,  terms from interaction with the spins have been omitted. 
This definition of T~~ is equivalent, if the limit A 3 kT 6 is assumed, to that used 
by Faughnan and Strandberg (1961) : 

T L  = --(TL-TB). 

1 
k (E)  = - --(n(E) -no(E)} 

7Rh 

in which the occupation numbers n(E), %,(E) are to be evaluated at TL, TB respectivelym 
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In $ 2 we examine the dependence of T~~~ on T~ and Tph for the so-called direct and 
Orbach spin-lattice relaxation processes. Some of the results have been given previously 
using the alternative rate equation approach (e.g. Faughnan and Strandberg 1961). We 
reformulate the theory in terms of the thermodynamic approach, and derive the results 
needed in subsequent sections. The advantages of the thermodynamic approach are that 
it is relatively simple, SO one can derive general results and analyse the accuracy of the ap- 
proximations involved. I t  can be extended to complicated situations without formal dif- 
ficulty. Faughnan and Strandberg write down coupled rate equations for the numbers of 
spins and phonons resonant with the spins. This is particularly convenient when the linear 
approximation is invalid, although in practice the equations are nearly always linearized 
before being solved (e.g. Scott and Jeffries 1962). To the linear approximation the two 
approaches give the same results, although there has been no detailed comparison of the 
circumstances in which the two methods are valid. The calculations of $ 2  are simplified 
by assuming that the spin-phonon interaction is constant inside some band width and 
zero outside it. This approximation has been used in all previous treatments and is 
relaxed in $ 3 ,  in which we take into account the variation of the spin-phonon interaction 
and the phonon relaxation time with energy. In 5 4 we calculate phonon relaxation times 
explicitly, including several mechanisms involving impurities which have not been 
discussed previously. One of these mechanisms may be responsible for phonon relaxa- 
tion in crystals of MgO doped with Co2+ (Whittlestone 1964, Ph.D. Thesis, University 
of Bristol). Comparison with experiment in $ 5 shows that it is possible to find explana- 
tions consistent with observation in many cases, although it is difficult to draw firm 
conclusions as important factors, such as the condition of the crystal surface and trace 
impurity concentrations, are hard to measure. Several distinct phonon relaxation 
mechanisms lead to the T-2  dependence of the direct process relaxation time, which is 
usually regarded as a symptom of a bottleneck. Two of the mechanisms discussed in 9 4 
(the ‘anharmonic’ and ‘one-phonon’ processes) lead to a different temperature depend- 
ence. 

2. The thermodynamic approach to the phonon bottleneck 

&own in figure 1 may be written 
The linearized equations describing the transfer of energy between the systems 

The coefficients are related to T~ and Tph, defined in $ 1, by 70 = Cs/a and Tph =  CL/^. 
Q and 13 depend on T L  and Ts  for a given TB, for example 

TS-TB TL-TB 
T B  TB 

Q = a( TB) + corrections of order -, -. 
These corrections to a and /3 lead to terms in (1) and (2) which are quadratic in Ts-  TB 
and T,- TB and are dropped in linearizing these equations. 

The term dUL/dt in (2) is typically IO-5 of the others. If we neglect this term, 
assuming that the net rate at which the lattice system gains energy is insignificant, 
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we find, independent of the details of the relaxation processes, 

TObS = 5(1+;) U. 

If we had retained dULldt the recovery of  Ts would be described by two time constants, 
One, equivalent to Tabs, describes the mutual progress of TS and TL to TB. The other 
comesponds to the tendency of Ts and TL to equalize; it is very short, vanishing with 
dUL/dt, and is therefore very difficult to detect. 

From (3) we see that unless the term in 7ph is small, the rate at which the spin system 
loses energy is limited by the transfer of energy between the lattice and the bath systems. 
Another feature is that TL is raised from its equilibrium value TB to 

so that TL is close to Ts when a greatly exceeds P. 
The specific heat per unit volume cs of the spin system described in $1 is 

where N = N,+Nb. For 6 = 0-3 cm-l, Ts = 4.2 OK and N = 3 x 
is about 1 erg degK-l. 

The number of modes whose energy lies within dE of E is thus 

ions/cm3 this 

The long wave approximation for the phonon system will be used in calculating cL. 

3 1  
2.ir2fi3 v3 

p(E)dE = - -E2 dE. ( 5 )  

where er is an average ( v ~ - ~  + 2 vt-3)-1’3 of the velocities v1 and vt of longitudinal and 
transverse sound waves. 

To go further, the several spin-lattice relaxation processes must be treated separately. 
If the relative populations of la) and Ib) are altered, the equilibrium distribution 
may be restored by one of three principal mechanisms (Orbach 1961): 

(i) The directprocess. In  this process the spin transitions from Ib) to la) occur with 
the emission of a single phonon with energy close to 6. For the moment we assume that 
the phonons with energy between 6 and 6 + I? constitute the lattice system and interact 
e q d y  strongly with the spins, whereas phonons with other energies do not interact with 
the spins at all. This simplifying assumption will be relaxed in 5 3. 

The lattice specific heat is 

N p(6)I’k 
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then follows from (3), (4) and (6) that 

Tabs = 70 +7ph - ( - )z. 
p(8)r 2 k T  (7) 

The coefficient of Tph is independent of 6, and therefore independent of an applied mag- 
netic field, as p ( 6 )  is proportional to 6'. If I? is proportional to the spin concentration, 
N/r is independent of this concentration; in this case the coefficient of TDh is a function 

as T~ is proportional to T-l  for the direct process. D has the temperature, field and 
concentration dependence of T ~ ~ .  

(ii) The Raman process. In  this process the spin absorbs a phonon of one energy and 
emits a phonon of a different energy. This is a non-resonant process in which all the 
phonons of the crystal can participate. cLR is of the order of the total lattice specific heat, 
and cubic in TL in the Debye approximation. As this is typically three orders of magni- 
tude larger than cs there is little prospect of a bottleneck. This process will n ~ t  be dis- 
cussed further. 

(iii) The Orbachprocess. In going from state Ib) to la) the spin makes a real transi- 
tion from jb) to an excited state IC),  absorbing a phonon of energy A, and subsequently 
emits a phonon of energy A + 6 in going to la). This is a resonant process in which the 
spins interact with two bands of phonons-those with energy close to A and those with 
energy close to A + L a n d  these comprise the lattice system. The definition of TL in 5 1 
is no longer adequate, as two temperatures are necessary to give the phonon occupation 
numbers for the two bands. The number of phonons II in the lattice system is unaltered 
by the Orbach process 

in which the occupation numbers can be calculated using the bath temperature TB. 
TB gives the total number of phonons in the two bands which form the lattice system, 
whereas the lattice temperature TL describes the relative populations of these bands. 
The distribution law for the phonons of energy A and h + 6 has the form 

13 = p(A)r,,{n(A) +%(A + 6)) 

n(E) = G -exp ( k 3 - l ) - 1  - 

(Tolman 1938, $91), in which h is fixed by the condition that the total number of these 
phonons is II, independent of TL. Thus the relative occupancy of the two bands is meas- 
ured bv , 

6 n(A)+n(A+S)  
TL = Zn(A)-n(A+S)' 

The rate equations for the Orbach process confirm that the spins tend to a distribution 
with T,  = TL. If there are more phonons of energy A +  6 than of energy A, TL will be 
negative; n(A+S) may exceed n(A) as these are the occupation numbers of different 
Phonon modes. The lattice temperature for the direct process, Sn(S)/k, cannot be 
negative as this would imply a negative occupation number n(6). 

The internal energy per unit voiume ULo is, to order S/A, 

ULo = p(A)ro{An(A) + (A + 6)n(A + 6) )  + zero-point energy 
6' 

= (A+?$)l'I+zero-point energy- l7- 4 k T L  
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so that 

cLo = p(A)r0 exp - - (;'I (k;,) 2k* 

The observed relaxation time is 

If there is an excess of ions in state [ b) over the equiIibrium value, phonons of energ A 
are destroyed and those of energy A+ 6 created. The lattice temperature T, may thus 
be raised appreciably, and (9) shows the effect on the relaxation rate. 

2.1. Relation to the theory of thermal conductivity 

Equations (7) and (9) may be rewritten in terms of the phonon relaxation t h e  7 , ( ~  
of thermal conductivity theory (Klemens 1958). In general, T ~ ,  which describes &e 
relaxation of phonons with a given wave vector, is not simply related to T ~ ~ ,  which 
describes the relaxation of phonons with a given energy. For a phonon mode resonant 
with the spins the relaxation corresponding to T~ is usually dominated by the elastic 
scatter by the spins of phonons from one resonant mode to another. If we neglect other 
mechanisms, then for direct process phonons, of energy 6, 

p(8)rTo 2kT 
Tc(6) = - - 

N ( 6 )  

following Orbach (1962) ; for the phonons of energy A involved in the Orbach process 

.,(A) = 2 
N 

Equations (7) and (9) become 

and 

3. The effect of line shape 

In the last section we assumed that the spin-phonon interaction was constant within 
a band of width r and zero outside it, and that the phonon relaxation time was independ- 
ent of the phonon energy. These assumptions have been made in all previous treatments 
of this problem. The theory is generalized in this section. 

When there is no bottleneck the relaxation rate is the sum of the contributions of 
phonons of different energies : 

1 "  1 

Here the contribution of phonons in the infinitesimal band E to E t  dE is d E / d E ) ;  
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includes the variation with E of the spin-phonon interaction and of the number of 
with resonance energy E. Standard spin-lattice relaxation theory (Orbach 1961) 

shows that 

where g(E) is the spin resonance line shape for a microwave phonon experiment. As 
E@) usually varies little when g(E) is appreciable we write 

1 g(E) 
%(E) - 7 0  * 

-N -  

For spins with effective spin S‘ = 4, g(E) is the same as the line shape measured in 
‘ordinary’ spin resonance experiments (Stoneham 1965), and when S’ > 4 the two shapes 
may be very similar (Loudon 1960). The variation of the phonon relaxation time with 
energy is written 

1 r (E)  -=- 
T p h ( E )  Tph 

A new feature becomes important when there is a bottleneck, for there may be direct 
transfer of energy between phonons resonant with spins having different resonant 
frequencies or between the spins themselves. There are two extreme approximations 
to the rate of this spectral diffusion of energy. On the one hand it can be assumed to be 
so fast that T, is independent of the spin resonance frequency and that TL is independ- 
ent of the resonant phonon energy. In this case a and of (3) are each replaced by their 
integrals over energy, which are also weighted by the appropriate line shapes. On the 
other hand we can assume that spectral diffusion is so slow that the spin-phonon systems 
within each infinitesimal bandwidth dE relax independently of those in similar bands. 
Then, in general, the T,  for bands of different energy will differ, and will equalize only 
by the interaction of the spins with their resonant phonons, and of the phonons with the 
bath. Similarly TL will vary from band to band. We adopt this assumption, assuming 
that we may neglect spectral dsusion in calculations of the observed relaxation rate. 
There is evidence that energy diffusion of the type of interest is slow in the phonon system 
(Brya and Wagner 1965); Portis (1956) and Gill and Meredith (1965) have discussed 
spectral diffusion in the spin system, which should certainly be slow for inhomogeneously 
broadened resonance lines. Further, the wings of the resonance line can play a more 
effective role if there is fast diffusion, and the calculated rate will be faster than that ob- 
tained neglecting spectral diffusion. Experimental relaxation rates (discussed in § 5 )  
are similar to those calculated without spectral diffusion, or even slower, so the fast diffu- 
sion model would not improve agreement with experiment. We sum the contributions 
of the different bands dE to the relaxation rate. As 

Using (3) for each band E to E+dE, we have 

In Practice we will be able to neglect the variation of cs(E) and cL(E) over the energies of 
interest. When the second term in the denominator of the integrand is small the integral 

2 
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is d o h a t e d  by the centre of the resonance line, whereg(i3) is largest. As the bottleneck 
becomes more severe, this term becomes appreciable and as it is proportional tog(&!) the 
relative importance of the centre of the line is reduced. Correspondingly the wings 
become more important. 

In the case discussed previously the phonon relaxation t h e  was independent of 
energy, andgQ was zero outside a band of width within whichg(E) was constant and 
equal to Thus 

where, for the direct process, 

IfgQ is a Lorentzian with full width at half-intensity r’ 
l i2  

Tabs = +;;f;) * 

Comparing this with (loa) shows that when c is small (a slight bottleneck) the observed 
relaxation time for the Lorentzian of half-width r’ is the same as that from (loa) with 
an ‘effective bandwidth’ r = d“. For a Gaussian the corresponding ‘effective band- 
width’ is I”@/(2 In 2)}112. 

As a final example, we choose a Lorentzian g(E) of width rS centred on E = 8, and a 
Lorentzian y ( E )  of width I?, centred on E = 6,. Writing c‘ = 2c/vl?, we find 

This result is appropriate to the ‘one-phonon’ processes discussed in the next section. 
Usually Ss and 8, vary with an applied magnetic field, so the ratio of to T~ should be 
sensitive to this field. 

In  any real system several difFerent mechanisms may be responsible for spin-lattice 
relaxation. For example we have assumed that the spins relax independently to the 
lattice; an alternative is that several spins, coupled by their mutual interaction, change 
their Zeeman energy simultaneously, with overall energy conservation by the emission 
or absorption of one phonon. The Temperley effect (Temperley 1939,1946) and ‘cross 
spin-lattice relaxation’ (Bloembergen 1961) fall into the second category. The phonons 
involved in these Werent mechanisms will have different energies. If the phonon 
relaxation time is energy dependent, as in the case leading to (~OC), the relative bpod- 
ance of these mechanisms will be altered when there is a bottleneck. Indeed, mechanisms 
which are unimportant when the spin-bath relaxation is unrestricted may be dominant 
when there is a bottleneck. 

4. Phonon relaxation times 

Energy can be transferred from the phonons responsible for relaxation to the bath by 
several processes, in which the rate-determining process may involve the transfer Of 

e m i v  in space or in frequency. These situations will be described respectively as a 
spatial bottleneck, for which the bath is usually the liquid helium surrounding the crYstd, 
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a spectral bottleneck, for which the lattice vibrations with energies of the order of kT 
form the bath. Explicit calculations of the phonon relaxation time T~~ are given in this 
section. 

4.1. Spatial bottlenecks 
In a crystal whose dimensions are of order L, phonons can reach the bath surrounding 

the crystal if vr,, a phonon mean free path, exceeds L. T ,  is the phonon relaxation time of 
thermal conductivity, mentioned in $ 2 ,  and v the velocity of sound. If the interface 
b$ween the crystal and the bath does not reflect phonons, we can calculate T~~ by extend- 
ing results of the theory of black-body radiation (Pippard 1960, pp. 80-1). The energy 
leaving the crystal per unit area per unit time from the band of phonons resonant with the 
spins is 4vUL( T J ,  where UL is the energy per unit volume of the lattice system. Corres- 
pondingly, the energy entering is &UL(TB). For a crystal of area A and volume V 

which can be simpiied with the resuits of $ 2 to give 

vA 
TL= --(TL-TB) 4 v  

so that 
Tph = ~ V / V A  

which is 4L/3v for a sphere of radius L, and 4Llv for a plate of thickness 2L. For a 
spherical crystal, equations (7u) and (9a) become 

and 

When the crystal radius is large compared with the phonon mean free path V T ,  the bottle- 
neck is severe. As ( 1 1 )  is valid when L < V T ,  these equations are only quantitatively 
correct when the bottleneck is slight. 

In the limit L 9 V T ,  it is unreasonable to assume that TL is homogeneous in space. 
Eisenstein (1951) obtained an exact solution of the resulting df is ion problem for a 
sphere of radius L surrounded by a bath. His solution cannot be put into a form corres- 
ponding to the last two equations and is usually treated numerically. There is a distribu- 
tion of relaxation times, rather than a single one. Averaging these over the crystal, and 
retaining only the lowest order corrections to the unrestricted relaxation time, one can 
show 

1 L L k T  
r p h  = 5 V VTc 6 

This is temperature independent, as T~ is proportional to T. Comparison of ( 1 1 )  with 
the approximate result (12) confirms that corrections for the scatter of phonons within 
the crystal are necessary when L x V T ~ .  

The bath need not be the liquid helium surrounding the crystal, but may be cracks 
Or impurities which transfer the energy to some heat sink so rapidly that the rate-deter- 
mining process is the transfer of enera  in space. In these cases L is related to the mean 
separation of these defects and is not one of the external dimensions of the crystal. 
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4.2. Spectral bottlenecks 

of the specimen considered-there are no general results like (11) which depend 
on the velocity of sound and the geometry of the specimen. 

4.2.1. A n h a r m i c  and similar processes. Van Vleck (1941 b) estimated the energy 
transfer from the phonon modes resonant with the spins to the theimal modes, with 
energy of about kT, by the anharmonic part of the crystal Hamiltonian. The main 
process is one in which a thermal phonon and one resonant with the spins unite to form 
another thermal phonon. This process is about two orders of magnitude more effective 
for the longitudinal modes than for the transverse modes largely responsible for spin- 
lattice relaxation. Van Vleck shows 

The phonon relaxation times for spectral bottlenecks depend on the detailed nature 

r p h "  6-1T-4; 
for MgO and 6 = 0.3 cm-l, T~~ is 50 p e c  at 4.2 OK, falling to 0.08 psec at 21 OK. 

In addition to this process, there is one which is closely analogous but in which &e 
anharmonic interaction is replaced by the spin-lattice interaction. This interaction 
contains terms of linear, quadratic, cubic and higher order in the normal coordinates 
Qa of the environment of each magnetic ion. These can cause transitions in the phonon 
system similar to those caused by the anharmonic interzction. Such transitions come, for 
example, from first-order perturbation by the terms cubic in the Qa, or from third-order 
perturbation by the terms linear in the Qu. The calculation of 7ph is carried through in 
close analogy to that of Van Vleck. Several types of contribution result, the most import- 
ant for the direct process corresponding to combinations of direct and h a n  processes, 
with no net spin flip. For MgO:Co2+ the terms linear in the Qu are the most important, 
but this mechanism is less effective than Van Vleck's. 

4.2.2. Phonon relaxation v ia  impurities. The situation under consideration is shown in 
figure 3. The two main requirements of an impurity are a strong interaction with the 
phonon modes resonant with the spin system studied and a strong interaction with the 

Spins Lattice 

Figure 3. 

thermal modes at liquid helium and hydrogen temperatures. I t  will be assumed that 
TI = TB, for one would expect the impurity to be in much better contact with the bath 
of thermal modes than with the small band of phonons which interact with the spins S. 
The problem reduces to a calculation of the rate at which the phonons resonant with s 
recover by their interaction with impurities I which are essentially in equilibrium with the 
bath. For example, if the phonons are nearly resonant with an energy splitting of 1, they 

be absorbed or emitted directly ('single-phonon processes'). Alternatively, the 
resonant phonon energy may differ from an energy splitting of I by about kT, so a 
phonon resonant with S and a thermal phonon can be absorbed or emitted together 
('two-phonon processes'). Higher order processes, involving two or more themd 
Phonons and one phonon resonant with S (e.g. the anharmonic processes mentioned 
earlier) prove less important at  the low temperatures of interest. 
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(i) One-phonon processes. The term in the spin-lattice interaction of the impurity 
I, linear in the normal coordinates Qa, causes transitions in which I absorbs or emits a 

phonon. We consider three cases : 
(i) The ground state of I consists of two states, 11) and 12), whose energy 

separation E2 - El is close to the energy S of the phonons resonant with S ; Raman or 
Orbach processes maintain TI close to TB. 

(ii) The ground state of I has several energy level separations nearly equal to S; 
TI may be kept close to TB by Raman or Orbach processes, or by direct process 
transitions between states separated by energies which are approximately multiples 
of S. 

(iii) An excited state of I has an energy splitting close to 8, and the ground state 
has no such splitting. 
The temperature dependence of the transition probabilities comes from both the 

matrix elements of the Qa and the relative populations of the states of I. Writing the 
temperature-dependent factors explicitly, the rate equation for the number of phonons 
resonant with the spins S in case (i) is 

d 
-@(S)rn(S)) = -A(6)NI(l)n(S) +A(6)N1(2)(n(S)+ 1). 
dt 

This is zero when TL = TB, i.e. when n(S) = n,(S). Thus 

The phonon relaxation time is 

which is linear in T. It can be seen from (7) that both the observed spin-lattice relaxa- 
tion time of spins S for the direct process and the corresponding unrestricted time are 
proportional to 2"-l, so in this case the bottleneck cannot be detected by its temperature 
dependence alone. T ~ ~ ,  and therefore the observed relaxation time, decreases with increas- 
h g  impurity concentration. This situation is reminiscent of spin relaxation by cross 
relaxation to a fast relaxing impurity, a process which may be important in circumstances 
& d a r  to those for the phonon mechanism just described. The frequency dependence 
of T ~ ~ ( E )  comes mainly from A(E), which is proportional to the spin-phonon interaction 
line shape of I. If this is Lorentzian the observed relaxation time is given by (~OC), and 
the observed relaxation time should vary with the applied magnetic field. A(E) is 
related to the direct process relaxation time, T ~ ( E )  for transitions between the states 
1) and 12) of I by 

The phonon relaxation time can then be rewritten 

A(E)i-,(E) = E/2KT. 

where gI(E) is the acoustic resonance line shape of I. 
The phonon relaxation time for case (ii) is also proportional to T. This can be shown 

by explicit calculation, or by noting that, in both (i) and (n), this dependence comes from 



1174 A .  M .  Stoneham 

the population differences of states separated by energies small compared with kT: 
1-1 

pL = (TL- TB) 2 {NI(j+ 1) --NI(j)}M,. 
3=1 

The population differences are h e a r  in T ;  1 is the number of energy levels of I, M? is a temperature-independent factor which describes the variation of the matrix ele- 
ments involved with j .  

Equation (13) also holds for case @), when 11) and 12) refer to excited states of 1. 
The temperature dependence of NI( 1) + NI@) will cause 7ph to decrease roughly ex- 
ponentially with temperature. 

(2) Two-phononpfocesses. If the ground state of I consists of two energy levels 11) 
and 12) whose energy separation E, - El = E is of the order of thermal energies, TI wa 
be kept close to TB by the absorption and emission by I of phonons whose energy is close 
to E .  The two processes in which phonons of energy 6, resonant with S, are absorbed 
are (A) in which the impurity I makes a transition from I1 ) to [ 2), and one phonon of 
ezergy 3 and m e  of eaeqy E -  6 are absorbed, and (B) where I makes a transition from 
12) to 1 l), absorbing a phonon of energy 6 and emitting one of energy E +  6. There 
be corresponding processes in which a phonon of energy 6 is emitted. 

The temperature dependence of the phonon relaxation t h e  can be found by com- 
puting the net rate of loss of phonons from the band with energy 6 by both (A) and (B). 
w e  define E& = E+ 6, 0 = e/kTB and 4 = 6/kTB. 4 is small, but 0 may be of the order 
of unity and is in any case much larger than 4. Again we can write down the time 
dependence of TL, for 

d 
dt 

p(6)F - n(8) = AA[ - n(6)n(~-) + e-e{n(6) + l ) { n ( ~ - )  + l}] 

+ & [ - n ( a ) { n ( ~ + )  + l}e++ {@)+ I}~(E+)] 
which may be simplified to yield 

AA and AB are temperature independent by definition. The phonon relaxation time is 

which is temperature independent when 0 E / ~ T  is small. For temperatures such that 
t h i s  is SO the relaxation time observed for a strongly bottlenecked direct process should 
VXY as T-2,  increasing faster with decreasing temperature below TNE/k when 6 is of 
order unity. An explicit calculation of AA and AB uses the same methods as the calcula- 
tion of spin-lattice relaxation times. If we take the terms of the spin-lattice interaction 
which are linear in the normal coordinates Q, of the environment of I, 

In this result W, is the coefficient of QJR in the spin-lattice interaction, R is the 
distance from I to one of its ligands and p the density of the crystal. The energies Of 
excited states li), other than 12), above the ground state 11) have been a s s u e d  
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appreciably larger than E. The spread in E has been neglected, although it is important 
that the impurities interact with a suffcient band of phonons to stay close to the bath 
temperature. TFh does not depend on 6, so in a strong bottleneck the observed relaxation 
t h e  should be lndependent of applied magnetic fields. This is a complete contrast to the 
single-phonon process which, as discussed in $ 3 ,  should be strongly field dependent, 

As an example of atwo-phonon process, K. W. H. Stevens (unpublished) has suggest- 
ed that the lowest states of Ti3+ in MgO are split by about 6", and that processes of the 
type described are responsible for a high observed attenuation of ultrasonics. Van Vleck 
(1940) has given the matrix for the Ti3+ spin-lattice interaction in terms of two coefficients 
a and b. These are analogous to our WJR, the coefficient of Qa in the spin-lattice inter- 
action. Typical values are UR N b R  - lo4 cm-l for iron group elements, although 
these must be reduced by a factor Q for Ti3+ (Van Vleck 1960). If we assume our states 
11) and 12) are the IE,) and /Eb)  of Van Vleck then 

7ph" 1.6 x n,-l sec (15 1 
where n, is the number of Ti3+ ions per lo6 Mg2+ sites. Cr2+ and V3+ in some host 
lattices provide further examples of impurities which have energy levels a few degrees 
above their ground state (LOW 1960). 

5. Discussion 
We may summarize the various phonon relaxation mechanisms as follows: 
(1) Spatial b o t t k c k s .  Here the rate-determining process is the transfer of energy in 

space. (a)  The phonons pass through the crystal surface to the crystal environment. 
When the phonon mean free path V T ~  is much larger than the crystal 'radius' L, (11) gives 

When L is much larger than vrc Eisenstein's (1951) results must be used. (b) The 
phonons travel to defects which transfer their energy to the lattice in a time which is 
short compared with the travel time. The travel time will depend on the concentration 
fi of the defects, whose mean separation varies asfI-1'3; thus one expects that 

(2) Spectral bottlenecks. Here the transfer of energy in frequency is the rate-determin- 
hg  process. ( a )  In the single-phonon process, for which 6 is close to an energy splitting 
of the impurity, 

(a) In the two-phonon Process, for which 6 differs from an energy splitting of the impurity 
E by about kT, 

(c)  For the anharmonic processes 

fi is the concentration of the impurity responsible for phonon relaxation. 
The phonon relaxation time is important in relating the observed relaxation-time to 

the unrestricted spin-lattice relaxation time. For the direct process in a strong bottle- 
neck ~ ~ ~ ~ - 1 -  ~ ~ ~ - 1  TZrlfwhere r is the bandwidth of phonons resonantwith spins and 
f the concentration of S ;  we have omitted the energy dependence of Tph and the effects Of 
b e  shape described in $ 3 .  Thus rPh must be independent of temperature for the T2 

7ph-1 N fiT-'. 

7ph-l  fl. 

Tph-' N 6T4. 



1176 A. M.  Stoneham 

dependence of T , ~ ~ ,  usually regarded as a symptom of a bottleneck. This is so in three 
cases only, the spatial bottlenecks (la) and (lb) and the two-phonon process (26). These 
can be distinguished experimentally, for all give a different dependence on the impurity 
concentrationfI. ( la) alone depends on the dimensions of the crystal, and the ~2 rule 
breaks down for (B) below a temperature E / K .  The one-phonon process (2a) and the 
anharmonic processes (2c) give a T and a T6 dependence for T , , ~ ~ ,  respectively. 

There are quite a few experimental results with which (11) and Eisenstein's (1951) 
results can be compared. When (11) should apply the observed phonon relaxation times 
obtained (Nash 1961, Scott and Jeffries 1962, Standley and Wright 1962, 1964, 
J. C. Gill, private communication) usually lie between one and six times those predicted, 
including the effects of line shape by use of (106). Presumably the longer times are partly 
due to phonon scatter within the crystal, when the assumption L < vr ,  is not strictly 
valid, and partly to the reflection of phonons incident on the crystal surface. The acoustic 
mismatch between the crystals and the liquid helium suggests almost complete reflection 
should occur; this would lengthen the observed relaxation times. Mills (1964) suggested 
that, as all the crystals for which agreement is satisfactory are those with water of cryst& 
zation, they may become dehydrated near the surface. This would form a porous struc- 
ture which may fill with liquid helium to give an essentially non-reflecting layer. If the 
crystal surface is then dissolved away and the crystal used immediately, we may expect 
that there will be little dehydration and that the surface may be polished by the treatment. 
The observed relaxation times should be longer than those predicted assuming no reflec- 
tion, if Mills' suggestion is correct. This has been observed by Gill, whose experiments 
give some support to this theory. 

Several cases have been found (Van den Broek et al. 1961, Van der Mare1 et al. 1957) 
in which the Eisenstein model gives good agreement with experiment, using crystals 
of dimensions of the order of centimetres. 

The two-phonon mechanism may have been observed in experiments on MgO 
crystals doped intentionally with Co2 + and unintentionally with other iron group ions 
(Whittlestone 1964, Ph.D. Thesis, University of Bristol). The phonon relaxation times 
were of the order of sec, varying from crystal to crystal, and were temperature inde- 
pendent. They did not depend on the crystal size, confirming the estimate from (11) 
that mechanism (la) was inadequate. (15) suggests that these results could be explained 
by about ten Ti3 + ions per lo6 Mg2+ sites, which is a typical value for impurity concen- 
trations in the crystals used. On the other hand the T2 dependence of robs-' continued 
below the assumed value of E / K  N 6". The results are, of course, consistent with mechan- 
ism (lb). These measurements appear to be the only systematic set for crystals without 
water of crystallization. The main uncertainty lies in our knowledge of the impurities 
present in small but important concentrations ; whilst it is possible to find explanations 
consistent with the results, it is not yet possible to make reliable predictions. Both the 
phonon relaxation mechanisms consistent with the results would be absent in a perfect 
MgO crystal containing only single Co2+ impurities. 
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