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Rønnow et al. Reply: In a recent Letter we reported on a
comprehensive investigation of the magnetic excitation
spectrum of Cu�DCOO�2 � 4D2O, an excellent realization
of a 2D quantum (S � 1=2) Heisenberg antiferromagnet
on a square lattice [1]. We obtained renormalization factors
of Zc � 1:21� 0:05 and Z� � 0:51� 0:04 at low tem-
perature, in good agreement with theory, and discovered a
wave-vector dependent quantum renormalization of the
excitation energies. By comparing to exact diagonalization
and quantum Monte Carlo (QMC) computations, this was
shown to be a feature intrinsic to the model. Finally, we
studied the temperature dependence of the softening and
damping, 
�T�, of the magnetic excitations. The former
was shown to be consistent with higher-order quantum
corrections to spin-wave theory, while the latter was in
excellent agreement with QMC. We noticed that the damp-
ing of the spin waves is in surprisingly good agreement
with the simple relation 
�T� � vs�T�=
�T�, where vs�T�
and 
�T� are the spin-wave velocity and correlation length,
respectively. In their Comment [2], Kopietz and Spremo
address this last observation and propose an alternative
functional form for 
�T� [3].

The magnon damping rate shown in Fig. 1 was extracted
by fitting a damped harmonic oscillator line shape to the
experimentally measured S�k; !� (see [4] for details).
Within the statistical accuracy of the measurements, no
systematic k dependence of the damping could be ob-
served. Therefore, to ameliorate statistical quality, we pre-
sented an average of 
k�T� over 1

4a < jkj<�=
���

2
p

a. The
validity of this averaging is confirmed by the excellent
agreement with the QMC data taken at k � ��2a ;

�
2a�.
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FIG. 1 (color online). Temperature dependence of the damping
rate in the 2DQHAFSL. Experimental neutron scattering data
(circles) and QMC data (triangles) are in perfect agreement, and
are well described by 
�T� � vs�T�=
�T� (solid line). The ex-
pression proposed in [2] (dashed line) can be brought to rea-
sonable agreement up to T & 0:4J if multiplied by a factor of 2
(dot-dashed line).
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The functional form 
�T� � 2�
3 Z�jvkj�J�

T
J�

3 proposed in
[2] is expected to be valid in the large-S and low-T limit for
magnons of short wavelength jkj * 2�

a �Ta=vs�0�	
1=3,

where vs�0� � 23=2ZcJSa and Zc � 1:18. Even for the
largest wave vector of the experiment, jkj � �=

���

2
p

a, this
leads to the requirement T & ZcJ

16 , below the experimen-
tally covered temperature range. Still, it is remarkable that
allowing a scale factor of 
2 the expansion can describe
the data up to T & 0:4J. This renormalization factor may
arise from fluctuations not included in the large-S expan-
sion. The QMC results demonstrate that the damping satu-
rates at higher temperatures, and this effect is not captured
by the low-T expansion.

The behavior over the whole temperature range of the
measurements and the QMC calculations could be de-
scribed by the form 
�T� � vs�T�=
�T�, for which we
have presented a simple phenomenological interpretation:
Assume that an excitation belongs to a correlated region of
finite spatial extent 
�T�. Its lifetime, 1=
�T�, will be
limited to the time it takes for the excitation to propagate
across the correlated region, 
�T�=vs�T�. It must be
clarified that this argument can be expected to hold for
jkj larger than 1=
�T� [5,6]. At wavelengths longer than
the correlation length spin waves become unstable and
overdamped.
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