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Model description 

Our model posits that each transducer population comprises N  parallel 

transduction modules, with each module comprising one ion channel 

that serially couples to one gating spring and n adaptation motors. The 

channel is either open or closed, with both states being separated by an 

intrinsic energy difference G∆ . The gating spring has stiffness κ  and 

extension l.  Connecting to the channel’s gate, this spring shortens by 

a distance d (the gating swing) as the channel opens. For the anterior 

and posterior transducer population, the position of the motors on their 

support is given by xa,p. The motors display a linear force-velocity 

relation, motpaa ffX +−= 0,ξ , where ξa  characterizes the slope of the 

relation, fmot is the elastic force imposed by the gating spring, and f
0
 is 

the force the motors generate at stall. This stall force is assumed to 

linearly depend on the open probability Po of the channels  [1].  

 

Displacements of the receiver X  are related to displacements of the 

transducer modules by a geometric projection factor γ . Because this 

factor is not known, we project all the movements and forces arising at 

the molecular level to the level of the receiver. The projected gating 
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spring stiffness reads KGS = Nγ 2κ , the projected gating swing is D = d /γ , 

and the motor position translates to Xa, p = xa, p /γ . Forces scale with γ , 

distances with 1/γ , leading to the force-velocity relation for all the N  

transduction modules of one transducer population motpaa FFX +−= 0,λ , 

with λa = Nγ 2ξa , and Fmot = KGS (X − Xa )  (anterior population) and 

Fmot = KGS (X − X p ) (posterior population). Energies, including the energy 

required to open a single transduction channel [2], 

EG =
1
2
κd2 =

1
2

KGSD
2 /N , do not scale. 

 

The harmonic oscillator that represents the sound receiver is described 

by an effective mass m , a linear stiffness KAJ , and friction λ , with 

stiffness and friction arising from the receiver’s proximal suspension by 

Johnston’s organ and the antennal joint [3].  A static displacement, X , 

of the receiver by an external force is balanced by the combined elastic 

forces of this joint and the gating springs. In steady state, the 

extensions of the gating springs of the anterior and posterior neural 

population, aY  and pY , and the position of the receiver, X , satisfy the 

relation XKYKYKF AJaGSpGSext ++−= . The average extensions of the 

springs of the two transducer populations are )( popp XXDPXXY −−−−−=  

and )( aoaa XXDPXXY −−−= . The open probability oP  can be written as 

[4, 5] 

 

 [ ]δ/exp1
1)(

YA
YPo −+

=  (1) 

 
DK
TNk

GS

B=δ , (2)  
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where δ  is the typical distance the receiver has to move in order to 

change the state of the channels, A = exp ∆G +KGSD
2 /(2N)( )/(kBT)[ ] is a 

factor that accounts for the intrinsic energy difference between the 

channel states, G∆ , and Bk  and T  denote the Boltzmann constant and 

the ambient temperature, respectively. The dynamics of the system are 

described by four first-order coupled differential equations: 

   

 VX =  (3) 

 
extAJpopGS

aoaGS

FXKVXXDPXXK
XXDPXXKVm

+−−−−−−−
+−−−−=

λ))((
))((

 (4) 

                 )1)(())(( −−+−−−= aomaxaoaGSaa XXSPFXXDPXXKXλ    (5) 

 )1)(())(( −−−+−−−−−= pomaxpopGSpa XXSPFXXDPXXKXλ . (6) 

 

Equation 4 couples the harmonic oscillator determined by friction λ , 

mass m and stiffness AJK  to the molecular motors via the gating-

springs of stiffness GSK . The dynamics of the collections of motors of 

the anterior and posterior transducer population is described by 

equations 5-6. In the absence of an external load, these motors 

develop the constant velocity amaxF λ/ . We further introduce a 

dimensionless parameter S  that characterizes the coupling strength 

between channel open probabilities and the force-velocity 

characteristics of the motors [1]: )1(max0 oSPFF −= . The stall force 0F is 

maximal when the channels are closed ( max0 FF = ), and minimal when 

the channels are open ( )1(max0 SFF −= ). 

Note that Equations 3 and 4 can be easily transformed into one second-

order equation by simply replacing V  with X  and  V  with X  in 

Equation 4. In the special case of a stationary open probability 5.0, =SoP  
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(see below), both motor populations move sympathetically with 

AXX ap ln2δ−−= , meaning that either Equation 5 or Equation 6 would 

suffice to describe the temporal evolution of both motor populations, 

thereby simplifying our model to two coupled differential equations.  

 

Stationary points 

The model equations 3-6 can be used to analytically determine the 

stationary points of the system. These stationary points are given by 

the following relations: 

 
AJ

ext
S K

FX =  (7) 

 SaSSp XXX ,, 2 +−=  (8) 

where SaX ,  is a solution of  

 
SFDK

FXXK
XXPP

GS

SaSGS
SaSoSo

max

max,
,,

)(
)(

−
−−

=−= . (9) 

Equation 9 shows that the system can have 1 to 3 stationary states, 

two of which can be stable, leading to the bistable state in the state 

diagram (Figure 4F). 

 

Scaling invariances 

The performance of the model (equations 3-6) does not depend on the 

individual values of max, FG∆ , and S , because given values of max,, FSG∆  

can be replaced by 'GGG ∆+∆→∆ , ))/('1( maxmaxmax TkFKGFF BGSδ∆+→  and 
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))/('1/( max TkFKGSS BGSδ∆+→ , without affecting the temporal evolution of 

channel open probabilities, receiver displacements, and relative motor 

displacements. The only difference is a different gating spring tension 

at rest, as the stationary value of SaX ,  (and SpX , ) changes according to 

)/(',, TkGXX BSaSa δ∆−→ . Because we cannot measure absolute gating 

spring tensions and motor positions, absolute values of max, FG∆ , and S  

are arbitrary, whereas the value of SFmax  is not.  

 

Linear response function 

To determine the linear response function (Figure 3A), we actuated the 

sound receiver with a multi-sine stimulus consisting of stimn  sinusoids of 

identical force amplitude A  and distinct frequencies if : 

∑=
= stimn

i iext tfAF
1

)2cos( π . For each stimulus frequency, we determined the 

Fourier transforms of the stimulus force )(~
iext fF  and the phase-locked 

displacement response )(~
ifX . Fourier transforms of a given time-

dependent quantity )(tQ  were calculated as [ ] dttQftifQ )(2exp)(~
∫
∞

∞−
= π . The 

amplitude of the response function )(~/)(~)(~ fFfXf ext=χ  can be regarded 

as the force-dependent sensitivity of the system at frequency f . For 

small stimuli, )(~ fχ  was independent of the forcing amplitude, defining 

the linear response function )(~lim)(~
00 ff

extF
χχ

→
= .  

 

Activity 
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As stated in the main text, we deduce the power contribution of the 

active elements from the difference between the dissipated power DP  

and the stimulus power SP . The results depicted in Figure 3B are 

obtained using the fit parameterλ  from the general fit: 

∫−=
sT

sD dtXTP
0

2/1 λ , neglecting dissipation by the transduction modules. In 

order to quantify this internal dissipation, we used the fit parameter aλ  

of the general fit as an estimate of motor friction; this description is 

justified by the fact that, for a passive system with 0=S , the 

transduction modules behave like simple dashpots with friction aλ  and 

Hookean springs. The dissipated power then reads 

∫ ++−=
sT

paaasD dtXXXTP
0

222/1 λλλ  , resulting in an increased power gain 

that remains positive for all stimulus intensities (Figure 4C).  

 

Displacement-force cycles 

The average displacement-force cycles (Figure 3C) have been deduced 

from the multisine-stimulus data used to calculate the linear response 

function (Figure 3A). Using Fourier transforms, all stimulus frequencies 

except one were removed before calculating phase-locked average 

displacements and forces. Simulations were performed using single-

sine stimuli. 

 

Free fluctuations (Figure 3D) 
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The influence of stochastic forces on the movements of the sound 

receiver was taken into account by adding noise terms to equations 3-

6. The resulting equations read [1]: 

 VX =  (10) 

 
ηλ ++−−−−−−−

+−−−−=

extAJpopGS

aoaGS

FXKVXXDPXXK
XXDPXXKVm

))((
))((

 (11) 

 aaomaxaoaGSaa XXSPFXXDPXXKX ηλ +−−+−−−= )1)(())((  (12) 

 ppomaxpopGSpa XXSPFXXDPXXKX ηλ +−−−+−−−−−= )1)(())(( , (13) 

  

 

where   aηη,  and pη  have zero mean, with their respective 

characteristics being given by the autocorrelation functions 

)0()(,)0()( aa tt ηηηη   and )0()( pp t ηη . For simplicity, we assume that 

noise sources are uncorrelated and that noise is Gaussian. Because of 

the explicit symmetry of our model, the motor noise aη  and pη   share 

the same characteristics. The noise sources giving rise to η  are 

Brownian motion of air molecules hitting the receiver and thermal 

transitions between the open and closed states of the channels. This 

channel clatter exerts stochastic forces on the receiver via the gating-

springs. Assuming that the time constant of the channel clatter is short 

compared to the other time constants of the system, the fluctuation-

dissipation theorem yields )(2)0()( tTkt B λδηη = [1]. The characterization 

of aη  is less simple since it reflects fluctuations of thermal origin and 

contributions of active motor movements [1]. For simplicity, we also 

used the fluctuation-dissipation theorem to estimate aη : 

)(2)0()( tTkt aBaa δληη = . Note that the set of stochastic differential 

equations 10-13 obeys the fluctuation-dissipation theorem if 0=S .  
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Fluctuation-dissipation theorem (Figure 3E) 

The fluctuation-dissipation theorem asserts that for a system in thermal 

equilibrium, the spectral density of the free fluctuations )(~ fC  is linearly 

related to the imaginary part of the linear response function )(~
0 fχ ′′ : 

 
f
fX

TkfC B π2
)(~

2)(~ 0′′= , (14) 

 

where T is the ambient temperature [6]. The ‘effective 

temperature’ at which the system would satisfy the fluctuation-

dissipation theorem can thus be written as  
)(~2

)(~2)(
fk

fCffT
B

eff χ
π

′′
=   [1, 6]. A 

system in thermal equilibrium will satisfy the fluctuation- dissipation 

theorem, 1=TTeff , at all frequencies.  

 

Phase-Locking (Figure 4B) 

Actuating the sound receiver with a sinusoidal stimulus )(tFext  at 

frequency Sf  induces a peak in the receiver’s power spectrum. We 

defined the degree of phase-locking as the ratio between the power 

contained in this phase-locked peak and the system’s total power [6] in 

a frequency band between 100 Hz and Sf2 :  

 

∫

∫
=

S

S

f

X

f

S
SS

SX

dffC

dffC
fC
fC

R
2

100

2

100

)(~

)(~
)(~
)(~

. (15) 
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Here, dtiftiXtXfCX ]2exp[)0()()(~ π∫
∞

∞−

=  is the sound receiver’s power 

spectral density under the influence of the sinusoidal stimulus, and 

)(~
SS fC  is the corresponding spectral density of the stimulus force. The 

frequency band was chosen to eliminate harmonics and low-frequency 

components caused by background noise.  

 

Excess open probability (Figures 2A, 4D,E) 

The excess open probability was calculated as 

)0,max()0,max( ,,,, soposoaoe PPPPP −+−= , where poao PP ,, , denote the open 

probabilities of the anterior and posterior channel populations, 

respectively, and SoP ,  is the open probability at rest. 

 

Deviations between analytical calculations and noisy 

simulations 

Analytically calculated linear response functions (Figure 3A) and 

spectral densities (Figure 3D) display slightly higher values than those 

obtained by noisy simulations. This deviation results from stochastic 

forces that push the system into the nonlinear region where mechanical  

sensitivity is decreased (Figure 4A). 

 

Fitting procedure 

We have fitted the series of steps by numerically integrating the 

deterministic system defined by equations 3-6 , using 
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mKKSP aGSAJSo ,,,,,,,, λλδ  and N  as fit parameters. The model parameters 

D  and maxF  were calculated using equations 2 and 9.  

Individual fits were performed by numerically integrating equations 3-6 

for a single force step of given amplitude and polarity and by 

comparing predicted and measured receiver displacements. 

Measurement points used for the fits were distributed logarithmically, 

gradually decreasing the density of points from the beginning to the 

end of the step. The cost-function used for individual fits was  

 
( )

∑
=

−FSN

j FS

jj

N
YS

1

2

, (16) 

 

  

where FSN  is the number of the measurement points and jS and jY  are 

simulated and measured receiver displacements. 

General fits were performed by simultaneously fitting displacement 

responses to 10 small force steps (peak displacements < 397-737 nm 

and force amplitudes < 3.6 - 39 pN, N=7), the linear response function, 

and the spectral density of free fluctuations. To enhance the speed of 

the fitting procedure, the linear response function of the model was 

calculated analytically for the noiseless system using equations 3-6. 

Similarly, the spectral density of the model’s free fluctuations was 

calculated analytically using the noise sources defined above (see 

section “Free fluctuations”) in conjunction with the linear response 

function.  

The cost-function of the general fit was  
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 (17) 

 

 

Here, 10=SN  is the number of force steps, FSiN ,  is the number of 

measured points in step i ,  jiS ,  and jiY ,  are the simulated and 

measured receiver displacements for point  j and step i , and iP  is the 

peak displacement in response to step i . Furthermore, C,0
~χ  is the linear 

response function calculated using equations 3-6, χN  is the number of 

points used for fitting the linear response function, )(~ fCC  is the 

analytically calculated spectral density, and CN  the number of points 

used for fitting the spectral density. Because large steps consistently 

displayed higher sums of squared residuals than small ones, step 

responses were normalized to squared peak displacement 

amplitudes 2
iP . For each experiment (ensemble of step responses, linear 

response function, free fluctuations), in turn, the sum of the squared 

residuals was normalized to the number of measurement points, 

ensuring that all the different experiments were similarly weighted by 

the general fit.  
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Initial parameter values used for individual fits were those obtained by 

the general fit. In order to find local minima of the cost-functions, we 

used the Nelder Mead Simplex algorithm implemented in the Gnu 

Scientific Library. 

 

Force estimation 

The noncontact electrostatic actuation of the sound receiver (see 

materials and methods) resulted in a linear relation between initial 

receiver acceleration X  and command voltage CV  in the range of 

displacements which were used for the general fit [7]: CaVX = . The 

applied force therefore reads Cext amVXmF == . For each receiver, we 

determined a  using the initial acceleration and the command voltage of 

the 10 force steps used for the general fit.  Note that equations 3-6 are 

invariant with respect to a scaling of NmKKF aAJGSext ,,,,,, λλ  by a constant 

factor. The stochastic differential equations 10-13, however, are not 

invariant with respect to such scaling, which means that by 

simultaneously fitting step responses, the linear response function, and 

also the spectral density of free fluctuations, unambiguous estimates of 

the parameter values of NmKKF aAJGSext ,,,,,, λλ  are obtained.  

 

Time constants 

In a quiescent system, the dynamical variables pa XXXV ,,,  approach 

the positions given by the stationary state. When only one of these 

variables is dislocated from the stationary point while the others remain 

fixed, the relaxation of this variable to its stationary position can be 

described, to linear order, by a single exponential and an associated 
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relaxation time constant. The relaxation time constant aτ  of the position 

of the molecular motors [8] can be calculated using eqs. 5 or 16, 

yielding  

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−

=

)1(11 max
oo

GS
GS

a
a

PP
DK

SFDK
δ

λτ . (18) 

Similarly, we can attribute a relaxation time constant to the position of 

the receiver’s tip. Let us first consider the fly’s ear as a system in which 

the inertia of the receiver is neglibible. In this case, eq. 3 becomes 

obsolete and eq. 4 reads 

 
extAJpopGS

aoaGS

FXKXXDPXXK
XXDPXXKX

+−−−−−−
+−−−−=

))((
))((λ

. (19) 

 

The relaxation time constant mlτ  of the receiver of this ‘massless’ 

system thus can be written as  

 
⎟
⎠
⎞

⎜
⎝
⎛ −−+

=
)1(12 ooGSAJ

ml

PPDKK
δ

λτ . (20) 

 

Our model, however, takes inertial effects into account, describing the 

position X  of the receiver by a second order differential equation. With 

respect to relaxation times, three different scenarios can be 

distinguished: the underdamped case, critical damping, and the 

overdamped case. According to general fit parameter values, the return 

of the fly’s receiver to its stationary position falls into the underdamped 

case, displaying a damped oscillation at frequency 

( )( ) )2/(/1/2/1 πτττ udmlududf −=  and an exponentially decaying amplitude 

characterized by the time constant 
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λ

τ m
ud

2
= . (21) 

For all flies examined, udτ  was substantially shorter than aτ (Table S2), 

meaning that the observable relaxation of the receiver is dominated by 

the slow relaxation of the adaptation motors.  
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Table S1. General Fit Parameters 

Parameter fly 1 fly 2 fly 3 fly 4 Fly 5 fly 6 fly 7 mean ± 1 s.d. 

GSK (pN/nm) 0.037 0,017 0.087 0.038 0.016 0.026 0.036 0.037 ± 0.024 

AJK (pN/nm) 0.040 0,032 0.084 0.053 0.026 0.017 0.037 0.041 ± 0.022 

S  0.38 0.25 0.16 0.29 0.38 0.21 0.24 0.27 ± 0.08 

SoP ,  0.50 0.58 0.50 0.50 0.50 0.50 0.50 0.51 ± 0.03 

δ (nm) 223 210 239 190 208 461 246 254 ± 93 

N  2653 1221 6823 2033 1006 6989 3031 3394 ± 2505 

λ (10-9kg/s) 5.07 7.13 14.8 6.94 6.25 2.51 7.47 7.17 ± 3.76 

aλ (10-9kg/s) 99.0 10.8 42.8 117 64.4 243 90.0 95.3 ± 74.5 

m (10-12kg) 3.57 2.7 6.99 5.44 4.8 1.93 4.39 4.29 ± 1.70 

GSK : combined gating spring stiffness; AJK : linear elasticity of 

Johnston’s organ and the antennal joint; S : feedback constant; SoP , : 

stationary channel open probability; δ : typical displacement of the 

receiver required to change the state of the channels; N : number of 

ion channels per transducer population;λ : receiver friction; aλ : motor 

friction; m : apparanet mass of the receiver. For parameter definitions, 

see Supplemental Data. 
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Table S2. Derived quantities 

Parameter fly 1 fly 2 fly 3 fly 4 fly 5 fly 6 fly 7 mean ± 1 s.d. 

 τ ud  (ms) 1.48 0.76 0.95 1.57 1.54 1.54 1.18 1.28 ± 0.33 

aτ  (ms) 9.30 4.00 7.32 8.23 5.40 11.7 8.48 7.77 ± 2.52  

D (nm) 1290 1346 1310 1112 1202 2329 1374 1423 ± 409 

maxF (pN) 101 41.8 227 85.3 41.4 134 100 104 ± 63 

SFmax (pN) 38.0 10.6 36.2 24.4 15.9 28.3 24.4 25.4 ± 10.0 

GE ( TkB ) 2.90 3.20 2.74 2.93 2.89 2.53 2.79 2.85 ± 0.21 

udτ : relaxation time constant of the receiver; aτ : relaxation time 

constant of the adaptation motors; D : gating swing of the channels; 

maxF :  maximal stall force of the adaptation motors; SFmax : strength of 

the feedback between channels and motors; GE : mechanical energy 

required to open a single transduction channel. For parameter 

definitions, see Supplemental Data. 
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Figure S1. System behaviour for different dynamic states. (A) 

Simulated sensitivity gain as a function of the maximal motor force. 

The sensitivity gain refers to the ratio of the mechanical sensitivities of 

the linear regimes observed at low and high stimulus amplitudes (see 

also panel C). The maximal motor force ( maxF , Supplemental Data), in 

turn, refers to the stall force the motors generate if the channels are 

closed. All parameter values correspond to those of the general fit 

except for maxF and the feedback constant S , which were varied in order 
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to follow the 5.0=oP  line in the state diagram (inset, same as Figure 

4F). Blue circle: S =0.21 and maxF =134 pN as obtained by the general 

fit. Orange circle: passive system with no feedback: 0=S , 120max =F pN. 

Red Circle: Maximum relative sensitivity gain: 35.1=S , 371max =F  pN. 

Grey areas indicate the bistable regime (BI) and the oscillatory regime 

(OSC), respectively. (B) Power spectral density of free fluctuations 

obtained for the points depicted in (A). In the case of the oscillating 

system, a peak at three times the fundamental frequency can be seen; 

the first harmonic is absent due to symmetry ( 5.0=oP ). (C) 

Corresponding mechanical sensitivity (colour code as in (A)) for 

stimulation at that frequency at which the spectral density in panel (B) 

peaks. Note the discontinuity displayed by the bistable system with no 

feedback (orange symbols): at low intensities, the system operates in 

the vicinity of one stable state, whereas it switches between both stable 

states at high stimulus intensities. Error bars: standard deviations 

obtained for six independent noisy simulations. Unless otherwise 

stated, all parameter values refer to fly 6 from Table S1. 

  

 


