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Abstract
A solid-state two-qubit quantum gate was recently proposed that might be
made in a silicon fabrication plant in the near future. In this class of device,
entanglement between two quantum bits is controlled by a change from a
largely unentangled ground electronic state to an excited state in which useful
entanglement can be produced. Such gates have potential advantages, both
because they exploit known solid-state behaviour and they separate the storage
and manipulation of quantum information. It is important that the excitation
step does not create decoherence. We analyse a type of gate proposed before,
in which the excitation involves a control electron that interacts with the qubit
spins in the excited state. The dynamics of an idealized (but fairly general)
gate of this type show that it can be operated to produce a standard two-qubit
entangling state.

1. Introduction

Quantum computers use quantum logic gates (DiVincenzo 1995, Vedral and Plenio 1998),
which manipulate quantum bits—qubits. Much study has shown that a universal set of quantum
gates must include a two-qubit gate which can produce entanglement (Barenco et al 1995,
Beckmann et al 1996). In order to do this, its qubits must interact with each other. This,
of course, is a problem; in order to preserve coherence it is desirable to isolate the qubits
from each other, and from the world, but in order to produce the entanglement necessary for
a universal gate they must interact. Quantum computers based on ion traps (Jonathan et al
2000, Cirac and Zoller 1995) solve the problem by using special protocols to bring about
interaction between otherwise almost perfectly isolated ions, but many solid-state devices rely
on an ability to control the direct interaction between the qubits (Loss and DiVincenzo 1998,
Golovach and Loss 2002). Often, this means that engineered intervention is required to set the
naturally occurring interaction between the qubits to zero.
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Quantum information processors will need to be integrated with classical digital
microelectronics. The ideal quantum information processor would be one which could be
manufactured in a standard fabrication facility of the type planned for the near future. No such
quantum information processor has been demonstrated, but one recent proposal (Stoneham
et al 2003), based on the change of entanglement controlled by electronic excitation, may
lead to such a development. Our paper addresses a specific, but generic, aspect of such gates
and, in particular, we show from an analysis of their dynamics that idealized gates of the
type discussed by Stoneham et al can, in principle, be operated to produce standard two-qubit
entangling gates, with negligible loss of quantum information to the control electron. This
paper expands some of the details which are important for a processor of this type.

The unusual feature of our scheme is that we use ‘control’ electrons to manipulate our
qubits. By suitably modifying the excitation state of the control electron we aim to modify
the electron–electron interaction between control and qubit electrons to produce two-qubit
entanglement. However, it is important that after it has done its job, the control electron is not
only in a state which does not interact with the qubits, but also is not entangled with them. We
show here that this is possible.

In particular we consider an idealization of the actual solid-state system that might be
used in such a quantum gate. Our ideal system contains just three particles; we assume that
two qubits are encoded by the spin states of two of them. We further assume that there is no
interaction between the particles when they are all in their ground states, but that if one is in
an excited state, it can interact with the other two. Thus, the gate protocol requires that we
control the excitation and de-excitation of one of the particles—the control particle—so as
to produce the required entanglement between the other two, in such a way that the control
particle is ultimately returned to its unexcited state and is not entangled with the particles
encoding the qubits. In our previous publication (Stoneham et al 2003), we described a
possible implementation of this scheme in Si. In that case the qubit spins were envisaged to
belong to deep donors in Si, and the third (communicating) particle was an electron that could
be excited into a delocalized ‘molecular’ state connecting both donors. Here we leave aside
the details of the specific implementation and concentrate on the dynamics of the two-qubit
gate under the action of a rather generic Hamiltonian. Thus, in this work we ignore many
of the complications which will occur in practice, and focus on one important aspect of the
quantum gate. What we describe here—or something similar—is necessary for the successful
operation of the gate; it is certainly not sufficient. We do not discuss the implementation
of single-qubit operations in this paper, but note that this may (in principle) be done using
previously demonstrated techniques (Charnock and Kennedy 2001, Jelezko et al 2002).

2. The three spin system

In this section we describe the effective Hamiltonian which controls the interaction between
the qubits. As we shall see, an important feature of our gate is that the qubit–qubit interactions
are mediated by naturally occurring features of the system. External control is provided by
laser pulses, but since these do not interact directly with the qubits, an important source of
engineering noise is avoided.

2.1. The spin basis

Our system consists of three particles A, B and C in a magnetic field B. A and B are always in
their ground electronic state, where it is assumed that they are decoupled from the environment.
Their spin states encode the two qubits. C is the control particle. It is assumed that in its ground
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Figure 1. The quantum gate. The qubits are encoded in the spins of defects A and B with spatial
wavefunctions WA and WB. Laser excitation of the control atom C from its ground state, with
wavefunction WCG to the excited state WCE, controls the qubit interactions.

electronic state C is also decoupled from the environment (and from A and B), but that C also has
an excited electronic state which couples to A and B (and the environment). The configuration
is sketched in figure 1.

The wavefunction of this system has both spatial and spin components. For the three
particles there are 23 = 8 spin states in the electronic ground state, and 23 spin states in the
electronic excited state, a total of 16 states. We neglect orbital excitation of the qubit spins A
and B. In order to proceed we construct a basis set. We are interested in the time development
of the spins, and so shall find it convenient to use the conventional representation of |0〉 as spin
up, and |1〉 as spin down, and write the state of the three particles A, B and C asψAψBψ

s
C|i jk〉,

where i, j, k = 0, 1 and the ordering is significant, so that i represents the spin state of A,
j the spin state of B and k the spin state of C. The wavefunctions ψA, ψB and ψs

C represent
the spatial part of the wavefunction for each of the particles; ψs

C carries an extra label s to
characterize the ground state of C (s = g) or the excited state (s = e). Thus, our basis is

b =
[

vg

ve

]
(1)

with

vs = ψAψBψ
s
C [|000〉, |001〉, . . . , |r〉, . . . , |110〉, |111〉]T . (2)

Since we are almost always only interested in the spin wavefunctions we shall usually suppress
the spatial part, and write

vs = [|000〉, |001〉, . . . , |r〉, . . . , |110〉, |111〉]T
s . (3)

2.2. The interaction Hamiltonian

We assume that the major interaction between the three electrons in the excited state is
exchange, and that this can be modelled with an effective Heisenberg interaction (Herring
and Flicker 1964). We use units in which h̄ = 1. Our Hamiltonian H is therefore

H = |g〉 {
BAσAz + BBσBz + B0

CσCz
} 〈g|

+ |e〉 {JAσA · σC + JBσB · σC + BAσAz + BBσBz + BCσCz + ε} 〈e|
+ |e〉V (t) cos(ωt + φ)〈g| + |g〉V (t) cos(ωt + φ)〈e|. (4)



2760 R Rodriquez et al

We have quantized along the magnetic field B and defined

BK = −|B|µK (K = A,B,C); B0
C = −|B|µ0

C (5)

where µA and µB are the magnetic moments associated with particles A and B (which are
always in their ground states), µ0

C is the magnetic moment of particle C in its ground state, and
µC the magnetic moment of particle C in its excited state. Note that, if the magnetic moments
µK are different, BA, BB and BC as defined in equation (5) may differ even when the external
magnetic field is uniform. We have assumed that when all three particles A, B, C are in their
ground states there is negligible interaction between them, but that when C is in its excited state,
which of course has a larger spatial extent, the effective exchange interactions between A and C
and B and C have strengths JA and JB, respectively. The exchange is modelled as Heisenberg
(σ · σ) interactions. Although in Si the true exchange is complicated by the indirect nature
of the bandgap, and consequent intervalley interference and anisotropic effective mass effects,
Andres et al (1981) and Koiller et al (2002a, 2002b) show that the characteristic strength of
the exchange interaction between defects can be related to the ‘hydrogenic’ value (Slater 1963,
Herring and Flicker 1964), and this is what we assume. Thus, as we show in figure 2, there is a
range of separations for which exchange between the ground states of A, B and C is negligible,
and for which exchange between the excited state of C and A and C and B is usefully large.

Furthermore the ground (|g〉) and excited (|e〉) states are coupled by the interaction
V (t) cos(ωt + φ) as is appropriate for pulsed laser excitation of particle C in the semiclassical
approximation. This laser interaction, in conjunction with the exchange in the excited state,
is what controls the qubits. The excited state excitation energy is ε. In the solid-state
implementations we envisage this can be∼1 eV, certainly less than the Si bandgap, so the energy
scale for the gate operation can be large. The lifetime of the upper state is, of course, important
for the operation of the gate. Although we do not have accurate values for this lifetime,values of
∼µs are typical for such states (Stoneham 1975) (and consistent with values derived by scaling
hydrogenic transition rates). We discuss below how the gate operation depends upon the upper
state lifetime, and find that there are circumstances under which lifetimes considerably shorter
than microseconds can still give acceptable gate performance.

The energy scale for the exchange splitting in the excited state, which, as we shall see
below, determines the laser pulse length, is set by JA, JB. We envisage values for this effective
interaction of the order of 1–10 GHz. The control-qubit separation required to achieve this
can be estimated from figure 2. We find values of about 13–17 nm. (At this separation the
magnetic dipole–dipole interaction between the active electrons is ∼10 peV, and we ignore it.)
Further details of exchange strengths in Si can be found in Herring and Flicker (1964), Cullis
and Marko (1970), Stoneham (1975), Andres et al (1981), Koiller et al (2002a, 2002b).

As we have written it, the first term in equation (4) represents the ground state part of the
Hamiltonian, the second term the excited state part, and the last term the coupling between
them.

With the basis set described in equation (1), the Hamiltonian can be written

H =
[

Hg L(t)
L†(t) ε + He

]
. (6)

Here Hg is an 8 × 8 matrix describing the interactions in the ground state. It is diagonal, and
its r, r th element is the magnetic energy of the state |r〉, which can be written as

Hg
rr = (−1)i BA + (−1) j BB + (−1)k B0

C (7)

where |r〉 has the binary representation

|r〉 = |i jk〉.
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Figure 2. Effective mass theory estimate of the exchange interaction strength J (GHz) as a function
of separation between qubit and control atoms. The exchange is calculated numerically (Fernández
Rico et al 1997, Alvarez Collado et al 1989) using ns-type Slater orbitals (Slater 1963) of the form
rn−1 exp(−r/a) with effective mass and dielectric constant appropriate to electrons in Si. The
qubit is assumed to be in a 1s orbital with a = 1.28 nm, as appropriate for the binding energy
of the ground state of Si:Bi. Its exchange interaction with both the ground and excited states of
the control atom are shown, for two cases whose parameters are representative: first for a control
atom whose ground state is represented by a 1s Slater with a = 0.94 nm (open squares) and whose
excited state is represented by a 2s Slater with a = 1.88 nm (filled squares), and secondly for a
control atom whose ground state is represented by a 1s Slater with a = 0.63 nm (open circles) and
whose excited state is represented by a 3s Slater with a = 1.88 nm (filled circles). Also shown, as
dashed curves, are the excited/ground state contrasts, the ratio of the exchange in the excited state
to exchange in the ground state for the two cases (dashed curves and right-hand scale). Although
these calculations do not reflect the full complexity of exchange in Si (see text for further details),
they do suggest that high contrast between ground and excited exchange strengths is available.

The excited state Hamiltonian He is

He =




D0 0 0 0 0 0 0 0
0 D1 2JB 0 2JA 0 0 0
0 2JB D2 0 0 0 0 0
0 0 0 D3 0 0 2JA 0
0 2JA 0 0 D4 0 0 0
0 0 0 0 0 D5 2JB 0
0 0 0 2JA 0 2JB D6 0
0 0 0 0 0 0 0 D7




(8)

with diagonal terms Dr given by

Dr = (−1)i BA + (−1) j BB + (−1)k BC + (−1)[i+k] JA + (−1)[ j+k] JB (9)

where, once again, {i jk} is the binary representation of r .
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2.3. The laser excitation

Finally, the off-diagonal coupling L(t) is due to the laser. Since the laser does not produce
spin flips the coupling has the form

L(t) = V (t) cos(ωt + φ)I (10)

where I is the 8 × 8 unit matrix and

V (t) = d · E(t) (11)

where d = e〈ψe
C|r|ψg

C〉 is the dipole matrix element for the |g〉 → |e〉 transition and E(t) is the
pulsed laser’s electric field. Here e is the charge on the electron, ψg

C(r), ψ
e
C(r) are the initial

and final spatial wavefunctions for particle C, whose spatial coordinate is r. In the operation
of a quantum gate, a sequence of pulses L(t) will be chosen to manipulate the entanglement
of the qubits A and B.

2.4. The control of the qubits

The spectrum associated with the Hamiltonian in equation (2) has two characteristic energies.
The first is ε, somewhat less than 1 eV, the excitation energy of the excited electronic state.
Secondly, the ground and excited (electronic) states are each split into octets, with a very much
smaller characteristic energy scale determined by the exchange splitting and magnetic field.
This fine structure spin splitting is typically GHz. Now, a pulsed laser, resonantly tuned to
the electronic excitation energy ε and with a pulse transform bandwidth much greater than the
fine structure splitting, will simply interchange the ground and excited state wavefunctions if
the ‘pulse area’

∫
V (t) dt = π . If we assume that the system starts in its ground electronic

state (but in an arbitrary spin state) then a pair of laser pulses, separated by a time T will cause
the system to propagate in its excited electronic state for a time T . If, furthermore, we have
T � τ , where τ is the laser pulse duration, we may separate the excitation and de-excitation
processes from the free propagation between pulses and write for the full time-development
operator

U =
[

0 −ieiφI
−ie−iφI 0

] [
U g 0
0 U e

] [
0 −ieiφI

−ie−iφI 0

]
= −

[
U e 0
0 U g

]
(12)

where I is the 8 × 8 unit matrix corresponding to the laser excitation and de-excitation, and

U g = exp −iHgT ; U e = exp −iHeT (13)

are the time-development operators for free propagation in the ground and excited states. This
effectively allows us to apply He (equation (11)) to the ground state, for a controllable time
T . Thus, the laser excitation allows us to combine two energy scales: the excitation energy
ε = h̄ω and the much smaller spin splitting ∼h̄/τ .

3. The idealized gate

We must now consider how this control scheme can be used to make quantum gates.

3.1. The external parameters—disentangling C

The time development determined by He is discussed in detail in the appendix. To show the
essential features we take two steps. First we make some assumptions about the physical
parameters which, while not essential, are likely to be reasonable first approximations to
experimental realizations of our model. Secondly, we find it convenient to re-order the basis
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states, so that the separation between the control and qubit electrons is easier to see. We use
the subscript 2 to indicate that the time-development operators are calculated in this re-ordered
basis.

The physical system is defined by a number of parameters JA, JB, BA, BB, BC, etc, and a
propagation time T . We shall assume that

BA = BB = B say

JA = JB = J say
(14)

(which is what one would expect if particles A and B are identical to each other). For reasons
which will become apparent below, we pick two integers M and N , and restrict the propagation
time T and the magnetic field strength B so that

T = Mπ/
√
(B − BC − J )2 + 8J 2 = Nπ/

√
(−B + BC − J )2 + 8J 2 (15)

which implies that the field strengths B , BC and Heisenberg coupling J are related by2

B − BC = f J (16)

with

f = − M2 + N2

M2 − N2
±

√(
M2 + N2

M2 − N2

)2

− 9. (17)

The only restrictions on M and N are that T must be positive and f must be real. The fact that
such restrictions are necessary limits the range of two-qubit gates available to us. Nevertheless,
we shall show that this limited set of gates includes those which are needed for a universal
quantum computer; indeed we show that we can make either a phase gate or a root swap gate
to high accuracy.

3.2. The gate time-development operator

We now re-order the basis states as[
[|0〉, |2〉, |4〉, |6〉, |1〉, |3〉, |5〉, |7〉]g [|0〉, |2〉, |4〉, |6〉, |1〉, |3〉, |5〉, |7〉]e

]T

where, for brevity, we have replaced each spin index |i jk〉 by its decimal equivalent.
With these assumptions, we can calculate the time-development operator for the excited

state. It is

U e
2 =

[
U+(M, N) 0

0 U−(M, N)

]
(18)

with U±(M, N) the 4 × 4 unitary matrices

U+(M, N) = ei(J−B)T

×



e−i[(3− f )J + 2B]T 0 0 0
0 [(−1)M + e−i(1− f )J T ]/2 [(−1)M − e−i(1− f )J T ]/2 0
0 [(−1)M − e−i(1− f )J T ]/2 [(−1)M + e−i(1− f )J T ]/2 0
0 0 0 e2iBT (−1)N



(19)

2 Remembering the definition of B , BC (equations (5), (14)), we see that, provided µA �= µC, equation (16) can be
satisfied by suitably choosing the external magnetic field B.
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and

U−(M, N) = ei(J +B)T

×



e−2iBT (−1)M 0 0 0
0 [(−1)N + e−i(1+ f )J T ]/2 [(−1)N − e−i(1+ f )J T ]/2 0
0 [(−1)N − e−i(1+ f )J T ]/2 [(−1)N + e−i(1+ f )J T ]/2 0
0 0 0 e−i[(3+ f )J−2B]T


 .
(20)

U+ describes the evolution of the system when the control spin, C, is initially placed in the
excited state with spin up, and U− describes the evolution when the spin is down. The block-
diagonal form of U e

2 is a consequence of conditions (15) and (17), and is important because it
ensures that the control spin always returns to its original state at the end of the gate operation.
This means that the control spin is not finally entangled with the qubit spins, and hence does
not cause decoherence of the qubit system.

Now consider the operation of an idealized gate. The qubits are encoded in the spin states
of A and B. Thus, the new ordering of the basis states corresponds to the four qubit states and C
spin up, followed by the same four qubit states and C spin down. Thus, if we insist that particle
C is initially in its spin up state, then after the application of the laser pulses, particle C will still
be spin up in its ground state, but the qubit states will have experienced the time-development
operator U+(M, N). Similarly if C is started in the spin down state the qubits experience the
time-development operator U−(M, N). Thus, the effective qubit time-development operator
is either U+ or U−; in what follows we shall, generally, assume it to be U+, and we shall see
that it does indeed produce entanglement, and, for special values of M and N that it produces
either a phase gate, which is locally equivalent to a CNOT gate, or a root swap gate.

4. Two-qubit gates and entanglement

We now discuss the quantum computational aspects of gates which are easily made by this
scheme. This requires some more detailed exploration of the entanglement our protocol can
produce.

4.1. General features of entanglement

Our quantum information is encoded in the spin states of A and B. Furthermore, as we have
described in the previous section, the paired laser pulses return C to its ground state in the spin
state in which it started, which we choose to be |0〉gC. Therefore we confine our attention to
wavefunctions of the form

� = ψAψBψ
g
C [c0|00〉 + c1|01〉 + c2|10〉 + c3|11〉] |0〉gC (21)

where the two spin states in the brackets [· · ·] are states of A and B, and |0〉gC is the spin up state
of (the ground state of) C. Although the spin of C has an important role in the excited state, the
conditions expressed in equations (15) and (17) guarantee that it only acts as a spectator when
C has returned to its ground electronic state. All the quantum information for the two-qubit
gate is encoded in c, the column vector

c = [c0, c1, c2, c3]T (22)

on which the time-development operator U+(M, N) acts. The form of the time-development
operator, that is, the values of M and N , determines the type of gate.

We shall have to distinguish between local operations, which can be decomposed into a
series of manipulations on A and B separately, and two-qubit operations, which manipulate
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the joint state of A and B. Physically, the former can be performed by A-gates (acting on
single qubits) alone. Generally, single-spin manipulations of this type will be performed
using already-established methods that are different to what we describe here (Charnock and
Kennedy 2001, Jelezko et al 2002).

The scheme we describe is supposed to produce a so-called J-gate, which can perform
two-qubit operations. These depend on the state of both spins. A characteristic of such gates
is that, in contrast to A-gates, they can produce entanglement between the spins of A and B
from a state which is initially unentangled (Wootters 1998). Such operations are required to
perform the universal quantum logical operations which give quantum computing its power.

Thus, in our scheme, a general quantum gate will consist of a combination of A- and
J-gates, and the gate will be represented by a time-development operator of the form

Ugate = L fU+(M, N)L i (23)

where L i and L f represent local operations, performed with A-gates and U+(M, N) provides
the J-gate. We stress that this paper is not concerned with the implementation of the local gates
L i and L f . Indeed, it is known that the entanglement produced by Ugate does not depend on
the form of L i and L f . Gates with the same U+(M, N), but different L i and L f , are said to be
locally equivalent. Although they may do different things, they can be made equal by using
only A-gates.

Makhlin (2000) has considered how to characterize locally equivalent gates of two qubits.
First, we transform to what he calls the Bell basis[

1√
2
(|00〉 + |11〉), i√

2
(|01〉 + |10〉), 1√

2
(|01〉 − |10〉), i√

2
(|00〉 − |11〉)

]
which we identify with the subscript B. We have

cB = Qc (24)

and

U+B = Q†U+ Q (25)

with

Q = 1√
2




1 0 0 i
0 i 1 0
0 i −1 0
1 0 0 −i


 . (26)

He shows that, given a gate time-development operator U in the standard basis, one can
calculate

m = U T
B UB (27)

and

n = det U (28)

and then find

G1 = tr2(m)/16n (29)

and

G2 = (tr2(m)− tr(m2))/4n. (30)

These two quantities between them uniquely specify the eigenvalues of m. Two gate
time-development operators Ux and Uy are then equivalent to one another within local
transformations if and only if they have the same values of G1 and G2.
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We may now apply these ideas to U+(M, N). We get

G1(M, N) = (−1)(M+N)
[
e−iJ T + (−1)N eiJ T cos(1 − f )J T

]2
/4 (31)

and

G2(M, N) = (−1)(M+N)
[
cos 2J T + 2(−1)N cos(1 − f )J T

]
(32)

where equations (17) and (15) must be used for f and T .

4.2. The phase gate, the ‘root swap’ gate

The purpose of this work is to consider the use of excited states to control two-qubit gates. To
avoid the (for our purposes) unnecessary complications introduced by local one-qubit gates
we focus on two well known universal gates—the phase gate and the so-called ‘root swap’
gate. The phase gate has the unitary transform

Uphase =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


 (33)

so that

Gphase
1 = 0

Gphase
2 = 1

(34)

whereas the root swap gate we shall consider is of the form

Urs =



1 0 0 0
0 (1 − i)/2 −(1 + i)/2 0
0 −(1 + i)/2 (1 − i)/2 0
0 0 0 −1


 (35)

so that

Grs
1 = −i

4
Grs

2 = 0.
(36)

If values of M and N can be found such that

GU+(M,N)
1 = Ggate

1 + δ1

GU+(M,N)
2 = Ggate

2 + δ2

(37)

(gate = phase, rs) where δ1 and δ2 are ‘small’, then the corresponding gate time-development
operator will be ‘near’ a time-development operator which is locally equivalent to either a
phase gate or a root swap gate. The reason for focusing on these gates rather than the more
familiar CNOT gate (Cirac and Zoller 1995), is that, as we shall see, the values of M , N which
satisfy equations (34) or (36) actually produce time development operators close to those given
in equations (33) or (35) rather than a local equivalent. This enables us to determine the target
matrix UW defined below, and therefore the quality of the gate protocol, without unnecessary
complications.

We characterize the system by its (entanglement) fidelity, (Nielsen 2002, Fortunato et al
2002) defined as

F+(M, N) = | 1
4 Tr{U †

W U+(M, N)}|2 (38)
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Table 1. Some parameter sets which produce two-qubit gates and their errors. Each set is an
extreme: amongst those we have considered set 1 has the smallest value of
+ and set 3 the smallest
value of J T . Sets 2 and 4 have the smallest values of (BA − BC)/J for a phase gate and root swap
gate, respectively.

Set Type M N (BA − BC)/J J T
√
δ2

1 + δ2
2 
+(M, N)

1 Phase 1584 2177 4.5 1105.84 1.6 × 10−6 4.8 × 10−7

2 Phase 1534 1444 −0.274 1553.522 3.0 × 10−5 3.1 × 10−5

3
√

Swap 563 618 21.093 87.169 1.8 × 10−4 1.6 × 10−4

4
√

Swap 1631 1479 −0.449 1612.405 4.7 × 10−4 2.9 × 10−3

where UW is the time dependent operator to which U+(M, N) itself is close (equations (33)
or (35)).

In fact, it is more useful to use


+(M, N) = 1 − F+(M, N) (39)

so that values close to zero are desirable. Some values of 
+(M, N) are given in table 1. It
is clear that the ideal gate protocol delivers adequate fidelities. However, we stress that the
values of 
+(M, N) given in table 1 are idealizations. They represent the closest that this
protocol can come to producing either a phase gate or root swap gate while still satisfying
equation (15). We must now consider how a more realistic protocol will operate.

5. A ‘realistic’ gate

We have made many idealizations in constructing table 1. In this section we consider the laser
excitation in more detail and also estimate the effect of decoherence in the operation of the
gates.

Even in the absence of decoherence there are two idealizations hidden in equation (12).
First, it is assumed that the laser pulse transform bandwidth is large enough to cover all the
spin components of the excited state, and secondly that the laser pulse lengths τ are negligible
in comparison with T , the interval between them. For the parameters discussed here the first
criterion is several orders of magnitude stricter than the second. Typical splittings in the excited
state are of the order of |1 − f |J , so that we need

Jτ � 1/|1 − f | (40)

to ensure that all the components are properly excited, whereas the pulse will be short in
comparison to the gate protocol duration if

Jτ � J T . (41)

Typically, 1/|1 − f | ∼ 1, whereas J T ∼ 1000.
In figure 3 we show calculations of fidelities as a function of the laser pulse duration.

Typical values for the ideal case (τ → 0) are


+ ∼ 3 × 10−7–10−4

so we can see that, although these values are not achieved for real laser excitation, there is a
range of laser parameters for which usefully accurate gates can be made. Notice that although
parameter sets 3 and 4 have poorer ideal fidelities, they can tolerate longer pulse lengths before
their fidelities become unacceptable. This is because the small magnetic field required in these
cases implies that there is a smaller energy spread of upper state sublevels, and therefore a
longer laser pulse can still excite them all.
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Figure 3. The gate error as a function of laser pulse duration for the four parameter sets in table 1.

Table 2. Typical values required for a realistic gate. We show values of the laser pulse duration
and magnetic field required to make a phase gate as a function of the σ · σ interaction strength for
three cases, all chosen so that Jτ ∼ 0.01–0.1. (For orientation, the exchange interaction between
a 1s and 3d electron in He has a strength of 0.35 meV (Bethe and Salpeter 1957).) Typically, a
visible or near infra-red laser with a fluence of ∼0.5 J m−2 per pulse will be needed. Averaging
over the temporal and spatial distribution of the pulses, and noting that the gate protocol requires
two short pulses separated by a long time interval, and, furthermore, the qubits themselves are not
densely distributed, we estimate that this implies a mean power density of ∼10 W m−2 in case 1.
It should be noted that, in ideal operation, all energy absorbed would be re-emitted as photons at
the end of gate operation.

Case J τ B (T) tsep (ns)

1 6.6 µV = 1.6 GHz 1–10 ps 0.01–1 10–100
2 66 µV = 16 GHz 0.1–1 ps 0.1–10 1–10
3 0.66 mV = 160 GHz 10–100 fs 1–100 0.1–1

As can be seen from figure 3, a value of Jτ <∼ 0.01–0.1 is required for a ‘small’ value
of 
+. This gives a relationship between the laser pulse duration and J , the strength of the
σ · σ interaction which drives the gate. This in turn determines the order of magnitude of the
magnetic field required to produce the phase gate (see equation (17)). Table 2 shows typical
parameters for various realistic values of J . Case 1 does not seem to be beyond present-day
technology, case 2 is at the limit of what might be possible, but case 3 seems inaccessible.

Finally, we consider the effect of decoherence on the gate. As noted by Stoneham et al
(2003) there are several possible sources of decoherence. One is the spontaneous decay of
the excited state, which (as remarked earlier) we expect to occur on a microsecond timescale.
Another is spin–lattice relaxation; this varies rapidly with temperature. For Si:Bi the ground-
state spin–lattice lifetime is longer than a microsecond for temperatures below about 30 K
(Castner 1962), but for other defect systems where the energy splittings exceed the largest
phonon energy the situation may be much better.

The ground-state relaxation is particularly critical because it acts even while the gate is in
the ‘off’ state. In order to estimate the decoherence rate tolerable in the ‘on’ state, we use a
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Figure 4. The gate error as a function of decoherence rate. Those labelled 0 ps show how the
fidelity falls off as a function of decoherence rate for the four parameter sets, on the assumption that
the laser pulse length tends to zero. Clearly parameter set 3, which has the shortest gate duration,
performs well here. The dashed curves show how the fidelity behaves for this case, but with more
realistic laser pulse lengths.

very simple model of dephasing based on a random telegraph signal. We assume that phase
jumps ofπ occur in the upper state wavefunction, randomly at a rate�, and assign each of these
phase jumps to a component of the excited state wavefunction chosen at random (Greenland
2003); this corresponds to a T2-type process. We use standard unravelling techniques (Mølmer
et al 1993) to calculate observables. We expect that this model will exhibit the main features
of most decoherence processes.

We focus on case 1 in table 2 and consider all four parameter sets. In figure 4 we show
how the fidelity falls as the decoherence rate rises. Most of these calculations are done with
an artificially short laser pulse in order to expose the degradation of fidelity with collision
rate. It is clear that the much shorter gate protocol time associated with parameter set 3
(∼9 ns, rather than the 100–150 ns required in the other cases) is advantageous, and outweighs
the rapid degradation in fidelity with laser pulse duration noted above for this parameter set.
Figure 4 shows that dephasing rates of up to 107 s−1 (or even up to 108 s−1) are tolerable
for demonstration purposes. We can therefore accept relaxation times one to two orders of
magnitude faster than those known for the ground state of Si:Bi at 30 K.

6. Summary

In this paper, as in (Stoneham et al 2003), we have described a solid-state two-qubit quantum
gate which, in contrast to many other designs, separates the storage and interaction aspects of
the gate by using an excited control particle to produce the qubit–qubit interaction necessary
for entanglement. Here we analyse the important requirement that the control particle should
remain unentangled with the qubits after the gate protocol is over; this restricts the effective
two-qubit gates we can make, through equations (15) and (17)—all the useful gates are defined
by two integers M and N . Values of these integers can be found which give either phase or root
swap gates. Implementation of these gates with pulsed laser excitation of defects in Si is within
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the scope of present-day technology, and preliminary exploration suggests that decoherence
during the gate operation, while important, is likely to be at a tolerable level.

We stress that in this paper we have been concerned to show what is possible with a very
simple implementation of an excitation controlled two-qubit gate, and many extensions of
the idea are possible. Some will be described elsewhere. The fact that ‘classic’ two-qubit
gates which can be made without undue technological effort can be found in a preliminary
exploration of the parameter space available to us suggests that much more can be done.
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Appendix

Calculation of the time development operator is simplified by permuting the basis states so that
|3〉 and |4〉 interchange their positions. With this permutation the excited state Hamiltonian (8)
becomes

He
1 =




D0 0 0 0 0 0 0 0
0 D1 2JB 2JA 0 0 0 0
0 2JB D2 0 0 0 0 0
0 2JA 0 D4 0 0 0
0 0 0 0 D3 0 2JA 0
0 0 0 0 0 D5 2JB 0
0 0 0 0 2JA 2JB D6 0
0 0 0 0 0 0 0 D7




(8a)

which is in a convenient block diagonal form. Now if

D2 = D4

D3 = D5
(42)

then the 3 × 3 sub-matrices can be diagonalized easily, and the time development operator
written in closed form. Although this is not the only circumstance in which this is possible,
the conditions (42) imply

BA = BB = B say

JA = JB = J say
(43)

which is what one would expect if particles A and B are identical to each other.
The time-development operator is then

U e
1 (t) =




exp(−iD0t) 0 0 0
0 R(t) 0 0
0 0 S(t) 0
0 0 0 exp(−iD7t)


 (44)

where R can be written

R = ei(J−B)t


 c − iu/p s −2iJ/p s −2iJ/p s

−2iJ/p s
[
c + iu/p s + eiut

]
/2

[
c + iu/p s − eiut

]
/2

−2iJ/p s
[
c + iu/p s − eiut

]
/2

[
c + iu/p s + eiut

]
/2


 (45)
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with

u = B − BC − J

p =
√

u2 + 8J 2

c = cos pt

s = sin pt

(46)

and S is

S = ei(J +B)t




[
c̄ + iv/q s̄ + eivt

]
/2

[
c̄ + iv/q s̄ − eivt

]
/2 −2iJ/q s̄[

c̄ + iv/q s̄ − eivt
]
/2

[
c̄ + iv/q s̄ + eivt

]
/2 −2iJ/q s̄

−2iJ/q s̄ −2iJ/q s̄ c̄ − iv/q s̄


 (47)

with

v = −B + BC − J

q =
√
v2 + 8J 2

c̄ = cos qt

s̄ = sin qt .

(48)

We now perform a final permutation to bring the basis into the order[
[|0〉, |2〉, |4〉, |6〉, |1〉, |3〉, |5〉, |7〉]g [|0〉, |2〉, |4〉, |6〉, |1〉, |3〉, |5〉, |7〉]e

]T

and the corresponding time-development operator in the excited state is

U e
2 =




exp(−iD0t) 0 0 0 0 0 0 0
0 R22 R32 0 R21 0 0 0
0 R23 R33 0 R31 0 0 0
0 0 0 S33 0 S31 S32 0
0 R12 R13 0 R11 0 0 0
0 0 0 S13 0 S11 S12 0
0 0 0 S23 0 S21 S22 0
0 0 0 0 0 0 0 exp(−iD7t)



. (49)

Now, let us choose magnetic fields B and BC, interaction strength J and total time T so that

pT = Mπ (50)

and

qT = Nπ. (51)

This will be possible if the magnetic and Heisenberg interaction strengths are related by
B − BC = f J with f given by

f = − M2 + N2

M2 − N2
±

√(
M2 + N2

M2 − N2

)2

− 9 (52)

and under these conditions

R12 = R13 = R21 = R31 = S13 = S23 = S31 = S32 = 0 (53)

so that equation (49) becomes

U e
2 =

[
U+(M, N) 0

0 U−(M, N)

]
(54)
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with U±(M, N) the 4 × 4 time-development operators

U+(M, N) = ei(J−B)T

×



e−i[(3− f )J +2B]T 0 0 0
0 [(−1)M + e−i(1− f )J T ]/2 [(−1)M − e−i(1− f )J T ]/2 0
0 [(−1)M − e−i(1− f )J T ]/2 [(−1)M + e−i(1− f )J T ]/2 0
0 0 0 e2iBT (−1)N



(55)

and

U−(M, N) = ei(J +B)T

×



e−2iBT (−1)M 0 0 0
0 [(−1)N + e−i(1+ f )J T ]/2 [(−1)N − e−i(1+ f )J T ]/2 0
0 [(−1)N − e−i(1+ f )J T ]/2 [(−1)N + e−i(1+ f )J T ]/2 0
0 0 0 e−i[(3+ f )J−2B]T



(56)

which are the desired results.
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