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Abstract. Most of the approaches dedicated to fiber tracking from diffusion-
weighted MR data rely on a tensor model. However, the tensor model can only
resolve a single fiber orientation within each imaging voxel. New emerging ap-
proaches have been proposed to obtain a better representation of the diffusion
process occurring in fiber crossing. In this paper, we adapt a tracking algorithm
to the q-ball representation, which results from a spherical Radon transform of
high angular resolution data. This algorithm is based on a Monte-Carlo strategy,
using regularized particle trajectories to sample the white matter geometry. The
method is validated using a phantom of bundle crossing made up of haemodialy-
sis fibers. The method is also applied to the detection of the auditory tract in three
human subjects.

1 Introduction

Brownian motion of water molecules in brain white matter is disturbed by the fiber
bundle microscopic structure. Therefore, the anisotropy of the molecule displacements
embeds information about the fiber bundle orientations. Hence, diffusion MRI, which
probes these water molecule displacements, provides a way to detect the main bundles
and to map the large scale connectivity of the brain.

A lot of methods have been proposed for this purpose. Most of them rely on a ten-
sor model of the water diffusion process (Diffusion Tensor Imaging, DTI) [1, 15]. This
model, however, is too simple to represent the complex diffusion process occurring in
voxels filled by fiber crossing. More sophisticated models have been recently introduced
to overcome these difficulties [22, 8, 16]. They usually aim at explaining the MR signal
as a mixture of tensor models. They provide convincing results in some crossing areas,
but lack the versatility required to untangle any complex diffusion pattern (fan-shaped
bundle, bending fibers, kissing fibers, etc.). Therefore, another strategy consists in us-
ing iconic representations of the diffusion process, namely an image for each voxel.
This point of view alleviates the risk of misinterpreting the MR data because of the
narrowness of the model.

Diffusion Spectrum Imaging (DSI), which provides for each voxel a 3D image of
the water displacement probability distribution, is the most attractive solution [25, 12].
Unfortunately DSI is based on sampling the 3D Fourier space of the water displacement
distribution, which requires large pulsed field gradients and time-intensive acquisition.



Therefore DSI can not be used in clinical situations. However, it has been shown re-
cently that the orientation distribution function (ODF) of this probability distribution
can be reconstructed from high angular resolution diffusion imaging (HARDI) using a
spherical tomographic inversion called the Funk-Radon transform, also known as the
spherical Radon transform [21]. This technique called q-ball imaging could resolve in-
travoxel white matter fiber crossing as well as white matter insertions into cortex [23].

In this paper, we propose a new algorithm to infer fiber bundles from q-ball imaging
data. This algorithm combines the idea of performing a probabilistic tractography [4,
3, 16] with regularization of the curvature of the particle trajectories used to sample the
white matter organization [17, 24, 13, 5]. The method is first validated with a phantom
of fiber crossing made up of haemodialysis fibers. Then, the method is successfully
applied to the detection of the auditory tract in 3 human subjects. This tract can not
be detected with the standard DTI-based streamline method [14, 6, 2] because of its
crossing with a large orthogonal bundle.

2 Method

2.1 QBall imaging

The QBall model has been introduced by David Tuch in 2002 because performing rou-
tine DSI acquisition was too difficult [20]. The MR diffusion signal E is related to the
diffusion function P by the Fourier relation
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where q is the diffusion

wave-vector. The radial projection of the diffusion function is called the diffusion ODF
and is defined as � ����� �"!$#% ���'&(�)�+*,& , where u is the unit direction vector. Given a
sampling of E on a sphere (HARDI), David Tuch demonstrated that the spherical Radon
transform or Funk-Radon Transform (FRT) provides a good approximation of this ODF.
Let us consider a function p(w) on a sphere where w is the unit direction vector: for a
given direction of interest u, the FRT is defined as the integral over the corresponding
equator. - � �.�/�10325456578�'9:�+*,9<;

(1)

David Tuch demonstrated that the FRT of E evaluated at a particular radius q’ can
be written in cylindrical coordinates as :-5=+> � �?�)�A@CB5�CD 0 ����&CEGFHEJIK��L % �M@ONPB�NQ�CD�&��R&C*,&C*SFS*KI (2)

where
L % is the T�U�V order Bessel Function. If we replace this Bessel function by a delta

function, W �'&�� , then we obtain the radial projection ODF exactly. Therefore, due to the
Fourier relationship between the diffusion MR signal and the diffusion function, we can
exploit this finding to measure the displacement probability in a particular direction by
simply summing the diffusion MR signal along an equator around that direction [23,
21]. Q-ball field is the result of this summation computed voxel by voxel.

In the following, q-ball data are visualised according to the following rules. Each
q-ball is represented by a spherical mesh. Each node of the mesh is moved outward
according to the water molecule displacement probability. In order to maximize the



information provided by this deformation process, this motion is computed as
�X7ZY[]\_^a` �X7/�b�bcd� [feKg�` �X7/�$Y [f\_^a` �X7/�G� , where p is the node probability and S the sampled

sphere of the current voxel. To improve visualisation further, each node is given a color
related to its orientation relative to the image axis: red for x axis, green for y axis and
blue for z axis, interpolated in between.

2.2 Fiber direction and ODF

Due to the mathematical approximation mentioned above, the q-ball-based ODF does
not match exactly the actual ODF. Moreover, the relationship between the diffusion
ODF and the fiber ODF is an open issue governed for instance by the link between
the physics of diffusion and some biophysical properties of the tissue such as cell mem-
brane permeability or free diffusion coefficients for the different cellular compartments.
This issue corresponds to a crucial research program for the community of diffusion
imaging. This program, however, needs time to deliver some answers, which should
not stop the development of tracking algorithms. These algorithms, indeed, have the
possibility to use contextual knowledge, namely the neighborhood of a voxel, in order
to tackle locally the inverse problem: which geometry of fiber can explain such q-ball
data. Therefore, in the following, we assimilate the diffusion ODF with the fiber ODF,
but the relationship could be refined in the future. One key issue, for instance, when
dealing with q-ball imaging will be the optimal choice of the radius

� D
of the HARDI

acquisition. Increasing
� D

, indeed, sharpens the Bessel kernel and increases the ability
to resolve distinct diffusion peaks but at the cost of a lower signal to noise ratio.

2.3 Probabilistic tracking and curvature regularization

The simplest approaches for fiber tracking, which are based on DTI, are variants of
the “streamline” method. The eigenvector of the tensor associated with the highest
eigenvalue is supposed to provide the local fiber direction. Then this local direction
is followed step by step in order to build 3D trajectories supposed to correspond to the
bundles [14, 6, 2]. Unfortunately, in case of partial volume (fiber crossing), the diffu-
sion ellipsoid associated to the tensor may be a disk or a sphere. In such cases, the
first eigenvector indicates a spurious fiber direction leading to false fork of the tracking
process.

Various approaches have been proposed to reduce the bad influence of ambiguous
tensors. They all involve the use of the entire tensor information. For instance the tensor
is used in [26, 9] to deflect the estimated fiber trajectory leading to the reconstruction
of “tensorlines”. Another approach considers the tensor field as a Riemannian manifold
and the fibers as some geodesics of this manifold [10]. Using a regularization point of
view leads to define the fibers as a trade-off between high diffusion along fibers and low
curvature constraints [17]. The tensor field can also feed a model of uncertainty on the
fiber orientation used to perform Monte-Carlo estimations of the connectivity [4, 3] or
probabilistic tracking [5].

All these approaches perform better than the simple streamline idea. However, when
getting close to the cortex, they get in touch with large areas of crossing fibers where
the reliability of the results drop down. In such areas, the tracking problem becomes
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Fig. 1. The normalized standard deviation of the q-ball provides a measure of anisotropy h , that
is used to weight the influence of the q-ball on the particle trajectories.

ill-posed because of the poor representation of the diffusion process provided by the
tensor. There is now a consensus that higher angular resolution data like HARDI is re-
quired to untangle such crossing. New approaches are then needed to infer information
on the fiber orientation from such data. The multi-tensor point of view converts HARDI
into a short list of fiber directions for each voxel that can be used to develop track-
ing approaches [16]. A weakness of this strategy stems from the potential failures of
the process leading to this list, either a standard fitting procedure [22] or more sophis-
ticated approaches from information theory [8]. The q-ball approach, which converts
directly the diffusion data into a fiber ODF, overcomes this difficulty. Therefore, this
data representation seems the perfect candidate for developing Monte-Carlo estimation
of white matter geometry. In the following, we describe such an approach where this
geometry is sampled using regularized particle trajectories.

Like most approaches, our method requires a Region of Interest (ROI) as input.
Each voxel of this ROI is spatially sampled in order to define the starting points of ^
particles. These particles move inside a continuous q-ball field defined by linear inter-
polation. Each particle is endowed with an initial speed in the direction of the q-ball
maximum. Then, each particle moves with constant speed according to a simplistic
sampling scheme: let us note

78� \ � the location of the particle at time \ , and
Y�Y�ij � \ � the

direction of the particle speed at time \ :78� \�k W(l �$�m7n� \ � k Y�Yoij � \ �8N W(l (3)

The behaviour of the particle speed direction can be understood from a simple mechan-
ical analogy: at each step of the trajectory sampling, the new speed

Y3YHY.YHYCij � \5k W(l � results
from a trade-off between inertia (

Y�Yoij � \ � ) and a force stemming from the local q-ball (
Yi j = ):Y3YHY.YHYCij � \5k W(l �$�Ap Yij = k �+qrYspn� Y�Ytij � \ � (4)

where
p

is a parameter ranging between 0 and 1 that will be described latter. The orien-
tation

Yij = of the force acting on the particle is chosen randomly inside a half cone defined
from the incident direction

YuYoij � \ � . The probability distribution driving this sampling cor-



responds to the restriction of the q-ball to this half cone. Therefore, the maximum of
the q-ball inside the half cone has the highest probability.

The parameter
p

is the standard deviation of the q-ball normalized by its maximum
in the field. Hence, this weight depends on the location in the q-ball field. In fact

p
is a

measure of anisotropy [7]. For isotropic voxels,
p

parameter is small and the algorithm
favours incident orientation; while for anisotropic voxels,

p
parameter is large and the

algorithm favours q-ball distribution (see Fig. 1).
The particle trajectory regularization depends on three parameters:

1. the half-cone angle is used to discard the diffusion peaks leading to high curvature
of the trajectory. In the following, the cone angle defined from the cone axis is 30
degrees.

2. the q-ball standard deviation (
p

parameter) tunes the weight of inertia.
3. the constant sampling W(l provides another level of tuning: increasing the trajectory

sampling decreases curvature regularization. In all the following, W(l is set such as
the particles do a 0.5 mm move at each iteration.

In this paper, the influence of these ad hoc parameters is not explored. The algorithm
proposed in this paper, indeed, aims mainly at studying the inner organization of the q-
ball field and its links with the bundle organization. It is too early to address the optimal
tuning of such parameters.

The particles propagate throughout a mask computed from the T2 image. Trajecto-
ries stop only when they leave the mask. After the propagation, a postprocessing can
be applied to keep only the reliable part of a bundle. After selection of a set of particle
trajectories, for instance using a second ROI, a meter is used for each voxel accounting
for the number of particles which go through that voxel. Then, the trajectories crossing
some voxels whose meter is under a given threshold are discarded as non significant.

3 Fiber crossing phantom

The lack of knowledge about the white matter organization of the human brain is a huge
handicap for the community developing fiber tracking algorithms. Considering the com-
plexity of the MR diffusion signal, it is rather difficult to validate such algorithms using
only simulated data. Therefore, the development of phantoms with known geometry is
in our opinion crucial for a better understanding of the algorithm behaviours [12].

For this purpose, we have designed a phantom corresponding to two intersecting
fiber bundles. It consists of sheets of parallel haemodialysis Fibers (Gambro, Polyflux
210 H) with an inner diameter of 200 micrometers and an outer diameter of 250 mi-
crometers. Sheets of two different orientations intersecting at 90 degrees were stacked
on each other in an interleaved fashion [12]. Crossing thickness is above 2cm. Fibers
are suspended and hold by two arms as seen in Fig. 2. Fibers are permeable to water.
They are dived in pure water mixed with gadolinium.

We performed MRI acquisitions with a 1.5 Tesla magnet (Signa, General Electrics)
with maximal gradient intensity of vKT mT m w � . Acquisitions were performed with Spin
echo EPI sequence and Stejskal and Tanner diffusion gradient [19]: b value is 700
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Fig. 2. I: A phantom of fiber crossing. II: A slice of the 512 directions q-ball acquisition with a
zoom on the crossing area. q-balls are superimposed on a T2-weighted MR image whose intensity
is related to water amount. q-balls and MR data have been slightly rotated in order to simplify
the reading of the q-ball 3D color code. Green and blue rectangles denote the regions of interest
at the origin of fiber tracking. III: Slices of the number of particles crossing each voxels at the
end of the fiber sampling (left: blue bundle, right: green bundle). IV: Trajectories selected by
a threshold on the particle density map for each bundle. A T2-weighted slice of the phantom
crossing the bundles is used as background and hides some trajectories.

s mm w � , equivalent to 2000 s mm w � for diffusion in brain white matter, 512 orien-
tations of the diffusion gradient (HARDI), Matrix 64 x 64, In-plane voxel resolution
3.75 x 3.75 mm, Slice thickness 2.0 mm, TE 66.6 ms, TR 3000 ms, 1 shot, field of view



Fig. 3. Left: a slice of the normalized standard deviation of the q-ball ( h ). Middle: particle
trajectories in the initial q-ball field (T2-weighted image behind). Right: particle trajectories in
the field where the q-balls of the crossing area have been rotated around the z axis (20 degrees).

24 cm. Spatial distortions of the diffusion-weighted images induced by Eddy currents
were corrected before estimation of the q-ball field. This correction relies on a slice by
slice affine geometric model and maximization of mutual information with the diffusion
free T2-weighted image.

A slice of the q-ball field is shown in Fig. 2. Unfortunately, because of a difficult
positioning of the phantom due to the shape of its container, the two crossing bundles
are not parallel to the slice axes. To clarify the visualisation of the q-ball data based
on color encoding, a rotation around the z-axis has been applied to the data before
visualization. Then the orientation of each bundle corresponds to a pure color in the
q-ball meshes (green and red). A zoom on the crossing area highlights the additional
information provided by the q-ball compared to a tensor model. The diffusion peaks,
however, would provide a better angular discrimination with higher b value (

� D
).

For each bundle, the tracking algorithm is fed with a ROI made up of 3 voxels,
using 3 x 130 particles. The particles propagate throughout a mask defined from the
T2-weighted image. This mask corresponds to the part of the field of view including
the artificial fibers. It was defined from a high threshold on intensity (the voxels includ-
ing fibers contain less water, which leads to less signal), followed by a morphological
closing in order to fill up spurious holes. A slice of the two resulting particle density
maps is shown in Fig. 2. A threshold of 5 particles is applied to these maps in order
to create a mask used to select reliable trajectories. The remaining trajectories do not
include any spurious fork in the crossing area.

A second experiment was performed to check that the successful result was not only
due to the fact that the phantom bundles have a straight geometry. With such a geom-
etry, indeed, curvature regularization is sufficient for the particles to pass through the
crossing area without trouble. For this second experiment, a 20 degree rotation around
the z axis was applied to the q-balls of the crossing area corresponding to the zoom
of Fig. 2. Then the tracking algorithm was triggered with the same set of particles as
for the first experiment using first the initial q-ball field and second the modified field.
However, the particles could propagate throughout the whole field (no mask) and no fil-
tering of the trajectories was applied using the particle density map. The results shown
in Fig. 3 prove that the curvature regularization does not prevent the particle to follow
the rotated fiber direction indicated by the q-balls of the crossing area. This observation



means that the q-balls of the crossing area are anisotropic enough to oppose the particle
inertia.

Fig. 4. Streamline algorithm with different thresholds on the angle between two consecutive steps.
a) 30 degrees, b) 60 degrees, c) 80 degrees d) 90 degrees

A last experiment was performed to observe the behaviour of the streamline ap-
proach with the same data and the same ROIs. The algorithm was provided by brain-
VISA software (http://brainvisa.info). Each voxel of the ROI was spatially sampled in
order to provide several starting points. The streamlines were sampled with 0.5mm
steps. For each step, the tensor is estimated after linear interpolation of the 512 diffu-
sion-weighted images and the streamline follows the direction of the main eigenvector.
Streamlines are stopped by a threshold on the angle between two consecutive direc-
tions, namely a threshold on the streamline curvature. We performed the experiment
with four different thresholds (30deg, 60deg, 80deg, 90deg). The results are shown in
Fig. 4. With a 30deg threshold, the streamlines can not pass through the crossing area.
Increasing the threshold allows the streamlines to go further, but the result is uncertain.
When the streamlines remains inside the correct bundle, they include questionable high
curvature parts. All these difficulties stem from the fact that the directions of the tensor
main eigenvectors in the crossing area are not predictable.

4 Human brain

One of the bundles often used to illustrate the behaviour of tracking methods is the optic
tract, which conveys information from the thalamus to the visual cortex in occipital
lobe [6]. The optic tract is interesting for validation because it is one of the few well
known bundles of brain architecture. A few other primary bundles like the pyramidal
tract are used for the same purpose. Surprisingly, the auditory tract, which conveys
information from the thalamus to the auditory cortex in temporal lobe, is usually absent
from tracking reports. This bundle seems to be lost in a large crossing with orthogonal
fibers. To study the potential of the approach described in this paper, the last experiment
aims at detecting this primary tract.

The acquisitions used for this last experiment were not initially dedicated to q-ball
methodology. Therefore, the angular resolution is low and the b-value is too small to get
accurate information on the crossing geometry. Nevertheless, the q-ball approach can
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Fig. 5. I: The two regions of interest (ROIs) used to define auditory tract are the thalamus (red)
and Heschl gyrus (green), a good landmark of primary auditory area. The yellow object is the
grey matter of the lateral fissure surrounding Heschl gyrus. The blue bundle, supposed to corre-
spond to auditory tract, has been inferred from q-ball data. II: Intersection of the ROIs and of
the tracked bundle with a slice of the anisotropy map (the parameter h mentioned in the text)
computed inside the mask used for tracking. III: The q-balls of the voxels crossed by at least one
particle trajectory linking the two ROIs. IV: the representation of the auditory tract obtained after
thresholding the particle density map for the subject used above and for two other subjects.



be used to analyze such data, which has been done for 3 different subjects. The acqui-
sition parameters are the following: 41 diffusion gradient directions (HARDI), b value
is 700 s mm w � , Matrix 128 x 128, In-plane voxel resolution 1.875 x 1.875 mm, Slice
thickness 2.0 mm, TE 66.6 ms, TR 2000 ms, single shot, FOV 24 cm. After correction
of the spatial distortions induced by Eddy currents, the q-ball field was estimated using
a tessellation of the sphere made up of 240 nodes. To improve further 3D visualization,
a homothetic factor was applied to the q-ball meshes. This factor corresponds to the
normalized standard deviation of the q-ball (

p
). Hence, anisotropic q-balls are larger

than isotropic ones.
A white matter mask was used to prevent the particles to go through cortical folds.

The process leading to this mask is the following. A low threshold was applied to the
normalized standard deviation of the q-ball in order to get a first mask of anisotropic
areas. This mask was used to compute the histogram of intensities of anisotropic areas in
the T2-weighted image. A simple histogram analysis provides two thresholds allowing
the definition of the white matter mask.

A good landmark of the primary auditory cortex is called Heschl gyrus, a small
gyrus hidden in the temporal part of the lateral fissure [18, 11]. This gyrus and the
thalamus have been drawn manually in the T2-weighted images (see Fig. 5). Each voxel
of Heschl gyrus has been spatially sampled with 20 particles leading to a total of 20000
starting points (1000 voxels in the ROI). After the tracking, the trajectories reaching
the thalamus ROI are selected first. Then, these trajectories are split in order to keep
only the part linking the two ROIs. A 3D view of the q-balls crossed by the remaining
trajectories is proposed in Fig. 5. While the auditory bundle orientation is clear close to
Heshl gyrus from the q-ball shapes, the q-balls of the crossing area depict mainly the
orthogonal bundle that disturb the streamline approach. A threshold of 3 particles in the
density map was used to select further reliable trajectories, which defined a reasonable
putative auditory bundle for the three subjects (see Fig. 5).

Fig. 6. Left: the entire set of particle trajectories right: the equivalent set of streamlines.

We performed an additional experiment to compare globally the particle trajectories
with streamlines computed for the same data and with the same starting points, using a
80 degrees threshold on angles. The results are shown in Fig. 6. The streamlines are all
attracted by the orthogonal bundle.



5 Conclusion

In this paper, we have explored the new possibilities provided by q-ball representations
for untangling fiber crossing during tracking. We have shown with the phantom study
that the additional information on the fiber ODF provided by the q-ball increases largely
the potential of tracking algorithms. In this paper, we advocate the use of probabilistic
tracking approaches, which can embed uncertainty about the fiber ODF. The potential
of this kind of approaches had already been shown in previous work using tensor [4, 3,
5] and multi-tensor models [16]. Here, we have shown that the probabilistic framework
fits perfectly the information provided by the q-ball, even if some more work has to be
done in order to convert q-ball data into a more reliable fiber ODF. For instance, the
proportions of the different fiber orientations included in a voxel influence the q-ball
in a way that should be corrected in the fiber ODF. This could largely bias the algo-
rithm described in this paper. This algorithm was kept deliberately simple to prevent
the need for sophisticated theoretical development that would be meaningless because
of our lack of understanding of the link between the two ODFs. The development of
new phantoms could be of great help to improve this understanding. Some of the key
parameters whose influence on q-ball should be studied are the proportions of the bun-
dles, the angle between the bundles and the bending of the bundles.

While the experiments with the human brain data may be discussed, because the ac-
quired data are far to optimize the q-ball representation, they show that gathering some
of the most advanced ideas of the diffusion community (q-ball, probabilistic tracking,
curvature regularization) allows the tracking to get closer to the few a priori anatomical
knowledge about the brain connectivity. The next stage will imply to use higher angular
resolution data and higher b-value, in order to address the tracking of longer bundles.
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